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THE SERVICE PRICING STRATEGIES AND THE STRATEGIC BEHAVIOR OF
CUSTOMERS IN AN UNOBSERVABLE MARKOVIAN QUEUE WITH

UNRELIABLE SERVER

Kamel Meziani1,* , Fazia Rahmoune1 and Mohammed Said Radjef1

Abstract. A Stackelberg game is used to study the service pricing and the strategic behavior of
customers in an unreliable and totally unobservable 𝑀/𝑀/1 queue under a reward-cost structure.
At the first stage, the server manager, acting as a leader, chooses a service price and, at the second
stage, a customer, arriving at the system and acting as a follower, chooses to join the system or an
outside opportunity, knowing only the service price imposed by the server manager and the system
parameters. We show that the constructed game admits an equilibrium and we give explicit forms of
server manager and customers equilibrium behavioral strategies. The results of the proposed model
show that the assumption that customers are risk-neutral is fundamental for the standard approach
usually used. Moreover, we determine the socially optimal price that maximizes the social welfare and
we compare it to the Stackelberg equilibrium. We illustrate, by numerical examples, the effect of some
system parameters on the equilibrium service price and the revenue of the server manager.
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1. Introduction

Nowadays, queueing phenomena can be observed in several fields and in different forms (e.g. supermarkets,
hospitals, banks, post offices, fast food restaurants, transportation, telecommunications networks, etc.), and
the study of this phenomena has attracted the curiosity of an increasing number of researchers. One area that
researchers are currently focusing on in queueing theory is the area of strategic queueing systems. Therefore,
a very rich literature is available on this topic. This literature has given many useful ideas in the conception
of strategic queueing systems, whose analysis combines two different and important disciplines, it is Queueing
Theory and Game Theory. The joint use of these two theories allows the manager of a queueing system to take
into consideration and anticipate the strategic reactions of customers to his pricing strategies and to choose the
optimal decision (see [8]).

The study of the strategic queueing systems was initiated by Naor [21], who studied the 𝑀/𝑀/1 queue
with a reward-cost structure, and where the system state is observable. His work was extended in Edelson and
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Hildebrand [10] for the unobservable case. Since then, there has been an increasing number of papers that deal
with the strategic behavior of customers in different queueing systems. The manuscripts of Hassin and Haviv
[13] and Hassin [12] present the main approaches and results on the subject.

The analysis of strategic queueing systems with unreliable server has received a part of attention from
researchers because of their interest in the study of the practical problems. In real-world, perfectly reliable
servers do not exist. However, in many situations, the server is subject to random failures that affect the system
characteristics. Among the works on this topic, we can cite that of Economou and Kanta [9], who extended the
model of Naor [21], including the failures and the repairs periods of the server, while considering the totally
observable case and the almost observable case. Later, Li et al. [17] enhanced this work by dealing with two other
types of information: the almost unobservable case and the totally unobservable case. Wang and Zhang [26]
generalized the model studied in [9] by considering an 𝑀/𝑀/1 queueing system with an unreliable server and
delayed repairs. The failed server experiences a delayed time exponentially distributed before the start of the
repair process. Yu et al. [28] completed the model of Wang and Zhang [26] in the almost unobservable case and
then in the totally unobservable case. Li et al. [16] analyzed the customers behavior in a Markovian server queue
with partial breakdowns. So, during the failure period, customers are served at a low rate compared to the service
rate when the system is operational. Two cases are considered: totally observable and totally unobservable. This
work [16] was extended by Yu et al. [29] to the almost observable and almost unobservable cases. Boudali and
Economou [3] studied the behavior of customers who decide whether to join or not a Markovian queueing system
with catastrophes. When the server fails, all customers are forced to leave the system. Two cases are analyzed:
the totally observable and the totally unobservable. The same model, discussed in [3], was then examined by
Boudali and Economou [4], where they added the assumption that arriving customers are allowed to join the
system even if they find the server unavailable. Tian and Wang [23] treated this model of Boudali and Economou
[4] in the almost unobservable case. Chen and Zhou [7] studied the customers behaviors in a Markovian queue
with setup time and breakdowns. The server is turned off each time the system becomes empty, and it begins
an exponential installation time when a customer arrives at the system. When the server fails, a repair process
is launched immediately and no customer is accepted during the failure and the repair periods of the server.
In this work, three cases are considered: totally observable, almost unobservable and totally unobservable. For
recent works in this topic, we recommend the following works: Yu et al. [30], Tian and Wang [24], Gao et al.
[11], Aghsami and Jolai [1], Li and Wang [15], Ma and Zhang [18], Zhang and Xu [33], Zhang and Wang [32].

Most of the works mentioned so far consider a game among customers. Recently, a different approach has
emerged in the strategic queueing works. The latter is represented by a dynamic game between the different
agents (customers, server, social optimizer, . . . ) intervening in the system. In some of these works, authors seek
to determine the optimal price of service to be offered by the system according to the strategic behavior of the
customers. Chen and Frank [5] adapted the classic model of Naor [21], where the server can adjust his service
price according to the current state of the queue. At their arrival times, customers observe the state of the queue
and the service price, and then decide to join the system or not. In this model, a customer who does not join
the system will have a fixed reward. Much later, Chen and Frank [6] completed this work in the unobservable
case. Manou et al. [19] studied the pricing problem for a transportation station, using the queueing theory and
a two-stage game among the customers and the administrator, where customer strategies depend on the level of
information on the queue (totally observable, totally unobservable or almost observable). Jagannathan et al. [14]
investigated a decision-making process between customers and two servers in a cognitive radio network, where a
Markovian queueing system is considered with the server 2. The server 1 can adjust its service price first in order
to maximize its revenue. Then, customers have the opportunity to buy a service from server 1 or enjoy a free
service from server 2 that can be interrupted by random breakdowns. Upon their arrival, customers observe the
price imposed by the server 1 and the state of the server 2, but they do not have information on the number of
customers in the queue facing the server 2, then they decide between using server 1 or using server 2. Wang and
Zhang [27] contributed to the analysis of a Markovian retrial queue and delayed vacations for Local Area Network
applications in which the server will take delayed vacations at the end of the service. For LAN applications,
they did not only study the strategic behavior of customers but also considered the strategic monopoly (service
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provider). They modeled this situation as a two-stage game (Stackelberg competition) between the service
provider and the customers. At the first stage, the service provider sets a service price first, which is known by
all customers before they act. Then, at the second stage, based on the value of the price charged, the customers
make their decisions to balk or to enter the system for service based on their expected payoff and available
information about the status of the server. A Closely related work to the model analyzed in this paper was
treated by Meziani et al. [20]. In that work, they investigated the service pricing and the strategic behavior of
customers as a Stackelberg game (the server acts first as the leader and the customers as the followers), and the
social welfare in a totally unobservable 𝑀/𝑀/1 queue system with unreliable server and delayed repairs (when
a failure occurs, the server becomes unavailable and waits for a random time to start the repair process).

As we mentioned above, there are many works that have considered the server breakdown problem and others
that have considered the service pricing problem in the study of the Markovian queueing systems with strategic
customers. Our work combines both these problems by considering the pricing of the service provided in an
𝑀/𝑀/1 queueing system with an unreliable server and strategic customers where the system state is totally
unobservable. The strategic interactions are described as Stackelberg game, where the server acts as the leader
and a potential customer as the follower. We show that the constructed game admits a Stackelberg equilibrium
and we give explicitly the equilibrium strategies of the server and the customers. Contrary to the standard
approach, usually used in strategic queueing system, where customers are assumed to have a “risk-neutral”
profile (see [12]), we assume in the approach developed in this paper that customers have an optimizer profile,
in the sense that a customer will choose the decision that will optimize his utility. We further study how the
social planner determines the price to charge a joining customer. We synthesize the results in the form of two
decision-making algorithms: the first one for the choice of the equilibrium service price and the second one for
the choice of social service price. These two algorithms aim to describe the process that the service manager
or the administrator should follow to determine the service price to apply by the server. Finally, we illustrate
via numerical examples the impact of the service price selected by the server on customers’ decisions and the
consequences of the customer’s decisions on the server’s decision. This model can be considered as a development
and a combination of the models of Li et al. [17] and Chen and Frank [6]. Furthermore, the model examined
in this paper can be viewed also as a special case of the model of Meziani et al. [20], where in our model the
repairs are immediate, and in the model of Meziani et al. [20] the repairs are delayed.

This work is of a theoretical and practical interest. Indeed, the model under consideration has broad applica-
tions in many fields, and can be adapted for many real-situations, namely: the call centers [17], cognitive radio
network [14], transportation [19], manufacturing industries [6,16,26], supply-chain systems [28]. . . etc. However,
the example of made-to-order systems given by Meziani et al. [20] can be also used as an application for our
model. In addition, one of the many real-life situations to which our model can be applied is the following situa-
tion: Suppose a customer goes to an online store to purchase a product or a service. Similar to a real store, this
type of virtual store displays the price and delivery time information about the product or the service. However,
the delivery may be interrupted by unexpected circumstances (which occur randomly). After receiving the price
and delivery information, a customer, upon arrival, has the choice to order the product or the service online or
to buy it elsewhere (in another virtual or real store).

