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EQUILIBRIUM REINSURANCE-INVESTMENT STRATEGY WITH A COMMON
SHOCK UNDER TWO KINDS OF PREMIUM PRINCIPLES

Junna Bi, Danping Li* and Nan Zhang

Abstract. This paper investigates the optimal mean-variance reinsurance-investment problem for an
insurer with a common shock dependence under two kinds of popular premium principles: the vari-
ance premium principle and the expected value premium principle. We formulate the optimization
problem within a game theoretic framework and derive the closed-form expressions of the equilibrium
reinsurance-investment strategy and equilibrium value function under the two different premium prin-
ciples by solving the extended Hamilton–Jacobi–Bellman system of equations. We find that under the
variance premium principle, the proportional reinsurance is the optimal reinsurance strategy for the op-
timal reinsurance-investment problem with a common shock, while under the expected value premium
principle, the excess-of-loss reinsurance is the optimal reinsurance strategy. In addition, we illustrate the
equilibrium reinsurance-investment strategy by numerical examples and discuss the impacts of model
parameters on the equilibrium strategy.
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1. Introduction

The study of an insurer’s optimal reinsurance-investment problem has attracted a lot of attention in the
literature of actuarial science in the past few years. The optimization criteria which are commonly used in these
optimal reinsurance-investment problems include maximizing the expected utility of the terminal wealth of an
insurer (see e.g., [10, 12, 18, 20, 21, 26, 27]), minimizing the ruin probability of an insurer (see e.g., [10, 22, 23]),
and the mean-variance criterion (see e.g., [3–5, 16]). In this paper, we take the mean-variance criterion as the
optimization criterion.

For the optimal reinsurance-investment problem of an insurer with more lines of insurance business, we have
to consider the dependence among the lines of the insurance business. For example, a hurricane can lead to
different kinds of insurance claims such as death claims, household claims, and so on. The common shock risk
model is often used to describe the dependence between different classes of an insurance business. In this model,
there is a common shock affecting the claim numbers of all classes in addition to their underlying risks. Yuen
et al. [30] and Liang and Yuen [17] assumed that the claim number processes were correlated through a common
shock, and studied the optimal proportional reinsurance strategy. More researches about dependent insurance
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risks can be found in Yuen et al. [29], Bai et al. [2], Bi et al. [5], Zhang and Liang [34], Liang et al. [18], and
references therein.

It is well-known that the optimal reinsurance-investment problems under the mean-variance criterion in a
continuous time framework are time inconsistent due to the fact that variance lacks of the iterated-expectation
property. So the dynamic programming cannot be directly applied to such problems. Actually, the optimal
strategies in most of the mean-variance works mentioned above are called pre-committed strategies. A pre-
committed strategy means that if the decision makers can commit themselves at the initial time, they can
choose a strategy that is optimal from the point of view at the initial time, and then constrain themselves to
abide by it in the future, although the strategy is no longer optimal for the future time. Considering a real-world
example, if an investor adopts the pre-committed strategy, it is optimal only when sitting at the initial time
but no longer optimal in the remaining time interval, which is time-inconsistent, while this investor hopes to
choose a strategy which is optimal at every remaining time, i.e., she/he prefers the time-consistent strategy.
For this reason, more and more scholars have become to study the time-consistent strategies for the dynamic
mean-variance problems. Björk and Murgoci [6] developed a general theory for time inconsistent stochastic
control problems, and derived an extended Hamilton–Jacobi–Bellman (HJB) system of equations that can be
used to solve for the equilibrium strategy, which is time-consistent. From then on, many works have addressed
the equilibrium strategies of dynamic mean-variance problems within the game theoretic framework, including
Zeng and Li [31], Li and Li [15], Björk et al. [8], Björk and Murgoci [7], Wu and Zeng [25], Björk et al. [9], Wei
and Wang [24], and Liu and Chen [19].

A reinsurance policy consists of one risk sharing function which determines how the insurer and the reinsurer
share risk, and one premium share function which indicates how premium is diverted between the insurer and the
reinsurer. The optimal risk sharing functions have different forms under different reinsurance premium principles.
Kaluszka [14] studied the optimal reinsurance under premium principles based on the mean and variance of the
reinsurer’s share of the total claim amount for both global reinsurance and local reinsurance. Hipp and Taksar
[13] solved the problem of ruin probability minimization and they found that the proportional reinsurance was
optimal under the variance premium principle. Bai et al. [2] showed that an excess-of-loss reinsurance policy was
the optimal form that minimized the ruin probability under the expected value premium principle. Zeng and
Luo [32] modeled reinsurance as a cooperation game, then Pareto-optimal policies were studied and classified
as either excess-of-loss or proportional reinsurance based on choices of premium share functions. Zhang et al.
[33] analyzed the optimal reinsurance strategy for insurers with a generalized mean-variance premium principle.
They derived the form of optimal reinsurance under the criteria of maximizing the expected utility function of
terminal wealth and minimizing the probability of ruin. Li et al. [16] studied an insurer’s reinsurance problem
under a mean-variance criterion. They showed that excess-of-loss was the equilibrium reinsurance strategy
under a spectrally negative Lévy insurance model when the reinsurance premium was computed according to
the expected value premium principle. These papers motivate us to consider the optimal reinsurance forms in
an optimal reinsurance-investment problem with a common shock under different premium principles.

In this paper, we investigate the equilibrium reinsurance-investment strategy with common shock dependence
under two popular reinsurance premium principles in practice: the variance premium principle and the expected
value premium principle. The expected value premium principle is commonly used in life insurance which has
stable and smooth claim frequency and claim sizes. The variance premium principle is extensively used in
property insurance. The variance principle permits the company to take the fluctuations (variance) of claims
into consideration when pricing insurance contracts. We assume that the insurer has two dependent classes of
insurance businesses, which are subject to a common shock. The common shock can be interpreted as a claim
that affects two lines of businesses at the same time, such as motor and life insurances, or as a natural disaster
that causes different kinds of claims. The insurer can invest in a financial market consisting of a risk-free asset
and a risky asset whose price process follows a geometric Brownian motion. Under the mean-variance criterion,
we formulate the optimal reinsurance-investment problem within a game theoretic framework. We firstly prove
that the optimal reinsurance contract is a proportional reinsurance under the variance premium principle, and
the optimal reinsurance contract is an excess-of-loss reinsurance under the expected value premium principle.
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Then by using the technique of stochastic control theory and solving the corresponding extended Hamilton–
Jacobi–Bellman (HJB) system of equations, we derive the closed-form expressions of the equilibrium reinsurance-
investment strategy and the equilibrium value function. We further use numerical examples to show the impacts
of model parameters on the equilibrium reinsurance-investment strategies under two kinds of premium principles.

The main contributions of this paper are as follows: First, we incorporate a common shock into the insurer’s
reserve model and then consider the time-inconsistent reinsurance-investment problem under two reinsurance
premium principles. Our model extends the results in Zeng and Luo [32] and Zhang et al. [33], where they did not
consider common shock dependence and time-consistent strategies. Second, for mathematical simplicity, many
papers use the proportional reinsurance directly, but we use the general reinsurance form and prove that the
optimal reinsurance strategies have different forms under different reinsurance premium principles. We find that
the optimal reinsurance contract is a proportional reinsurance under the variance premium principle, and the
optimal reinsurance contract is an excess-of-loss reinsurance under the expected value premium principle. Third,
we find that under the variance premium principle, the optimal proportions for the first class and the second
class of claims are the same. However, under the expected value premium principle, the optimal reinsurance
strategies for the first class and the second class of claims are different.

This paper is organized as follows. Section 2 presents the assumptions and problem formulation. Section 3
studies a mean-variance reinsurance-investment problem under variance premium principle, and derives the
explicit solution to this problem by solving the extended HJB system of equations. Section 4 solves the mean-
variance reinsurance-investment problem under the expected value premium principle. Section 5 uses numerical
examples to illustrate the derived equilibrium reinsurance-investment strategies under two kinds of premium
principles. Section 6 concludes this paper.

2. The model

Let (Ω,ℱ , {ℱ𝑡}𝑡≥0,𝒫) be a filtered probability space satisfying the usual conditions, i.e., ℱ = {ℱ𝑡}𝑡∈[0,𝑇 ] is
right continuous and complete with respect to 𝒫. ℱ𝑡 stands for the information of the market available until
time 𝑡, which is generated by the standard Brownian motions 𝐵1(𝑡), 𝐵2(𝑡). That is, ℱ𝑡 is the accumulated
information up to time 𝑡. 𝑇 > 0 is a fixed time horizon. In addition, we assume that there is no transaction cost
and tax in the financial market or the insurance market, and trading takes place continuously.

The reserve process
{︀
𝑋̄(𝑡)

}︀
𝑡≥0

of the insurer is modeled by

𝑋̄(𝑡) = 𝑋̄0 + 𝑐0𝑡−

⎛⎝𝑁1(𝑡)+𝑁(𝑡)∑︁
𝑖=1

𝑍1𝑖 +
𝑁2(𝑡)+𝑁(𝑡)∑︁

𝑖=1

𝑍2𝑖

⎞⎠. (2.1)

Here 𝑋̄0 is the deterministic initial reserve of the insurer and the constant 𝑐0 is the premium rate. {𝑁1(𝑡)}𝑡≥0,
{𝑁2(𝑡)}𝑡≥0 and {𝑁(𝑡)}𝑡≥0 are three independent Poisson processes with intensity parameters 𝜆1 > 0, 𝜆2 > 0 and
𝜆 > 0, respectively. The counting processes 𝑁1(𝑡)+𝑁(𝑡) and 𝑁2(𝑡)+𝑁(𝑡) represent the numbers of claims during
the time interval [0, 𝑡] for the first class and second class, respectively. 𝑍1𝑖 is the size of the 𝑖th claim for the first
class and {𝑍1𝑖, 𝑖 ≥ 1} is assumed to be an i.i.d. sequence with common distribution 𝐹𝑍1(·), E(𝑍1𝑖) = 𝜇1𝑍1 > 0
and E

(︀
𝑍2

1𝑖

)︀
= 𝜇2𝑍1 > 0. 𝑍2𝑖 is the size of the 𝑖th claim for the second class and {𝑍2𝑖, 𝑖 ≥ 1} is assumed to be an

i.i.d. sequence with common distribution 𝐹𝑍2(·), E(𝑍2𝑖) = 𝜇1𝑍2 > 0 and E(𝑍2
2𝑖) = 𝜇2𝑍2 > 0. Thus the compound

Poisson processes 𝑆1(𝑡) :=
∑︀𝑁1(𝑡)+𝑁(𝑡)

𝑖=1 𝑍1𝑖 and 𝑆2(𝑡) :=
∑︀𝑁2(𝑡)+𝑁(𝑡)

𝑖=1 𝑍2𝑖 represent the cumulative amounts
of claims for the first class and the second class in time interval [0, 𝑡], respectively. {𝑁1(𝑡)}𝑡≥0, {𝑁2(𝑡)}𝑡≥0,
{𝑁(𝑡)}𝑡≥0, {𝑍1𝑖, 𝑖 ≥ 1}, and {𝑍2𝑖, 𝑖 ≥ 1} are mutually independent. It is obvious that the dependence of the
two classes of businesses is due to a common shock governed by the counting process {𝑁(𝑡)}𝑡≥0. This model
has been studied extensively in the literature; see e.g., Yuen et al. [28], Yuen et al. [29], Yuen et al. [30] and
Liang and Yuen [17].

