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ROBUST EQUILIBRIUM INVESTMENT AND REINSURANCE STRATEGY
WITH BOUNDED MEMORY AND COMMON SHOCK DEPENDENCE

Sheng Li*

Abstract. In this paper, we consider the robust investment and reinsurance problem with bounded
memory and risk co-shocks under a jump-diffusion risk model. The insurer is assumed to be ambiguity-
averse and make the optimal decision under the mean-variance criterion. The insurance market is
described by two-dimensional dependent claims while the risky asset is depicted by the jump-diffusion
model. By introducing the performance in the past, we derive the wealth process depicted by a stochastic
delay differential equation (SDDE). Applying the stochastic control theory under the game-theoretic
framework, together with stochastic control theory with delay, the robust equilibrium investment-
reinsurance strategy and the corresponding robust equilibrium value function are derived. Furthermore,
some numerical examples are provided to illustrate the effect of market parameters on the optimal
investment and reinsurance strategy.
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1. Introduction

In the insurance market, insurers improve the economic efficiency of the system by spreading individual
risks. The policyholder transfers the risk to insurers by paying premiums and insurers are free to use the
premiums for investment. It is necessary to enter the reinsurance market when the risk it insures exceeds its
limits. In the reinsurance market, by paying reinsurance fees, the insured business is partially transferred to
other insurers, to achieve the purpose of risk diversification, loss control, and stable operation. As insurance for
insurance, reinsurance is a very important part of the overall insurance system. The core issue of insurers is risk
management and control, that is, the management and control of the surplus process of insurers, combining the
actuarial problems of insurance and investment portfolio problem, not only to focus on the risks and returns
of investment, but also to focus on the company’s underwriting risks, to ensure that it can pay the claims of
policyholders in a timely manner. As a result, the issue of investment and reinsurance by insurance companies
has attracted a great deal of attention in recent years. Browne [9] investigates firstly the optimal investment
strategy for an insurer under maximizing exponential utility function and minimizing the ruin probability.
Højgaard and Taksar [15] study the proportional reinsurance problem with the maximum return function under
the diffusion approximation (DA) model and obtain an approximate expression for the optimal strategy and the
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value function. Hipp and Plum [14] study the optimal investment strategy that minimizes the ruin probability of
insurer under the classical Craḿer–Lundberg (C-L) model. Yang and Zhang [24] consider the optimal investment
problem under the jump-diffusion model under maximizing expected utility. Bai and Guo [2] study the optimal
investment strategy of an insurer investing in multiple risk assets under the DA model. Cao and Wan [10] obtain
optimal investment and reinsurance strategy under maximizing the expected utility of terminal wealth.

In addition, the mean-variance criterion is another goal of great interest for insurers since it takes into
account not only the risk but also the returns. Due to its rationality and practicality, the mean-variance has
become a popular decision criterion in financial theory. The study of the mean-variance can be traced back to
Markowitz [19]. Since then, mean-variance has been extensively studied. Li and Ng [16] introduce an embedding
technique to transform the mean-variance problem into a stochastic linear quadratic control problem in a
discrete-time model, which was extended to the corresponding continuous-time model by Zhou [29]. See also
Bäuerle [4], Bai and Zhang [3], Bi and Guo [5] for the application of the mean-variance criterion to investment
and reinsurance problem. However, it is worth noting that the dynamic mean-variance criterion lacks iterated-
expectation property, which leads to time-inconsistent in the sense that the Bellman optimality principle does
not hold anymore. In fact, time-consistency of the optimal strategy is a fundamental requirement for rational
decision making in many situations. Accordingly, Björk and Murgoci [6] and Björk et al. [7] develop a general
theory for Markovian time-inconsistent stochastic control problems. They obtain a time-consistent equilibrium
strategy that is not only optimal at the current time but also optimal in the future. In recent years, there has
been an increased interest in finding a time-consistent equilibrium strategy for the mean-variance investment
and reinsurance problem. Applying this theory, Zeng and Li [26], Zeng et al. [27], Lin and Qian [17] derive the
optimal time-consistent investment and reinsurance strategy for the mean-variance insurer.

However, there are three aspects of the literature mentioned above that deserve further exploration. Firstly,
they are the lack of consideration of model uncertainty. Maenhout [18] investigates the effect of ambiguity on
the intertemporal portfolio choice in a setting with constant investment opportunities and in a setting with a
mean-reverting equity risk premium, respectively. Secondly, the correlation between insurance operations is not
considered. In the real market, different insurance businesses often have some common shocks. For instance,
the outbreak of the 2019-nCoV may lead to the simultaneous occurrence of medical claims and death claims.
Besides, auto insurance/third party insurance, casualty insurance/health insurance, life insurance/endowment
insurance often have also interdependent risk shocks. To demonstrate the interdependence between different
insurance businesses, a risk dependence model is proposed. Third, the influence of past information on insurers’
decisions is not incorporated into the model. Actually, insurers pay attention not only to the current stock price
but also to the stock price trend in the past period when investing in stocks. Also, the past information always
impacts the decision-making of insurers, who tend to examine performance trends over time, not just current
financial information, when deciding how much reinsurance to purchase. Considering the past information in
the model helps us make more rational decisions. In this paper, we formulate a robust optimization problem
with alternative models and establish the corresponding extended Hamilton–Jacobi–Bellman (HJB) system
of equations. Furthermore, we derive both the robust equilibrium reinsurance-investment strategy and the
corresponding equilibrium value function. Some special cases of our model are also provided, which show that our
model and results extend some ones in the existing literature. Finally, the economic implications of our findings
are illustrated, and utility losses from ignoring model uncertainty, jump risks and prohibiting reinsurance are
analyzed using numerical examples. The main contributions of this paper are as follows: (1) We incorporate past
performance into the robust investment-reinsurance problem where the insurer’s optimal decision in the worst-
case model is based on a weighting of past and present information. (2) Two insurance businesses with common
shocks are studied and two robust reinsurance strategies which are influenced by some common factor are
analyzed. (3) The analytical solution is obtained for the robust equilibrium investment and reinsurance strategy
when there is a jump process in the price of risky assets. (4) Utility losses from ignoring model uncertainty,
jump risks and prohibiting reinsurance for the AAI are analyzed, and some new findings are provided.

The remainder of this paper is organized as follows. Section 2 formulates the mean-variance investment
and reinsurance problem with bounded memory and common shock dependence under model uncertainty. In
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Section 3, by solving the extended HJB equation, we derive the robust equilibrium investment and reinsurance
strategy and the corresponding equilibrium value functions. In Section 4, we present a numerical example for
analyzing the impact of changes in the model parameter on a robust equilibrium strategy. Section 5 concludes
this paper.

2. General formulation

In this paper, we consider a filtered complete probability space (Ω,ℱ , {ℱ𝑡}𝑡∈[0,𝑇 ],P) satisfying the usual
conditions, i.e., {ℱ𝑡}𝑡∈[0,𝑇 ] is right continuous and P-complete, where {ℱ𝑡}𝑡∈[0,𝑇 ] is the information of the
market available up to time 𝑡, [0, 𝑇 ] is a fixed and finite time horizon. All stochastic processes introduced below
are assumed to be well-defined and adapted processes in this probability space, and we assume that all stochastic
processes are separable. In addition, we suppose that there are no transaction costs or taxes in the financial or
the insurance market, and trading can be continuously done.

Suppose an insurer has an insurance portfolio business, which is composed of two different insurance busi-
nesses, such as medical insurance and death insurance. Suppose that the random variables {𝑌1𝑖, 𝑖 ≥ 1} represent
the claim amount of the first type of insurance business, they are independent of each other and have the same
distribution function 𝐹1(𝑦1). {𝑌2𝑖, 𝑖 ≥ 1} represent the claim amount of the second type of insurance business,
they are mutually independent and have the common distribution function 𝐹2(𝑦2). We assume that if 𝑦1 ≤ 0,
then 𝐹1(𝑦1) = 0; otherwise 0 < 𝐹1(𝑦1) ≤ 1. And we also assume that if 𝑦2 ≤ 0, then 𝐹2(𝑦2) = 0; otherwise
0 < 𝐹2(𝑦2) ≤ 1. In addition, their moment generating functions 𝑀𝑌1(𝜄) and 𝑀𝑌2(𝜄) exist. The cumulative claim
process of the two insurance businesses are as follows.

𝐶1(𝑡) =
̃︀𝑁1(𝑡)∑︁
𝑖=1

𝑌1𝑖, 𝐶2(𝑡) =
̃︀𝑁2(𝑡)∑︁
𝑖=1

𝑌2𝑖,

where
{︁ ̃︀𝑁1(𝑡)

}︁
𝑡>0

and
{︁ ̃︀𝑁2(𝑡)

}︁
𝑡>0

represent the number of claims for the first and second categories of insurance

business up to time 𝑡, respectively.
For different insurance businesses, it is assumed that they are interdependent as follows.

̃︀𝑁1(𝑡) = 𝑁1(𝑡) +𝑁(𝑡), ̃︀𝑁2(𝑡) = 𝑁2(𝑡) +𝑁(𝑡),

where {𝑁(𝑡)}𝑡>0, {𝑁1(𝑡)}𝑡>0 and {𝑁2(𝑡)}𝑡>0 are three independent Poisson processes, the corresponding inten-
sities are 𝜆, 𝜆1 and 𝜆2. Therefore, the total claim amount of these two types of the insurance business is

𝐶(𝑡) = 𝐶1(𝑡) + 𝐶2(𝑡) =
𝑁1(𝑡)+𝑁(𝑡)∑︁

𝑖=1

𝑌1𝑖 +
𝑁2(𝑡)+𝑁(𝑡)∑︁

𝑖=1

𝑌2𝑖.

Suppose for arbitrary 𝜄 ∈ (0, 𝜄̄), 𝐸
[︀
𝑌1𝑖𝑒

𝜄𝑌1𝑖
]︀

and 𝐸
(︀
𝑌2𝑖𝑒

𝜄𝑌2𝑖
)︀

exist. And, for some 𝜄̄ ∈ (0,∞], there are
lim𝜄→𝜄̄𝐸

[︀
𝑌1𝑖𝑒

𝜄𝑌1𝑖
]︀
→∞ and lim𝜄→𝜄̄𝐸

[︀
𝑌2𝑖𝑒

𝜄𝑌2𝑖
]︀
→∞.

For simplicity, we define

𝑎1 := 𝐸[𝐶1(𝑡)] = (𝜆+ 𝜆1)𝜇11, 𝑏21 := Var
[︀
𝐶2

1 (𝑡)
]︀

= (𝜆+ 𝜆1)𝜇12,

𝑎2 := 𝐸[𝐶2(𝑡)] = (𝜆+ 𝜆2)𝜇21, 𝑏22 := Var
[︀
𝐶2

2 (𝑡)
]︀

= (𝜆+ 𝜆2)𝜇22, (2.1)

where 𝜇11 = 𝐸[𝑌1𝑖], 𝜇12 = 𝐸[𝑌 2
1𝑖], 𝜇21 = 𝐸[𝑌2𝑖] and 𝜇22 = 𝐸[𝑌 2

2𝑖]. According to Grandell [13] and Schmidli [21],
𝐶1(𝑡) and 𝐶2(𝑡) can be approximated by the Brownian motion ̂︀𝐶1(𝑡) and ̂︀𝐶2(𝑡) with drift, respectively.