The remainder of this paper is structured as follows. Section 2 presents the description of the unreliable
𝑀/𝑀/1 system, under a reward-cost structure, while the Section 3 presents the main characteristics of the
considered queueing system. In Section 4, we model the considered problem as Stackelberg game. Section 5
examines customers equilibrium strategies and the problem of maximizing server manager revenue. We give an
example in Remark 5.3, showing that the assumption that all customers have a “risk-neutral” profile must be
assumed in the standard approach, otherwise, a customer with an optimizer profile might find it advantageous
to deviate from the equilibrium strategy (obtained by the standard approach). Then, we consider the social
welfare problem in Section 6 and some numerical illustrations are presented in Section 7, where we analyze the
effect of the system parameters on the joining probability of customers, the service price and the revenue of the
server manager. We provide a conclusion and some remarks in Section 8. Finally, we end with an appendix that
contains the proofs of the different obtained results and the two decision-making algorithms in Appendix A.
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2. Model description

We consider a Markovian 𝑀/𝑀/1 queue with infinite capacity and unreliable server in which customers
arrive according to a Poisson process with rate 𝜆. The service times are assumed to be exponentially distributed
random variables with rate 𝜇 and the service is performed according to FCFS policy. The server is subject to
random breakdowns following a Poisson process with parameter 𝜃. When a failure occurs, the server becomes
inactive, and its repair is immediately started with an exponential distribution of rate 𝑟. We assume that
inter-arrival times, service times, inter-failure times, and repair times are mutually independent. This system is
described by the process {𝑁(𝑡), 𝐼(𝑡), 𝑡 ≥ 0}, where 𝑁(𝑡) represents the number of customers in the system at
time 𝑡, and 𝐼(𝑡) represents the server state (operational or breakdown) at time 𝑡.

Furthermore, we assume that there is a reward-cost structure that reflects the desire of customers for the
service to be acquired and their unwillingness for waiting. A customer will pay a price 𝑃 (service price) fixed by
the server manager, receives a reward of 𝑅 units (service value) if the service is performed and loses a waiting
cost 𝐶 per unit of time for the time remaining in the system. We also associate a fixed reward, noted by 𝑣, which
represents the reward of a customer, who decides to choose an outside opportunity. This outside opportunity
may reflect a customer’s satisfaction without being served, it may also reflect a customer’s gain if it is served
elsewhere.

The server manager can choose a price 𝑃 , allowing him to maximize his revenue and assuming that the
customers have an optimizer profile. Upon his arrival, a customer has the opportunity to join the system or
enjoy an outside opportunity, this decision once taken is assumed irrevocable. Customers are assumed to have an
optimizer profile, in the sense they make their decisions with the aim of maximizing their utility functions. Their
decision-making process will be described in Section 4. The system parameters (𝜆, 𝜇, 𝜃, 𝑟) and the economic
parameters (𝑅, 𝑃 , 𝐶, 𝑣) are common knowledge for the server manager and the customers. However, when a
customer has to make his decision, he does not observe the actual length of the queue and the state of the
server.

We will study the decision process of the server manager and customers, and we will determine the strategic
behavior corresponding to their objectives. We begin by determining the characteristics of the system that will
be useful to define server and customers utility functions.

3. System characteristics

We considered a Markovian 𝑀/𝑀/1 unreliable queue, whose the state of the system at time 𝑡 is characterized
by the pair (𝑁(𝑡), 𝐼(𝑡)), where 𝑁(𝑡) represents the number of customers in the system and 𝐼(𝑡) the state of the
server at time 𝑡, which takes “1” if the server is operational and “0” in the case of breakdown. We consider that
the system is totally unobservable by the customer at his arrival time. Since customers are homogeneous, we
assume that each arriving customer joins the system with a probability 𝑞, generating a joining rate 𝜆𝑒 = 𝜆𝑞.

The stochastic process {(𝑁(𝑡), 𝐼(𝑡)) : 𝑡 ≥ 0} is a continuous time Markov chain with state space 𝑆 =
{(𝑛, 1), 𝑛 ≥ 0} ∪ {(𝑛, 0), 𝑛 ≥ 0}, and the transition diagram associated with it is given by Figure 1.

Figure 1. The transition diagram.
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The balance equations for the stationary distribution of the Markov chain {(𝑁(𝑡), 𝐼(𝑡)) : 𝑡 ≥ 0} are given as
follows:

(𝜆𝑞 + 𝜃)𝑃01 = 𝜇𝑃11 + 𝑟𝑃00;
(𝜆𝑞 + 𝜃 + 𝜇)𝑃𝑗1 = 𝜇𝑃𝑗+1 1 + 𝜆𝑞𝑃𝑗−1 1 + 𝑟𝑃𝑗0, (𝑗 ≥ 1);

(𝜆𝑞 + 𝑟)𝑃00 = 𝜃𝑃01;
(𝜆𝑞 + 𝑟)𝑃𝑗0 = 𝜃𝑃𝑗1 + 𝜆𝑞𝑃𝑗−1 0, (𝑗 ≥ 1);

where, 𝑃𝑗𝑖 = 𝑃 [𝑁(𝑡) = 𝑗, 𝐼(𝑡) = 𝑖], ∀𝑡 ≥ 0, ∀𝑗 ≥ 0 and ∀𝑖 = {0, 1} are the system state probabilities.
Using these equations and the stability condition 𝜆(𝑟 + 𝜃) < 𝑟𝜇, we obtain the expression of the customer’s

average sojourn time in the system 𝑇𝑠, which is given as follows:

𝑇𝑠(𝑞) =
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞(𝑟 + 𝜃))
· (3.1)

This characteristic will be useful for the definition of some quantities related to the game in the next section.

4. Modeling as a Stackelberg game

The problem treated in this paper concerns a server manager, desiring to set the same service price 𝑃 to all
customers, taking into consideration that his server may experience failures, which lead to the interruption of
the service or the slowing down of the service rate. We assume that customers arrive sequentially at the server
and the manager adopts a policy of communication with the customers upon their arrival in the system before
they make their decision to join the system or to choose an outside opportunity. In our study case, upon their
arrival at the system, a customer:

(1) is informed about:
(a) the server’s decision (the service price);
(b) system parameters (𝜆, 𝜇, 𝜃, 𝑟) and the economic parameters (𝑅,𝐶, 𝑣).

(2) is not informed about:
(a) the decisions made by customers who arrived before him;
(b) his order of arrival in the system, and therefore on the number of customers who arrived before him in

the system;
(c) the number of customers in the queue;
(d) the state of the server (operational or breakdown).

In the literature on strategic queueing systems, there are several works that model similar situations in the
form of two-stage models. At the first stage, the server manager’s objective is to set the service price, maximizing
his profit, which also depends on the customers’ decisions. At the second stage, the strategic interactions of
customers are described by a non-standard hierarchical game with imperfect and incomplete information, as,
among others, the number of players (customers) is unknown.

To solve this game, the concept of symmetric equilibrium is used, based on the assumed assumption that the
players are homogeneous. For the calculation of this equilibrium, it is further assumed that customers decide to
join as soon as their utility is greater than or equal to zero (respectively to the utility associated with choosing
an outside opportunity when it exists). As this hypothesis, on the behavior of customers, has a direct influence
on the function of the best responses of the customers, in relation to the price set by the server, and therefore on
the equilibrium of the game, we took the initiative to designate that the customers have a neutral risk profile, a
term used in the classic approach (see Hassin and Haviv [13] and a detailed description of the resolution method
for this type of game between customers can be found in the chapter of [8]).

In this paper, we propose another two-stage model, and we describe the methodology of its formulation as
follows. At the first stage, the server manager, acting as a leader, chooses the service price that he offers to the
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Figure 2. Decision tree of a customer upon arrival at the server.

arriving customers in his system. His objective is to set a service price, maximizing his utility, depending on the
number of customers joining his service.

Customers arrive sequentially at the server. Each customer must decide whether to join the service or to
choose an outside opportunity, based on the information available to him (the service price chosen by the
manager and the system characteristics (the service value, the outside opportunity value, the sojourn time in
the queue, the server failure frequency, the repair rate, . . . )) and in the absence of information about the order
of his arrival at the service, the state of the server, the number of customers in the queue, the decisions chosen
by the customers who arrived before him.

Since the service manager applies the same service price to all customers, then each customer, arriving in the
system, must make his decision on the basis of the same information (the same service price). In other words,
each customer is called to solve an uncertain decision making problem, illustrated by Figure 2, where 𝑛 ∈ N
represents the number of customers in the system and the state of the server, which takes “𝑖 = 1”, if the server
is operational and “𝑖 = 0” in the case of breakdown. The term “game with chance moves” is used in Basar and
Olsder [2], to denote the game of Figure 2 between the server manager and a potential customer.

Thus, if a customer comes to the server and makes the decision to join the system with probability 𝑞 and to
choose the outside opportunity with probability (1− 𝑞), then his expected utility is:

𝑈2(𝑃, 𝑞) =
∞∑︁

𝑛=0

[𝑈2(𝑃,𝐸, 𝑛, 1)𝑞 + 𝑈2(𝑃,𝑂, 𝑛, 1)(1− 𝑞)] 𝑃𝑛1 +
∞∑︁

𝑛=0

[𝑈2(𝑃,𝐸, 𝑛, 0)𝑞 + 𝑈2(𝑃,𝑂, 𝑛, 0)(1− 𝑞)]𝑃𝑛0,

where 𝑃 denotes the service price, 𝐸 the decision of a customer to join the system, 𝑂 the decision of a customer
for the outside opportunity. 𝑃𝑛𝑖 are the system state probabilities with 𝑛 representing the number of customers
in the queue and 𝑖 representing the server state.