Moreover, we allow the insurance company applies reinsurance strategies 𝑔1(𝑡, 𝑍1) and 𝑔2(𝑡, 𝑍2) for the first
and second classes of claims. 𝑔1(𝑡, 𝑍1) and 𝑔2(𝑡, 𝑍2) are increasing risk share functions for the two variables
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𝑍1 and 𝑍2, with 0 ≤ 𝑔1(𝑡, 𝑍1) ≤ 𝑍1 and 0 ≤ 𝑔2(𝑡, 𝑍2) ≤ 𝑍2. 𝑔1(𝑡, 𝑍1) and 𝑔2(𝑡, 𝑍2) are the parts of each
random claim retained by the insurance company while the rest 𝑍1 − 𝑔1(𝑡, 𝑍1) and 𝑍2 − 𝑔2(𝑡, 𝑍2) are ceded
to the reinsurer. Let the reinsurance premium rate at time 𝑡 be 𝛿(𝑔1, 𝑔2). In Sections 3 and 4, we consider
the variance premium principle and the expected value premium principle respectively. Let

{︁ ̃︀𝑋𝑔1,𝑔2(𝑡)
}︁

𝑡≥0

denote the associated surplus process, i.e., ̃︀𝑋𝑔1,𝑔2(𝑡) is the wealth of the insurer at time 𝑡 under the strategy
(𝑔1(·, ·), 𝑔2(·, ·)). This process then evolves as

𝑑 ̃︀𝑋𝑔1,𝑔2(𝑡) = [𝑐0 − 𝛿(𝑔1, 𝑔2)]𝑑𝑡− 𝑑

𝑁1(𝑡)+𝑁(𝑡)∑︁
𝑖=1

𝑔1(𝑡, 𝑍1𝑖)− 𝑑

𝑁2(𝑡)+𝑁(𝑡)∑︁
𝑖=1

𝑔2(𝑡, 𝑍2𝑖). (2.2)

Due to the jumps in the reserve process
{︁ ̃︀𝑋(𝑡)

}︁
𝑡≥0

, it is not feasible to derive the optimal investment-

reinsurance strategy in this paper explicitly. As most studies on the optimization problem (see e.g., [1,2,10,17,28],
and so on), we can consider the problem under the diffusion approximation of the reserve process

{︁ ̃︀𝑋(𝑡)
}︁

𝑡≥0
.

According to Grandell [11] (pages 15–17), we consider the diffusion approximations, i.e., approximating the
reserve process (2.2) by a Brownian motion with drift. Mathematically, such approximations are based on the
theory of weak convergence of probability measures. One way to express this diffusion approximation is, if the
classical risk model is regarded to be “large deviation”, the diffusion model is related to “the central limit
theorem”. By the similar calculations as those in Bai et al. [2], we have the diffusion approximation for our
two-dimensional reserve process (2.2) in the following form

𝑑 ̂︀𝑋𝑔1,𝑔2(𝑡) = [𝑐0 − 𝛿(𝑔1, 𝑔2)− (𝜆 + 𝜆1)E𝑔1(𝑡, 𝑍1)− (𝜆 + 𝜆2)E𝑔2(𝑡, 𝑍2)]𝑑𝑡

+
√︀

(𝜆 + 𝜆1)E[𝑔1(𝑡, 𝑍1)2] + (𝜆 + 𝜆2)E[𝑔2(𝑡, 𝑍2)2] + 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2)𝑑𝐵1(𝑡), (2.3)

where 𝐵1(𝑡) is a standard Brownian motion.
Suppose that the insurer is allowed to invest all of his/her wealth in a financial market consisting of one

risk-free asset (the money market instrument or the bond) and one risky asset (stock). We consider the financial
market where the two assets are traded continuously on a finite time horizon [0, 𝑇 ].

The price process of the risk-free asset is given by

𝑑𝑃0(𝑡) = 𝑟0(𝑡)𝑃0(𝑡)𝑑𝑡, 𝑡 ∈ [0, 𝑇 ],

where the deterministic function 𝑟0(𝑡)(> 0) is the interest rate of the risk-free asset.
The price of the risky asset is modeled by the following stochastic differential equation

𝑑𝑃1(𝑡) = 𝑃1(𝑡)[𝑟1(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝐵2(𝑡)], 𝑡 ∈ [0, 𝑇 ],

where 𝑟1(𝑡)(> 𝑟0(𝑡)) is the appreciation rate and 𝜎(𝑡) is the volatility coefficient of the risky asset. 𝐵2(𝑡) is a
standard {ℱ𝑡}𝑡≥0-adapted Brownian motion which is independent with 𝐵1(𝑡). We assume that 𝑟0(𝑡), 𝑟1(𝑡) and
𝜎(𝑡) are deterministic, Borel-measurable and bounded on [0, 𝑇 ].

Let 𝑋(𝑡) denote the insurer’s wealth at time 𝑡 and 𝑢(𝑡) denote the total market value of the insurer’s wealth
in the risky asset. Then 𝑋(𝑡) − 𝑢(𝑡) is the value of the insurer’s wealth in the risk-free asset. A restriction we
will consider in this paper is the prohibition of short-selling of the stock, i.e., 𝑢(𝑡) ≥ 0. But the market value of
the insurer’s wealth in the risk-free asset is not constrained.

We call 𝜋(𝑡) := (𝑔1(𝑡, ·), 𝑔2(𝑡, ·), 𝑢(𝑡))′ an admissible strategy if 𝜋(𝑡) is ℱ𝑡-predictable and satisfies 0 ≤
𝑔1(𝑡, 𝑍1) ≤ 𝑍1, 0 ≤ 𝑔2(𝑡, 𝑍2) ≤ 𝑍2, 𝑢(𝑡) ≥ 0, E

[︁∫︀ 𝑡

0
𝑔1(𝑠, 𝑍1)2d𝑠

]︁
< ∞, E

[︁∫︀ 𝑡

0
𝑔2(𝑠, 𝑍2)2d𝑠

]︁
< ∞, and

E[
∫︀ 𝑡

0
𝑢(𝑠)2d𝑠] < ∞ for all 𝑡 ≥ 0.
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We denote the set of all admissible strategies by Π. Let 𝑋𝜋(𝑡) denote the wealth process when the strategy
𝜋(·) is applied. Then the reserve process 𝑋𝜋(𝑡) is given by

𝑑𝑋𝜋(𝑡) =
{︂

𝑟0(𝑡)𝑋𝜋(𝑡) + [𝑟1(𝑡)− 𝑟0(𝑡)]𝑢(𝑡) + 𝑐0 − 𝛿(𝑔1, 𝑔2)− (𝜆 + 𝜆1)E𝑔1(𝑡, 𝑍1)

− (𝜆 + 𝜆2)E𝑔2(𝑡, 𝑍2)
}︂

𝑑𝑡 + 𝜎(𝑡)𝑢(𝑡)𝑑𝐵2(𝑡)

+
√︀

(𝜆 + 𝜆1)E[𝑔1(𝑡, 𝑍1)2] + (𝜆 + 𝜆2)E[𝑔2(𝑡, 𝑍2)2] + 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2)𝑑𝐵1(𝑡). (2.4)

We will formulate the problem within a game theoretic framework, which is developed by Björk and Murgoci
[6]. The optimization problem for the insurer with the objective function which we want to maximize is given
by

𝐽(𝑡, 𝑥, 𝜋) = E𝑡,𝑥[𝑋𝜋(𝑇 )|ℱ𝑡]−
𝛾

2
V𝑎𝑟𝑡,𝑥[𝑋𝜋(𝑇 )|ℱ𝑡]

= E𝑡,𝑥[𝑋𝜋(𝑇 )|ℱ𝑡]−
𝛾

2

{︁
E𝑡,𝑥

[︁
(𝑋𝜋(𝑇 ))2|ℱ𝑡

]︁
− [E𝑡,𝑥(𝑋𝜋(𝑇 )|ℱ𝑡)]

2
}︁

,

= E𝑡,𝑥[𝐹 (𝑋𝜋(𝑇 ))|ℱ𝑡] + 𝐺(E𝑡,𝑥(𝑋𝜋(𝑇 )|ℱ𝑡)), (2.5)

where
𝐹 (𝑦) = 𝑦 − 𝛾

2
𝑦2, 𝐺(𝑦) =

𝛾

2
𝑦2,

E𝑡,𝑥[·|ℱ𝑡] and V𝑎𝑟𝑡,𝑥[·|ℱ𝑡] are the conditional expectation and variance given filtration ℱ𝑡 with 𝑋𝜋(𝑡) = 𝑥 for
(𝑡, 𝑥) ∈ [0, 𝑇 ]× R, respectively, and 𝛾 is the risk aversion coefficient of the insurer.

Since the objective function 𝐽(𝑡, 𝑥, 𝜋) in (2.5) involves with V𝑎𝑟𝑡,𝑥[·], that is, 𝐽(𝑡, 𝑥, 𝜋) is a nonlinear function
of the expected value E𝑡,𝑥[·], so the optimization problem is time-inconsistent. We solve this time-inconsistent
problem within a game theoretic framework and look for Nash subgame perfect equilibrium solutions. Now we
recall the following definition of an equilibrium control and equilibrium value function, which is taken from
Björk and Murgoci [6].

Definition 2.1. Given a control law 𝜋*, which can be informally viewed as a candidate equilibrium law, choose
a fixed 𝜋 ∈ Π, a fixed real number 𝑙 > 0 and a fixed arbitrarily chosen initial point (𝑡, 𝑦) ∈ [0, 𝑇 ] × R, and
construct a control law 𝜋𝑙 by

𝜋𝑙(𝑠, 𝑦) =
{︂

𝜋(𝑠, 𝑦), 𝑡 ≤ 𝑠 < 𝑡 + 𝑙, 𝑦 ∈ R,
𝜋*(𝑠, 𝑦), 𝑡 + 𝑙 ≤ 𝑠 ≤ 𝑇, 𝑦 ∈ R.

If

lim
𝑙→0

inf
𝐽(𝑡, 𝑥, 𝜋*)− 𝐽(𝑡, 𝑥, 𝜋𝑙)

𝑙
≥ 0

for all 𝜋 ∈ Π and (𝑡, 𝑥) ∈ [0, 𝑇 ]×R, we say that 𝜋* is an equilibrium control law. The equilibrium value function
is defined by

𝑊 (𝑡, 𝑥) = 𝐽(𝑡, 𝑥, 𝜋*).