̂︀𝐶1(𝑡) = 𝑎1𝑡− 𝑏1𝑊1(𝑡), ̂︀𝐶2(𝑡) = 𝑎2𝑡− 𝑏2𝑊2(𝑡), (2.2)
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where {𝑊1(𝑡)}𝑡∈[0,𝑇 ] and {𝑊2(𝑡)}𝑡∈[0,𝑇 ] are standard Brownian motion with 𝐸(𝑊1(𝑡)𝑊2(𝑡)) = 𝜌𝑡, where 𝜌 =
𝜆𝜇11𝜇21

𝑏1𝑏2
. The surplus process of the insurer up to time 𝑡 is modeled by

𝑅(𝑡) = 𝑅0 + 𝑐0𝑡− ̂︀𝐶1(𝑡)− ̂︀𝐶2(𝑡),

where 𝑅0 is the initial surplus, and 𝑐0 is the premium rate. We assume that insurance premium rate at time
𝑡 be calculated by the expected value principle, that is, 𝑐0 = (1 + 𝜃1)𝑎1 + (1 + 𝜃2)𝑎2, where 𝜃1 and 𝜃2 are
the safety loadings of the insurer for the first class claims and second class claims, respectively. In addition,
the insurer can continuously purchase proportional reinsurance. And 𝑞1(𝑡) and 𝑞2(𝑡) represent the insurer’s
retention level after purchasing reinsurance, respectively. That is to say, the insurer pays 𝑞1(𝑡)𝑌1𝑖 (or 𝑞2(𝑡)𝑌2𝑖)
of a claim occurring at time 𝑡 and the reinsurer pays 1− 𝑞1(𝑡)𝑌1𝑖 (or 1− 𝑞2(𝑡)𝑌2𝑖). Let the reinsurance premium
also be calculated by the expected value principle. For the new business, the premium has to be paid at rate
(1− 𝑞1(𝑡))(1 + 𝜂1)𝑎1 + (1𝑞2(𝑡))(1 + 𝜂2)𝑎2, where 𝜂1 and 𝜂2 are the safety loadings of the reinsurer for the first
class claims and second class claims, respectively. To exclude the insurer’s arbitrage behavior, we assume that
𝜂1 > 𝜃1, 𝜂2 > 𝜃2. Note that for the insurer, 𝑞1(𝑡) ∈ [0, 1] (𝑞2(𝑡) ∈ [0, 1]) corresponds to a reinsurance cover and
𝑞1(𝑡) > 1 (𝑞2(𝑡) > 1) would mean that the company can take an extra insurance business from other companies
(i.e., act as a reinsurer for other cedents). After reinsurance, the premium of the insurer is given by

𝑐 = 𝑐0 − [(1− 𝑞1(𝑡))(1 + 𝜂1)𝑎1 + (1− 𝑞2(𝑡))(1 + 𝜂2)𝑎2]
= [(1 + 𝜂1)𝑞1(𝑡) + 𝜃1 − 𝜂1]𝑎1 + [(1 + 𝜂2)𝑞2(𝑡) + 𝜃2 − 𝜂2]𝑎2.

Then the reserve process {𝑅(𝑡)}𝑡≥0 of the insurer is

d𝑅(𝑡) = 𝑐𝑑𝑡− 𝑞1(𝑡)𝑑 ̂︀𝐶1(𝑡)− 𝑞2(𝑡)𝑑 ̂︀𝐶2(𝑡)
= [𝑎1𝜂1𝑞1(𝑡) + (𝜃1 − 𝜂1)𝑎1 + 𝑎2𝜂2𝑞2(𝑡) + (𝜃2 − 𝜂2)𝑎2]d𝑡

+ 𝑏1𝑞1(𝑡)d𝑊1(𝑡) + 𝑏2𝑞2(𝑡)d𝑊2(𝑡)
= [𝑎1𝜂1𝑞1(𝑡) + (𝜃1 − 𝜂1)𝑎1 + 𝑎2𝜂2𝑞2(𝑡) + (𝜃2 − 𝜂2)𝑎2]d𝑡

+
√︁
𝑏21𝑞

2
1(𝑡) + 𝑏22𝑞

2
2(𝑡) + 2𝑞1(𝑡)𝑞2(𝑡)𝜆𝜇11𝜇21d𝑊0(𝑡),

where 𝑊0(𝑡) is a standard Brownian motion.
We consider a financial market consisting of a risk-free asset and a risky asset, in which financial assets can

be traded continuously. The dynamic evolution of a risk-free asset price is given by

d𝑆0(𝑡) = 𝑟𝑆0(𝑡)d𝑡, 𝑆0(0) = 1,

where 𝑟(>0) is the interest rate of the risk-free asset. The price dynamics of the risky asset is described by the
following process:

d𝑆(𝑡) = 𝑆(𝑡−)

⎡⎣𝛼d𝑡+ 𝜎d𝑊 (𝑡) + 𝑑

𝑁0(𝑡)∑︁
𝑖=1

𝑌0𝑖

⎤⎦, 𝑆(0) = 𝑠0,

where 𝛼 denotes the appreciation rate, 𝜎 represents the volatility coefficients for Brownian motion. And
{𝑊 (𝑡)}𝑡∈[0,𝑇 ] is a standard {ℱ}𝑡≥0-adapted Brownian motion. {𝑁0(𝑡)}𝑡>0 is a Poisson process with param-
eter 𝜆0 and the jump {𝑌0𝑖, 𝑖 ≥ 1} is a set of independent random variables with the same distribution as 𝐹0(𝑦0).
We suppose that 0 < 𝐹0(𝑦0) ≤ 1 for 𝑦0 > −1; otherwise 𝐹0(𝑦0) = 0. And let 𝐸[𝑌0𝑖] = 𝜇01, 𝐸[𝑌 2

0𝑖] = 𝜇02.
Moreover, we assume that {𝑊 (𝑡)}𝑡∈[0,𝑇 ] and {𝑊0(𝑡)}𝑡∈[0,𝑇 ] are mutually independent. And in order to exclude
risk-free arbitrage in financial markets, we assume that 𝛼+ 𝜆0𝜇01 > 𝑟.
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Next, we consider a Poisson random measure 𝑁0(·, ·) on Ω × [0, 𝑇 ] × (−1,∞) to represent the compound
Poisson process

∑︀𝑁0(𝑡)
𝑖=1 𝑌0𝑖 as

𝑁0(𝑡)∑︁
𝑖=1

𝑌0𝑖 =
∫︁ 𝑡

0

∫︁ ∞

−1

𝑦0𝑁0(d𝑠,d𝑦0), 𝑡 ∈ [0, 𝑇 ].

If we denote by 𝜈(d𝑡,d𝑦0) = 𝜆0d𝑡d𝐹0(𝑦0), then

𝐸

⎡⎣𝑁0(𝑡)∑︁
𝑖=1

𝑌0𝑖

⎤⎦ =
∫︁ 𝑡

0

∫︁ ∞

−1

𝑦0𝜈(d𝑠,d𝑦0), 𝑡 ∈ [0, 𝑇 ],

where 𝜈(·, ·) is the compensators of the random measure. Hence the compensated measure ̃︀𝑁0(·, ·) = 𝑁0(·, ·)−
𝜈(·, ·) is related to the compound Poisson process

∑︀𝑁0(𝑡)
𝑖=1 𝑌0𝑖 as follows:

∫︁ 𝑡

0

∫︁ ∞

−1

𝑦0 ̃︀𝑁0(d𝑠,d𝑦0) =
𝑁0(𝑡)∑︁
𝑖=1

𝑌0𝑖 − 𝐸

⎡⎣𝑁0(𝑡)∑︁
𝑖=1

𝑌0𝑖

⎤⎦, 𝑡 ∈ [0, 𝑇 ].

Assume that 𝑋(𝑡) denotes the wealth of the insurer at time 𝑡 ∈ [0, 𝑇 ], 𝑝1(𝑡) denotes the amount invested in the
risky asset, then 𝑋(𝑡)− 𝑝1(𝑡) is the investment amount of a risk-free asset. Define 𝜋(𝑡) = (𝑝1(𝑡), 𝑞1(𝑡), 𝑞2(𝑡)) as
the investment-reinsurance strategy at time 𝑡, and consider the impact of the historical performance 𝑓(𝑡,𝑋(𝑡)−
𝐿̄(𝑡), 𝑋(𝑡) − 𝑀(𝑡)), then we have the following wealth dynamics depicted by a stochastic delay differential
equation (SDDE):

d𝑋𝜋(𝑡) = (𝑋𝜋(𝑡)− 𝑝1(𝑡))
d𝑆0(𝑡)
𝑆0(𝑡)

+ 𝑝1(𝑡)
d𝑆(𝑡)
𝑆(𝑡)

+ d𝑅(𝑡)− 𝑓
(︀
𝑡,𝑋(𝑡)− 𝐿̄(𝑡), 𝑋(𝑡)−𝑀(𝑡)

)︀
=
[︂
(𝑟 − 𝛾1 − 𝛾2)𝑋𝜋(𝑡) + 𝛾1𝐿

𝜋(𝑡) + 𝛾2𝑀
𝜋(𝑡) + (𝛼− 𝑟)𝑝1(𝑡)

+ (𝜃1 − 𝜂1 + 𝑞1(𝑡)𝜂1)𝑎1 + (𝜃2 − 𝜂2 + 𝑞2(𝑡)𝜂2)𝑎2

]︂
d𝑡

+
√︁
𝑏21𝑞

2
1(𝑡) + 𝑏22𝑞

2
2(𝑡) + 2𝑞1(𝑡)𝑞2(𝑡)𝜆𝜇11𝜇21d𝑊0(𝑡) + 𝑝1(𝑡)𝜎d𝑊 (𝑡)

+
∫︁ ∞

−1

𝑝1(𝑡)𝑦0𝑁0(d𝑡, d𝑦0). (2.3)

Following Shen and Zeng [22], in equation (2.3) above, we suppose that

𝑓
(︀
𝑡,𝑋(𝑡)− 𝐿̄(𝑡), 𝑋(𝑡)−𝑀(𝑡)

)︀
= 𝛾1

(︀
𝑋(𝑡)− 𝐿̄(𝑡)

)︀
+ 𝛾2(𝑋(𝑡)−𝑀(𝑡))

= 𝛾1

(︃
𝑋(𝑡)− 𝐿(𝑡)∫︀ 0

−ℎ
𝑒𝐴𝑢d𝑢

)︃
+ 𝛾2(𝑋(𝑡)−𝑀(𝑡))

= (𝛾1 + 𝛾2)𝑋(𝑡)− 𝛾1𝐿(𝑡)− 𝛾2𝑀(𝑡),

where 𝛾1(≥0) and 𝛾2(≥0) are constants. And obviously, 𝛾1 = 𝛾1∫︀ 0
−ℎ

𝑒𝐴𝑢d𝑢
. 𝐿(𝑡) =

∫︀ 0

−ℎ
𝑒𝐴𝑢𝑋𝜋(𝑡 + 𝑢)d𝑢, 𝐿̄(𝑡) =

𝐿(𝑡)∫︀ 0
−ℎ

𝑒𝐴𝑢d𝑢
and 𝑀(𝑡) = 𝑋(𝑡− ℎ) represent the integrated, average and point by point delay information during

time [𝑡−ℎ, 𝑡], respectively. And 𝐴(≥0) and ℎ(≥0) are given average parameter and delay parameter, respectively.
Note that 𝐿̄(𝑡) is defined as the weighted average value of wealth process𝑋(·) in the time interval [𝑡−ℎ, 𝑡], and the
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exponential decay factor 𝑒𝐴𝑢(𝑢 ∈ [−ℎ, 0]) denotes the weight. Moreover, We assume that𝑋(𝑡) = 𝑋0,∀𝑡 ∈ [−ℎ, 0],
which can be interpreted as that the insurer owns wealth 𝑋0 at time −ℎ and does not carry out any business
operation within [−ℎ, 0]. The integrated delay wealth initial value can be calculated by 𝐿(0) = 𝑋0

𝐴 (1− 𝑒−𝐴ℎ).
To take historical operating performance into account, the insurer will focus on both terminal wealth 𝑋𝜋(𝑇 )

and historical average operating performance 𝐿̄𝜋(𝑇 ), hence we formulate the optimal investment and reinsurance
problem with delay under the mean-variance criterion as follows:

sup
𝜋∈Π

{︁
𝐸𝑡,𝑥,𝑙

[︀
𝑋𝜋(𝑇 ) + 𝛽𝐿̄𝜋(𝑇 )

]︀
− 𝜔

2
Var𝑡,𝑥,𝑙

[︀
𝑋𝜋(𝑇 ) + 𝛽𝐿̄𝜋(𝑇 )

