
RAIRO-Oper. Res. 55 (2021) 3743–3771 RAIRO Operations Research
https://doi.org/10.1051/ro/2021179 www.rairo-ro.org

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE
POLYNOMIALS USING POLYNOMIAL B-SPLINE FORM AND B-SPLINE

CONSISTENCY PRUNE APPROACH

Deepak D. Gawali1,*, Bhagyesh V. Patil2 , Ahmed Zidna3

and P. S. V. Nataraj4

Abstract. In this paper, we propose basic and improved algorithms based on polynomial B-spline form
for constrained global optimization of multivariate polynomial functions. The proposed algorithms are
based on a branch-and-bound framework. In improved algorithm we introduce several new ingredients,
such as B-spline box consistency and B-spline hull consistency algorithm to prune the search regions
and make the search more efficient. The performance of the basic and improved algorithm is tested
and compared on set of test problems. The results of the tests show the superiority of the improved
algorithm over the basic algorithm in terms of the chosen performance metrics for 7 out-off 11 test
problems. We compare optimal value of global minimum obtained using the proposed algorithms with
CENSO, GloptiPoly and several state-of-the-art NLP solvers, on set of 11 test problems. The results
of the tests show the superiority of the proposed algorithm and CENSO solver (open source solver for
global optimization of B-spline constrained problem) in that it always captures the global minimum to
the user-specified accuracy.

Mathematics Subject Classification. 90-08.

Received June 7, 2021. Accepted November 30, 2021.

1. Introduction

Generally constrained global optimization of nonlinear programming problems (NLP) is the study of how
to find the best (optimum) solution to a problem. The constrained global optimization of NLPs is stated as
follows.

min
𝑥∈x

𝑓(𝑥) (1.1)

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑝, (1.2)
ℎ𝑗(𝑥) = 0, 𝑗 = 1, 2, . . . , 𝑞. (1.3)

Keywords. Polynomial B-spline, global optimization, polynomial optimization, constrained optimization.

1 Vidyavardhini’s College of Engineering & Technology, Maharashtra, India.
2 John Deere Technology Centre, Pune, India.
3 LGIPM, University of Lorraine, Metz, France.
4 Systems and control Engineering, Indian Institute of Technology Bombay, Maharashtra, India.
*Corresponding author: deepak.gawali@vcet.edu.in

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021179
https://www.rairo-ro.org
https://orcid.org/0000-0001-6992-8032
mailto:deepak.gawali@vcet.edu.in
https://creativecommons.org/licenses/by/4.0

3744 D.D. GAWALI ET AL.

Figure 1. Bounds of a univariate polynomial of degree three are improved by increasing the
number of B-spline segments.

Branch-and-bound framework is commonly used for solving constrained global optimization problems [13,17].
For instance, several interval methods [14, 18, 19, 35] use this framework to find the global minimum of NLPs.
Since interval analysis methods require function evaluation, which leads to a computationally slow algorithm.
Compared with these methods the global optimization algorithm of multivariate polynomial using Bernstein
form, e.g. [26, 27] has the advantage that it avoids function evaluations which might be costly if the degree of
the polynomial is high. Global optimization of polynomials using the Bernstein approach needs transformation
of the given multivariate polynomial from its power form into its Bernstein form. The minimum and maximum
values of the Bernstein coefficients provide lower and upper bounds for the range of polynomial. Generally, this
range enclosure (i.e. bounds) obtained is overestimated in nature and can be improved by degree elevation.
Unfortunately, this process implies the increase of computation time.

In this paper we propose polynomial B-spline as an inclusion function [7,9,11,25]. The minimum and maximum
B-spline coefficients provide lower and upper bounds for the range of polynomial. The range enclosure obtained
using the polynomial B-spline form can be sharpened by increasing the number of B-spline segments, i.e.
without degree elevation as shown in Figure 1, which motivates us to use polynomial B-spline form as an
inclusion function. In the B-spline approach for unconstrained global optimization [29] a B-spline is used to
approximate the objective function with randomly scattered data using the least-square and pseudo-inverse
methods. The use of B-spline approach for constrained global optimization is given in [11, 13] and references
therein. Strength of the B-spline form, and thus solvers operating on the B-spline form, is the possibility for
exact representation of multivariate (piecewise) polynomials and approximate representation of any function by
sampling. Whereas we follow the procedure given in Section 2 by [21,22] to obtain the B-spline representation of
a multivariate polynomial. This procedure do not require sample points and corresponding function evaluations.
To the best of our knowledge, there are few papers in the literature on B-spline constrained global optimization
[11,13].