The utility of a customer who finds “𝑛” customers in the system and the server state is “𝑖” and decides to
join the system, is given by:

𝑈2(𝑃,𝐸, 𝑛, 𝑖) = 𝑅− 𝑃 − 𝐶

(︂
𝑛 + 1

𝜇

)︂(︂
1 +

𝜃

𝑟

)︂(︂
1− 𝑖

𝑟

)︂
, ∀𝑖 ∈ {0, 1} and 𝑛 ∈ N,

and the utility of a customer who finds “𝑛” customers in the system and the server state is “𝑖” and decides to
join the outside opportunity, is given by:

𝑈2(𝑃,𝑂, 𝑛, 𝑖) = 𝑣, ∀𝑖 ∈ {0, 1} and 𝑛 ∈ N.
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Hence,

𝑈2(𝑃, 𝑞) =
∞∑︁

𝑛=0

[𝑈2(𝑃,𝐸, 𝑛, 1)𝑃𝑛1 + 𝑈2(𝑃,𝐸, 𝑛, 0)𝑃𝑛0]𝑞 +
∞∑︁

𝑛=0

[𝑈2(𝑃,𝑂, 𝑛, 1)𝑃𝑛1 + 𝑈2(𝑃,𝑂, 𝑛, 0)𝑃𝑛0](1− 𝑞),

= 𝑞

∞∑︁
𝑛=0

[𝑈2(𝑃,𝐸, 𝑛, 1)𝑃𝑛1 + 𝑈2(𝑃,𝐸, 𝑛, 0)𝑃𝑛0] + (1− 𝑞)
∞∑︁

𝑛=0

[𝑈2(𝑃,𝑂, 𝑛, 1)𝑃𝑛1 + 𝑈2(𝑃,𝑂, 𝑛, 0)𝑃𝑛0],

= 𝑞

∞∑︁
𝑛=0

[︂(︂
𝑅− 𝑃 − 𝐶

(︂
𝑛 + 1

𝜇

)︂(︂
1 +

𝜃

𝑟

)︂)︂
𝑃𝑛1

+
(︂

𝑅− 𝑃 − 𝐶

(︂(︂
𝑛 + 1

𝜇

)︂(︂
1 +

𝜃

𝑟

)︂
+

1
𝑟

)︂)︂
𝑃𝑛0

]︂
+ (1− 𝑞)

∞∑︁
𝑛=0

[𝑣(𝑃𝑛1 + 𝑃𝑛0)],

= 𝑞

∞∑︁
𝑛=0

[︂(︂
𝑅− 𝑃 − 𝐶

(︂
𝑛 + 1

𝜇

)︂(︂
1 +

𝜃

𝑟

)︂)︂
(𝑃𝑛1 + 𝑃𝑛0)− 𝐶

𝑟
𝑃𝑛0

]︂
+ (1− 𝑞)𝑣,

= 𝑞

⎡⎢⎢⎣
⎛⎜⎜⎝𝑅− 𝑃 − 𝐶

⎛⎜⎜⎝
∞∑︀

𝑛=0
𝑛𝑃𝑛 + 1

𝜇

⎞⎟⎟⎠(︂1 +
𝜃

𝑟

)︂⎞⎟⎟⎠− 𝐶

𝑟

∞∑︁
𝑛=0

𝑃𝑛0

⎤⎥⎥⎦+ (1− 𝑞)𝑣,

= 𝑞

⎡⎣⎛⎝𝑅− 𝑃 − 𝐶

⎛⎝ 𝜆𝑞(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)(𝑟𝜇−𝜆𝑞(𝑟+𝜃)) + 1

𝜇

⎞⎠(︂1 +
𝜃

𝑟

)︂⎞⎠−
(︂

𝐶

𝑟

)︂(︂
𝜃

𝑟 + 𝜃

)︂⎤⎦+ (1− 𝑞)𝑣,

= 𝑞

(︃
𝑅− 𝑃 − 𝐶

(︃ (︀
𝜇𝜃 + (𝑟 + 𝜃)2

)︀
(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞(𝑟 + 𝜃))

)︃)︃
+ (1− 𝑞)𝑣,

𝑈2(𝑃, 𝑞) = 𝑞
(︀
𝑅− 𝑃 − 𝐶.𝑇𝑠(𝑞)

)︀
+ (1− 𝑞)𝑣,

where 𝑅 is the reward (value of the service) per unit of time, 𝐶 is the waiting cost per unit of time, 𝑣 is the
reward associated to the outside opportunity and 𝑇𝑠(𝑞) is the customer’s average sojourn time in the system,
given by (3.1).

Assuming that customers are rational players, as is generally believed in classical game theory, each player
would adopt the mixed strategy that maximizes his expected utility function 𝑈2, which is the same for all
players (customers).

In this case, for a service price 𝑃 and for a joining probability 𝑞 of a customer, the manager’s expected payoff
will be:

𝑈1(𝑃, 𝑞) = 𝜆𝑞𝑃.

For the server manager, the customers are considered homogeneous, since they have the same utility function
𝑈2(𝑃, 𝑞), and they have an optimizer profile (i.e. the customers seek to maximize their utility in the face of the
price imposed by the server manager), the reaction of each customer will be to determine the joining probability
𝑞 maximizing his utility. Having considered that the manager will apply the same price for all his customers,
the problem can be modeled as a two-player Stackelberg game.

The server manager, acting as the leader, chooses his service price, maximizing his expected utility

max
𝑃∈[0,+∞)

𝑈1(𝑃, 𝑞). (4.1)

The potential customer (the follower player) chooses his mixed strategy (𝑞, 1 − 𝑞) ∈ [0, 1]2 maximizing his
expected utility:

max
𝑞∈[0,1]

𝑈2(𝑃, 𝑞), (4.2)
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where 𝑈2(𝑃, 𝑞) = 𝑞
(︁
𝑅− 𝑃 − 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆𝑞(𝑟+𝜃))

)︁)︁
+ (1− 𝑞)𝑣.

Considering that each customer, arriving at the system and finding a service price 𝑃 , chooses his decision
to join the system with the probability 𝑞 ∈ [0, 1], maximizing his expected utility 𝑈2(𝑃, 𝑞), i.e. the solution of
problem (4.2). Since this problem has a unique solution (see Lem. 5.1), then all customers will choose the same
mixed strategy.

In order to distinguish this approach from the standard one, where customers choose the mixed equilibrium
strategy of a non-standard game, computed with the risk-neutral assumption, we have taken the initiative to
consider in our approach that customers have an optimizer profile, with reference to the optimization problem
(4.2) that determines the mixed strategy to be chosen.

In Section 5, we illustrate, through an example, the importance of specifying the customers’ profile.

5. The game resolution

The backward induction method is adopted to solve the Stackelberg game. We start by solving the last stage
of the game (customers behavior) for a price 𝑃 set by the server manager. The obtained solution will be injected
into the server manager utility function of the first stage to determine the equilibrium service price.

5.1. Study of the second stage of the game

In this second stage of the game, we study a customer’s strategic behavior for a service price 𝑃 . The customer’s
objective is to determine his best response BR𝐶(𝑃 ) to the price 𝑃 imposed by the server manager. In other
words, the customer should solve the problem:

BR𝐶(𝑃 ) = 𝑞*(𝑃 ) = arg max
𝑞∈[0,1]

𝑈2(𝑃, 𝑞),

which would lead him to adopt a mixed strategy 𝛼*(𝑃 ) = (𝑞*(𝑃 ), 1− 𝑞*(𝑃 )), i.e. join the system with a
probability 𝑞*(𝑃 ) or choose an outside opportunity with a probability 1− 𝑞*(𝑃 ).

We assume that the server manager has set a service price 𝑃 and we consider the arrival of a customer to
the system.

To facilitate the reading of the paper, we will adopt the following notations which depend only on the system
parameters:

𝐴 = 𝑅− 𝑣 − 𝐶

(︂
𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)

(𝑟 + 𝜃)(𝑟𝜇− 𝜆(𝑟 + 𝜃))2

)︂
, and 𝐵 = 𝑅− 𝑣 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

𝑟𝜇(𝑟 + 𝜃)

)︂
· (5.1)

Considering the condition stability 𝑟𝜇 > 𝜆(𝑟 + 𝜃), we deduce the relation 𝑟𝜇 > 𝜆𝑞(𝑟 + 𝜃) and, then, the
inequality: 𝐴 < 𝐵.

Since 𝐴 and 𝐵 depend only on the system parameters, then the values of 𝐴 and 𝐵 can have different signs.
Indeed, if for example the value of the outside opportunity 𝑣 or/and the waiting cost 𝐶 are more important
than the value of the service 𝑅, we will have 𝐵 ≤ 0. In the opposite case, i.e. if the value of the service 𝑅 is
more attractive than the value proposed by the outside opportunity 𝑣 or/and the waiting cost 𝐶, we can have
the cases where 𝐴 ≥ 0 (which implies 𝐵 > 0) or 𝐵 > 0 and 𝐴 ≤ 0. These different cases conduce to important
results, such as the ones related to the Stackelberg equilibrium and the socially optimal price (see Sects. 5 and 6
respectively).

The following lemma gives us the explicit forms of the best response of a customer arriving at the system
and informed about the price 𝑃 chosen by the server manager.

Lemma 5.1. In the totally unobservable 𝑀/𝑀/1 queue with an unreliable server, there exists a unique best
response BR𝐶(𝑃 ), for a customer arriving at the system and informed about the price 𝑃 ≥ 0 chosen by the
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server manager, which takes the form:

BR𝐶(𝑃 ) = 𝑞*(𝑃 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑃 ≥ 𝑅− 𝑣;
0, if 𝑃 < 𝑅− 𝑣, 𝐵 ≤ 0;
1, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≥ 0, 𝑃 ∈ [0, 𝐴];

1
𝜆

(︁
𝜇𝑟

𝑟+𝜃 −
√︁

𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑃−𝑣)

)︁
, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≥ 0, 𝑃 ∈ [𝐴, 𝐵];

1
𝜆

(︁
𝜇𝑟

𝑟+𝜃 −
√︁

𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑃−𝑣)

)︁
, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≤ 0, 𝑃 ∈ [0, 𝐵];

0, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝑃 ≥ 𝐵,

(5.2)

where 𝑞*(𝑃 ) is the probability that the customer decides to join, knowing the fixed price 𝑃 .
The expected utility of the customer will take the form:

𝑈2(𝑃, 𝑞*(𝑃 )) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣, if 𝑃 ≥ 𝑅− 𝑣;
𝑣, if 𝑃 < 𝑅− 𝑣, 𝐵 ≤ 0;

𝑅− 𝑃 − 𝐶
(︁

𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝜇𝑟−𝜆(𝑟+𝜃))

)︁
, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≥ 0, 𝑃 ∈ [0, 𝐴];̃︀𝑈2(𝑃, 𝑞*(𝑃 )), if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≥ 0, 𝑃 ∈ [𝐴, 𝐵];̃︀𝑈2(𝑃, 𝑞*(𝑃 )), if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≤ 0, 𝑃 ∈ [0, 𝐵];

𝑣, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝑃 ≥ 𝐵,

where ̃︀𝑈2(𝑃, 𝑞*(𝑃 )) =
(︁
𝑅− 𝑃 − 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝜇𝑟−𝜆𝑞*(𝑃 )(𝑟+𝜃))

)︁)︁
𝑞*(𝑃 ) + 𝑣(1− 𝑞*(𝑃 )).