]︀}︁
, (2.4)

where 𝜔 is the risk averse coefficient. The delay parameter 𝛽(∈ [0, 1]) is a constant. 𝐸𝑡,𝑥,𝑙[·] and Var𝑡,𝑥,𝑙[·]
represent conditional expectation and conditional variance based on 𝑋𝜋(𝑡) = 𝑥 and 𝐿𝜋(𝑡) = 𝑙, respectively. 𝛽(∈
[0, 1]) is the weight of 𝐿̄𝜋(𝑡), indicating the degree of terminal wealth affected by historical average performance.
If we write 𝛽 = 𝛽∫︀ 0

−ℎ
𝑒𝐴𝑢d𝑢

, then 𝑋𝜋(𝑡) + 𝛽𝐿̄𝜋(𝑡) = 𝑋𝜋(𝑡) + 𝛽𝐿𝜋(𝑡), which is called the terminal wealth in the

sequel. Therefore, we rewrite (2.4) as

sup
𝜋∈Π

{︁
𝐸𝑡,𝑥,𝑙[𝑋𝜋(𝑇 ) + 𝛽𝐿𝜋(𝑇 )]− 𝜔

2
Var𝑡,𝑥,𝑙[𝑋𝜋(𝑇 ) + 𝛽𝐿𝜋(𝑇 )]

}︁
. (2.5)

In addition, according to Chang et al. [11], the optimal control problem with delay is generally an infinite-
dimensional problem. To obtain an explicit solution, some additional conditions will be attached. We assume
that the value function 𝑉 (·) is only related to 𝑥 and 𝑙. However 𝐿𝜋(𝑡) is related to 𝑀𝜋(𝑡). In order to make
𝑉 (·) only depend on (𝑡, 𝑥, 𝑙) and then the problem can obtain the explicit expression. Hence we suppose that
the following conditions hold:

𝛾2 = 𝛽𝑒−𝐴ℎ, 𝛾1 −𝐴𝛽 = (𝑟 − 𝛾1 − 𝛾2 + 𝛽)𝛽. (2.6)

Remark 2.1. Note that the two assumptions in (2.6) will be applied over and over below, which is one of the
sufficient conditions for optimality when using the maximum principle to solve the control problem with delay
(see [20, 22, 23]). In fact, it is also one of the sufficient conditions for finding explicit solutions to stochastic
control problems with delay by using the dynamic programming principle. Equation (2.6) can be explained as
follows: Firstly, the insurer calculates the integrated delayed wealth 𝐿(𝑡) and the pointwise delayed wealth 𝑀(𝑡)
at the time 𝑡 ∈ [0, 𝑇 ] by selecting the average parameter 𝐴 and the delay parameter ℎ. Then, the insurer selects
the parameter 𝛽 to determine the weight between 𝑋(𝑡) and 𝐿(𝑡) in the mean-variance performance measure.

Finally, the insurer sets parameters 𝛾2 = 𝛽𝑒−𝐴ℎ and 𝛾1 =
𝛽
∫︀ 0
−ℎ

𝑒𝐴𝑢d𝑢

1+𝛽
∫︀ 0
−ℎ

𝑒𝐴𝑢d𝑢
(𝑟 − 𝛾2 + 𝛽 + 𝐴) according to (2.6) to

determine the weight proportion of past performance 𝑋(𝑡) − 𝐿̄(𝑡) and 𝑋(𝑡) −𝑀(𝑡) at the time 𝑡 ∈ [0, 𝑇 ] and
adjusts the inflow/outflow of capital accordingly.

The framework corresponding with the problem (2.5) is the traditional investment and reinsurance model, in
which the insurer is supposed to be ambiguity-neutral, that is, he/she is assumed to be able to accurately find
the probability measure P. However, in reality, the accurate probability measure P is difficult to find, so most of
the insurers are ambiguity-averse, and hope to ensure that the worst-case return can achieve the expected goal.
Based on this consideration, we take the uncertainty of probability measure into mean-variance optimization
problem (2.5), and model (2.3) under probability measure P is regarded as the reference model. Since the
reference model is skeptical, the insurer will consider some alternative models. Similar to [1], the alternative
models are defined as a class of probability measures equivalent to the probability measure P as follows:

𝒬 := {Q|Q ∼ P}.
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Definition 2.2 (Admissible strategy). For any fixed 𝑡 ∈ [0, 𝑇 ], an investment-reinsurance strategy 𝜋(𝑡) =
{(𝑝1(𝑡), 𝑞1(𝑡), 𝑞2(𝑡))} is said to admissible if it satisfies:

(i) 𝜋(𝑡) is {ℱ𝑡}𝑡∈[0,𝑇 ]-progressively measurable;

(ii) 𝑞1(𝑡) ≥ 0, 𝑞2(𝑡) ≥ 0 and 𝐸Q*
𝑡,𝑥,𝑙

[︁∫︀ 𝑇

0
((𝑝1(𝑡))2 + (𝑞1(𝑡))2 + (𝑞2(𝑡))2)d𝑡

]︁
< +∞, where Q* is the chosen proba-

bility measure to depict the worst case;
(iii) ∀(𝑡, 𝑥, 𝑙) ∈ [0, 𝑇 ]× R× R, the SDDE (2.3) has a pathwise unique solution.

Let Π be the set of all admissible strategies.
According to Girsanov’s theorem, there exists a progressively measurable process 𝜙(𝑡) = (𝜙1(𝑡), 𝜙2(𝑡), 𝜙3(𝑡))

for 𝑡 ∈ [0, 𝑇 ] such that dQ
dP |ℱ𝑇

= Λ𝜙(𝑇 ), where

Λ𝜙(𝑡) = exp
{︂
−
∫︁ 𝑡

0

𝜙1(𝑢)d𝑊0(𝑢)− 1
2

∫︁ 𝑡

0

𝜙2
1(𝑢)d𝑢−

∫︁ 𝑡

0

𝜙2(𝑢)d𝑊 (𝑢)− 1
2

∫︁ 𝑡

0

𝜙2
2(𝑢)d𝑢

+
∫︁ 𝑡

0

∫︁ ∞

−1

ln𝜙3(𝑢)𝑁0(d𝑢,d𝑦0) +
∫︁ 𝑡

0

∫︁ ∞

−1

(1− 𝜙3(𝑢))𝜈(d𝑢,d𝑦0)
}︂
. (2.7)

By the definition of 𝜙(𝑡), it is easy to show that Λ𝜙(𝑡) is a P−martingale under the Novikov’s condition, and
then 𝐸[Λ𝜙(𝑡)] = 1. By Girsanov’s theorem, under the alternative probability measure Q, we have also two
standard Brownian motion {𝑊Q

0 (𝑡)}𝑡∈[0,𝑇 ] and {𝑊Q(𝑡)}𝑡∈[0,𝑇 ], which are given by

d𝑊Q
0 (𝑡) = d𝑊0(𝑡) + 𝜙1(𝑡)d𝑡, d𝑊Q(𝑡) = d𝑊 (𝑡) + 𝜙2(𝑡)d𝑡.

And the Poisson process {𝑁0(𝑡)}𝑡∈[0,𝑇 ] with intensity 𝜆0 turn into the Poisson process
{︁
𝑁Q

0 (𝑡)
}︁

𝑡∈[0,𝑇 ]
with

intensity 𝜆0𝜙3(𝑡). We know also that
{︁
𝑊Q

0 (𝑡)
}︁

𝑡∈[0,𝑇 ]
and

{︀
𝑊Q(𝑡)

}︀
𝑡∈[0,𝑇 ]

are also mutually independent. In

addition, parallel to Branger and Larsen [8], for tractability and ease of interpretation, we suppose that the
distribution of jump 𝑌0𝑖 is known and is restricted to be identical under P and Q. Based on the discussion above,
the dynamics of the wealth process (2.3) under alternative probability measure Q become

d𝑋𝜋(𝑡) =
[︂
(𝑟 − 𝛾1 − 𝛾2)𝑋𝜋(𝑡) + 𝛾1𝐿

𝜋(𝑡) + 𝛾2𝑀
𝜋(𝑡) + (𝛼− 𝑟)𝑝1(𝑡)

+ (𝜃1 − 𝜂1 + 𝑞1(𝑡)𝜂1)𝑎1 + (𝜃2 − 𝜂2 + 𝑞2(𝑡)𝜂2)𝑎2 − 𝜎𝑝1(𝑡)𝜙2(𝑡)

−
√︁
𝑏21𝑞

2
1(𝑡) + 𝑏22𝑞

2
2(𝑡) + 2𝑞1(𝑡)𝑞2(𝑡)𝜆𝜇11𝜇21𝜙1(𝑡)

]︂
d𝑡

+
√︁
𝑏21𝑞

2
1(𝑡) + 𝑏22𝑞

2
2(𝑡) + 2𝑞1(𝑡)𝑞2(𝑡)𝜆𝜇11𝜇21d𝑊Q

0 (𝑡)

+ 𝑝1(𝑡)𝜎d𝑊Q(𝑡) +
∫︁ ∞

−1

𝑝1(𝑡)𝑦0𝑁
Q
0 (d𝑡, d𝑦0). (2.8)

In what follows, we consider the robust mean-variance optimization problem. As Maenhout [18], Yi et al.
[25] and Zeng et al. [28] mentioned, we formulate the following robust optimization problem to modify the
mean-variance problem (2.5)

sup
𝜋∈Π

𝐽(𝑡, 𝑥, 𝑙;𝜋) = sup
𝜋Π

inf
Q∈𝒬

𝐽(𝑡, 𝑥, 𝑙;𝜋,Q). (2.9)

Here

𝐽(𝑡, 𝑥, 𝑙;𝜋,Q) = 𝐸Q
𝑡,𝑥,𝑙[𝑋

𝜋(𝑇 ) + 𝛽𝐿𝜋(𝑇 )]− 𝜔

2
VarQ

𝑡,𝑥,𝑙[𝑋
𝜋(𝑇 ) + 𝛽𝐿𝜋(𝑇 )]
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+ 𝐸Q
𝑡,𝑥,𝑙

[︃∫︁ 𝑇

𝑡

(︂
𝜙2

1(𝑢)
2𝜑1(𝑢)

+
𝜙2

2(𝑢)
2𝜑2(𝑢)

+
𝜆0(𝜙3(𝑢) ln𝜙3(𝑢)− 𝜙3(𝑢) + 1)

𝜑3(𝑢)

)︂
d𝑢

]︃
,

where 𝜑1(𝑡), 𝜑2(𝑡) and 𝜑3(𝑡) are all nonnegative and are used to capture the AAI’s ambiguity aversions. And
the larger 𝜑1(𝑡), 𝜑2(𝑡) and 𝜑3(𝑡), the more ambiguity-averse the AAI. Furthermore, the deviations from the
reference measure P are penalized by the first three terms in the above expression. Similar to Branger and
Larsen [8], the deviations depend on the relative entropy arising from the jump-diffusion risk, in which the
increase in relative entropy from 𝑡 to 𝑡+ d𝑡 is given by[︂

1
2
(︀
𝜙2

1(𝑡) + 𝜙2
2(𝑡)

)︀
+ 𝜆0(𝜙3(𝑡) ln𝜙3(𝑡)− 𝜙3(𝑡) + 1)

]︂
d𝑡. (2.10)

The detailed derivation of the above formula is shown in Appendix A. Since there exists a non-linear func-
tion of the expectation of terminal wealth in the objective functional (2.9), the optimization problem is time-
inconsistent. Most literature solves the mean-variance problem by setting a precommitment, in which optimal
strategies obtained are time-inconsistent. In fact, time-consistency cannot be neglected for a rational decision-
maker who aims to seek an equilibrium strategy that is optimal at a time and still be optimal as time goes
forward into the future. Hence, we shall define the following time-consistent equilibrium strategy according to
Björk and Murgoci [6] and Björk et al. [7].

Definition 2.3. Consider an admissible strategy 𝜋*, which can be informally viewed as a candidate equilibrium
strategy. And choose arbitrarily a fixed 𝜋 ∈ Π, a real number 𝜀(>0) and a given initial point (𝑡, 𝑥, 𝑙) ∈ [0, 𝑇 ]×
R× R, define the strategy 𝜋𝜀 as follows:

𝜋𝜀 =

{︃
𝜋̂(𝑢, 𝑥, 𝑙), (𝑢, 𝑥, 𝑙) ∈ [𝑡, 𝑡+ 𝜀)× R× R,
𝜋*(𝑢, 𝑥, 𝑙), (𝑢, 𝑥, 𝑙) ∈ [𝑡+ 𝜀, 𝑇 ]× R× R.