Based on the definition above, the equilibrium strategy is time-consistent, the equilibrium strategy is thus
the optimal time-consistent strategy. Our objective is to find an equilibrium strategy 𝜋* and the corresponding
equilibrium value function.

Let 𝐶1,2([0, 𝑇 ] × R) denote the space of the bivariate functions 𝜑(𝑡, 𝑥) such that 𝜑(𝑡, 𝑥) and its derivatives
𝜑𝑡(𝑡, 𝑥), 𝜑𝑥(𝑡, 𝑥), 𝜑𝑥𝑥(𝑡, 𝑥) are continuous on [0, 𝑇 ]×R. For any function 𝜑(𝑡, 𝑥) ∈ 𝐶1,2([0, 𝑇 ]×R) and any fixed
𝜋 ∈ Π, the usual infinitesimal generator 𝒜𝜋 for process (2.4) is defined by
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𝒜𝜋𝜑(𝑡, 𝑥) = 𝜑𝑡 +
{︂

𝑟0(𝑡)𝑥 + [𝑟1(𝑡)− 𝑟0(𝑡)]𝑢(𝑡) + 𝑐0 − 𝛿(𝑔1, 𝑔2)

− (𝜆 + 𝜆1)E𝑔1(𝑡, 𝑍1)− (𝜆 + 𝜆2)E𝑔2(𝑡, 𝑍2)
}︂

𝜑𝑥 +
1
2

{︂
(𝜆 + 𝜆1)E

[︀
𝑔1(𝑡, 𝑍1)2

]︀
+ (𝜆 + 𝜆2)E

[︀
𝑔2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2) + 𝜎2(𝑡)𝑢2(𝑡)

}︂
𝜑𝑥𝑥. (2.6)

Next we give the extended HJB system of equations and the corresponding Verification Theorem in the
following theorem.

Theorem 2.2 (Verification Theorem). For the Nash equilibrium problem, if there exist functions 𝑉 (𝑡, 𝑥) and
𝑔(𝑡, 𝑥) satisfying the following conditions: ∀(𝑡, 𝑥) ∈ [0, 𝑇 ]× R and 𝑦 ∈ R,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sup
𝜋∈Π

{𝒜𝜋𝑉 (𝑡, 𝑥)−𝒜𝜋(𝐺 ◇ 𝑔)(𝑡, 𝑥) +ℋ𝜋𝑔(𝑡, 𝑥)} = 0, 0 ≤ 𝑡 ≤ 𝑇,

𝒜𝜋*𝑔(𝑡, 𝑥) = 0, 0 ≤ 𝑡 ≤ 𝑇,

𝑉 (𝑇, 𝑥) = 𝑥,

𝑔(𝑇, 𝑥) = 𝑥,

(2.7)

and
𝜋* = arg sup

𝜋∈Π
{𝒜𝜋𝑉 (𝑡, 𝑥)−𝒜𝜋(𝐺 ◇ 𝑔)(𝑡, 𝑥) +ℋ𝜋𝑔(𝑡, 𝑥)},

then 𝑊 (𝑡, 𝑥) = 𝑉 (𝑡, 𝑥), i.e., 𝑉 (𝑡, 𝑥) is the equilibrium value function, 𝜋* is the equilibrium reinsurance-
investment strategy, and 𝑔(𝑡, 𝑥) has the following probabilistic interpretation:

𝑔(𝑡, 𝑥) = E𝑡,𝑥

[︁
𝑋𝜋*(𝑇 )

]︁
, (2.8)

where 𝐺 ◇ 𝑔 and ℋ𝜋𝑔 are defined as follows⎧⎪⎪⎨⎪⎪⎩
𝐺 ◇ 𝑔(𝑡, 𝑥) = 𝐺(𝑔(𝑡, 𝑥)),
ℋ𝜋𝑔(𝑡, 𝑥) = 𝐺𝑦(𝑔(𝑡, 𝑥))×𝒜𝜋𝑔(𝑡, 𝑥),

𝐺𝑦(𝑦) =
𝑑𝐺

𝑑𝑦
(𝑦).

Equation (2.7) is also called the extended HJB system of equations.

Proof. The derivation of the extended HJB system of equations (2.7) and the proof of the Verification Theorem
can be obtained by using the standard arguments similar to those used in Section 4 of Björk and Murgoci [6].
So we omit the details here. �

3. Equilibrium strategy under variance premium principle

In this section, we assume that the reinsurance premium is calculated according to the variance premium
principle. That is,

𝛿(𝑔1, 𝑔2) = (𝜆 + 𝜆1)(𝜇1𝑍1 − E𝑔1(𝑡, 𝑍1)) + (𝜆 + 𝜆2)(𝜇1𝑍2 − E𝑔2(𝑡, 𝑍2))
+ Λ

{︀
(𝜆 + 𝜆1)E[𝑍1 − 𝑔1(𝑡, 𝑍1)]2 + (𝜆 + 𝜆2)E[𝑍2 − 𝑔2(𝑡, 𝑍2)]2

+ 2𝜆(𝜇1𝑍1 − E𝑔1(𝑡, 𝑍1))(𝜇1𝑍2 − E𝑔2(𝑡, 𝑍2))
}︀
, (3.1)

here Λ is the reinsurer’s safety loading.
Then the reserve process 𝑋𝜋(𝑡) given by (2.4) becomes
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𝑑𝑋𝜋(𝑡) =
{︂

𝑟0(𝑡)𝑋𝜋(𝑡) + [𝑟1(𝑡)− 𝑟0(𝑡)]𝑢(𝑡) + 𝑐0 − (𝜆 + 𝜆1)𝜇1𝑍1 − (𝜆 + 𝜆2)𝜇1𝑍2

− Λ
[︀
(𝜆 + 𝜆1)E(𝑍1 − 𝑔1(𝑡, 𝑍1))2 + (𝜆 + 𝜆2)E(𝑍2 − 𝑔2(𝑡, 𝑍2))2

+ 2𝜆(𝜇1𝑍1 − E𝑔1(𝑡, 𝑍1))(𝜇1𝑍2 − E𝑔2(𝑡, 𝑍2))
]︀}︂

𝑑𝑡 + 𝜎(𝑡)𝑢(𝑡)𝑑𝐵2(𝑡)

+
√︀

(𝜆 + 𝜆1)E[𝑔1(𝑡, 𝑍1)2] + (𝜆 + 𝜆2)E[𝑔2(𝑡, 𝑍2)2] + 2𝜆E𝑔1(𝑡, 𝑋)E𝑔2(𝑡, 𝑍2)𝑑𝐵1(𝑡), (3.2)

and the usual infinitesimal generator 𝒜 for process (3.2) becomes

𝒜𝜋𝜑(𝑡, 𝑥) = 𝜑𝑡 +
{︂

𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢 + 𝑐0 − (𝜆 + 𝜆1)𝜇1𝑍1 − (𝜆 + 𝜆2)𝜇1𝑍2

− Λ
[︀
(𝜆 + 𝜆1)E(𝑍1 − 𝑔1(𝑡, 𝑍1))2 + (𝜆 + 𝜆2)E(𝑍2 − 𝑔2(𝑡, 𝑍2))2

+ 2𝜆(𝜇1𝑍1 − E𝑔1(𝑡, 𝑍1))(𝜇1𝑍2 − E𝑔2(𝑡, 𝑍2))
]︀}︂

𝜑𝑥 +
1
2

{︂
(𝜆 + 𝜆1)E

[︀
𝑔1(𝑡, 𝑍1)2

]︀
+ (𝜆 + 𝜆2)E

[︀
𝑔2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2) + 𝜎2𝑢2

}︂
𝜑𝑥𝑥. (3.3)

After a number of elementary calculations, we obtain the following result about the extended HJB system of
equations.

Proposition 3.1. The extended HJB system of equations (2.7) can be simplified as follows:

𝑉𝑡 + sup
𝜋∈Π

{︂[︂
𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢 + 𝑐0 − (𝜆 + 𝜆1)𝜇1𝑍1 − (𝜆 + 𝜆2)𝜇1𝑍2

]︂
𝑉𝑥

− Λ𝑉𝑥

[︂
(𝜆 + 𝜆1)E(𝑍1 − 𝑔1(𝑡, 𝑍1))2 + (𝜆 + 𝜆2)E(𝑍2 − 𝑔2(𝑡, 𝑍2))2 + 2𝜆(𝜇1𝑍1

− E𝑔1(𝑡, 𝑍1))(𝜇1𝑍2 − E𝑔2(𝑡, 𝑍2))
]︂

+
1
2

(𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2
𝑥)
[︂
(𝜆 + 𝜆1)E

[︀
𝑔1(𝑡, 𝑍1)2

]︀
+ (𝜆 + 𝜆2)E

[︀
𝑔2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2) + 𝜎2𝑢2

]︂}︂
= 0, (3.4)

𝑔𝑡 +
{︂

𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢* + 𝑐0 − (𝜆 + 𝜆1)𝜇1𝑍1 − (𝜆 + 𝜆2)𝜇1𝑍2

− Λ
[︀
(𝜆 + 𝜆1)E(𝑍1 − 𝑔*1(𝑡, 𝑍1))2 + (𝜆 + 𝜆2)E(𝑍2 − 𝑔*2(𝑡, 𝑍2))2

+ 2𝜆(𝜇1𝑍1 − E𝑔*1(𝑡, 𝑍1))(𝜇1𝑍2 − E𝑔*2(𝑡, 𝑍2))
]︀}︂

𝑔𝑥 +
1
2

{︂
(𝜆 + 𝜆1)E[𝑔*1(𝑡, 𝑍1)2]

+ (𝜆 + 𝜆2)E
[︀
𝑔*2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔*1(𝑡, 𝑍1)E𝑔*2(𝑡, 𝑍2) + 𝜎2(𝑢*)2

}︂
𝑔𝑥𝑥 = 0. (3.5)

Proof. Recall that the reserve process and the infinitesimal generator are given in (3.2) and (3.3), respectively,
then we have

𝒜𝜋𝑉 (𝑡, 𝑥) = 𝑉𝑡 +
{︂

𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢 + 𝑐0 − (𝜆 + 𝜆1)𝜇1𝑍1 − (𝜆 + 𝜆2)𝜇1𝑍2

− Λ
[︀
(𝜆 + 𝜆1)E(𝑍1 − 𝑔1(𝑡, 𝑍1))2 + (𝜆 + 𝜆2)E(𝑍2 − 𝑔2(𝑡, 𝑍2))2

+ 2𝜆(𝜇1𝑍1 − E𝑔1(𝑡, 𝑍1))(𝜇1𝑍2 − E𝑔2(𝑡, 𝑍2))
]︀}︂

𝑉𝑥 +
1
2

{︂
(𝜆 + 𝜆1)E

[︀
𝑔1(𝑡, 𝑍1)2

]︀
+ (𝜆 + 𝜆2)E

[︀
𝑔2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2) + 𝜎2𝑢2

}︂
𝑉𝑥𝑥, (3.6)
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𝒜𝜋(𝐺 ◇ 𝑔)(𝑡, 𝑥) = 𝒜𝜋𝐺(𝑥, 𝑔(𝑡, 𝑥))