Proof. The proof of the Lemma 5.1 is provided in Appendix A.1. �

The Lemma 5.1 describes the strategic behavior of a potential customer, arriving at the system, according
to the price displayed by the server manager.

5.2. Study of the first stage of the game

Anticipating the strategic behavior of the customers BR𝐶(𝑃 ) = 𝑞*(𝑃 ) according to the price 𝑃 fixed by the
server manager, the utility of the server manager will take the form:

𝑈1(𝑃 ) = 𝑈1(𝑃, 𝑞*(𝑃 )) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑃 ≥ 𝑅− 𝑣;
0, if 𝑃 < 𝑅− 𝑣, 𝐵 ≤ 0;
𝜆𝑃, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≥ 0, 𝑃 ∈ [0, 𝐴];(︁

𝜇𝑟
𝑟+𝜃 −

√︁
𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑃−𝑣)

)︁
𝑃, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≥ 0, 𝑃 ∈ [𝐴, 𝐵];(︁

𝜇𝑟
𝑟+𝜃 −

√︁
𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑃−𝑣)

)︁
𝑃, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≤ 0, 𝑃 ∈ [0, 𝐵];

0, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝑃 ≥ 𝐵.

(5.3)

Based on the system parameters determining the values of 𝐴, 𝐵 and the price 𝑃 set by the server manager, the
relation (5.2) determines the joining probability of customers and the relation (5.3) determines the corresponding
server manager utility.

The objective of the server manager is to choose a service price maximizing his revenue. Having defined the
strategic behavior of the customers BR𝐶(𝑃 ) = 𝑞*(𝑃 ) and according to the service price 𝑃 which he chooses,
the server manager is expected to resolve the problem:

𝑈1(𝑃 ) = 𝑈1(𝑃, 𝑞*(𝑃 )) −→ max
𝑃≥0

. (5.4)



222 K. MEZIANI ET AL.

To facilitate the follow-up of the next reasonings for solving the problem (5.4), we introduce the notations:

𝐹 =
𝐿 + 𝐾1/3 +

(︁
𝐿(𝐿+24𝐷(𝑅−𝑣))

𝐾1/3

)︁
12𝐷

,

where ⎧⎨⎩𝐿 = 𝐶(𝜇𝜃 + (𝑟 + 𝜃)2),
𝐷 = 𝜇𝑟(𝑟 + 𝜃), and
𝐾 = 𝐿(𝐿2 + 36𝐷𝐿(𝑅− 𝑣) + 216𝐷2(𝑅− 𝑣)2) + 24

√
3
√︀

𝐿2𝐷3(𝐿 + 27𝐷(𝑅− 𝑣))(𝑅− 𝑣)3.

Theorem 5.2. The Stackelberg game, modeling the strategic behavior of the server manager and customers in
a totally unobservable 𝑀/𝑀/1 queue with an unreliable server, admits an equilibrium (𝑃 *, 𝛼* = (𝑞*(𝑃 ), 1 −
𝑞*(𝑃 ))) ∈ [0,∞)× [0, 1]2, where:

𝑃 * =

⎧⎪⎨⎪⎩
[0, +∞), if 𝐵 ≤ 0;
𝐴, if 𝐵 > 0, 𝐴 ≥ 0 and 0 ≤ 𝑃𝑚 ≤ 𝐴;
𝑃𝑚, if 𝐵 > 0, 𝐴 ≥ 0 and 𝐴 ≤ 𝑃𝑚 ≤ 𝐵;
𝑃𝑚, if 𝐵 > 0 and 𝐴 ≤ 0,

(5.5)

and

𝛼* =

⎧⎪⎨⎪⎩
(0, 1), if 𝐵 ≤ 0;
(1, 0), if 𝐵 > 0, 𝐴 ≥ 0 and 0 ≤ 𝑃𝑚 ≤ 𝐴;
(𝑞*(𝑃𝑚), 1− 𝑞*(𝑃𝑚)), if 𝐵 > 0, 𝐴 ≥ 0 and 𝐴 ≤ 𝑃𝑚 ≤ 𝐵;
(𝑞*(𝑃𝑚), 1− 𝑞*(𝑃𝑚)), if 𝐵 > 0 and 𝐴 ≤ 0,

(5.6)

where

𝑃𝑚 = 𝑅− 𝑣 − 𝐹, and 𝑞*(𝑃𝑚) =
1
𝜆

(︃
𝜇𝑟

𝑟 + 𝜃
−

√︃
𝐶𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)

(𝑟 + 𝜃)3(𝑅− 𝑃𝑚 − 𝑣)

)︃
· (5.7)

The expected revenue of the server manager at the Stackelberg equilibrium is:

𝑈*1 (𝑃 *, 𝑞*) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if 𝐵 ≤ 0;

𝜆

(︂
𝑅− 𝑣 − 𝐶

(︂
𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)

(𝑟+𝜃)(𝑟𝜇−𝜆(𝑟+𝜃))2

)︂)︂
, if 𝐵 > 0, 𝐴 ≥ 0 and 0 ≤ 𝑃𝑚 ≤ 𝐴;(︁

𝜇𝑟
𝑟+𝜃 −

√︁
𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)

(𝑟+𝜃)3(𝑅−𝑃 𝑚−𝑣)

)︁
𝑃𝑚, if 𝐵 > 0, 𝐴 ≥ 0 and 𝐴 ≤ 𝑃𝑚 ≤ 𝐵;(︁

𝜇𝑟
𝑟+𝜃 −

√︁
𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)

(𝑟+𝜃)3(𝑅−𝑃 𝑚−𝑣)

)︁
𝑃𝑚, if 𝐵 > 0 and 𝐴 ≤ 0.

The expected utility of a customer at the Stackelberg equilibrium is given by:

𝑈*2 (𝑃 *, 𝑞*) =

⎧⎪⎪⎨⎪⎪⎩
𝑣, if 𝐵 ≤ 0;
𝑅−𝐴− 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆(𝑟+𝜃))

)︁
, if 𝐵 > 0, 𝐴 ≥ 0 and 0 ≤ 𝑃𝑚 ≤ 𝐴;

𝑈2(𝑃𝑚, 𝑞*(𝑃𝑚)), if 𝐵 > 0, 𝐴 ≥ 0 and 𝐴 ≤ 𝑃𝑚 ≤ 𝐵;
𝑈2(𝑃𝑚, 𝑞*(𝑃𝑚)), if 𝐵 > 0 and 𝐴 ≤ 0;

where

𝑈2(𝑃𝑚, 𝑞*(𝑃𝑚)) =
(︂

𝑅− 𝑃𝑚 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞*(𝑃𝑚)(𝑟 + 𝜃))

)︂)︂
𝑞*(𝑃𝑚) + 𝑣(1− 𝑞*(𝑃𝑚)). (5.8)

Proof. The proof of this theorem is given in Appendix A.2. �
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Given the characteristics of his system defining the values of 𝐴, 𝐵 and anticipating the strategic behavior
of customers depending on the service price, the server manager, playing the role of leader, chooses the price
maximizing his utility, according to the relation (5.5). For a service price 𝑃 * chosen by the server manager, the
strategic choice of a customer arriving at the system is described by the relation (5.6).

The results of the Theorem 5.2 can be synthesized as an algorithm, describing the decision-making process
of the equilibrium service price to be applied to the server manager (according to the system parameters and
the anticipated customer behavior presented in the Lemma 5.1) (see Appendix A.3).

Remark 5.3. The difference that separates our approach on the strategic behavior of agents in queueing
systems from the majority of studies that exist on this topic in the literature essentially reduces to the assumption
assumed since Naor’s work and in the majority of works that deal with strategic behavior in queueing systems.
This assumption states that customers are “risk neutral” and we found it in almost all works (see, [12] in
Sect. 1.4, page 05).

This assumption that customers are “risk neutral” has a strong influence on the proposed model in general,
and more particularly, on the method of its resolution (represented by the indifference principle). Therefore, the
researchers working on strategic queueing systems propose to model and solve the game with a non-standard
infinite game where the players are all the customers (past and future) and a server manager. This situation
consists of two stages, where in the first stage the server manager seeks to maximize his revenue and in the
second stage, a game between customers is assumed, where a symmetric equilibrium is found for the game
between customers by considering the customers are risk neutral.

In our approach, we assumed that the server manager considers the customers to be homogeneous according
to their decision making (i.e. they have the same expected utility function) and they have an optimizer profile
(i.e. the customers have an optimizing behavior and are not risk neutral). This leads us to consider that the
server manager will adopt “the same behavior” with all the customers that come to his server. The resulting
model is a Stackelberg game.

In order to explain the difference between the two approaches (presented in this paper and the so-called
standard approach), we give the following numerical example.