In this work, we propose B-spline based algorithms for solving non-convex nonlinear multivariate polynomial
programming problems, where the objective function 𝑓 and constraints (𝑔𝑖 & ℎ𝑗) are limited to be polynomial
functions. The proposed work extends the Bernstein method in [26, 27] and B-spline method in [11–13] for

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3745

constrained NLPs. The extensions are based on tools such as B-spline hull consistency (BsHC) and B-spline box
consistency (BsBC) to contract the variable domains. The merits of the proposed approach are: (i) it avoids
evaluation of the objective function and constraints; (ii) an initial guess to start optimization is not required,
only an initial search box bounding the region of interest; (iii) it guarantees that the global minimum is found to
a user-specified accuracy, and (iv) prior knowledge of stationary points is not required. Numerical performance
of the proposed basic and improved algorithms are tested on 11 standard benchmark problems taken from
[1, 4, 5, 10, 16] with dimensions varying from 2 to 7 and the number of constraints varying from 1 to 11. The
optimal value of global minimum obtained with the proposed algorithms for 3 test problems are also compared
with CENSO, GloptiPoly and some of the well-known NLP solvers. The rest of the paper is organized as follows.
In Section 2, we give the notations and definitions of the B-spline form. In Section 3, we present the 𝑏𝑎𝑠𝑖𝑐 B-
spline constrained global optimization and outline range enclosure property, subdivision procedure, the cut-off
test, and the basic algorithms. In Section 4, we present the B-spline hull, B-spline box consistency techniques,
and the 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 B-spline constrained global optimization. In Section 5, we first compare the performances
of the proposed basic and improved algorithms, and then we compare the optimal value of global minimum
obtained using proposed algorithm with GloptiPoly [15] and several state-of-the-art NLP solvers. We give the
conclusion of the work in Section 6.

2. B-spline form

For 𝐼 := [𝑎, 𝑏] and given positive integers 𝑚 and 𝑘, let u := {𝑥𝑖}𝑘+𝑚
𝑖=−𝑚, with mesh length ℎ := (𝑏− 𝑎)/𝑘, be a

uniform grid partition defined by

𝑥−𝑚 = 𝑥−𝑚+1 = · · · = 𝑥0,

𝑥𝑖 = 𝑎 + 𝑖ℎ, for 𝑖 = 1, . . . , 𝑘,

𝑥𝑘+1 = 𝑥𝑘+2 = · · · = 𝑥𝑘+𝑚.

Then the associated polynomial spline space of degree 𝑚 is defined by

𝑆𝑚(𝐼,u) :=
{︀
𝑠 ∈ 𝐶𝑚−1(𝐼) : 𝑠|[𝑥𝑖,𝑥𝑖+1] ∈ P𝑚, 𝑖 = 1, . . . , 𝑘 − 1

}︀
,

where P𝑚 is the space of polynomials of degree at most 𝑚. It is well known that the set of the classical normalized
B-splines {𝑁𝑚

𝑖 , 𝑖 = −𝑚, . . . , 𝑘− 1} is a basis for 𝑆𝑚(𝐼,u) that satisfies interesting properties. Among them, for
example, each 𝑁𝑚

𝑖 is nonnegative on its support and {𝑁𝑚
𝑖 }

𝑘−1
𝑖=−𝑚 is a partition of unity. Let 𝐼𝑏

𝑎 represent the set
of integers between 𝑎 and 𝑏 (𝑎 < 𝑏). Also let 𝐼𝑏

𝑎 = 𝐼𝑘−1
−𝑚 = {−𝑚,−𝑚 + 1, . . . , 𝑘 − 1}.