= 𝐺𝑦𝑔𝑡 +
{︂

𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢 + 𝑐0 − (𝜆 + 𝜆1)𝜇1𝑍1 − (𝜆 + 𝜆2)𝜇1𝑍2

− Λ
[︀
(𝜆 + 𝜆1)E(𝑍1 − 𝑔1(𝑡, 𝑍1))2 + (𝜆 + 𝜆2)E(𝑍2 − 𝑔2(𝑡, 𝑍2))2

+ 2𝜆(𝜇1𝑍1 − E𝑔1(𝑡, 𝑍1))(𝜇1𝑍2 − E𝑔2(𝑡, 𝑍2))
]︀}︂

(𝐺𝑥 + 𝐺𝑦𝑔𝑥)

+
1
2

{︂
(𝜆 + 𝜆1)E

[︀
𝑔1(𝑡, 𝑍1)2

]︀
+ (𝜆 + 𝜆2)E

[︀
𝑔2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2)

+ 𝜎2𝑢2

}︂[︀
𝐺𝑥𝑥 + 𝐺𝑦𝑦𝑔2

𝑥 + 𝐺𝑦𝑔𝑥𝑥 + 2𝐺𝑥𝑦𝑔𝑥

]︀
, (3.7)

ℋ𝜋𝑔(𝑡, 𝑥) = 𝐺𝑦(𝑥, 𝑔(𝑡, 𝑥))×𝒜𝜋𝑔(𝑡, 𝑥)

= 𝐺𝑦𝑔𝑡 +
{︂

𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢 + 𝑐0 − (𝜆 + 𝜆1)𝜇1𝑍1 − (𝜆 + 𝜆2)𝜇1𝑍2

− Λ
[︀
(𝜆 + 𝜆1)E(𝑍1 − 𝑔1(𝑡, 𝑍1))2 + (𝜆 + 𝜆2)E(𝑍2 − 𝑔2(𝑡, 𝑍2))2

+ 2𝜆(𝜇1𝑍1 − E𝑔1(𝑡, 𝑍1))(𝜇1𝑍2 − E𝑔2(𝑡, 𝑍2))
]︀}︂

𝐺𝑦𝑔𝑥 +
1
2

{︂
(𝜆 + 𝜆1)E

[︀
𝑔1(𝑡, 𝑍1)2

]︀
+ (𝜆 + 𝜆2)E

[︀
𝑔2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2) + 𝜎2𝑢2

}︂
𝐺𝑦𝑔𝑥𝑥. (3.8)

Insert (3.6), (3.7) and (3.8) into the first equation of (2.7), and recall that 𝐺(𝑦) = 𝛾
2 𝑦2, we have (3.4) and

(3.5). �

In the following, we will focus on finding the equilibrium reinsurance-investment strategy and the correspond-
ing value function.

Theorem 3.2. If the value function satisfies 𝑉𝑥 ≥ 0, 𝑉𝑥𝑥 ≤ 0, then the optimal risk sharing functions are in the
forms of 𝑔1𝑝(𝑡, 𝑍1) = 𝑝1(𝑡)𝑍1, 0 ≤ 𝑝1(𝑡) ≤ 1, 𝑔2𝑝(𝑡, 𝑍2) = 𝑝2(𝑡)𝑍2, 0 ≤ 𝑝2(𝑡) ≤ 1 under the variance premium
principle. In other words, the optimal risk sharing functions are proportional.

Proof. Let 𝑔1(·, ·) be an arbitrary risk sharing function and 𝑔1𝑝(·, ·) be a proportional risk sharing function

𝑔1𝑝(𝑡, 𝑍1) = 𝑝1(𝑡)𝑍1, 0 ≤ 𝑝1(𝑡) ≤ 1.

Then with Cauchy–Schwartz inequality, we have

E
[︀
(𝑍1 − 𝑔1(𝑡, 𝑍1))2

]︀
= E

[︀
𝑍2

1

]︀
− 2E[𝑍1𝑔1(𝑡, 𝑍1)] + E

[︀
𝑔1(𝑡, 𝑍1)2

]︀
≥ E

[︀
𝑍2

1

]︀
− 2
√︁

E[𝑍2
1 ]
√︀

E[𝑔1(𝑡, 𝑍1)2] + E
[︀
𝑔1(𝑡, 𝑍1)2

]︀
.

The inequality above becomes equality when the relationship between 𝑔1(𝑡, 𝑍1) and 𝑍1 are proportional. That
is

E
[︀
𝑍2

1

]︀
− 2
√︁

E[𝑍2
1 ]
√︁

E[𝑔1𝑝(𝑡, 𝑍1)2] + E
[︀
𝑔1𝑝(𝑡, 𝑍1)2

]︀
= E

[︀
𝑍2

1

]︀
− 2𝑝1(𝑡)E

[︀
𝑍2

1

]︀
+ 𝑝1(𝑡)2E

[︀
(𝑍1)2

]︀
= E

[︀
(𝑍1 − 𝑔1𝑝(𝑡, 𝑍1))2

]︀
.

Then we have
E
[︀
(𝑍1 − 𝑔1(𝑡, 𝑍1))2

]︀
≥ E

[︀
(𝑍1 − 𝑔1𝑝(𝑡, 𝑍1))2

]︀
.
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Similarly, we have

E
[︀
𝑔1(𝑡, 𝑍1)2

]︀
= E

{︀
[𝑍1 − (𝑍1 − 𝑔1(𝑡, 𝑍1))]2

}︀
= E

[︀
𝑍2

1

]︀
− 2E[𝑍1(𝑍1 − 𝑔1(𝑡, 𝑍1))] + E

[︀
(𝑍1 − 𝑔1(𝑡, 𝑍1))2

]︀
≥ E

[︀
𝑍2

1

]︀
− 2
√︁

E[𝑍2
1 ]
√︀

E[(𝑍1 − 𝑔1(𝑡, 𝑍1))2] + E
[︀
(𝑍1 − 𝑔1(𝑡, 𝑍1))2

]︀
.

The inequality becomes equality when the relationship between 𝑔1(𝑡, 𝑍1) and 𝑍1 are proportional. That is

E
[︀
𝑍2

1

]︀
− 2
√︁

E[𝑍2
1 ]
√︁

E[(𝑍1 − 𝑔1𝑝(𝑡, 𝑍1))2] + E
[︀
(𝑍1 − 𝑔1𝑝(𝑡, 𝑍1))2

]︀
= E

[︀
𝑍2

1

]︀
− 2(1− 𝑝1(𝑡))E

[︀
𝑍2

1

]︀
+ (1− 𝑝1(𝑡))2E

[︀
𝑍2

1

]︀
= E

[︀
𝑔1𝑝(𝑡, 𝑍1)2

]︀
.

Then we have
E
[︀
𝑔1(𝑡, 𝑍1)2

]︀
≥ E

[︀
𝑔1𝑝(𝑡, 𝑍1)2

]︀
.

By similar calculations, we have

E
[︀
(𝑍2 − 𝑔2(𝑡, 𝑍2))2

]︀
≥ E

[︀
(𝑍2 − 𝑔2𝑝(𝑡, 𝑍2))2

]︀
,

E
[︀
𝑔2(𝑡, 𝑍2)2

]︀
≥ E

[︀
𝑔2𝑝(𝑡, 𝑍2)2

]︀
,

for an arbitrary risk sharing function 𝑔2(·) and a proportional risk sharing function

𝑔2𝑝(𝑡, 𝑍2) = 𝑝2(𝑡)𝑍2, 0 ≤ 𝑝2(𝑡) ≤ 1.

Note that Λ > 0, 𝑉𝑥 ≥ 0, 𝑉𝑥𝑥 ≤ 0, 𝐺𝑦𝑦 = 𝛾 > 0, 𝑔2
𝑥 ≥ 0, then we get

ℒ𝑔1,𝑔2𝑉 :=
[︂
𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢 + 𝑐0 − (𝜆 + 𝜆1)𝜇1𝑍1 − (𝜆 + 𝜆2)𝜇1𝑍2

− Λ
[︀
(𝜆 + 𝜆1)E(𝑍1 − 𝑔1(𝑡, 𝑍1))2 + (𝜆 + 𝜆2)E(𝑍2 − 𝑔2(𝑡, 𝑍2))2

+ 2𝜆(𝜇1𝑍1 − E𝑔1(𝑡, 𝑍1))(𝜇1𝑍2 − E𝑔2(𝑡, 𝑍2))
]︀]︂

𝑉𝑥 +
1
2
𝑉𝑥𝑥

[︂
(𝜆 + 𝜆1)E

[︀
𝑔1(𝑡, 𝑍1)2

]︀
+ (𝜆 + 𝜆2)E

[︀
𝑔2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2) + 𝜎2𝑢2

]︂
− 1

2
𝐺𝑦𝑦𝑔2

𝑥

[︂
(𝜆 + 𝜆1)E

[︀
𝑔1(𝑡, 𝑍1)2

]︀
+ (𝜆 + 𝜆2)E

[︀
𝑔2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2)

+ 𝜎2𝑢2

]︂
≤ ℒ𝑔1𝑝,𝑔2𝑝𝑉.

In other words, the optimal risk sharing functions are proportional. �

Next we just consider the proportional reinsurance strategy, that is 𝑔1(𝑡, 𝑍1) = 𝑝1(𝑡)𝑍1 and 𝑔2(𝑡, 𝑍2) =
𝑝2(𝑡)𝑍2, and give the equilibrium reinsurance-investment strategy and the corresponding equilibrium value
function under the variance premium principle in the following theorem.