For the given parameters of the system 𝑅 = 40, 𝑣 = 3, 𝐶 = 1, 𝜇 = 4, 𝑟 = 3, 𝜃 = 1 and 𝜆 = 2.5, we have:

– The Stackelberg equilibrium obtained, by our approach in Theorem 5.2, is
(𝑃 *, 𝛼* = (𝑞*, 1− 𝑞*)) = (31.2471, (0.8771, 1229)).

– The equilibrium obtained, by the standard (classical) approach, will be of the following form:
(𝑃𝑆 , 𝛼𝑆 = (𝑞𝑆 , 1− 𝑞𝑆)) =

(︁
𝑅− 𝑣 − 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆(𝑟+𝜃))

)︁
, (1, 0)

)︁
= (34.5, (1, 0)).

The corresponding server manager and customer utilities are:

𝑈1(𝑃 *, 𝑞*) = 68.5134 < 𝑈1(𝑃𝑆 , 𝑞𝑆) = 86.2600, (5.9)
𝑈2(𝑃 *, 𝑞*) = 6.6877 > 𝑈2(𝑃𝑆 , 𝑞𝑆) = 3 = 𝑣. (5.10)

From (5.9) and (5.10), we see that the revenue of the server manager with the equilibrium (𝑃𝑆 , 𝛼𝑆) obtained by
the classical approach is higher than the revenue of the server manager with the Stackelberg equilibrium (𝑃 *, 𝛼*)
obtained by our approach. This is justified by the fact that risk neutral customers join the system as soon as their
utility is greater than or equal to the outside opportunity. But, if we assume that customers have an optimizer
profile, they will choose the mixed strategy 𝛼* = (𝑞*, 1 − 𝑞*), because it guarantees a higher payoff. Indeed, if
an optimizer customer arrives at the server and finds the price 𝑃𝑆 , fixed by the server, then he will choose to
join the system with probability 𝑞*(𝑃𝑆) and will receive a profit of 𝑈2(𝑃𝑆 , 𝑞*(𝑃𝑆)) = 4.0505 > 3 = 𝑈2(𝑃𝑆 , 𝑞𝑆),
so he will deviate from the equilibrium strategy 𝑞𝑆 .

Thus, the assumption that customers are risk-neutral must be fully assumed in the standard approach.
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6. The social welfare

The analysis of the strategic behaviors of a server manager and customers has been widely studied in the
literature with different modeling approaches. Approaches using game theory tools can be divided into two main
families: non-cooperative games in a strategic form (also known as a normal form) (see [9, 10, 17, 21, 22, 28, 31],
. . . ) and non-cooperative games in a dynamic form (see [6,19,25,27,35], . . . ). Most of the works can be integrated
into the class of non-cooperative games in strategic form, even if the game models are not always formulated
in explicit form. However, in recent years, a number of studies has been carried out to model the strategic
interactions of decision makers in queueing systems, which use dynamic game tools (see [5, 6, 14, 19, 27, 34, 35],
. . . ).

Based on the assumption that in reality, a server (rather his manager) behaves as a leader, towards customers,
to impose his service price, who are then free to choose to join the system to be served, or to choose an outside
opportunity (e.g. a competing server). In this paper, we have modeled these strategic interactions between the
server manager and customers in the form of a Stackelberg game, where the server manager is considered as
a leader and a potential customer as a follower. In the first part of the paper, we formulated the terms of
existence and the explicit form of Stackelberg equilibrium (the equilibrium price for the server manager and the
equilibrium joining probability for a potential customer).

In this part, we will study the social welfare problem. Generally, the social planner aims to motivate cus-
tomers to adopt a socially optimal strategy and the server manager to select an appropriate service price to
encourage selfish customers to behave in a socially optimal way. Naor [21] showed that when customers can
see the queue before joining it, the server will charge a higher price than the socially optimizer. Since this
work, the authors have focused on whether the queueing systems with strategic customers are socially efficient.
Edelson and Hildebrand [10] showed that when customers make their decisions without observing the queue, the
equilibrium price maximizes social welfare. Afterward, Chen and Frank [6] showed the equivalence between the
price displayed by the server and the maximum of the social welfare if the waiting cost is linear. Otherwise, this
equivalence does not hold in general. Recently, Wang and Zhang [27] studied how the social planner determines
the price to charge a joining customer in the 𝑀/𝑀/1 retrial queue with delayed vacations.

In this section, we follow the same principle of reasoning as the first part of the paper, to define the function of
the social welfare of the system. Indeed, the question that arises in the system we are dealing with is as follows:
is it more favorable for the server manager, acting as a leader, to choose a Stackelberg equilibrium service price,
taking into account his own interests as a priority and at the same time imposing non-cooperative behavior of
customers or to choose a socially optimal price, taking into account his individual interests and those of his
customers.

Thus, in the specific context of our modeling, the social planner aims to motivate the server manager to
adopt a socially optimal price and the customers to select an appropriate strategy.

To do this, we adapt below the definition of the social welfare function of the system, for which the decision
variable will be the price that the leader will have to choose. Then, we find the socially optimal price that
maximizes social welfare, which we compare to the Stackelberg equilibrium already established in Section 5.

Recall that the social welfare function is defined as the sum of the surplus of the server manager and the
customers. However, the server surplus SS(𝑃 ) is represented by his expected revenue and the customers surplus
CS(𝑃 ) is represented by the sum of their utilities, given respectively by:

SS(𝑃 ) = 𝜆𝑞𝑃,

and

CS(𝑃 ) = 𝜆

(︂(︂
𝑅− 𝑃 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞(𝑟 + 𝜃))

)︂)︂
𝑞 + 𝑣(1− 𝑞)

)︂
.

Here, the server manager, acting as a social planner, makes the first move, choosing the service price that
maximizes the social welfare function. Therefore, customers play their best response against the social price
chosen by the server manager.
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Having defined the strategic behavior of the customers BR𝐶(𝑃 ) = 𝑞*(𝑃 ) given by (5.2) and according to the
service price 𝑃 chosen by the server manager, the social planner is expected to resolve the following problem:

SW(𝑃 ) = SS(𝑃 ) + CS(𝑃 ) (6.1)

= 𝜆𝑞*(𝑃 )
(︂

𝑅− 𝑣 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞*(𝑃 )(𝑟 + 𝜃))

)︂)︂
+ 𝜆𝑣 −→ max

𝑃≥0
,

i.e. find a socially optimal price:
𝑃 *SW ∈ 𝒫*SW = arg max

𝑃≥0
SW(𝑃 ).

By substituting 𝑞*(𝑃 ), given by (5.2), in (6.1), the social welfare function SW(𝑃 ) takes the following form:

SW(𝑃 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝑣, if 𝑃 ≥ 𝑅− 𝑣;
𝜆𝑣, if 𝑃 < 𝑅− 𝑣, 𝐵 ≤ 0;

𝜆
(︁
𝑅− 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆(𝑟+𝜃))

)︁)︁
, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≥ 0, 𝑃 ∈ [0, 𝐴];̃︂SW(𝑃 ), if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≥ 0, 𝑃 ∈ [𝐴, 𝐵];̃︂SW(𝑃 ), if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝐴 ≤ 0,𝑃 ∈ [0, 𝐵];

𝜆𝑣, if 𝑃 < 𝑅− 𝑣, 𝐵 > 0, 𝑃 ≥ 𝐵,

(6.2)

where ̃︂SW(𝑃 ) = 𝜆̃︀𝑞(𝑃 )
(︁
𝑅− 𝑣 − 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆̃︀𝑞(𝑃 )(𝑟+𝜃))

)︁)︁
+ 𝜆𝑣 and ̃︀𝑞(𝑃 ) = 1

𝜆

(︁
𝜇𝑟

𝑟+𝜃 −
√︁

𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑃−𝑣)

)︁
.

Theorem 6.1. In the totally unobservable 𝑀/𝑀/1 queue with an unreliable server, the set 𝒫*SW of socially
optimal solutions of the social welfare problem (6.1) is the set of 𝑃 *SW, given by:

𝒫*SW = arg max
𝑃≥0

SW(𝑃 ) =

⎧⎪⎨⎪⎩
[0, +∞), if 𝐵 ≤ 0;
[0, 𝐴], if 𝐵 > 0 and 𝐴 ≥ 0;
{0}, if 𝐵 > 0 and 𝐴 ≤ 0.

(6.3)

The socially optimal joining probability is given as follows:

𝑞*SW =

⎧⎪⎨⎪⎩
0, if 𝐵 ≤ 0;
1, if 𝐵 > 0 and 𝐴 ≥ 0;

𝑞SW = 1
𝜆

(︁
𝜇𝑟

𝑟+𝜃 −
√︁

𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑣)

)︁
, if 𝐵 > 0 and 𝐴 ≤ 0;

The optimal value SW* of the social welfare is:

SW* =

⎧⎪⎪⎨⎪⎪⎩
𝜆𝑣, if 𝐵 ≤ 0;

𝜆
(︁
𝑅− 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆(𝑟+𝜃))

)︁)︁
, if 𝐵 > 0 and 𝐴 ≥ 0;

𝜆𝑞SW

(︁
𝑅− 𝑣 − 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆𝑞SW(𝑟+𝜃))

)︁)︁
+ 𝜆𝑣, if 𝐵 > 0 and 𝐴 ≤ 0.

Proof. The proof of this theorem is presented in Appendix A.4. �

The Theorem 6.1 gives us clearly the socially optimal price for different cases with the values of 𝐴 and 𝐵.
These results are synthesized as an Algorithm, describing the decision-making process of the social service price
to be applied to the server manager. (see Appendix A.5).
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After having obtained the Stackelberg equilibrium price 𝑃 *, given by (5.5) and the socially optimal price
𝑃 *SW given by (6.3), the server manager, as a leader, must choose between the equilibrium price and the social
price it must apply to price his services. If its utility function is his only decision criterion, then the following
Theorem gives the price to be chosen according to the parameters of the system.