If

lim
𝜀↓0

inf
𝐽(𝑡, 𝑥, 𝑙;𝜋*)− 𝐽(𝑡, 𝑥, 𝑙;𝜋𝜀)

𝜀
≥ 0,

we call that 𝜋* is an equilibrium strategy and the equilibrium value function 𝑊 (𝑡, 𝑥, 𝑙) is given by

𝑊 (𝑡, 𝑥, 𝑙) = 𝐽(𝑡, 𝑥, 𝑙;𝜋*). (2.11)

According to Definition 2.3, the equilibrium strategy above is time-consistent. We aim to seek an equilibrium
strategy 𝜋* and the corresponding equilibrium value function. To give the extended HJB equation and Verifi-
cation Theorem conveniently, we define a variational operator. Let 𝒞1,2,1([0, 𝑇 ]×R×R) denotes a space of any
function 𝜓(𝑡, 𝑥, 𝑙) which 𝜓(𝑡, 𝑥, 𝑙) itself and its derivatives 𝜓𝑡(𝑡, 𝑥, 𝑙), 𝜓𝑥(, 𝑡, 𝑥, 𝑙), 𝜓𝑥𝑥(𝑡, 𝑥, 𝑙), and 𝜓𝑙(𝑡, 𝑥, 𝑙) are
continuous on [0, 𝑇 ]×R×R×R×R. For any function 𝜓(𝑡, 𝑥, 𝑙) ∈ 𝒞1,2,1([0, 𝑇 ]×R×R) and a given 𝜋 ∈ Π, the
variational operator corresponding to the alternative measure Q is defined as follows:

ℒ𝜋𝜓(𝑡, 𝑥, 𝑙) = 𝜓𝑡 +
[︂
(𝑟 − 𝛾1 − 𝛾2)𝑥+ 𝛾1𝑙 + 𝛾2𝑚+ (𝛼− 𝑟)𝑝1 + (𝜃1 − 𝜂1 + 𝑞1𝜂1)𝑎1

+ (𝜃2 − 𝜂2 + 𝑞2𝜂2)𝑎2 −
√︁
𝑏21𝑞

2
1(𝑡) + 𝑏22𝑞

2
2(𝑡) + 2𝑞1𝑞2𝜆𝜇11𝜇21𝜙1 − 𝜎𝑝1𝜙2

]︂
𝜓𝑥

+
(︀
𝑥−𝐴𝑙 − 𝑒−𝐴ℎ𝑚

)︀
𝜓𝑙 +

1
2
(︀
𝑏21𝑞

2
1 + 𝑏22𝑞

2
2 + 2𝑞1𝑞2𝜆𝜇11𝜇21 + 𝑝2

1𝜎
2
)︀
𝜓𝑥𝑥

+ 𝜆0𝜙3𝐸
Q[𝜓(𝑡, 𝑥+ 𝑝1𝑦0, 𝑙)− 𝜓(𝑡, 𝑥, 𝑙)]. (2.12)

Before finding the robust equilibrium strategy, the following theorem gives the verifications for the extended
HJB equation corresponding to the problem (2.9).
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Theorem 2.4 (Verification theorem). For the robust mean-variance problem (2.9), we assume that there exist
two real-valued functions 𝑉 (𝑡, 𝑥, 𝑙), 𝑔(𝑡, 𝑥, 𝑙) ∈ 𝒞1,2,1([0, 𝑇 ]× R× R) satisfying the following conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sup𝜋∈Π inf
Q∈𝒬

{︂
ℒ𝜋,𝜙𝑉 (𝑡, 𝑥, 𝑙)− 𝜔

2ℒ
𝜋,𝜙𝑔2(𝑡, 𝑥, 𝑙) + 𝜔𝑔(𝑡, 𝑥, 𝑙)ℒ𝜋,𝜙𝑔(𝑡, 𝑥, 𝑙) + 𝜙2

1(𝑡)
2𝜑1(𝑡)

+ 𝜙2
2(𝑡)

2𝜑2(𝑡)
+ 𝜆0(𝜙3(𝑡) ln 𝜙3(𝑡)−𝜙3(𝑡)+1)

𝜑3(𝑡)

}︂
= 0,

ℒ𝜋*,𝜙*𝑔(𝑡, 𝑥, 𝑙) = 0,

(2.13)

(𝜋*, 𝜙*) := arg sup
𝜋∈Π

inf
Q∈𝒬

{︂
ℒ𝜋,𝜙𝑉 (𝑡, 𝑥, 𝑙)− 𝜔

2
ℒ𝜋,𝜙𝑔2(𝑡, 𝑥, 𝑙) + 𝜔𝑔(𝑡, 𝑥, 𝑙)ℒ𝜋,𝜙𝑔(𝑡, 𝑥, 𝑙)

+
𝜙2

1(𝑡)
2𝜑1(𝑡)

+
𝜙2

2(𝑡)
2𝜑2(𝑡)

+
𝜆0(𝜙3(𝑡) ln𝜙3(𝑡)− 𝜙3(𝑡) + 1)

𝜑3(𝑡)

}︂
,

𝑉 (𝑇, 𝑥, 𝑙) = 𝑥+ 𝛽𝑙, 𝑔(𝑇, 𝑥, 𝑙) = 𝑥+ 𝛽𝑙,

then 𝐸Q
𝑡,𝑥,𝑙

[︀
𝑋𝜋*(𝑇 ) + 𝛽𝐿𝜋*(𝑇 )

]︀
= 𝑔(𝑡, 𝑥, 𝑙), 𝑊 (𝑡, 𝑥, 𝑙) = 𝑉 (𝑡, 𝑥, 𝑙) and 𝜋* is the robust equilibrium investment-

reinsurance strategy.

The proof for the verification theorem is similar to the Theorem 5.2 in Björk et al. [7], hence here is omitted.

3. The solution to the optimization problem

In this section, we derive the explicit solution to the robust equilibrium strategy and the corresponding
robust equilibrium value function for investment-reinsurance problem (2.9). As Branger and Larsen [8] and
Chen and Yang [12] mentioned, to make the problem (2.9) tractable and ensure that the penalty in problem
(2.9) is reasonable, some restrictions must be imposed on the ambiguity-aversion parameter. We suppose that
𝜑1(𝑡) = 𝜉1, 𝜑2(𝑡) = 𝜉2 and 𝜑3(𝑡) = 𝜉3, where 𝜉1, 𝜉2 and 𝜉3 are all nonnegative. Then according to the variational
operator (2.12), (2.13) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup𝜋∈Π inf
Q∈𝒬

{︂
𝑉𝑡 + [(𝑟 − 𝛾1 − 𝛾2)𝑥+ 𝛾1𝑙 + 𝛾2𝑚+ (𝛼− 𝑟)𝑝1 + (𝜃1 − 𝜂1 + 𝑞1𝜂1)𝑎1

+ (𝜃2 − 𝜂2 + 𝑞2𝜂2)𝑎2 −
√︀
𝑏21𝑞

2
1 + 𝑏22𝑞

2
2 + 2𝑞1𝑞2𝜆𝜇11𝜇21𝜙1 − 𝜎𝑝1𝜙2]𝑉𝑥

+
(︀
𝑥−𝐴𝑙 − 𝑒−𝐴ℎ𝑚

)︀
𝑉𝑙 + 1

2

(︀
𝑏21𝑞

2
1 + 𝑏22𝑞

2
2 + 2𝑞1𝑞2𝜆𝜇11𝜇21 + 𝑝2

1𝜎
2
)︀
(𝑉𝑥𝑥 − 𝜔𝑔2

𝑥)

+𝜆0𝜙3

[︂
𝐸Q[𝑉 (𝑡, 𝑥+ 𝑝1𝑦0, 𝑙)− 𝑉 (𝑡, 𝑥, 𝑙)]− 𝜔

2𝐸
Q[𝑔2(𝑡, 𝑥+ 𝑝1𝑦0, 𝑙)− 𝑔2(𝑡, 𝑥, 𝑙)]

+𝜔𝑔𝐸Q[𝑔(𝑡, 𝑥+ 𝑝1𝑦0, 𝑙)− 𝑔(𝑡, 𝑥, 𝑙)]
]︂

+ 𝜙2
1

2𝜉1
+ 𝜙2

2
2𝜉2

+ 𝜆0(𝜙3 ln 𝜙3−𝜙3+1)
𝜉3

}︂
= 0,

𝑔𝑡 +
[︁
(𝑟 − 𝛾1 − 𝛾2)𝑥+ 𝛾1𝑙 + 𝛾2𝑚+ (𝛼− 𝑟)𝑝*1 + (𝜃1 − 𝜂1 + 𝑞*1𝜂1)𝑎1

+ (𝜃2 − 𝜂2 + 𝑞*2𝜂2)𝑎2 −
√︀
𝑏21(𝑞*1)2 + 𝑏22(𝑞*2)2 + 2𝑞*1𝑞

*
2𝜆𝜇11𝜇21𝜙

*
1 − 𝜎𝑝*1𝜙

*
2

]︁
𝑔𝑥

+
(︀
𝑥−𝐴𝑙 − 𝑒−𝐴ℎ𝑚

)︀
𝑔𝑙 + 1

2

(︀
𝑏21(𝑞*1)2 + 𝑏22(𝑞*2)2 + 2𝑞*1𝑞

*
2𝜆𝜇11𝜇21 + (𝑝*1)2𝜎2

)︀
𝑔𝑥𝑥

+𝜆0𝜙
*
3𝐸

Q[𝑔(𝑡, 𝑥+ 𝑝*1𝑦0, 𝑙)− 𝑔(𝑡, 𝑥, 𝑙)] = 0,

(3.1)

where the terminal value conditions are given by 𝑉 (𝑇, 𝑥, 𝑙) = 𝑥+ 𝛽𝑙 and 𝑔(𝑇, 𝑥, 𝑙) = 𝑥+ 𝛽𝑙.
To guarantee the insurance retention 𝑞1(·) and 𝑞2(·) are non-negative, we give the following lemma.

Lemma 3.1. The parameters 𝜆, 𝜆1, 𝜆2, 𝜇11, 𝜇21, 𝜇12 and 𝜇22 given in Section 2 above satisfy the following
inequalities:

𝑏21𝑏
2
2 > 𝜆2𝜇2

11𝜇
2
21,

𝜆𝜇11𝜇21

𝑏22

𝑎2

𝑎1
< 1 <

𝑏21
𝜆𝜇11𝜇21

𝑎2

𝑎1
· (3.2)
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Proof. See Appendix B. �

Considering 𝑞1(·) and 𝑞2(·) are non-negative, according to Lemma 3.1, the following three cases need to be
discussed.

Case 1. For 𝜂1 ≤ 𝜆𝜇11𝜇21
𝑏22

𝑎2
𝑎1
𝜂2, we have 𝑛1 ≤ 0 and 𝑛2 > 0;

Case 2. For 𝜆𝜇11𝜇21
𝑏22

𝑎2
𝑎1
𝜂2 < 𝜂1 <

𝑏21
𝜆𝜇11𝜇21

𝑎2
𝑎1
𝜂2, we have 𝑛1 > 0 and 𝑛2 > 0;

Case 3. For 𝜂1 ≥ 𝑏21
𝜆𝜇11𝜇21

𝑎2
𝑎1
𝜂2, we have 𝑛1 > 0 and 𝑛2 ≤ 0.

Here 𝑛1 = 𝑎1𝜂1𝑏22−𝑎2𝜂2𝜆𝜇11𝜇21

𝑏21𝑏22−𝜆2𝜇2
11𝜇2

21
and 𝑛2 = 𝑎2𝜂2𝑏21−𝑎1𝜂1𝜆𝜇11𝜇21

𝑏21𝑏22−𝜆2𝜇2
11𝜇2

21
. We only detail analyze Case 2 in the following

theorem. The other two cases can be similarly deduced.
Next, we give the explicit expression to the robust equilibrium strategy and the corresponding robust equi-

librium value function by the following theorem.