Theorem 3.3. The equilibrium reinsurance-investment strategy 𝜋* = (𝑔*1 , 𝑔*2 , 𝑢*) for problem (2.5) with (3.2)
under variance premium principle (3.1) is

𝑔*1(𝑡, 𝑍1) =
2Λ

2Λ + 𝛾𝑒𝑟0(𝑇−𝑡)
𝑍1, (3.9)
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𝑔*2(𝑡, 𝑍2) =
2Λ

2Λ + 𝛾𝑒𝑟0(𝑇−𝑡)
𝑍2, (3.10)

𝑢*(𝑡) =
𝑟1 − 𝑟0

𝜎2

1
𝛾𝑒𝑟0(𝑇−𝑡)

· (3.11)

The corresponding equilibrium value function of the extended HJB system of equations (2.7) is

𝑉 (𝑡, 𝑥) = 𝐴(𝑡)𝑥 + 𝐵(𝑡),
𝑔(𝑡, 𝑥) = 𝑎(𝑡)𝑥 + 𝑏(𝑡),

with

𝐴(𝑡) = 𝑎(𝑡) = 𝑒𝑟0(𝑇−𝑡), (3.12)

𝐵(𝑡) =
∫︁ 𝑇

𝑡

[︂
𝑒𝑟0(𝑇−𝜏)(𝑐0 − 𝑎1 − 𝑎2)− Λ𝛾𝑒2𝑟0(𝑇−𝜏)

2Λ + 𝛾𝑒𝑟0(𝑇−𝜏)

(︀
𝜎2

1 + 𝜎2
2 + 2𝜆𝜇1𝑍1𝜇1𝑍2

)︀
+

(𝑟1 − 𝑟0)2

2𝜎2𝛾

]︂
d𝜏, (3.13)

𝑏(𝑡) =
∫︁ 𝑇

𝑡

[︂
𝑒𝑟0(𝑇−𝜏)(𝑐0 − 𝑎1 − 𝑎2)− Λ𝑒𝑟0(𝑇−𝜏)

(︂
𝛾𝑒𝑟0(𝑇−𝜏)

2Λ + 𝛾𝑒𝑟0(𝑇−𝜏)

)︂2

·
(︀
𝜎2

1 + 𝜎2
2 + 2𝜆𝜇1𝑍1𝜇1𝑍2

)︀
+

(𝑟1− 𝑟0)2

𝜎2𝛾

]︂
d𝜏.

(3.14)

Proof. Set 𝑎1 := (𝜆1 + 𝜆)𝜇1𝑍1 , 𝑎2 := (𝜆2 + 𝜆)𝜇1𝑍2 , 𝜎1 :=
√︀

(𝜆1 + 𝜆)𝜇2𝑍1 and 𝜎2 :=
√︀

(𝜆2 + 𝜆)𝜇2𝑍2 . For the
proportional reinsurance strategy, i.e., 𝑔1(𝑡, 𝑍1) = 𝑝1(𝑡)𝑍1 and 𝑔2(𝑡, 𝑍2) = 𝑝2(𝑡)𝑍2, (3.4) becomes

𝑉𝑡 + sup
𝜋∈Π

{︂[︀
𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢 + 𝑐0 − 𝑎1 − 𝑎2

−Λ
(︀
(1− 𝑝1)2𝜎2

1 + (1− 𝑝2)2𝜎2
2 + 2(1− 𝑝1)(1− 𝑝2)𝜆𝜇1𝑍1𝜇1𝑍2

)︀]︀
𝑉𝑥

+
1
2
𝑉𝑥𝑥

(︀
𝜎2

1𝑝2
1 + 𝜎2

2𝑝2
2 + 2𝑝1𝑝2𝜆𝜇1𝑍1𝜇1𝑍2 + 𝜎2𝑢2

)︀
− 1

2
𝐺𝑦𝑦𝑔2

𝑥

(︀
𝜎2

1𝑝2
1 + 𝜎2

2𝑝2
2 + 2𝑝1𝑝2𝜆𝜇1𝑍1𝜇1𝑍2 + 𝜎2𝑢2

)︀}︂
= 0. (3.15)

Set
𝑓(𝑢) :=

1
2
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜎2𝑢2 + 𝑉𝑥(𝑟1 − 𝑟0)𝑢. (3.16)

The maximizer of (3.16) is

𝑢* = − 𝑉𝑥(𝑟1 − 𝑟0)
2× 1

2 (𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2
𝑥)𝜎2

=
𝑟1 − 𝑟0

𝜎2

𝑉𝑥

𝛾𝑔2
𝑥 − 𝑉𝑥𝑥

, (3.17)

in which we use the fact 𝐺(𝑦) = 𝛾
2 𝑦2.

Next we look for the equilibrium reinsurance strategy and the corresponding equilibrium value function. Let

𝐻(𝑝1, 𝑝2) := −Λ𝑉𝑥

[︀
(1− 𝑝1)2𝜎2

1 + (1− 𝑝2)2𝜎2
2 + 2(1− 𝑝1)(1− 𝑝2)𝜆𝜇1𝑍1𝜇1𝑍2

]︀
+

1
2

(𝑉𝑥𝑥 − 𝛾𝑔2
𝑥)(𝜎2

1𝑝2
1 + 𝜎2

2𝑝2
2 + 2𝑝1𝑝2𝜆𝜇1𝑍1𝜇1𝑍2)

=
(︂
−Λ𝑉𝑥 +

1
2
𝑉𝑥𝑥 −

𝛾

2
𝑔2

𝑥

)︂
𝜎2

1𝑝2
1 +

(︂
−Λ𝑉𝑥 +

1
2
𝑉𝑥𝑥 −

𝛾

2
𝑔2

𝑥

)︂
𝜎2

2𝑝2
2

+ 2Λ𝑉𝑥

(︀
𝜎2

1 + 𝜆𝜇1𝑍1𝜇1𝑍2

)︀
𝑝1 + 2Λ𝑉𝑥

(︀
𝜎2

2 + 𝜆𝜇1𝑍1𝜇1𝑍2

)︀
𝑝2

+
(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
𝜆𝜇1𝑍1𝜇1𝑍2𝑝1𝑝2
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−Λ𝑉𝑥

(︀
𝜎2

1 + 𝜎2
2 + 2𝜆𝜇1𝑍1𝜇1𝑍2

)︀
.

Then we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝐻(𝑝1, 𝑝2)
𝜕𝑝1

= 𝜎2
1

(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
𝑝1 + 2Λ𝑉𝑥

(︀
𝜎2

1 + 𝜆𝜇1𝑍1𝜇1𝑍2

)︀
+
(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
𝜆𝜇1𝑍1𝜇1𝑍2𝑝2,

𝜕𝐻(𝑝1, 𝑝2)
𝜕𝑝2

= 𝜎2
2

(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
𝑝2 + 2Λ𝑉𝑥

(︀
𝜎2

2 + 𝜆𝜇1𝑍1𝜇1𝑍2

)︀
+
(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
𝜆𝜇1𝑍1𝜇1𝑍2𝑝1,

𝜕2𝐻(𝑝1, 𝑝2)
𝜕𝑝2

1

= 𝜎2
1

(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
,

𝜕2𝐻(𝑝1, 𝑝2)
𝜕𝑝2

2

= 𝜎2
2

(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
,

𝜕2𝐻(𝑝1, 𝑝2)
𝜕𝑝1𝜕𝑝2

=
(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
𝜆𝜇1𝑍1𝜇1𝑍2 .

The Hessian matrix is

𝐻 =

⎛⎝ 𝜕2𝐻(𝑝1,𝑝2)
𝜕𝑝2

1

𝜕2𝐻(𝑝1,𝑝2)
𝜕𝑝1𝜕𝑝2

𝜕2𝐻(𝑝1,𝑝2)
𝜕𝑝1𝜕𝑝2

𝜕2𝐻(𝑝1,𝑝2)
𝜕𝑝2

2

⎞⎠ =

(︃
𝜎2

1

(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀ (︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
𝜆𝜇1𝑍1𝜇1𝑍2(︀

−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2
𝑥

)︀
𝜆𝜇1𝑍1𝜇1𝑍2 𝜎2

2

(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀ )︃
.

Because of

|𝐻| =
[︁
𝜎2

1𝜎2
2 − (𝜆𝜇1𝑍1𝜇1𝑍2)2

]︁
×
(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀2
= 𝜎2

1𝜎2
2(1− 𝜌2)

(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀2 ≥ 0,

with
𝜌 :=

𝜆𝜇1𝑍1𝜇1𝑍2√︀
(𝜆1 + 𝜆)𝜇2𝑍1(𝜆2 + 𝜆)𝜇2𝑍2

∈ (0, 1), (3.18)

the maximizer (𝑝*1, 𝑝
*
2) of 𝐻(𝑝1, 𝑝2) is the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜎2
1

(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
𝑝1 +

(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
𝜆𝜇1𝑍1𝜇1𝑍2𝑝2

= −2Λ𝑉𝑥

(︀
𝜎2

1 + 𝜆𝜇1𝑍1𝜇1𝑍2

)︀
,(︀

−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2
𝑥

)︀
𝜆𝜇1𝑍1𝜇1𝑍2𝑝1 + 𝜎2

2

(︀
−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2

𝑥

)︀
𝑝2

= −2Λ𝑉𝑥

(︀
𝜎2

2 + 𝜆𝜇1𝑍1𝜇1𝑍2

)︀
.

Solving the above equation, we have

𝑝*1 = 𝑝*2 =
̃︀𝐵̃︀𝐴 =

−2Λ𝑉𝑥

−2Λ𝑉𝑥 + 𝑉𝑥𝑥 − 𝛾𝑔2
𝑥

=
2Λ𝑉𝑥

2Λ𝑉𝑥 − 𝑉𝑥𝑥 + 𝛾𝑔2
𝑥

· (3.19)

Since the reserve process has the linear structure, and in accordance with the forms of the boundary conditions,
we conjecture that

𝑉 (𝑡, 𝑥) = 𝐴(𝑡)𝑥 + 𝐵(𝑡),
𝑔(𝑡, 𝑥) = 𝑎(𝑡)𝑥 + 𝑏(𝑡).
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Then, we have
𝑉𝑡 = 𝐴𝑡𝑥 + 𝐵𝑡, 𝑉𝑥 = 𝐴(𝑡), 𝑉𝑥𝑥 = 0, (3.20)

and
𝑔𝑡 = 𝑎𝑡𝑥 + 𝑏𝑡, 𝑔𝑥 = 𝑎(𝑡), 𝑔𝑥𝑥 = 0. (3.21)

Inserting them into (3.17) and (3.19), we have

𝑢* =
𝑟1 − 𝑟0

𝜎2

𝐴(𝑡)
𝛾𝑎2(𝑡)

, (3.22)

and

𝑝*1 = 𝑝*2 =
2Λ𝐴(𝑡)

2Λ𝐴(𝑡) + 𝛾𝑎2(𝑡)
· (3.23)

Inserting (3.20)–(3.23) into (3.16) and (3.18), we have

𝑓(𝑢*) =
1
2
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜎2(𝑢*)2 + 𝑉𝑥(𝑟1 − 𝑟0)𝑢* =

(𝑟1 − 𝑟0)2

2𝛾𝜎2
× 𝐴2(𝑡)

𝑎2(𝑡)
, (3.24)

and

𝐻(𝑝*1, 𝑝
*
2) = − Λ𝛾𝐴(𝑡)𝑎2(𝑡)

2Λ𝐴(𝑡) + 𝛾𝑎2(𝑡)
(︀
𝜎2

1 + 𝜎2
2 + 2𝜆𝜇1𝑍1𝜇1𝑍2

)︀
. (3.25)

Then (3.15) becomes

𝐴𝑡𝑥 + 𝐵𝑡 + 𝐴(𝑡)[𝑟0𝑥 + 𝑐0 − 𝑎1 − 𝑎2] + 𝑓(𝑢*) + 𝐻(𝑝*1, 𝑝
*
2) = 0.