Theorem 6.2. In the totally unobservable 𝑀/𝑀/1 queue with an unreliable server, the server manager is
indifferent to choose between the Stackelberg equilibrium price 𝑃 * and the socially optimal price 𝑃 *SW in these
cases:

– 𝐵 ≤ 0,
– 𝐵 > 0 and 𝐴 ≥ 0, if 0 ≤ 𝑃𝑚 ≤ 𝐴 and 𝑃 *SW = 𝐴.

Otherwise, the server manager has no interest to choose the socially optimal price 𝑃 *SW in these cases:

– 𝐵 > 0 and 𝐴 ≥ 0, if 0 ≤ 𝑃𝑚 ≤ 𝐴 and ∀𝑃 *SW ∈ [0, 𝐴),
– 𝐵 > 0 and 𝐴 ≥ 0, if 𝐴 < 𝑃𝑚 ≤ 𝐵 and ∀𝑃 *SW ∈ [0, 𝐴],
– 𝐵 > 0 and 𝐴 ≤ 0.

Proof. The proof of this theorem appears in Appendix A.6. �

7. Numerical application

In this section, we present numerical examples that illustrate the effects of some system parameters on the
equilibrium strategies obtained for the customers and the server manager, i.e. the equilibrium joining probability
of customers and the service price, while ensuring that the stability condition 𝜇𝑟 > 𝜆(𝑟 + 𝜃) is verified.

We first studied numerically the effects and the influence of the service price on the joining probability into
the system.

Figure 3 represents the variations of the joining probability according to the price 𝑃 , with 𝑅 = 40, 𝑣 = 3,
𝐶 = 1, 𝜇 = 4, 𝑟 = 3, 𝜃 = 1 and 𝜆 = 2.5. In this figure, we observe that the joining probability to the system
equal to 1 when the service price is less than or equal to the acquisition price of all customers 𝐴. On the other
hand, the joining probability decreases as soon as the service price exceeds the price 𝐴, until it annulled for a
price 𝑃 ≥ 𝐵. Which means that when 𝑃 ≥ 𝐵, all customers choose the outside opportunity.

The customers behavior is logical. All customers decide to join the system for prices less than or equal to
𝐴, and a proportion of customers decides to choose the outside opportunity when the service price exceeds 𝐴.
Therefore, the number of customers who join the system increases with the decreasing of the service price and
the number of customers who choose the outside opportunity increases with the increase of the service price.
Moreover, in the same figure, we can observe that the server manager will choose a service price 𝑃 * = 𝑃𝑚 which
maximizes his revenue. For a service price 𝑃 * = 𝑃𝑚, we note that a proportion of customers decides to join the
system and the others decide on the outside opportunity. In the case, where 𝑃 * = 𝐴, all customers decide to
join the system.

In Figures 4 and 5, we study the variations of the joining probability as a function of service price for different
values of 𝑟 and 𝜃 respectively, in order to clarify the influence of the reliability parameters on the service price.
Figure 4 shows that an increase in the repair rate 𝑟 results an increase in the joining probability and the value
of the equilibrium service price. So, for example, for 𝑟 = 3, the acquisition price of all customers 𝐴 equals to 22,
but increasing 𝑟 to 6, we get a price 𝐴 = 32.70 which is higher. On the other hand, through the Figure 5 where
the failure rate 𝜃 is varied, the increase of 𝜃 causes a decrease in the joining probability to the system and the
value of the equilibrium service price. When customers arrive at the system, they observe the parameters of the
system, so for a high repair rate 𝑟 customers decide to join the system because the average repair time is very
low, but when the failure rate 𝜃 is high, the number of failures is also high, which discourages a proportion of
customers and decides on the outside opportunity, even if the repair rate is high.
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Figure 3. Joining probability vs. Price for 𝑅 = 40, 𝑣 = 3, 𝐶 = 1, 𝜇 = 4, 𝑟 = 3, 𝜃 = 1 and 𝜆 = 2.5.

Figure 4. Joining probabilities vs. Price for 𝑅 = 40, 𝑣 = 3, 𝐶 = 1, 𝜇 = 4, 𝜃 = 1 and 𝜆 = 2.5.

Figures 6 and 7 show the server’s manager revenue based on the service price in the case 𝐵 > 0 and 𝐴 ≥ 0,
and Figure 8 in the case 𝐵 > 0 and 𝐴 ≤ 0. Figure 6 presents the server’s manager revenue with the parameters
𝑅 = 40, 𝑣 = 3, 𝐶 = 1, 𝜇 = 4, 𝑟 = 3, 𝜃 = 1 and 𝜆 = 2.5, and Figure 7 shows the server’s manager revenue with
the parameters 𝑅 = 30, 𝑣 = 1, 𝐶 = 1, 𝜇 = 3, 𝑟 = 2, 𝜃 = 1 and 𝜆 = 1. In this figures, we observe that the server’s
manager revenue is represented by a straight line for all 𝑃 ≤ 𝐴 and by a concave curve for 𝑃 > 𝐴. The optimal
price 𝑃 * that the server manager must choose is 𝑃𝑚 for the Figure 6 and 𝐴 for the Figure 7. Therefore, there
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Figure 5. Joining probabilities vs. Price for 𝑅 = 40, 𝑣 = 3, 𝐶 = 1, 𝜇 = 4, 𝑟 = 6 and 𝜆 = 2.5.

Figure 6. 𝑈1(𝑃 ) vs. Price for 𝑅 = 40, 𝑣 = 3, 𝐶 = 1, 𝜇 = 4, 𝑟 = 3, 𝜃 = 1 and 𝜆 = 2.5.

is only a proportion of customers who will decide to join the system if 𝑃 * = 𝑃𝑚 (see Fig. 3) and all customers
decide to join the system if 𝑃 * = 𝐴. Figure 8 represents the server’s manager revenue in the case 𝐵 > 0 and
𝐴 ≤ 0 with the parameters 𝑅 = 30, 𝑣 = 5, 𝐶 = 2, 𝜇 = 4, 𝑟 = 3, 𝜃 = 1 and 𝜆 = 2.5. In this figure, we see
that the server’s manager revenue is represented by a concave curve and the optimal price 𝑃 * that the server
manager must choose is 𝑃𝑚, because it is the price that gives the maximum revenue.
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Figure 7. 𝑈1(𝑃 ) vs. Price for 𝑅 = 30, 𝑣 = 1, 𝐶 = 1, 𝜇 = 3, 𝑟 = 2, 𝜃 = 1 and 𝜆 = 1.

Figure 8. 𝑈1(𝑃 ) vs. Price for 𝑅 = 30, 𝑣 = 5, 𝐶 = 2, 𝜇 = 4, 𝑟 = 3, 𝜃 = 1 and 𝜆 = 2.5.

8. Conclusion

In this paper, we studied the interactions between the strategic behaviors of the server manager and the
customers in an 𝑀/𝑀/1 queueing system with unreliable server where the state of the system is totally unob-
servable. This situation was modeled as Stackelberg game. Then, we determined the equilibrium strategies for
the customers and the server manager, namely: the joining probability and the service price at the equilibrium.
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We also studied the social welfare problem and determined the socially optimal price that maximizes the social
welfare. We showed that, for the server manager, the Stackelberg equilibrium price does not always coincide
with the socially optimal price. The sensitivity of the server manager revenue and the equilibrium joining
probability of customers with respect to the service price and some main parameters of the system are explored
via numerical experiments. These numerical results can give an idea to the service manager about the poli-
cies to be implemented to insure the proper system functioning (economic, service, breakdowns and repairs
parameters), while satisfying the customers and the server manager (maximizing their utilities).

There are still many questions and extensions that can be examined for future works. For example, studying
the strategic behavior of agents (customers, server manager, social optimizer) in another types of information,
such as the totally observable case, the almost observable case, and the almost unobservable case. Then, make
a comparison between these types of information, in order to identify the optimal policy to be followed by the
manager or the service provider (i.e. reveal information about the length of the queue or not, reveal information
about the state of the server or not, . . . etc). This study can be also generalized in several directions. One possible
direction is to study service pricing and strategic behavior of agents (customers, servers, social optimizer) in the
semi-Markovian or in the non-Markovian queueing systems with one or more servers subject to random failures.

Appendixes

Appendix A.1.

Recall that the customer’s objective is to maximize its utility, i.e. to solve the problem:

𝑈2(𝑃, 𝑞) −→ max
𝑞∈[0,1]

. (A.1)

To solve the problem (A.1), we calculate the first and the second derivatives of the utility function, which
are given by:

𝜕𝑈2(𝑃, 𝑞)
𝜕𝑞

= 𝑅− 𝑃 − 𝑣 − 𝐶

(︂
𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)

(𝑟 + 𝜃)(𝜇𝑟 − 𝜆𝑞(𝑟 + 𝜃))2

)︂
; (A.2)

𝜕2𝑈2(𝑃, 𝑞)
𝜕𝑞2

= −2𝜆𝐶

(︂
𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)
(𝜇𝑟 − 𝜆𝑞(𝑟 + 𝜃))3

)︂
· (A.3)

From (A.3), and taking into account the stability condition, we deduce:

𝜕2𝑈2(𝑃, 𝑞)
𝜕𝑞2

< 0, ∀𝑞 ∈ [0, 1], (A.4)

which allows us to conclude that 𝑈2 is strictly concave on [0, 1] and it can only admit one maximum point in
the interval [0, 1].