Theorem 3.2. For the mean-variance problem (2.9) under Case 2, the robust equilibrium investment and
reinsurance strategy are given by

𝑝*1(𝑡) =
𝑒−(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)

𝜔 + 𝜉2

[︂
𝛼− 𝑟

𝜎2
−
𝜆0

(︀
𝜔𝜇02𝑝

*
1(𝑡)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡) − 𝜇01

)︀
𝜎2

× 𝑒𝜉3( 𝜔
2 𝜇02(𝑝

*
1(𝑡))2𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)−𝜇01𝑝*1(𝑡)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡))

]︂
, (3.3)

𝑞*1(𝑡) =
𝑛1

𝜔 + 𝜉1
𝑒−(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡), (3.4)

𝑞*2(𝑡) =
𝑛2

𝜔 + 𝜉1
𝑒−(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡), (3.5)

and the corresponding robust equilibrium value function is

𝑉 (𝑡, 𝑥, 𝑙) = 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)(𝑥+ 𝛽𝑙)− [(𝜃1 − 𝜂1)𝑎1 + (𝜃2 − 𝜂2)𝑎2]
𝑟 − 𝛾1 − 𝛾2 + 𝛽

(︁
1− 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)

)︁
+

1
𝜔 + 𝜉1

(︂
𝑎1𝑛1𝜂1 + 𝑎2𝑛2𝜂2 −

1
2
𝑏21𝑛

2
1 −

1
2
𝑏22𝑛

2
2 − 𝜆𝜇11𝜇21𝑛1𝑛2

)︂
(𝑇 − 𝑡)

+
∫︁ 𝑇

𝑡

[︂
(𝛼− 𝑟)𝑝*1(𝑠)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠)

− (𝑝*1(𝑠))2𝜎2(𝜔 + 𝜉2)𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠)

2

+
𝜆0

𝜉3

(︁
1− 𝑒𝜉3( 𝜔

2 𝜇02(𝑝
*
1(𝑠))2𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠)−𝜇01𝑝*1(𝑠)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠))

)︁]︂
d𝑠. (3.6)

Besides, the worst-case measure is as follows:

𝜙*1(𝑡) = 𝜉1

√︁
𝑏21(𝑞*1(𝑡))2 + 𝑏22(𝑞*2(𝑡))2 + 2𝑞*1(𝑡)𝑞*2(𝑡)𝜆𝜇11𝜇21𝑒

(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡), (3.7)

𝜙*2(𝑡) = 𝜉2𝜎𝑝
*
1(𝑡)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡), (3.8)

𝜙*3(𝑡) = 𝑒𝜉3( 𝜔
2 𝜇02(𝑝

*
1(𝑡))2𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)−𝜇01𝑝*1(𝑡)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)). (3.9)

Proof. See Appendix C. �

Proposition 3.3. Equation (3.3) has a unique positive root, that is, there exists a unique 𝑝*1(𝑡) ∈ [0,+∞) that
satisfies equation (3.3).
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Proof. See Appendix D. �

In what follows, we present some special cases of our model. If the insurer is ambiguity-neutral, then the
ambiguity-aversion coefficients 𝜉1 = 𝜉2 = 𝜉3 = 0, and then 𝜙1(𝑡) = 𝜙2(𝑡) = 0 and 𝜙3(𝑡) = 1. Further, the
wealth process and the optimization problem for the ambiguity-neutral insurer are given by (2.3) and (2.5),
respectively. And the extended HJB equation corresponding to problem (2.5) is derived by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup𝜋∈Π

{︂
𝑉𝑡 + [(𝑟 − 𝛾1 − 𝛾2)𝑥+ 𝛾1𝑙 + 𝛾2𝑚+ (𝛼− 𝑟)𝑝1 + (𝜃1 − 𝜂1 + 𝑞1𝜂1)𝑎1

+ (𝜃2 − 𝜂2 + 𝑞2𝜂2)𝑎2]𝑉𝑥 +
(︀
𝑥−𝐴𝑙 − 𝑒−𝐴ℎ𝑚

)︀
𝑉𝑙 + 1

2 (𝑏21𝑞
2
1 + 𝑏22𝑞

2
2 + 2𝑞1𝑞2𝜆𝜇11𝜇21

+ 𝑝2
1𝜎

2)(𝑉𝑥𝑥 − 𝜔𝑔2
𝑥) + 𝜆0

[︂
𝐸[𝑉 (𝑡, 𝑥+ 𝑝1𝑦0, 𝑙)− 𝑉 (𝑡, 𝑥, 𝑙)]

− 𝜔
2𝐸[𝑔2(𝑡, 𝑥+ 𝑝1𝑦0, 𝑙)− 𝑔2(𝑡, 𝑥, 𝑙)] + 𝜔𝑔𝐸[𝑔(𝑡, 𝑥+ 𝑝1𝑦0, 𝑙)− 𝑔(𝑡, 𝑥, 𝑙)]

]︂}︂
= 0,

𝑔𝑡 + [(𝑟 − 𝛾1 − 𝛾2)𝑥+ 𝛾1𝑙 + 𝛾2𝑚+ (𝛼− 𝑟)𝑝*1 + (𝜃1 − 𝜂1 + 𝑞*1𝜂1)𝑎1 + (𝜃2 − 𝜂2
+ 𝑞*2𝜂2)𝑎2]𝑔𝑥 +

(︀
𝑥−𝐴𝑙 − 𝑒−𝐴ℎ𝑚

)︀
𝑔𝑙 + 1

2 (𝑏21(𝑞*1)2 + 𝑏22(𝑞*2)2 + 2𝑞*1𝑞
*
2𝜆𝜇11𝜇21

+ (𝑝*1)2𝜎2)𝑔𝑥𝑥 + 𝜆0𝐸[𝑔(𝑡, 𝑥+ 𝑝*1𝑦0, 𝑙)− 𝑔(𝑡, 𝑥, 𝑙)] = 0.

Similar to the derivation of theorem 3.2, we present the following corollary.

Corollary 3.4. Under Case 2, for the ANI in our model, the equilibrium investment and reinsurance strategy
are given by:

𝑝*1(𝑡) =
𝛼− 𝑟 + 𝜆0𝜇01

𝜔(𝜎2 + 𝜆0𝜇02)
𝑒−(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡), (3.10)

𝑞*1(𝑡) =
𝑛1

𝜔
𝑒−(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡), (3.11)

𝑞*2(𝑡) =
𝑛2

𝜔
𝑒−(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡), (3.12)

and the corresponding equilibrium value function is

𝑉 (𝑡, 𝑥, 𝑙) = 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)(𝑥+ 𝛽𝑙)− [(𝜃1 − 𝜂1)𝑎1 + (𝜃2 − 𝜂2)𝑎2]
𝑟 − 𝛾1 − 𝛾2 + 𝛽

×
(︁

1− 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)
)︁

+
(𝛼− 𝑟 + 𝜆0𝜇01)2

2𝜔(𝜎2 + 𝜆0𝜇02)
(𝑇 − 𝑡)

+
1
𝜔

(︂
𝑎1𝑛1𝜂1 + 𝑎2𝑛2𝜂2 −

𝑏21𝑛
2
1

2
− 𝑏22𝑛

2
2

2
− 𝜆𝜇11𝜇21𝑛1𝑛2

)︂
(𝑇 − 𝑡). (3.13)

Next, the utility loss is investigated under the case of ignoring model ambiguity. The optimal strategy for ANI
is the suboptimal strategy of AAI, hence the strategy given in Corollary 3.4 is called the suboptimal strategy.
Let 𝜋̂* = (𝑝*1, 𝑞

*
1 , 𝑞

*
2), and assume that the AAI takes the suboptimal strategy 𝜋̂* given in Corollary 3.4, then

the corresponding value function is

𝑉sub(𝑡, 𝑥, 𝑙) = inf
Q∈𝒬

𝐽(𝑡, 𝑥, 𝑙; 𝜋̂*). (3.14)

The following proposition presents directly the value function under the strategy 𝜋̂*, which the calculation
process is similar to Theorem 3.2.

Proposition 3.5. For problem (3.14) under Case 2, the value function is given by

𝑉sub(𝑡, 𝑥, 𝑙) = 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)(𝑥+ 𝛽𝑙)− [(𝜃1 − 𝜂1)𝑎1 + (𝜃2 − 𝜂2)𝑎2]
𝑟 − 𝛾1 − 𝛾2 + 𝛽
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×
(︁

1− 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)
)︁

+
(𝑎1𝜂1𝑛1 + 𝑎2𝜂2𝑛2)(𝑇 − 𝑡)

𝜔

− 𝜔 + 𝜉1
2𝜔2

(𝑏21𝑛
2
1 + 𝑏22𝑛

2
2 + 2𝜆𝜇11𝜇21𝑛1𝑛2)(𝑇 − 𝑡)

+
(𝛼− 𝑟)(𝛼− 𝑟 + 𝜆0𝜇01)(𝑇 − 𝑡)

𝜔(𝜎2 + 𝜆0𝜇02)
− 𝜎2(𝛼− 𝑟 + 𝜆0𝜇01)2(𝜉2 + 𝜔)(𝑇 − 𝑡)

2𝜔2(𝜎2 + 𝜆0𝜇02)2

+
𝜆0

𝜉3

(︃
1− 𝑒

𝜉3

(︂
𝜇02(𝛼−𝑟+𝜆0𝜇01)2

2𝜔(𝜎2+𝜆0𝜇02)2
−𝜇01(𝛼−𝑟+𝜆0𝜇01)

𝜔(𝜎2+𝜆0𝜇02)

)︂)︃
(𝑇 − 𝑡). (3.15)

Furthermore, we define the following utility loss function:

UL := 1− 𝑉sub(𝑡, 𝑥, 𝑙)
𝑉 (𝑡, 𝑥, 𝑙)

· (3.16)

Remark 3.6. From Corollary 3.4, if we do not consider the price jump of risky assets, then the investment
strategy becomes 𝑝*1(𝑡) = 𝛼−𝑟

𝜔𝜎2 , the reinsurance strategy is not affected, and the corresponding value function
becomes

𝑉0(𝑡, 𝑥, 𝑙) = 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)(𝑥+ 𝛽𝑙)− [(𝜃1 − 𝜂1)𝑎1 + (𝜃2 − 𝜂2)𝑎2]
𝑟 − 𝛾1 − 𝛾2 + 𝛽

×
(︁

1− 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)
)︁

+
(𝛼− 𝑟)2

2𝜔𝜎2
(𝑇 − 𝑡)

+
1
𝜔

(︁
𝑎1𝑛1𝜂1 + 𝑎2𝑛2𝜂2 −

𝑏21𝑛
2
1

2
− 𝑏22𝑛

2
2

2
− 𝜆𝜇11𝜇21𝑛1𝑛2

)︁
(𝑇 − 𝑡).

According to (2.6) and the discussion in Remark 2.1, 𝐴 = ℎ = 𝛽 = 0 when the delay is without consideration.
Hence by Theorem 3.2, we give the following corollary.