That is,

𝐴𝑡𝑥 + 𝐵𝑡 + 𝐴(𝑡)[𝑟0𝑥 + 𝑐0 − 𝑎1 − 𝑎2] +
(𝑟1 − 𝑟0)2

2𝛾𝜎2

𝐴2(𝑡)
𝑎2(𝑡)

− Λ𝛾𝐴(𝑡)𝑎2(𝑡)
2Λ𝐴(𝑡) + 𝛾𝑎2(𝑡)

(︀
𝜎2

1 + 𝜎2
2 + 2𝜆𝜇1𝑍1𝜇1𝑍2

)︀
= 0.

By separating variables, we obtain the following ordinary differential equations{︂
𝐴𝑡 + 𝑟0𝐴 = 0,

𝐴(𝑇 ) = 1,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐵𝑡 + 𝐴(𝑡)[𝑐0 − 𝑎1 − 𝑎2] +

(𝑟1 − 𝑟0)2

2𝛾𝜎2

𝐴2(𝑡)
𝑎2(𝑡)

− Λ𝛾𝐴(𝑡)𝑎2(𝑡)
2Λ𝐴(𝑡) + 𝛾𝑎2(𝑡)

(︀
𝜎2

1 + 𝜎2
2 + 2𝜆𝜇1𝑍1𝜇1𝑍2

)︀
= 0,

𝐵(𝑇 ) = 0.

Moreover, the second equation in (2.7) becomes

𝑔𝑡(𝑡, 𝑥) +
{︂

𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢* + 𝑐0 − 𝑎1 − 𝑎2

− Λ
[︀
(1− 𝑝*1)2𝜎2

1 + (1− 𝑝*2)2𝜎2
2 + 2(1− 𝑝*1)(1− 𝑝*2)𝜆𝜇1𝑍1𝜇1𝑍2

]︀}︂
𝑔𝑥(𝑡, 𝑥)

+
1
2
[︀
𝜎2

1(𝑝*1)2 + 𝜎2
2(𝑝*2)2 + 2𝑝*1𝑝

*
2𝜆𝜇1𝑍1𝜇1𝑍2 + 𝜎2(𝑢*)2

]︀
𝑔𝑥𝑥(𝑡, 𝑥) = 0. (3.26)
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Inserting (3.21)–(3.23) into (3.26), we have

𝑎𝑡𝑥 + 𝑏𝑡 + 𝑎(𝑡)(𝑟0𝑥 + 𝑐0 − 𝑎1 − 𝑎2) + 𝑎(𝑡)(𝑟1 − 𝑟0)
𝑟1 − 𝑟0

𝜎2

𝐴

𝛾𝑎2

− Λ𝑎
(︀
𝜎2

1 + 𝜎2
2 + 2𝜆𝜇1𝑍1𝜇1𝑍2

)︀(︂ 𝛾𝑎2

2Λ𝐴 + 𝛾𝑎2

)︂2

= 0. (3.27)

By separating variables again, we obtain{︂
𝑎𝑡 + 𝑟0𝑎 = 0,

𝑎(𝑇 ) = 1,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑏𝑡 + 𝑎(𝑡)[𝑐0 − 𝑎1 − 𝑎2] +

(𝑟1 − 𝑟0)2

𝜎2

𝐴

𝛾𝑎

− Λ𝑎(𝜎2
1 + 𝜎2

2 + 2𝜆𝜇1𝑍1𝜇1𝑍2)
(︂

𝛾𝑎2

2Λ𝐴 + 𝛾𝑎2

)︂2

= 0,

𝑏(𝑇 ) = 0.

Then we have (3.12)–(3.14). This completes the proof. �

Remark 3.4. The optimal proportions we obtained in Theorem 3.3 satisfy 𝑝*1(𝑡) ∈ [0, 1] and 𝑝*2(𝑡) ∈ [0, 1].
Then the risk sharing functions satisfy 𝑔*1(𝑡, 𝑍1) ∈ [0, 𝑍1] and 𝑔*2(𝑡, 𝑍2) ∈ [0, 𝑍2]. Moreover, the corresponding
equilibrium value function satisfies the assumptions in Theorem 3.2, i.e., 𝑉𝑥 ≥ 0, 𝑉𝑥𝑥 ≤ 0.

Remark 3.5. Under the variance premium principle, the proportional reinsurance is optimal. And the optimal
proportions for the first class and the second class of claims are the same, which just depend on the reinsurer’s
safety loading Λ of the reinsurance business, the interest rate 𝑟0 of the risk-free asset, and the risk aversion
coefficient 𝛾 of the insurer. The equilibrium investment strategy depends on the interest rate 𝑟0 of the risk-free
asset, the appreciation rate 𝑟1, the volatility coefficient 𝜎 of the risky asset, and the risk aversion coefficient 𝛾
of the insurer. Moreover, owing to the fact that the risk aversion coefficient 𝛾 of the insurer is a constant, the
equilibrium reinsurance-investment strategy is independent of the state variable 𝑥.

4. Equilibrium strategy under expected value premium principle

In this section, we assume that the reinsurance premium is calculated according to the expected value
principle. That is,

𝛿(𝑞1, 𝑞2) = (1 + 𝜂1)(𝜆 + 𝜆1)(𝜇1𝑍1 − E𝑔1(𝑡, 𝑍1)) + (1 + 𝜂2)(𝜆 + 𝜆2)(𝜇1𝑍2 − E𝑔2(𝑡, 𝑍2)), (4.1)

where 𝜂1 and 𝜂2 are the reinsurer’s safety loadings of the insurance businesses.
The usual infinitesimal generator 𝒜 becomes

𝒜𝜋𝜑(𝑡, 𝑥) = 𝜑𝑡 +
[︂
𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢 + 𝑐0 − (1 + 𝜂1)(𝜆 + 𝜆1)𝜇1𝑍1

− (1 + 𝜂2)(𝜆 + 𝜆2)𝜇1𝑍2 + 𝜂1(𝜆 + 𝜆1)E𝑔1(𝑡, 𝑍1) + 𝜂2(𝜆 + 𝜆2)E𝑔2(𝑡, 𝑍2)
]︂
𝜑𝑥

+
1
2

{︂
(𝜆 + 𝜆1)E

[︀
𝑔1(𝑡, 𝑍1)2

]︀
+ (𝜆 + 𝜆2)E

[︀
𝑔2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2) + 𝜎2𝑢2

}︂
𝜑𝑥𝑥. (4.2)

By the similar calculations as those in Section 3, we obtain the following result about the extended HJB
system of equations under the expected value premium principle.
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Proposition 4.1. The first and second equations of the extended HJB system of equations (2.7) can be simplified
as follows:

𝑉𝑡 + sup
𝜋∈Π

{︂[︀
𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢 + 𝑐0 − (1 + 𝜂1)(𝜆 + 𝜆1)𝜇1𝑍1

− (1 + 𝜂2)(𝜆 + 𝜆2)𝜇1𝑍2 + 𝜂1(𝜆 + 𝜆1)E𝑔1(𝑡, 𝑍1) + 𝜂2(𝜆 + 𝜆2)E𝑔2(𝑡, 𝑍2)
]︀
𝑉𝑥

+
1
2
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀[︀
(𝜆 + 𝜆1)E(𝑔1(𝑡, 𝑍1)2) + (𝜆 + 𝜆2)E(𝑔2(𝑡, 𝑍2)2)

+ 2𝜆E𝑔1(𝑡, 𝑍1)E𝑔2(𝑡, 𝑍2)] +
1
2
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜎2𝑢2

}︂
= 0, (4.3)

and

𝑔𝑡(𝑡, 𝑥) +
[︂
𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢* + 𝑐0 − (1 + 𝜂1)(𝜆 + 𝜆1)𝜇1𝑍1

− (1 + 𝜂2)(𝜆 + 𝜆2)𝜇1𝑍2 + 𝜂1(𝜆 + 𝜆1)E𝑔*1(𝑡, 𝑍1) + 𝜂2(𝜆 + 𝜆2)E𝑔*2(𝑡, 𝑍2)
]︂
𝑔𝑥(𝑡, 𝑥)

+
1
2

{︂
(𝜆 + 𝜆1)E[𝑔*1(𝑡, 𝑍1)2] + (𝜆 + 𝜆2)E

[︀
𝑔*2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔*1(𝑡, 𝑍1)E𝑔*2(𝑡, 𝑍2)

+ 𝜎2(𝑢*)2
}︂

𝑔𝑥𝑥(𝑡, 𝑥) = 0. (4.4)

Proof. The proof of this proposition is similar to that of Proposition 3.1, so we omit it here. �

Next we will find the equilibrium reinsurance-investment strategy and the corresponding value function under
the expected value premium principle.

Theorem 4.2. Assume that the value function satisfies 𝑉𝑥 ≥ 0, 𝑉𝑥𝑥 ≤ 0. Under the expected value premium
principle, the optimal reinsurance-investment strategy 𝜋* = (𝑔*1 , 𝑔*2 , 𝑢*) for the mean-variance criterion is in the
form of

𝑔*1(𝑡, 𝑍1) = min
{︂

𝑍1, max
{︂

0,
𝑉𝑥

𝐺𝑦𝑦𝑔2
𝑥 − 𝑉𝑥𝑥

× (𝜆 + 𝜆2)[(𝜆 + 𝜆1)𝜂1 − 𝜆𝜂2]
(𝜆 + 𝜆1)(𝜆 + 𝜆2)− 𝜆2

}︂}︂
,

(4.5)

𝑔*2(𝑡, 𝑍2) = min
{︂

𝑍2, max
{︂

0,
𝑉𝑥

𝐺𝑦𝑦𝑔2
𝑥 − 𝑉𝑥𝑥

× (𝜆 + 𝜆1)[(𝜆 + 𝜆2)𝜂2 − 𝜆𝜂1]
(𝜆 + 𝜆1)(𝜆 + 𝜆2)− 𝜆2

}︂}︂
,

(4.6)

𝑢* =
𝑟1 − 𝑟0

𝜎2

𝑉𝑥

𝛾𝑔2
𝑥 − 𝑉𝑥𝑥

· (4.7)

In other words, the optimal risk sharing function is excess-of-loss reinsurance.

Proof. From (4.3), we have

𝑢* =
𝑟1 − 𝑟0

𝜎2

𝑉𝑥

𝛾𝑔2
𝑥 − 𝑉𝑥𝑥

· (4.8)

Set
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𝐻̂(𝑔1, 𝑔2) :=
1
2
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
(𝜆 + 𝜆1)𝑔1(𝑡, 𝑍1)2

+
1
2
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
(𝜆 + 𝜆2)𝑔2(𝑡, 𝑍2)2 +

(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜆𝑔1(𝑡, 𝑍1)𝑔2(𝑡, 𝑍2)

+ 𝑉𝑥𝜂1(𝜆 + 𝜆1)𝑔1(𝑡, 𝑍1) + 𝑉𝑥𝜂2(𝜆 + 𝜆2)𝑔2(𝑡, 𝑍2).