We are looking for the solution of the problem (A.1) according to the price 𝑃 set by the server manager. For
this, we will distinguish the following possible cases:

I. If 𝑃 ≥ 𝑅− 𝑣, then 𝜕𝑈2(𝑃,𝑞)
𝜕𝑞 < 0, ∀𝑞 ∈ [0, 1], and the best customer response takes the value:

BR𝐶(𝑃 ) = arg max
0≤𝑞≤1

𝑈2(𝑃, 𝑞) = 0,

i.e. that the customer chooses with certainty the outside opportunity.
II. If 𝑃 < 𝑅− 𝑣, we can distinguish different possible cases:

Case 1. 𝐵 ≤ 0.
Since

𝑅− 𝑣 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞(𝑟 + 𝜃))

)︂
≤ 𝑅− 𝑣 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

𝑟𝜇(𝑟 + 𝜃)

)︂
, ∀𝑞 ∈ [0, 1],
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we deduce that:

𝑅− 𝑃 − 𝑣 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞(𝑟 + 𝜃)

)︂
≤ 𝐵 ≤ 0, ∀𝑞 ∈ [0, 1].

Then, for all 𝑞 ∈ [0, 1], we have:

𝑈2(𝑃, 𝑞) =
(︂

𝑅− 𝑃 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞(𝑟 + 𝜃))

)︂)︂
𝑞 + 𝑣(1− 𝑞) ≤ 𝑣 = 𝑈2(𝑃, 𝑞*(𝑃 ) = 0).

Hence, the best customer response BR𝐶(𝑃 ) is:

BR𝐶(𝑃 ) = arg max
0≤𝑞≤1

𝑈2(𝑃, 𝑞) = 0.

Case 2. 𝐵 > 0 and 𝐴 ≥ 0.
Case 2.1. 0 ≤ 𝑃 ≤ 𝐴.

Since
𝜕𝑈2(𝑃, 𝑞)

𝜕𝑞
= 𝑅− 𝑃 − 𝑣 − 𝐶

(︃
𝜇𝑟
(︀
𝜇𝜃 + (𝑟 + 𝜃)2

)︀
(𝑟 + 𝜃)(𝜇𝑟 − 𝜆𝑞(𝑟 + 𝜃))2

)︃
≥ 𝐴− 𝑃 ≥ 0, ∀𝑞 ∈ [0, 1],

we deduce that the function 𝑈2 is increasing in 𝑞 on [0, 1] and reaches its maximum at the point 𝑞*(𝑃 ) = 1.
Thus, the best customer response BR𝐶(𝑃 ) is:

BR𝐶(𝑃 ) = arg max
0≤𝑞≤1

𝑈2(𝑃, 𝑞) = 1.

Case 2.2. 𝐴 ≤ 𝑃 ≤ 𝐵.
The necessary condition of the first order 𝜕𝑈2(𝑃,𝑞)

𝜕𝑞 = 0, gives us two possible solutions:

𝑞1(𝑃 ) =
1
𝜆

(︃
𝜇𝑟

𝑟 + 𝜃
−

√︃
𝐶𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)
(𝑟 + 𝜃)3(𝑅− 𝑃 − 𝑣)

)︃
, (A.5)

and

𝑞2(𝑃 ) =
1
𝜆

(︃
𝜇𝑟

𝑟 + 𝜃
+

√︃
𝐶𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)
(𝑟 + 𝜃)3(𝑅− 𝑃 − 𝑣)

)︃
· (A.6)

The second solution (A.6) is rejected because 𝜇𝑟 > 𝜆(𝑟 + 𝜃) and therefore 𝑞2(𝑃 ) > 1. On the other hand,
it is easy to verify that the solution 𝑞1(𝑃 ), given by (A.5), belongs to the interval [0, 1].
Therefore, whatever the price 𝑃 ∈ [𝐴, 𝐵], chosen by the server manager, the best customer response will
be:

BR𝐶(𝑃 ) =
1
𝜆

(︃
𝜇𝑟

𝑟 + 𝜃
−

√︃
𝐶𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)
(𝑟 + 𝜃)3(𝑅− 𝑃 − 𝑣)

)︃
· (A.7)

Case 3. 𝐵 > 0, 𝐴 ≤ 0 and 0 ≤ 𝑃 ≤ 𝐵.
With an analogous reasoning of the Case 2.2, we deduce that the solution (A.6) will be rejected, and the
solution (A.5) belongs to the interval [0, 1].
Hence, the best customer response BR𝐶(𝑃 ) facing any price 𝑃 ∈ [0, 𝐵], takes the form (A.7).

Case 4. 𝐵 > 0 and 𝑃 ≥ 𝐵.
For 𝑞 ∈ [0, 1], we have:

𝑈2(𝑃, 𝑞) =
(︂

𝑅− 𝑣 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞(𝑟 + 𝜃))

)︂)︂
𝑞 − 𝑃𝑞 + 𝑣.
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Since
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞(𝑟 + 𝜃))
≥ 𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)𝑟𝜇
,∀𝑞 ∈ [0, 1],

then:
𝑈2(𝑃, 𝑞) ≤ 𝐵𝑞 − 𝑃𝑞 + 𝑣 = (𝐵 − 𝑃 )𝑞 + 𝑣 ≤ 𝑣 = 𝑈2(𝑃, 𝑞 = 0), ∀𝑞 ∈ [0, 1].

Hence, the best customer response is: BR𝐶(𝑃 ) = 0.

The analysis of the different possible cases (see Cases I–II-4) shows that there is, in each of them, only one
single stationary point of the function 𝑈2 in the interval [0, 1], which, taking into account (A.4), will be the
unique solution of the problem (A.1) for each price 𝑃 fixed by the server.

Appendix A.2.

I. If 𝐵 ≤ 0, according to (5.3), we have 𝑈1(𝑃 ) = 0,∀𝑃 ∈ [0, +∞), then

𝑃 * ∈ arg max
𝑃∈[0,+∞)

𝑈1(𝑃 ) = [0, +∞).

II. If 𝐵 > 0 and 𝐴 ≥ 0.
II.1. For 𝑃 ∈ [0, 𝐴].

In this case, according to (5.3), the expected utility function of the server manager takes the form:

𝑈1(𝑃 ) = 𝜆𝑃,

which is linear with respect of 𝑃 , reaches, then, its maximum at the point 𝑃 * = 𝐴, i.e.

𝑃 * = arg max
𝑃∈[0,𝐴]

𝑈1(𝑃 ) = 𝐴 = 𝑅− 𝑣 − 𝐶

(︃
𝜇𝑟
(︀
𝜇𝜃 + (𝑟 + 𝜃)2

)︀
(𝑟 + 𝜃)(𝑟𝜇− 𝜆(𝑟 + 𝜃))2

)︃
·

Hence,

max
0≤𝑃≤𝐴

𝑈1(𝑃 ) = 𝑈1(𝐴) = 𝜆

(︂
𝑅− 𝑣 − 𝐶

(︂
𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)

(𝑟 + 𝜃)(𝑟𝜇− 𝜆(𝑟 + 𝜃))2

)︂)︂
·

II.2. For 𝑃 ∈ [𝐴, 𝐵].
According to (5.3), the utility of the server manager is written:

𝑈1(𝑃 ) =

(︃
𝜇𝑟

𝑟 + 𝜃
−

√︃
𝐶𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)
(𝑟 + 𝜃)3(𝑅− 𝑃 − 𝑣)

)︃
𝑃. (A.8)

We have:

𝜕𝑈1(𝑃 )
𝜕𝑃

=
𝜇𝑟

𝑟 + 𝜃
+

(−2𝑅 + 𝑃 + 2𝑣)
√︁

𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑃−𝑣)

2(𝑅− 𝑃 − 𝑣)
· (A.9)

The necessary condition of optimality gives us only one feasible solution:

𝑃𝑚 = 𝑅− 𝑣 − 𝐹. (A.10)

Since

𝜕2𝑈1(𝑃 )
𝜕𝑃 2

=
(−4𝑅 + 𝑃 + 4𝑣)

√︁
𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑃−𝑣)

4(𝑅− 𝑃 − 𝑣)2
< 0,

then the function 𝑈1(𝑃 ) is strictly concave and 𝑃𝑚 is the maximum point.
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– If 𝐴 ≤ 𝑃𝑚 ≤ 𝐵, then the maximum point of 𝑈1 in [𝐴, 𝐵] is reached at the point 𝑃𝑚 defined in
(A.10).

– If 𝑃𝑚 ≤ 𝐴, we have 𝜕𝑈1(𝑃 )
𝜕𝑃 < 0 in [𝑃𝑚, 𝐵], and the maximum point of 𝑈1 in [𝐴, 𝐵] is reached at the

point 𝐴.
Hence,

𝑃 * = arg max
𝑃∈[𝐴,𝐵]

𝑈1(𝑃 ) =
{︂

𝑃𝑚, if 𝐴 ≤ 𝑃𝑚 ≤ 𝐵;
𝐴, if 𝑃𝑚 ≤ 𝐴.

max
𝐴≤𝑃≤𝐵

𝑈1(𝑃 ) = 𝑈1(𝑃 *) =

(︃
𝜇𝑟

𝑟 + 𝜃
−

√︃
𝐶𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)

(𝑟 + 𝜃)3(𝑅− 𝑃 * − 𝑣)

)︃
𝑃 *.

III. If 𝐵 > 0 and 𝐴 ≤ 0. For 𝑃 ∈ [0, 𝐵].
According to (5.3), the utility function 𝑈1(𝑃 ) of the server manager takes the form (A.8), and the necessary
condition of optimality gives one feasible solution 𝑃𝑚 defined by (A.10).
Since 𝑈1(0) = 𝑈1(𝐵) = 0 and from (A.9), 𝜕2𝑈1(𝑃 )

𝜕𝑃 2 < 0, then the function 𝑈1(𝑃 ) is strictly concave on [0, 𝐵],
hence 𝑃𝑚 ∈ [0, 𝐵].
Therefore,

𝑃 * = arg max
𝑃∈[0,𝐵]

𝑈1(𝑃 ) = 𝑃𝑚,

and

max
0≤𝑃≤𝐵

𝑈1(𝑃 ) = 𝑈1(𝑃𝑚) =

(︃
𝜇𝑟

𝑟 + 𝜃
−

√︃
𝐶𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)

(𝑟 + 𝜃)3(𝑅− 𝑃𝑚 − 𝑣)

)︃
𝑃𝑚.