Corollary 3.7. Under Case 2 and no-delay case, the robust equilibrium investment and reinsurance strategy
are given by

𝑝*1(𝑡) =
𝑒−𝑟(𝑇−𝑡)

𝜔 + 𝜉2

[︃
𝛼− 𝑟

𝜎2
−
𝜆0

(︀
𝜔𝜇02𝑝

*
1𝑒

𝑟(𝑇−𝑡) − 𝜇01

)︀
𝜎2

× 𝑒𝜉3( 𝜔
2 𝜇02(𝑝

*
1)2𝑒2𝑟(𝑇−𝑡)−𝜇01𝑝*1𝑒𝑟(𝑇−𝑡))

]︃
, (3.17)

𝑞*1(𝑡) =
𝑛1

𝜔 + 𝜉1
𝑒−𝑟(𝑇−𝑡), (3.18)

𝑞*2(𝑡) =
𝑛2

𝜔 + 𝜉1
𝑒−𝑟(𝑇−𝑡), (3.19)

and the corresponding equilibrium value function is

𝑉 (𝑡, 𝑥, 𝑙) = 𝑒𝑟(𝑇−𝑡)(𝑥+ 𝛽𝑙)− [(𝜃1 − 𝜂1)𝑎1 + (𝜃2 − 𝜂2)𝑎2]
𝑟

(︁
1− 𝑒𝑟(𝑇−𝑡)

)︁
+

1
𝜔 + 𝜉1

(︂
𝑎1𝑛1𝜂1 + 𝑎2𝑛2𝜂2 −

1
2
𝑏21𝑛

2
1 −

1
2
𝑏22𝑛

2
2 − 𝜆𝜇11𝜇21𝑛1𝑛2

)︂
(𝑇 − 𝑡)

+
∫︁ 𝑇

𝑡

[︂
(𝛼− 𝑟)𝑝*1(𝑠)𝑒𝑟(𝑇−𝑠) − (𝑝*1(𝑠))2𝜎2(𝜔 + 𝜉2)𝑒2𝑟(𝑇−𝑠)

2

+
𝜆0

𝜉3

(︁
1− 𝑒𝜉3( 𝜔

2 𝜇02(𝑝
*
1(𝑠))2𝑒2𝑟(𝑇−𝑠)−𝜇01𝑝*1(𝑠)𝑒𝑟(𝑇−𝑠))

)︁]︂
d𝑠. (3.20)
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Remark 3.8. Based on Corollary 3.7, we further ignore the dependence of insurance business, that is, 𝜆 = 0,
then the robust equilibrium investment and reinsurance strategy are given by

𝑝*01(𝑡) =
𝑒−𝑟(𝑇−𝑡)

𝜔 + 𝜉2

[︂
𝛼− 𝑟

𝜎2
−
𝜆0

(︀
𝜔𝜇02𝑝

*
1𝑒

𝑟(𝑇−𝑡) − 𝜇01

)︀
𝜎2

× 𝑒𝜉3( 𝜔
2 𝜇02(𝑝

*
1)2𝑒2𝑟(𝑇−𝑡)−𝜇01𝑝*1𝑒𝑟(𝑇−𝑡))

]︂
, (3.21)

𝑞*01(𝑡) =
𝜇11𝜂1

𝜇12(𝜔 + 𝜉1)
𝑒−𝑟(𝑇−𝑡), (3.22)

𝑞*02(𝑡) =
𝜇21𝜂2

𝜇22(𝜔 + 𝜉1)
𝑒−𝑟(𝑇−𝑡), (3.23)

and the corresponding equilibrium value function is

𝑉 (𝑡, 𝑥) = 𝑒𝑟(𝑇−𝑡)(𝑥+ 𝛽𝑙)− [(𝜃1 − 𝜂1)𝑎1 + (𝜃2 − 𝜂2)𝑎2]
𝑟

(︁
1− 𝑒𝑟(𝑇−𝑡)

)︁
+

1
2(𝜔 + 𝜉1)

(︂
𝜆1𝜇

2
11𝜂

2
1

𝜇12
+
𝜆2𝜇

2
21𝜂

2
2

𝜇22

)︂
(𝑇 − 𝑡)

+
∫︁ 𝑇

𝑡

[︂
(𝛼− 𝑟)𝑝*1(𝑠)𝑒𝑟(𝑇−𝑠) − (𝑝*1(𝑠))2𝜎2(𝜔 + 𝜉2)𝑒2𝑟(𝑇−𝑠)

2

+
𝜆0

𝜉3

(︁
1− 𝑒𝜉3( 𝜔

2 𝜇02(𝑝
*
1(𝑠))2𝑒2𝑟(𝑇−𝑠)−𝜇01𝑝*1(𝑠)𝑒𝑟(𝑇−𝑠))

)︁]︂
d𝑠. (3.24)

From the above discussion, we can find that 𝑝*01(𝑡), 𝑞*01(𝑡) and 𝑞*02(𝑡) are consistent with 𝜋*2(𝑡) and 𝑝*2(𝑡) in Zeng
et al. [28] when the insurance business are independent of each other. The difference is that the value function
𝑉 (𝑡, 𝑥) is larger than that 𝑉2(𝑡, 𝑥) given in Zeng et al. [28] due to the increase of insurance business lines in this
paper.

4. Sensitivity analysis

This section presents a numerical example to illustrate the effects of some model parameters on the robust
equilibrium investment and reinsurance strategy and utility losses by ignoring model uncertainty, in which we
give some economic explanations. According to the model settings in Section 2, unless otherwise stated, we
select the following parameters throughout this section: 𝜃1 = 𝜃2 = 0.2, 𝜂1 = 𝜂2 = 0.4, 𝜇11 = 𝜇21 = 0.2,
𝜇12 = 𝜇22 = 0.3, 𝜆 = 1, 𝜆1 = 2, 𝜆2 = 3, 𝛼 = 0.08, 𝑟 = 0.03, 𝜎 = 0.25, 𝜆0 = 1, 𝜇01 = 1, 𝜇02 = 2, 𝜉1 = 𝜉2 = 0.5,
𝜉3 = 0.7, 𝜔 = 0.3, 𝑥 = 1, 𝑡 = 0, 𝑇 = 3, 𝐴 = 0.1, 𝛽 = 0.1 and ℎ = 1.

Figure 1 depicts the effect of parameters 𝐴, ℎ and 𝛽 on the robust equilibrium investment and reinsurance
strategy. As shown in Figure 1a, the robust equilibrium investment strategy 𝑝*1(𝑡) invested in the risky asset
decreases with 𝐴. According to the definition of the average delayed wealth 𝐿̄(𝑡), we can find that the larger is
𝐴, the smaller is the proportion of earlier wealth taken up in the construction of average delayed wealth 𝐿̄(𝑡).
That is to say, the more the insurer pays attention to the wealth close to the current time, which is a kind of
short-sighted behavior. In practice, investors’ shortsightedness often increases the risk, and they may take risks
for short-term interests. Thus, when 𝐴 is larger, the insurer will reduce the amount invested in risky assets to
control the overall risk. In the same mechanism as the effect of 𝐴 on 𝑝*1(𝑡), from Figures 1b and 1c, we can also
see that retention ratio 𝑞*1(𝑡) and 𝑞*2(𝑡) also decrease with 𝐴. Figure 1d shows the impact of ℎ on the robust
equilibrium investment strategy. Obviously, we can see that the amount invested in risky assets increases with
the increase of ℎ. Intuitively, with an increase of ℎ, the horizontal range of the average becomes longer, and
the average delayed wealth is more stable. That is, with an increase of ℎ, the insurer’s ability to control risk
will increase, so the amount invested in risky assets will increase. Similarly, as depicted in Figures 1e and 1f,
retention 𝑞*1(𝑡) and 𝑞*2(𝑡) increase with ℎ. Figure 1g shows that with 𝛽 increases, the average delayed wealth
𝐿̄(𝑡) takes up a larger weight in the terminal wealth. So the averaging effect should definitely reduce the overall
risk of the insurer’s terminal wealth 𝑋(𝑡) + 𝛽𝐿̄(𝑡). That is, to achieve the same level of the expected terminal
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Figure 1. The effect of 𝐴, ℎ and 𝛽 on robust equilibrium strategy.

wealth, the insurer increases the amount invested in risky assets when 𝑝*1(𝑡) is large. In Figures 1h and 1i, just
as 𝛽 affects the robust equilibrium investment strategy, we can find that the larger 𝛽 is, the larger retention
𝑞*1(𝑡) and 𝑞*2(𝑡) are. From Figure 1, we can also find that the robust equilibrium investment and reinsurance
strategy under the case of without delay is minimal. Note that in Corollary 3.7 it is mentioned that the model
degenerates to the no-delay case only when 𝐴 = ℎ = 𝛽 = 0, not just when 𝐴 = 0. Thus, there is no contradiction
between the robust equilibrium investment and reinsurance strategy minimized on the no-delay case and the
robust equilibrium investment and reinsurance strategy decreasing with 𝐴.

Figure 2 demonstrates that the larger 𝜔 is, the smaller robust equilibrium investment and reinsurance strategy
are. This is consistent with the financial implications of the risk aversion coefficient 𝜔.
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Figure 2. The effect of 𝜔 on robust equilibrium strategy.

Figure 3. The effect of 𝛼, 𝜎 and 𝜆0 on robust equilibrium investment strategy.

Figure 3 shows the effects of 𝛼, 𝜎 and 𝜆0 on robust equilibrium investment strategy 𝑝*1(𝑡). From Figure 3a,
we can find that 𝑝*1(𝑡) is increasing with the parameter 𝛼. Since the value of 𝛼 is increasing, the expected
return rate of the risky asset is increasing, and thus the insurer would invest more money in the risky asset
to gain more revenue. Figure 3b demonstrates that 𝑝*1(𝑡) decreases with 𝜎. In fact, the bigger the value of 𝜎
is, the larger the instantaneous volatility 𝜎 of the risky asset is, which means the more risk of investment, and
thus the insurer should invest less money in the risky asset. From Figure 3c, it is easy to see that the robust
equilibrium investment strategy 𝑝*1(𝑡) is a decreasing function of 𝜆2, i.e., the insurer will invest less in the risky
asset. Actually, the increase of the jump intensity 𝜆2 makes the risky asset more risk and less attractive.

Figure 4 depicts the effects of 𝜆, 𝜆1 and 𝜆2 on robust equilibrium reinsurance strategy 𝑞*1(𝑡) and 𝑞*2(𝑡),
respectively. As 𝜆 increases, the average claim for the two businesses increases. To keep the claims risk at the
expected level, the insurer increases its reinsurance purchases, i.e., retention 𝑞*1(𝑡) (𝑞*2(𝑡)) decreases, as shown
in Figure 4a. From Figure 4b, we find that 𝑞*1(𝑡) increases with increase while 𝑞*2(𝑡) decreases. The average
claim for the first line of business increases with 𝜆1, so the insurer increases its reinsurance purchases for the
first line of business. In contrast, the second line of business has a comparative advantage since the average
claim remains unchanged, and the insurer thus reduces the reinsurance purchases of the second line of business.
Figure 4c shows that 𝑞*1(𝑡) decreases with 𝜆2 while 𝑞*2(𝑡) increases, which the economic explanation is similar to
the above analysis.

Figure 5 demonstrates the effect 𝜉1, 𝜉2 and 𝜉3 on the robust equilibrium investment and reinsurance strategy.
From Figures 5a and 5b, we can find that the amount invested in the risky asset decreases with 𝜉2 or 𝜉3. Since
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Figure 4. The effect of 𝜆, 𝜆1 and 𝜆2 on robust equilibrium reinsurance strategy.

Figure 5. The effect of 𝜉1, 𝜉2 and 𝜉3 on robust equilibrium strategy

𝜉2 and 𝜉3 denote the ambiguity aversion coefficient with respect to the diffusion risk and jump risk, respectively,
the insurer has less confidence in the reference model with the larger 𝜉2 or 𝜉3, and thus the insurer will reduce
the investment of the risky asset. Figures 5c and 5d show that the larger the 𝜉1, the smaller the retention of
𝑞*1(𝑡) and 𝑞*2(𝑡), with a similar mechanism of action to the effect of 𝜉2 and 𝜉3 on investment strategy. It is clear
from Figure 5 that the investment and reinsurance strategy for ANI is significantly better than that for AAI.
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Figure 6. The effect of 𝜉1, 𝜉2 and 𝜉3 on utility loss.

Figure 6 demonstrates the utility loss from ignoring model uncertainty for the AAI. From Figure 6, we can
find that the ambiguity aversion coefficients 𝜉1, 𝜉2 and 𝜉3 have a positive impact on UL. That is, the utility loss
is higher for the AAI with less information about reference measure P (larger 𝜉1, 𝜉2 and 𝜉3) than for the AAI
with more information about reference measure P (smaller 𝜉1, 𝜉2 and 𝜉3).