Then (4.3) becomes

𝑉𝑡 + sup
𝜋∈Π

{︂[︀
𝑟0𝑥 + (𝑟1 − 𝑟0)𝑢 + 𝑐0 − (1 + 𝜂1)(𝜆 + 𝜆1)𝜇1𝑍1

− (1 + 𝜂2)(𝜆 + 𝜆2)𝜇1𝑍2

]︀
𝑉𝑥 + E𝐻̂(𝑔1, 𝑔2) +

1
2
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜎2𝑢2

}︂
= 0.

Differentiating the function 𝐻̂(𝑔1, 𝑔2) with respect to 𝑔1 and 𝑔2 respectively, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝐻̂(𝑔1, 𝑔2)
𝜕𝑔1

=
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
(𝜆 + 𝜆1)𝑔1 +

(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜆𝑔2 + 𝑉𝑥𝜂1(𝜆 + 𝜆1),

𝜕𝐻̂(𝑔1, 𝑔2)
𝜕𝑔2

=
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
(𝜆 + 𝜆2)𝑔2 +

(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜆𝑔1 + 𝑉𝑥𝜂2(𝜆 + 𝜆2),

𝜕2𝐻̂(𝑔1, 𝑔2)
𝜕𝑔2

1

=
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
(𝜆 + 𝜆1),

𝜕2𝐻̂(𝑔1, 𝑔2)
𝜕𝑔2

2

=
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
(𝜆 + 𝜆2),

𝜕2𝐻̂(𝑔1, 𝑔2)
𝜕𝑔1𝜕𝑔2

=
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜆.

The Hessian matrix is

𝐻̂ =

⎛⎝ 𝜕2𝐻̂(𝑔1,𝑔2)
𝜕𝑔2

1

𝜕2𝐻̂(𝑔1,𝑔2)
𝜕𝑔1𝜕𝑔2

𝜕2𝐻̂(𝑔1,𝑔2)
𝜕𝑔1𝜕𝑔2

𝜕2𝐻̂(𝑔1,𝑔2)
𝜕𝑔2

2

⎞⎠ =

(︃(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
(𝜆 + 𝜆1)

(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜆(︀

𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2
𝑥

)︀
𝜆

(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
(𝜆 + 𝜆2)

)︃
.

Because of 𝑉𝑥𝑥 ≤ 0 and ⃒⃒⃒
𝐻̂
⃒⃒⃒

=
(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀2[︀
(𝜆 + 𝜆1)(𝜆 + 𝜆2)− 𝜆2

]︀
≥ 0,

it is easy to see that the maximizer candidate of 𝐻̂(𝑔1, 𝑔2) is the solution of the equations{︃(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
(𝜆 + 𝜆1)𝑔1 +

(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜆𝑔2 + 𝑉𝑥𝜂1(𝜆 + 𝜆1) = 0,(︀

𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2
𝑥

)︀
(𝜆 + 𝜆2)𝑔2 +

(︀
𝑉𝑥𝑥 −𝐺𝑦𝑦𝑔2

𝑥

)︀
𝜆𝑔1 + 𝑉𝑥𝜂2(𝜆 + 𝜆2) = 0.

(4.9)

The solution of equation (4.9) is⎧⎪⎪⎨⎪⎪⎩
𝑔*1 =

𝑉𝑥

𝐺𝑦𝑦𝑔2
𝑥 − 𝑉𝑥𝑥

× (𝜆 + 𝜆2)[(𝜆 + 𝜆1)𝜂1 − 𝜆𝜂2]
(𝜆 + 𝜆1)(𝜆 + 𝜆2)− 𝜆2

,

𝑔*2 =
𝑉𝑥

𝐺𝑦𝑦𝑔2
𝑥 − 𝑉𝑥𝑥

× (𝜆 + 𝜆1)[(𝜆 + 𝜆2)𝜂2 − 𝜆𝜂1]
(𝜆 + 𝜆1)(𝜆 + 𝜆2)− 𝜆2

·
(4.10)

Because of the constraints of 0 ≤ 𝑔1(𝑡, 𝑋) ≤ 𝑋, 0 ≤ 𝑔2(𝑡, 𝑌 ) ≤ 𝑌 , we get (4.5)–(4.7). �
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Theorem 4.3. The equilibrium reinsurance-investment strategy 𝜋* = (𝑔*1 , 𝑔*2 , 𝑢*) for problem (2.5) with (2.4)
under expected value premium principle (4.1) is

𝑔*1(𝑡, 𝑍1) = min
{︂

𝑍1, max
{︂

0,
(𝜆 + 𝜆2)[(𝜆 + 𝜆1)𝜂1 − 𝜆𝜂2]

(𝜆 + 𝜆1)(𝜆 + 𝜆2)− 𝜆2
× 1

𝛾𝑒𝑟0(𝑇−𝑡)

}︂}︂
,

(4.11)

𝑔*2(𝑡, 𝑍2) = min
{︂

𝑍2, max
{︂

0,
(𝜆 + 𝜆1)[(𝜆 + 𝜆2)𝜂2 − 𝜆𝜂1]

(𝜆 + 𝜆1)(𝜆 + 𝜆2)− 𝜆2
× 1

𝛾𝑒𝑟0(𝑇−𝑡)

}︂}︂
,

(4.12)

𝑢* =
𝑟1 − 𝑟0

𝜎2

1
𝛾𝑒𝑟0(𝑇−𝑡)

· (4.13)

The corresponding equilibrium value function of the extended HJB system of equations (2.7) is

𝑉 (𝑡, 𝑥) = 𝐴(𝑡)𝑥 + 𝐵(𝑡),
𝑔(𝑡, 𝑥) = 𝑎(𝑡)𝑥 + 𝑏(𝑡),

with

𝐴(𝑡) = 𝑎(𝑡) = 𝑒𝑟0(𝑇−𝑡), (4.14)

𝐵(𝑡) =
∫︁ 𝑇

𝑡

{︂
𝑒𝑟0(𝑇−𝜏)

[︀
𝑐0 − (1 + 𝜂1)(𝜆 + 𝜆1)𝜇1𝑍1 − (1 + 𝜂2)(𝜆 + 𝜆2)𝜇1𝑍2

+ 𝜂1(𝜆 + 𝜆1)E𝑔*1(𝑡, 𝑍1) + 𝜂2(𝜆 + 𝜆2)E𝑔*2(𝑡, 𝑍2)
]︀

+
1
2

(𝑟1 − 𝑟0)2

𝛾𝜎2

− 1
2
𝛾𝑒2𝑟0(𝑇−𝜏)

[︂
(𝜆 + 𝜆1)E[𝑔*1(𝑡, 𝑍1)2] + (𝜆 + 𝜆2)E[𝑔*2(𝑡, 𝑍2)2]

+ 2𝜆E𝑔*1(𝑡, 𝑍1)E𝑔*2(𝑡, 𝑍2)
]︂}︂

d𝜏, (4.15)

𝑏(𝑡) =
∫︁ 𝑇

𝑡

{︂
𝑒𝑟0(𝑇−𝜏)

[︀
𝑐0 − (1 + 𝜂1)(𝜆 + 𝜆1)𝜇1𝑍1 − (1 + 𝜂2)(𝜆 + 𝜆2)𝜇1𝑍2

]︀
+

(𝑟1 − 𝑟0)2

𝛾𝜎2
+ 𝑒𝑟0(𝑇−𝜏)

[︂
𝜂1(𝜆 + 𝜆1)E𝑔*1(𝑡, 𝑍1) + 𝜂2(𝜆 + 𝜆2)E𝑔*2(𝑡, 𝑍2)

]︂}︂
d𝜏. (4.16)

Proof. Since the wealth process has the linear structure, and in accordance with the forms of the boundary
conditions, we conjecture that

𝑉 (𝑡, 𝑥) = 𝐴(𝑡)𝑥 + 𝐵(𝑡),
𝑔(𝑡, 𝑥) = 𝑎(𝑡)𝑥 + 𝑏(𝑡).

Then, we have
𝑉𝑡 = 𝐴𝑡𝑥 + 𝐵𝑡, 𝑉𝑥 = 𝐴(𝑡), 𝑉𝑥𝑥 = 0, (4.17)

and
𝑔𝑡 = 𝑎𝑡𝑥 + 𝑏𝑡, 𝑔𝑥 = 𝑎(𝑡), 𝑔𝑥𝑥 = 0. (4.18)

Inserting (4.17) and (4.5)–(4.7) into (4.3), we have

𝐴𝑡𝑥 + 𝐵𝑡 +
[︂
𝑟0𝑥 + (𝑟1 − 𝑟0)

𝑟1 − 𝑟0

𝜎2

𝐴(𝑡)
𝛾𝑎2(𝑡)

+ 𝑐0 − (1 + 𝜂1)(𝜆 + 𝜆1)𝜇1𝑍1
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− (1 + 𝜂2)(𝜆 + 𝜆2)𝜇1𝑍2 + 𝜂1(𝜆 + 𝜆1)E𝑔*1(𝑡, 𝑍1) + 𝜂2(𝜆 + 𝜆2)E𝑔*2(𝑡, 𝑍2)
]︂
𝐴(𝑡)

− 1
2
𝛾𝑎2(𝑡)

[︂
(𝑟1 − 𝑟0)2

𝜎2

(︂
𝐴(𝑡)

𝛾𝑎2(𝑡)

)︂2

+ (𝜆 + 𝜆1)E
[︀
𝑔*1(𝑡, 𝑍1)2

]︀
+ (𝜆 + 𝜆2)E

[︀
𝑔*2(𝑡, 𝑍2)2

]︀
+ 2𝜆E𝑔*1(𝑡, 𝑍1)E𝑔*2(𝑡, 𝑍2)

]︂
= 0. (4.19)

By separating variables, we obtain the following ordinary differential equations{︂
𝐴𝑡 + 𝑟0𝐴 = 0,

𝐴(𝑇 ) = 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐵𝑡 + 𝐴(𝑡)[𝑐0 − (1 + 𝜂1)(𝜆 + 𝜆1)𝜇1𝑍1 − (1 + 𝜂2)(𝜆 + 𝜆2)𝜇1𝑍2

+ 𝜂1(𝜆 + 𝜆1)E𝑔*1(𝑡, 𝑍1) + 𝜂2(𝜆 + 𝜆2)E𝑔*2(𝑡, 𝑍2)] +
1
2

(𝑟1 − 𝑟0)2

𝜎2

𝐴2(𝑡)
𝛾𝑎2(𝑡)

− 1
2
𝛾𝑎2(𝑡)

[︂
(𝜆 + 𝜆1)E[𝑔*1(𝑡, 𝑍1)2] + (𝜆 + 𝜆2)E[𝑔*2(𝑡, 𝑍2)2]

+ 2𝜆E𝑔*1(𝑡, 𝑍1)E𝑔*2(𝑡, 𝑍2)
]︂

= 0,

𝐵(𝑇 ) = 0.