Appendix A.3.

Algorithm 1. Computation of the equilibrium service price and the revenue of the server manager.
1: In: 𝑅, 𝑣, 𝐶, 𝜇, 𝜆, 𝑟, 𝜃 // The system parameters
2: Out: 𝑃 *, 𝛼*, 𝑈*

1 , 𝑈*
2 // The service price, the customer’s decision, the expected utility of server manager and the

customer at equilibrium respectively
3: if (𝜆(𝑟 + 𝜃) < 𝑟𝜇 (If the stability condition is checked)) then
4: Compute 𝐴, 𝐵 and 𝑃 𝑚 using the relations (5.1) and (5.7) respectively;
5: if (𝐵 ≤ 0) then
6: 𝑃 * ∈ [0;+∞); 𝛼* = (𝑞*, 1− 𝑞*) = (0, 1);
7: 𝑈*

1 (𝑃 *, 𝑞*) = 0; 𝑈*
2 (𝑃 *, 𝑞*) = 𝑣;

8: else
9: if (𝐴 ≥ 0 and 0 ≤ 𝑃 𝑚 ≤ 𝐴) then

10: 𝑃 * = 𝐴; 𝛼* = (𝑞*, 1− 𝑞*) = (1, 0);

11: 𝑈*
1 (𝑃 *, 𝑞*) = 𝜆

(︁
𝑅− 𝑣 − 𝐶

(︁
𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)

(𝑟+𝜃)(𝑟𝜇−𝜆(𝑟+𝜃))2

)︁)︁
;

12: 𝑈*
2 (𝑃 *, 𝑞*) = 𝑅−𝐴− 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆(𝑟+𝜃))

)︁
;

13: else
14: 𝑃 * = 𝑃 𝑚; 𝛼* = (𝑞*, 1− 𝑞*) = (𝑞*(𝑃 𝑚), 1− 𝑞*(𝑃 𝑚)); // 𝑞*(𝑃 𝑚) is computed by using (5.7)

15: 𝑈*
1 (𝑃 *, 𝑞*) =

(︁
𝜇𝑟

𝑟+𝜃
−
√︁

𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)

(𝑟+𝜃)3(𝑅−𝑃 𝑚−𝑣)

)︁
𝑃 𝑚;

16: 𝑈*
2 (𝑃 *, 𝑞*) = 𝑈2(𝑃

𝑚, 𝑞*(𝑃 𝑚)); // 𝑈2(𝑃
𝑚, 𝑞*(𝑃 𝑚)) is given by (5.8)

17: end if
18: end if
19: end if
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Appendix A.4.

I. If 𝐵 ≤ 0, according to (6.2), the function SW(𝑃 ) does not depend on 𝑃 , then:

𝒫*SW = arg max
𝑃∈[0,+∞)

SW(𝑃 ) = [0, +∞), and SW* = max
𝑃≥0

SW(𝑃 ) = 𝜆𝑣.

II. If 𝐵 > 0 and 𝐴 ≥ 0. In this case, we have two sub-cases:
– For 𝑃 ∈ [0, 𝐴].

According to (6.2), we have SW(𝑃 ) = 𝜆
(︁
𝑅− 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆(𝑟+𝜃))

)︁)︁
,∀𝑃 ∈ [0, 𝐴]. Since the function SW

does not depend on 𝑃 , then:
𝒫*SW = arg max

𝑃∈[0,𝐴]
SW(𝑃 ) = [0, 𝐴].

Hence:

SW* = max
0≤𝑃≤𝐴

SW(𝑃 ) = 𝜆

(︂
𝑅− 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆(𝑟 + 𝜃))

)︂)︂
·

– For 𝑃 ∈ [𝐴, 𝐵].
According to (6.2), the social welfare function takes the form:

SW(𝑃 ) = 𝜆̃︀𝑞(𝑃 )
(︂

𝑅− 𝑣 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆̃︀𝑞(𝑃 )(𝑟 + 𝜃))

)︂)︂
+ 𝜆𝑣, (A.11)

where ̃︀𝑞(𝑃 ) = 1
𝜆

(︁
𝜇𝑟

𝑟+𝜃 −
√︁

𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑃−𝑣)

)︁
.

To solve the problem (6.1) we calculate the first derivative of the social welfare function (A.11), which is
given by:

𝜕SW(𝑃 )
𝜕𝑃

=
𝑃
√︁

𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑃−𝑣)

2(𝑃 −𝑅 + 𝑣)
· (A.12)

We have 𝜕SW(𝑃 )
𝜕𝑃 < 0,∀𝑃 ∈ [𝐴, 𝐵] and the maximum point of SW in [𝐴, 𝐵] is reached at the point 𝐴.

Hence:
𝒫*SW = arg max

𝑃∈[𝐴,𝐵]
SW(𝑃 ) = {𝐴},

and

SW* = max
𝐴≤𝑃≤𝐵

SW(𝑃 ) = SW(𝐴) = 𝜆

(︂
𝑅− 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆(𝑟 + 𝜃))

)︂)︂
·

III. If 𝐵 > 0 and 𝐴 ≤ 0. For 𝑃 ∈ [0, 𝐵].
In this case, according to (6.2), the social welfare function takes the form (A.11), its first derivative of the
form (A.12).
Since 𝜕SW(𝑃 )

𝜕𝑃 < 0,∀𝑃 ∈ [0, 𝐵], the maximum point of SW in [0, 𝐵] is reached at 0. Hence:

𝒫*SW = arg max
𝑃∈[0,𝐵]

SW(𝑃 ) = {0},

and

SW* = max
0≤𝑃≤𝐵

SW(𝑃 ) = SW(𝑃 *SW) = 𝜆𝑞SW

(︂
𝑅− 𝑣 − 𝐶

(︂
𝜇𝜃 + (𝑟 + 𝜃)2

(𝑟 + 𝜃)(𝑟𝜇− 𝜆𝑞SW(𝑟 + 𝜃))

)︂)︂
+ 𝜆𝑣,

where 𝑞SW = 1
𝜆

(︁
𝜇𝑟

𝑟+𝜃 −
√︁

𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)
(𝑟+𝜃)3(𝑅−𝑣)

)︁
.
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Appendix A.5.

Algorithm 2. Socially optimal solutions.
1: In: 𝑅, 𝑣, 𝐶, 𝜇, 𝜆, 𝑟, 𝜃 // The system parameters
2: Out: 𝒫*SW, 𝑞*SW, SW* // The set of socially optimal solutions, the socially optimal joining probability and the optimal

value of the social welfare respectively
3: if (𝜆(𝑟 + 𝜃) < 𝑟𝜇 (If the stability condition is checked)) then
4: Compute 𝐴, 𝐵 using the relation (5.1);
5: if (𝐵 > 0) then
6: if (𝐴 ≥ 0) then

7: 𝒫*SW = [0, 𝐴]; 𝑞*SW = 1; SW* = 𝜆
(︁
𝑅− 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆(𝑟+𝜃))

)︁)︁
;

8: else

9: 𝒫*SW = 0; 𝑞*SW = 1
𝜆

(︁
𝜇𝑟

𝑟+𝜃
−
√︁

𝐶𝜇𝑟(𝜇𝜃+(𝑟+𝜃)2)

(𝑟+𝜃)3(𝑅−𝑣)

)︁
;

10: SW* = 𝜆𝑞*SW

(︁
𝑅− 𝑣 − 𝐶

(︁
𝜇𝜃+(𝑟+𝜃)2

(𝑟+𝜃)(𝑟𝜇−𝜆𝑞*SW(𝑟+𝜃))

)︁)︁
+ 𝜆𝑣;

11: end if
12: else
13: 𝒫*SW = [0, +∞); 𝑞*SW = 0; SW* = 𝜆𝑣;
14: end if
15: end if

Appendix A.6.

Recall that the server manager revenue is: 𝑈1(𝑃 ) = 𝜆𝑞𝑃.

I. If 𝐵 ≤ 0, then, ∀𝑃 ∈ [0,∞), we have: 𝑞* = 𝑞*SW = 0, then:

𝑈1(𝑃 *) = 𝑈1(𝑃 *SW) = 0.

II. If 𝐵 > 0 and 𝐴 ≥ 0, we will distinguish three cases:
II.1. If 0 ≤ 𝑃𝑚 ≤ 𝐴 and 𝑃 *SW = 𝐴, then 𝑃 * = 𝑃 *SW = 𝐴 and

𝑈1(𝑃 *) = 𝑈1(𝑃 *SW) = 𝜆𝐴 = 𝜆

(︂
𝑅− 𝑣 − 𝐶

(︂
𝜇𝑟(𝜇𝜃 + (𝑟 + 𝜃)2)

(𝑟 + 𝜃)(𝑟𝜇− 𝜆(𝑟 + 𝜃))2

)︂)︂
·

II.2. If 0 ≤ 𝑃𝑚 ≤ 𝐴 and 𝑃 *SW ∈ [0, 𝐴), then

𝑈1(𝑃 *) = 𝑈1(𝐴) > 𝑈1(𝑃 *SW), ∀𝑃 *SW ∈ [0, 𝐴).

II.3. If 𝐴 < 𝑃𝑚 ≤ 𝐵, then 𝑈1(𝑃 *) = 𝑈1(𝑃𝑚) > 𝑈1(𝑃 *SW), ∀𝑃 *SW ∈ [0, 𝐴].
III. If 𝐵 > 0 and 𝐴 ≤ 0, then 𝑃 *SW = 0 and 𝑈1(𝑃 *) > 𝑈1(𝑃 *SW) = 0.
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