5. Conclusion

In this paper, we consider a robust equilibrium investment and reinsurance problem with bounded mem-
ory and common shock dependence in a jump-diffusion financial market. The surplus process of the insurer is
depicted by two-dimensional dependent claims, and the insurer is allowed to purchase proportional reinsurance.
And we also assume that the insurer can invest his/her wealth in a risk-free asset and a risky asset satisfying
jump-diffusion process. Next, we introduce the past performance and use it to derive the wealth process depicted
by an SDDE. Applying the stochastic control theory under the framework of the game theory, together with
stochastic control theory with delay, we derive an extended Hamilton–Jacobi–Bellman equation with delay. By
solving the equation, we obtain a robust equilibrium strategy and the corresponding robust equilibrium value
function. We also provide a numerical example to analyze the effects of delay parameters and risk dependent
parameter on robust equilibrium strategy and explain why such effects occur. The main findings are as follows.
(i) From the result of Theorem 3.2, we can find that the delay parameter has a significant effect on the robust
equilibrium investment and reinsurance strategy, and its impact corresponds to the economic intuition. More
specifically, according to the results of the numerical example, it is easy to see that the insurer can compre-
hensively consider the performance of a period of time since the introduction of the delay effect, and thus the
insurer can enhance its risk control ability. And the insurer can adjust the parameters according to Remark 3.6
to improve risk control. (ii) The AAI’s attitude towards ambiguity may impact his/her robust equilibrium
investment and reinsurance strategy, such that the optimal investment and reinsurance strategy for the AAI
facing model uncertainty is smaller than an ANI. (iii) The utility loss from ignoring model uncertainty increase
with the ambiguity-aversion coefficients. (iv) The risk common shock factor has a significant impact on all
reinsurance business.

In further research, some important factors affecting the insurer’s decision may be introduced in the model,
such as interest-rate risk, inflation risk, volatility risk, no-bankrupt constraint, and dynamic VaR constraint.
However, the introduction of these factors will make the model more complicated. As a result, other methods,
such as backward stochastic differential equations or other methods, may be introduced to solve the more
complicated problem.



94 S. LI

Appendix A. Derivation of relative entropy

The relative entropy is defined as the expectation under the alternative measure of the log Radon–Nikodym
derivative defined in (2.7). From Itô’s lemma, we derive

d ln Λ𝜙(𝑡) = − 𝜙1(𝑡)d𝑊0(𝑡)− 1
2
𝜙2

1(𝑡)d𝑡− 𝜙2(𝑡)d𝑊 (𝑡)− 1
2
𝜙2

2(𝑡)d𝑡

+ 𝜆0(1− 𝜙3(𝑡))d𝑡+
∫︁ ∞

−1

ln𝜙3(𝑡)𝑁0(d𝑡,d𝑦0).

Then the relative entropy over the interval from 𝑡 to 𝑡+ 𝛿 is as follows:

𝐸Q
[︂
ln

Λ(𝑡+ 𝛿)
Λ(𝑡)

]︂
= 𝐸Q

[︃
−
∫︁ 𝑡+𝛿

𝑡

𝜙1(𝑢)
(︁

d𝑊Q
0 (𝑢)− 𝜙1(𝑢)d𝑢

)︁
− 1

2

∫︁ 𝑡+𝛿

𝑡

𝜙2
1(𝑢)d𝑢

−
∫︁ 𝑡+𝛿

𝑡

𝜙2(𝑢)
(︀
d𝑊Q(𝑢)− 𝜙2(𝑢)d𝑢

)︀
− 1

2

∫︁ 𝑡+𝛿

𝑡

𝜙2
2(𝑢)d𝑢

+
∫︁ 𝑡𝛿

𝑡

𝜆0(1− 𝜙3(𝑢))d𝑢+
∫︁ 𝑡+𝛿

𝑡

∫︁ ∞

−1

ln𝜙3(𝑢) ̃︀𝑁0(d𝑢,d𝑦0)

+
∫︁ 𝑡+𝛿

𝑡

∫︁ ∞

−1

𝜆0𝜙3(𝑢) ln𝜙3(𝑢)d𝑢

]︃

= 𝐸Q

[︃∫︁ 𝑡+𝛿

𝑡

(︂
1
2
(︀
𝜙2

1(𝑢) + 𝜙2
2(𝑢)

)︀
+ 𝜆0(𝜙3(𝑢) ln𝜙3(𝑢)− 𝜙3(𝑢) + 1)d𝑢

)︂]︃
.

Let 𝛿 → 0, then (2.10) is derived.

Appendix B. Proof of Lemma 3.1

Using Cauchy–Schwarz inequality, we have

(𝜆1 + 𝜆)𝐸
[︀
𝑌 2

1𝑖

]︀
(𝜆2 + 𝜆)𝐸[𝑌 2

2𝑖] ≥
(︁√︀

(𝜆+ 𝜆1)(𝜆+ 𝜆2)𝐸[𝑌1𝑖]𝐸[𝑌2𝑖]
)︁2

> (𝜆𝐸[𝑌1𝑖]𝐸[𝑌2𝑖])
2
.

By 𝐸[𝑌 2
1𝑖] > (𝐸[𝑌1𝑖])2, 𝐸[𝑌 2

2𝑖] > (𝐸[𝑌2𝑖])2 and (2.1), we derive

𝑏21𝑏
2
2 > 𝜆2𝜇2

11𝜇
2
21. (B.1)

Moreover, we also have

𝜆𝜇11𝜇21

𝑏22

𝑎2

𝑎1
=

𝜆𝜇11𝜇21

(𝜆+ 𝜆2)𝜇22

(𝜆+ 𝜆2)𝜇21

(𝜆+ 𝜆1)𝜇11
=

𝜆𝜇2
21

(𝜆+ 𝜆1)𝜇22
, (B.2)

𝑏21
𝜆𝜇11𝜇21

𝑎2

𝑎1
=

(𝜆+ 𝜆1)𝜇12

𝜆𝜇11𝜇21

(𝜆+ 𝜆2)𝜇21

(𝜆+ 𝜆1)𝜇11
=

(𝜆+ 𝜆2)𝜇12

𝜆𝜇2
11

· (B.3)

Noting that 𝜇22 > 𝜇2
21 and 𝜇12 > 𝜇2

11, then we have 𝜆𝜇2
21

(𝜆+𝜆1)𝜇22
< 1 and (𝜆+𝜆2)𝜇12

𝜆𝜇2
11

> 1. Thus, equation (3.2)
holds.
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Appendix C. Proof of Theorem 3.2

By the terminal condition of 𝑉 and 𝑔, we conjecture that 𝑉 and 𝑔 are of the following form:

𝑉 (𝑡, 𝑥, 𝑙) = 𝐻(𝑡)(𝑥+ 𝛽𝑙) + 𝐹 (𝑡), (C.1)
𝑔(𝑡, 𝑥, 𝑙) = 𝑃 (𝑡)(𝑥+ 𝛽𝑙) +𝑄(𝑡), (C.2)

where 𝐻(𝑇 ) = 𝑃 (𝑇 ) = 1 and 𝐹 (𝑇 ) = 𝑄(𝑇 ) = 0.
Differentiating 𝑉 and 𝑔 with respect to 𝑡, 𝑥 and 𝑙, we obtain

𝑉𝑡 = 𝐻 ′(𝑡)(𝑥+ 𝛽𝑙) + 𝐹 ′(𝑡), 𝑉𝑥 = 𝐻(𝑡), 𝑉𝑙 = 𝛽𝐻(𝑡) = 𝛽𝑉𝑥, 𝑉𝑥𝑥 = 0,
𝑔𝑡 = 𝑃 ′(𝑡)(𝑥+ 𝛽𝑙) +𝑄′(𝑡), 𝑔𝑥 = 𝑃 (𝑡), 𝑔𝑙 = 𝛽𝑃 (𝑡) = 𝛽𝑔𝑥, 𝑔𝑥𝑥 = 0.

After simple calculations, we can also get

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐸[𝑉 (𝑡, 𝑥+ 𝑝1𝑦0, 𝑙)− 𝑉 (𝑡, 𝑥, 𝑙)] = 𝜇01𝑝1𝐻(𝑡),
𝐸[𝑔2(𝑡, 𝑥+ 𝑝1𝑦0, 𝑙)− 𝑔2(𝑡, 𝑥, 𝑙)] = 𝜇02𝑝

2
1𝑃

2(𝑡)
+2𝜇01𝑝1𝑃 (𝑡)[𝑃 (𝑡)(𝑥+ 𝛽𝑙) +𝑄(𝑡)],

𝐸[𝑔(𝑡, 𝑥+ 𝑝1𝑦0, 𝑙)− 𝑔(𝑡, 𝑥, 𝑙)] = 𝜇01𝑝1𝑃 (𝑡).

Noting that (2.6) and substituting the above results into (3.1), we derive

sup
𝜋∈Π

inf
Q∈𝒬

{︂
𝐻 ′(𝑡)(𝑥+ 𝛽𝑙) + 𝐹 ′(𝑡) +

[︂
(𝑟 − 𝛾1 − 𝛾2 + 𝛽)(𝑥+ 𝛽𝑙) + (𝛼− 𝑟)𝑝1

+ (𝜃1 − 𝜂1 + 𝑞1𝜂1)𝑎1 + (𝜃2 − 𝜂2 + 𝑞2𝜂2)𝑎2 −
√︁
𝑏21𝑞

2
1 + 𝑏22𝑞

2
2 + 2𝑞1𝑞2𝜆𝜇11𝜇21𝜙1

− 𝜎𝑝1𝜙2 + 𝜆0𝜙3𝜇01𝑝1

]︂
𝐻(𝑡)− 𝜔

2
(𝑏21𝑞

2
1 + 𝑏22𝑞

2
2 + 2𝑞1𝑞2𝜆𝜇11𝜇21 + 𝑝2

1𝜎
2

+ 𝜆0𝜙3𝜇02𝑝
2
1)𝑃 2(𝑡) +

𝜙2
1

2𝜉1
+
𝜙2

2

2𝜉2
+
𝜆0(𝜙3 ln𝜙3 − 𝜙3 + 1)

𝜉3

}︂
= 0, (C.3)

𝑃 ′(𝑡)(𝑥+ 𝛽𝑙) +𝑄′(𝑡) +
[︂
(𝑟 − 𝛾1 − 𝛾2 + 𝛽)(𝑥+ 𝛽𝑙) + (𝛼− 𝑟)𝑝*1 + (𝜃1 − 𝜂1 + 𝑞*1𝜂1)𝑎1

+ (𝜃2 − 𝜂2 + 𝑞*2𝜂2)𝑎2 −
√︁
𝑏21(𝑞*1)2 + 𝑏22(𝑞*2)2 + 2𝑞*1𝑞

*
2𝜆𝜇11𝜇21𝜙

*
1

− 𝜎𝑝*1𝜙
*
2 + 𝜆0𝜙

*
3𝜇01𝑝

*
1

]︂
𝑃 (𝑡) = 0. (C.4)

Applying the first-order optimality conditions, 𝜙*1, 𝜙*2 and 𝜙*3 which reach the infimum part in equation (C.3)
are derived as follows:

𝜙*1 = 𝜉1

√︁
𝑏21𝑞

2
1 + 𝑏22𝑞

2
2 + 2𝑞1𝑞2𝜆𝜇11𝜇21𝐻(𝑡), (C.5)

𝜙*2 = 𝜉2𝜎𝑝1𝐻(𝑡), (C.6)

𝜙*3 = 𝑒𝜉3( 𝜔
2 𝜇02𝑝2

1𝑃 2(𝑡)−𝜇01𝑝1𝐻(𝑡)). (C.7)
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Substituting the above results back into (C.3), we derive

sup
𝜋∈Π

{︂
𝐻 ′(𝑡)(𝑥+ 𝛽𝑙) + 𝐹 ′(𝑡) + [(𝑟 − 𝛾1 − 𝛾2 + 𝛽)(𝑥+ 𝛽𝑙) + (𝛼− 𝑟)𝑝1

+ (𝜃1 − 𝜂1 + 𝑞1𝜂1)𝑎1 + (𝜃2 − 𝜂2 + 𝑞2𝜂2)𝑎2]𝐻(𝑡)− 𝜔

2
(𝑏21𝑞

2
1 + 𝑏22𝑞

2
2 + 2𝑞1𝑞2𝜆𝜇11𝜇21

+ 𝑝2
1𝜎

2)𝑃 2(𝑡)− 𝜉1
2

(𝑏21𝑞
2
1 + 𝑏22𝑞

2
2 + 2𝑞1𝑞2𝜆𝜇11𝜇21)𝐻2(𝑡)− 𝜉2

2
𝜎2𝑝2

1𝐻
2(𝑡)

+
𝜆0

𝜉3

(︁
1− 𝑒𝜉3( 𝜔

2 𝜇02𝑝2
1𝑃 2(𝑡)−𝜇01𝑝1𝐻(𝑡))

)︁}︂
= 0.