Inserting (4.17), (4.18) and (4.5)–(4.7) into (4.4), we have

𝑎𝑡𝑥 + 𝑏𝑡 + 𝑎(𝑡)
[︂
𝑟0𝑥 + (𝑟1 − 𝑟0)

𝑟1 − 𝑟0

𝜎2

𝐴(𝑡)
𝛾𝑎2(𝑡)

+ 𝑐0 − (1 + 𝜂1)(𝜆 + 𝜆1)𝜇1𝑍1

− (1 + 𝜂2)(𝜆 + 𝜆2)𝜇1𝑍2 + 𝜂1(𝜆 + 𝜆1)E𝑔*1(𝑡, 𝑍1) + 𝜂2(𝜆 + 𝜆2)E𝑔*2(𝑡, 𝑍2)
]︂

= 0.

By separating variables again, we obtain{︂
𝑎𝑡 + 𝑟0𝑎 = 0,

𝑎(𝑇 ) = 1,⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑏𝑡 + 𝑎(𝑡)[𝑐0 − (1 + 𝜂1)(𝜆 + 𝜆1)𝜇1𝑍1 − (1 + 𝜂2)(𝜆 + 𝜆2)𝜇1𝑍2 ]

+
𝐴

𝛾𝑎

(𝑟1 − 𝑟0)2

𝜎2
+ 𝑎×

[︂
𝜂1(𝜆 + 𝜆1)E𝑔*1(𝑡, 𝑍1) + 𝜂2(𝜆 + 𝜆2)E𝑔*2(𝑡, 𝑍2)

]︂
= 0,

𝑏(𝑇 ) = 0.

Solving these equations, we obtain (4.14)–(4.16). Inserting the result into (4.5)–(4.7), we obtain (4.11)–(4.13).
This completes the proof. �

In the following, we give explicit expression of the equilibrium reinsurance strategy. Note that 𝜌𝑎2𝑏1
𝑎1𝑏2

< 1 <
𝑎2𝑏1
𝜌𝑎1𝑏2

, we need to discuss the following three cases:

Case 1. 𝜂1 ≤ 𝜆
𝜆+𝜆1

𝜂2, which leads to 𝑔1 ≤ 0 and 𝑔2 > 0;
Case 2. 𝜆

𝜆+𝜆1
𝜂2 < 𝜂1 < 𝜆+𝜆2

𝜆 𝜂2, which leads to 𝑔1 > 0 and 𝑔2 > 0;
Case 3. 𝜂1 ≥ 𝜆+𝜆2

𝜆 𝜂2, which leads to 𝑔1 > 0 and 𝑔2 ≤ 0.



18 J. BI ET AL.

Proposition 4.4. The equilibrium reinsurance strategies 𝑔*1 , 𝑔*2 under the expected value premium principle are

𝑔*1(𝑡, 𝑍1) =

⎧⎪⎪⎨⎪⎪⎩
0, Case 1,

(𝜆+𝜆2)[(𝜆+𝜆1)𝜂1−𝜆𝜂2]

[(𝜆+𝜆1)(𝜆+𝜆2)−𝜆2]𝛾𝑒𝑟0(𝑇−𝑡) ∧ 𝑍1, Case 2,

(𝜆+𝜆2)[(𝜆+𝜆1)𝜂1−𝜆𝜂2]

[(𝜆+𝜆1)(𝜆+𝜆2)−𝜆2]𝛾𝑒𝑟0(𝑇−𝑡) ∧ 𝑍1, Case 3,

𝑔*2(𝑡, 𝑍2) =

⎧⎪⎨⎪⎩
(𝜆+𝜆1)[(𝜆+𝜆2)𝜂2−𝜆𝜂1]

[(𝜆+𝜆1)(𝜆+𝜆2)−𝜆2]𝛾𝑒𝑟0(𝑇−𝑡) ∧ 𝑍2, Case 1,

(𝜆+𝜆1)[(𝜆+𝜆2)𝜂2−𝜆𝜂1]

[(𝜆+𝜆1)(𝜆+𝜆2)−𝜆2]𝛾𝑒𝑟0(𝑇−𝑡) ∧ 𝑍2, Case 2,

0, Case 3.

Remark 4.5. Under the expected value premium principle, the excess-of-loss reinsurance is optimal. The equi-
librium excess-of-loss retention limits depend on the intensity parameters 𝜆1, 𝜆2, 𝜆 of the Poisson processes, the
reinsurer’s safety loadings 𝜂1, 𝜂2, the risk aversion coefficient 𝛾 of the insurer, and the interest rate 𝑟0 of the
risk-free asset.

Remark 4.6. The equilibrium investment strategies under the two different reinsurance premium principles
are the same, depending on the interest rate 𝑟0 of the risk-free asset, the appreciation rate 𝑟1, the volatility
coefficient 𝜎 of the risky asset, and the risk aversion coefficient 𝛾 of the insurer.

The equilibrium investment strategy is independent of the parameters 𝜆1, 𝜆2, 𝜆, 𝜇1𝑍1 , 𝜇1𝑍2 , 𝜇2𝑍1 , 𝜇2𝑍2 in the
reserve process, and the safety loadings 𝜂1 and 𝜂2 of the reinsurance business. This shows that the equilibrium
investment strategy is unaffected by the price of reinsurance and the price of the primary insurance.

5. Numerical illustrations

In this section, we present some numerical examples to illustrate our results obtained in Sections 3 and 4.
Without loss of generality, we assume that all the parameters of the financial market and the insurer are
constants.

In Sections 3 and 4, we have derived the explicit expressions of the equilibrium reinsurance-investment
strategies under both variance premium principle and expected value premium principle given in Theorems 3.3
and 4.3, respectively. In the following, we provide the numerical illustrations of the equilibrium reinsurance-
investment strategies under the two premium principles according to Theorems 3.3 and 4.3. We use MATLAB
to obtain the following numerical results.

5.1. The equilibrium strategy in Section 3

The conclusion in Theorem 3.3 shows that the optimal proportions are increasing with respect to the safety
loading Λ of the reinsurance company, and decreasing with respect to the interest rate 𝑟0 of the risk-free asset
and the risk aversion coefficient 𝛾 of the insurer. Moreover, the equilibrium investment strategy is increasing
with respect to the appreciation rate 𝑟1 of the risky asset, and decreasing with respect to the interest rate 𝑟0 of
the risk-free asset, the volatility coefficient 𝜎 of the risky asset and the risk aversion coefficient 𝛾 of the insurer.

Set 𝑇 = 4, 𝑟0 = 0.02, 𝑟1 = 0.05, 𝜎 = 0.2, Λ = 2, 𝛾 = 0.5. The equilibrium reinsurance-investment strategy is
shown in Figure 1.

5.2. The equilibrium strategy in Section 4

Theorem 4.3 give the expression of the candidates of equilibrium reinsurance strategy (𝑔*1(𝑡), 𝑔*2(𝑡)).
(𝑔*1(𝑡), 𝑔*2(𝑡)) is decreasing with respect to the interest rate 𝑟0 of the risk-free asset and the risk aversion
coefficient 𝛾 of the insurer. Next we focus on how (𝑔*1(𝑡), 𝑔*2(𝑡)) changes with 𝜆, 𝜂1 and 𝜂2. Set 𝑇 = 4, 𝑟0 = 0.02,
𝛾 = 0.5, 𝜆1 = 2, 𝜆2 = 3.
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Figure 1. 𝑝*1(𝑡), 𝑝*2(𝑡) and 𝑢*(𝑡) in Section 3.

Figure 2. 𝑔*1(𝑡), 𝑔*2(𝑡) with 𝜂1 = 𝜂2 = 0.3 under different 𝜆 in Section 4.

First, we show (𝑔*1(𝑡), 𝑔*2(𝑡)) under expected value premium principle with 𝜂1 = 𝜂2 = 0.3 for different
common Poisson intensity 𝜆 (= 1, 2, 3, 4) in Figure 2. It can be seen from Figure 2 that both 𝑔*1(𝑡) and 𝑔*2(𝑡)
are decreasing as 𝜆 increases. This is due to that a large value of 𝜆 means a riskier insurance market, so the
insurer will reserve less risk share of the claims.

Second, we show (𝑔*1(𝑡), 𝑔*2(𝑡)) under expected value premium principle with 𝜆 = 2 and 𝜂2 = 0.3 for different
𝜂1 (= 0.1, 0.5, 0.8) in Figure 3. It can be seen from Figure 3 that 𝑔*1(𝑡) is increasing as 𝜂1 increases. In other
words, the retained claim increases as the reinsurance safety loading increases. It is reasonable because as the
reinsurance policy becomes more expensive, the insurer retains more insurance risk. On the other hand, 𝑔*2(𝑡)
is decreasing as 𝜂1 increases.

Third, we show (𝑔*1(𝑡), 𝑔*2(𝑡)) under expected value premium principle with 𝜆 = 2 and 𝜂1 = 0.3 for different
𝜂2 (= 0.1, 0.4, 0.7) in Figure 4. It can be seen from Figure 4 that 𝑔*1(𝑡) is decreasing as 𝜂2 increases and 𝑔*2(𝑡)
is increasing as 𝜂2 increases.
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Figure 3. 𝑔*1(𝑡), 𝑔*2(𝑡) with 𝜆 = 2, 𝜂2 = 0.3 under different 𝜂1 in Section 4.

Figure 4. 𝑔*1(𝑡), 𝑔*2(𝑡) with 𝜆 = 2, 𝜂1 = 0.3 under different 𝜂2 in Section 4.

6. Concluding remarks

This paper studies the equilibrium reinsurance-investment strategies for a mean-variance insurer with common
shock dependence under two kinds of premium principles: the variance premium principle and the expected
value premium principle. Using the technique of stochastic control theory and the corresponding extended HJB
system of equations, within a game theoretic framework, we derive the closed-form expressions of the equilibrium
reinsurance-investment strategies and the equilibrium value functions. We find that: under the variance premium
principle, the optimal reinsurance contract is a proportional reinsurance; on the other hand, under the expected
value premium principle, the optimal reinsurance contract is not a proportional reinsurance but an excess-of-loss
reinsurance.

It would be interesting to extend our analysis to some other situations. In recent years, socially responsible
investing has become a popular subject with both private and institutional investors. We can propose a modifi-
cation allowing to incorporate not only the risk-free and risky assets but also a social responsibility measure into
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the investment decision making process, and reconsider the mean-variance reinsurance-investment problem. Of
course, these problems are more complicated. To solve such problems, we need to adopt much more sophisticated
techniques. We will explore these problems in the future research.
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