(C.8)

Applying again the first-order optimality conditions, the optimal strategy 𝑝*1, 𝑞*1 and 𝑞*2 which reach the supre-
mum part above equation are as follows:

𝑝*1(𝑡) =
1

𝜔𝑃 2(𝑡) + 𝜉2𝐻2(𝑡)

[︂
𝛼− 𝑟

𝜎2
𝐻(𝑡)− 𝜆0

𝜎2
(𝜔𝜇02𝑝

*
1(𝑡)𝑃 2(𝑡)

− 𝜇01𝐻(𝑡))𝑒𝜉3( 𝜔
2 𝜇02(𝑝

*
1(𝑡))2𝑃 2(𝑡)−𝜇01𝑝*1(𝑡)𝐻(𝑡))

]︂
, (C.9)

𝑞*1(𝑡) = 𝑛1
𝐻(𝑡)

𝜔𝑃 2(𝑡) + 𝜉1𝐻2(𝑡)
, (C.10)

𝑞*2(𝑡) = 𝑛2
𝐻(𝑡)

𝜔𝑃 2(𝑡) + 𝜉1𝐻2(𝑡)
, (C.11)

where

𝑛1 =
𝑎1𝜂1𝑏

2
2 − 𝑎2𝜂2𝜆𝜇11𝜇21

𝑏21𝑏
2
2 − 𝜆2𝜇2

11𝜇
2
21

, 𝑛2 =
𝑎2𝜂2𝑏

2
1 − 𝑎1𝜂1𝜆𝜇11𝜇21

𝑏21𝑏
2
2 − 𝜆2𝜇2

11𝜇
2
21

.

Substituting (C.5)–(C.7) and (C.9)–(C.11) back into (C.8) and (C.4), we derive

𝐻 ′(𝑡)(𝑥+ 𝛽𝑙) + 𝐹 ′(𝑡) + [(𝑟 − 𝛾1 − 𝛾2 + 𝛽)(𝑥+ 𝛽𝑙) + (𝛼− 𝑟)𝑝*1 + (𝜃1 − 𝜂1)𝑎1

+ (𝜃2 − 𝜂2)𝑎2]𝐻(𝑡) +
(︂
𝑎1𝑛1𝜂1 + 𝑎2𝑛2𝜂2 −

1
2
𝑏21𝑏

2
1 −

1
2
𝑏22𝑛

2
2 − 𝜆𝜇11𝜇21𝑛1𝑛2

)︂
×
(︂

𝐻2(𝑡)
𝜔𝑃 2(𝑡) + 𝜉1𝐻2(𝑡)

)︂
− (𝑝*1)2𝜎2

2
(︀
𝜔𝑃 2(𝑡) + 𝜉2𝐻

2(𝑡)
)︀

+
𝜆0

𝜉3

(︁
1− 𝑒𝜉3( 𝜔

2 𝜇02𝑝2
1𝑃 2(𝑡)−𝜇01𝑝1𝐻(𝑡))

)︁
= 0, (C.12)

𝑃 ′(𝑡)(𝑥+ 𝛽𝑙) +𝑄′(𝑡) + [(𝑟 − 𝛾1 − 𝛾2 + 𝛽)(𝑥+ 𝛽𝑙) + (𝛼− 𝑟)𝑝*1 + (𝜃1 − 𝜂1)𝑎1

+ (𝜃2 − 𝜂2)𝑎2]𝑃 (𝑡) + (𝑎1𝑛1𝜂1 + 𝑎2𝑛2𝜂2)
𝐻(𝑡)𝑃 (𝑡)

𝜔𝑃 2(𝑡) + 𝜉1𝐻2(𝑡)

− 𝜉1(𝑏21𝑛
2
1 + 𝑏22𝑛

2
2 + 2𝑛1𝑛2𝜆𝜇11𝜇21)

𝐻3(𝑡)𝑃 (𝑡)
(𝜔𝑃 2(𝑡) + 𝜉1𝐻2(𝑡))2

− 𝜉2𝜎
2(𝑝*1)2𝐻(𝑡)𝑃 (𝑡) + 𝜆0𝜇01𝑝

*
1𝑃 (𝑡)𝑒𝜉3(

𝜔
2 𝜇02(𝑝

*
1)2𝑃 2(𝑡)−𝜇01𝑝*1𝐻(𝑡)) = 0. (C.13)

Matching the coefficient on the both sides, we can obtain the following differential equations:

𝐻 ′(𝑡) + (𝑟 − 𝛾1 − 𝛾2 + 𝛽)𝐻(𝑡) = 0, 𝐻(𝑇 ) = 1,
𝑃 ′(𝑡) + (𝑟 − 𝛾1 − 𝛾2 + 𝛽)𝑃 (𝑡) = 0, 𝑃 (𝑇 ) = 1,
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𝐹 ′(𝑡) + [(𝛼− 𝑟)𝑝*1 + (𝜃1 − 𝜂1)𝑎1 + (𝜃2 − 𝜂2)𝑎2]𝐻(𝑡)− (𝑝*1)2𝜎2

2
(𝜔𝑃 2(𝑡) + 𝜉2𝐻

2(𝑡))

+
𝜆0

𝜉3
(1− 𝑒𝜉3(

𝜔
2 𝜇02(𝑝

*
1)2𝑃 2(𝑡)−𝜇01𝑝*1𝐻(𝑡))) +

(︂
𝑎1𝑛1𝜂1 + 𝑎2𝑛2𝜂2 −

1
2
𝑏21𝑛

2
1 −

1
2
𝑏22𝑛

2
2

− 𝜆𝜇11𝜇21𝑛1𝑛2

)︂
1

𝜔 + 𝜉1
= 0, 𝐹 (𝑇 ) = 0,

𝑄′(𝑡) + [(𝛼− 𝑟)𝑝*1 + (𝜃1 − 𝜂1)𝑎1 + (𝜃2 − 𝜂2)𝑎2]𝑃 (𝑡)− 𝜉2𝜎
2(𝑝*1)2𝐻(𝑡)𝑃 (𝑡)

+ 𝜆0𝜇01𝑝
*
1𝑃 (𝑡)𝑒𝜉3(

𝜔
2 𝜇02(𝑝

*
1)2𝑃 2(𝑡)−𝜇01𝑝*1𝐻(𝑡)) + (𝑎1𝑛1𝜂1 + 𝑎2𝑛2𝜂2)

1
𝜔 + 𝜉1

− 𝜉1(𝑏21𝑛
2
1 + 𝑏22𝑛

2
2 + 2𝜆𝜇11𝜇21𝑛1𝑛2)

1
(𝜔 + 𝜉1)2

= 0, 𝑄(𝑇 ) = 0.

Considering the terminal value condition 𝐻(𝑇 ) = 𝑃 (𝑇 ) = 1 and 𝐹 (𝑇 ) = 𝑄(𝑇 ) = 0, the above equations can be
solved as

𝐻(𝑡) = 𝑃 (𝑡) = 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡), (C.14)

𝐹 (𝑡) = − [(𝜃1 − 𝜂1)𝑎1 + (𝜃2 − 𝜂2)𝑎2]
𝑟 − 𝛾1 − 𝛾2 + 𝛽

(︁
1− 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)

)︁
+

1
𝜔 + 𝜉1

(︂
𝑎1𝑛1𝜂1 + 𝑎2𝑛2𝜂2 −

1
2
𝑏21𝑛

2
1 −

1
2
𝑏22𝑛

2
2 − 𝜆𝜇11𝜇21𝑛1𝑛2

)︂
(𝑇 − 𝑡)

+
∫︁ 𝑇

𝑡

[︂
(𝛼− 𝑟)𝑝*1(𝑠)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠)

− (𝑝*1(𝑠))2𝜎2(𝜔 + 𝜉2)𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠)

2

+
𝜆0

𝜉3

(︁
1− 𝑒𝜉3( 𝜔

2 𝜇02(𝑝
*
1(𝑠))2𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠)−𝜇01(𝑝

*
1(𝑠))2𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠))

)︁]︂
d𝑠, (C.15)

𝑄(𝑡) = − [(𝜃1 − 𝜂1)𝑎1 + (𝜃2 − 𝜂2)𝑎2]
𝑟 − 𝛾1 − 𝛾2 + 𝛽

(︁
1− 𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)

)︁
+

1
𝜔 + 𝜉1

(𝑎1𝑛1𝜂1 + 𝑎2𝑛2𝜂2)(𝑇 − 𝑡)

− 𝜉1
(𝜔 + 𝜉1)2

(𝑏21𝑛
2
1 + 𝑏22𝑛

2
2 + 2𝜆𝜇11𝜇21𝑛1𝑛2)(𝑇 − 𝑡)

+
∫︁ 𝑇

𝑡

[︂
(𝛼− 𝑟)𝑝*1(𝑠)− 𝜉2𝜎

2(𝑝*1(𝑠))2𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠)

+ 𝜆0𝜇01𝑝
*
1(𝑠)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠)

× 𝑒𝜉3( 𝜔
2 𝜇02(𝑝

*
1(𝑠))2𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠)−𝜇01𝑝*1(𝑠)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑠))

]︂
d𝑠. (C.16)

Substituting the above results back into (C.9)–(C.11), (C.1) and (C.5)–(C.7), we obtain (3.3)–(3.9). Noting that
Case 2 (i.e., 𝑛1 > 0 and 𝑛2 > 0), it is easy to see that 𝑞*1(𝑡) > 0 and 𝑞*2(𝑡) > 0. Then, the proof of Theorem 3.2
is completed.

Appendix D. Proof of Proposition 3.3

From equation (3.3), we can derive
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𝜎2𝑝*1(𝜔 + 𝜉2)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡) = 𝛼− 𝑟 − 𝜆0(𝜔𝜇02𝑝
*
1𝑒

(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡) − 𝜇01)

× 𝑒𝜉3( 𝜔
2 𝜇02(𝑝

*
1)2𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)−𝜇01𝑝*1𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)).

Let

ℎ(𝑝1) = 𝛼− 𝑟 − 𝜆0(𝜔𝜇02𝑝1𝑒
(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡) − 𝜇01)

× 𝑒𝜉3( 𝜔
2 𝜇02𝑝2

1𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)−𝜇01𝑝1𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)) − 𝜎2𝑝1(𝜔 + 𝜉2)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡).

Further, the derivative of ℎ(·) is as follows:

ℎ′(𝑝1) = −𝜆0𝜔𝜇02𝑒
(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)𝑒𝜉3(

𝜔
2 𝜇02𝑝2

1𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)−𝜇01𝑝1𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡))

− 𝜆0𝜉3𝑒
(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)(𝜔𝜇02𝑝1𝑒

(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡) − 𝜇01)2

× 𝑒𝜉3( 𝜔
2 𝜇02𝑝2

1𝑒2(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)−𝜇01𝑝1𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡))

− 𝜎2(𝜔 + 𝜉2)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡) < 0,

that is, ℎ(𝑝1) is a decreasing function with respect to 𝑝1. In addition, it is easy to see that ℎ(0) = 𝛼−𝑟+𝜆0𝜇01 > 0,
and also ℎ(𝑝1) < 0 for 𝑝1 > max

{︁
𝜇01

𝜔𝜇02𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡) ,
𝛼−𝑟

𝜎2(𝜔+𝜉2)𝑒(𝑟−𝛾1−𝛾2+𝛽)(𝑇−𝑡)

}︁
> 0. The proof is completed.
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