It is well-known (see e.g. [3]) that the monomials 𝑥𝑟, 𝑟 = 0, . . . ,𝑚 can be expressed in terms of B-splines
through the relations

𝑥𝑡 =
𝑘−1∑︁

𝑗=−𝑚

𝜋𝑡
𝑗𝑁

𝑚
𝑗 (𝑥), 𝑡 = 0, . . . ,𝑚, and 𝑗 ∈ 𝐼𝑏

𝑎, (2.1)

where 𝜋𝑡
𝑗 are the symmetric polynomials given by

𝜋𝑡
𝑗 =

Sym𝑡(𝑗 + 1, . . . , 𝑗 + 𝑚)(︀
𝑚
𝑡

)︀ , 𝑡 = 0, . . . ,𝑚, (2.2)

with Sym0(𝑗 + 1, . . . , 𝑗 + 𝑚) = 1, 𝜋
(0)
𝑗 = 1 and for 𝑡 ≥ 1, Sym𝑡(𝑗 + 1, . . . , 𝑗 + 𝑚) represents the 𝑡th elementary

symmetric function of 𝑗 + 1, . . . , 𝑗 + 𝑚, i.e.,

Sym𝑡(𝑗 + 1, · · · , 𝑗 + 𝑚) =
∑︁

𝑣1,...,𝑣𝑟

𝑣1, 𝑣2, . . . , 𝑣𝑟, (2.3)

3746 D.D. GAWALI ET AL.

where 𝑣1, . . . , 𝑣𝑟 are 𝑟 distinct integers arbitrarily chosen from the array {𝑗 + 1, · · · , 𝑗 + 𝑚}. The number of

terms in (2.3) is
(︂

𝑚
𝑟

)︂
. The B-splines can be computed by the recurrence formula

𝑁𝑚
𝑖 (𝑥) = 𝛾𝑖,𝑚(𝑥)𝑁𝑚−1

𝑖 (𝑥) + (1− 𝛾𝑖+1,𝑚(𝑥))𝑁𝑚−1
𝑖+1 (𝑥), 𝑚 ≥ 1, (2.4)

where

𝛾𝑖,𝑚(𝑥) :=

{︃ 𝑥− 𝑥𝑖

𝑥𝑖+𝑚 − 𝑥𝑖
, if 𝑥𝑖 < 𝑥𝑖+𝑚,

0, otherwise,
(2.5)

and

𝑁0
𝑖 (𝑥) :=

{︂
1, if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1),
0, otherwise. (2.6)

In order to easily compute bounds for a range of a multivariate polynomial of degree 𝑁 over an 𝑠-dimensional
box, one can derive its B-spline representation [21,22].

2.1. Univariate case

Firstly, we consider a univariate polynomial

𝑝(𝑥) :=
𝑛∑︁

𝑡=0

𝑎𝑡𝑥
𝑡, 𝑥 ∈ [𝑎, 𝑏], (2.7)

to be expressed in terms of the B-spline basis of the space of polynomial splines of degree 𝑚 ≥ 𝑛 (i.e. order
𝑚 + 1). By substituting (2.1) into (2.7), we get

𝑝(𝑥) =
𝑛∑︁

𝑡=0

𝑎𝑡

𝑘−1∑︁
𝑗=−𝑚

𝜋
(𝑡)
𝑗 𝑁𝑚

𝑗 (𝑥) =
𝑘−1∑︁

𝑗=−𝑚

(︃
𝑛∑︁

𝑡=0

𝑎𝑡𝜋
(𝑡)
𝑗

)︃
𝑁𝑚

𝑗 (𝑥) =
𝑘−1∑︁

𝑗=−𝑚

𝑑𝑗𝑁
𝑚
𝑗 (𝑥), (2.8)

where

𝑑𝑗 :=
𝑛∑︁

𝑡=0

𝑎𝑡𝜋
(𝑡)
𝑗 . (2.9)

2.2. Multi segment B-splines

Let us consider a polynomial 𝑝(𝑥) = 3.371𝑥3 − 10.10𝑥2 + 8.233𝑥 + 2 and 𝑥 ∈ [0, 2]. Its polynomial B-spline
plot with number of segments equal to 1, 2 and 3 are shown in Figure 1. The B-spline with a single segment has
four control points, while the one with two segments has five control points, and the one with three segments
has six control points. The advantage of B-spline with more number of segments is that we have more control
points. This gives a tight range enclosure without having to increase the degree of the B-spline. The drawback
of having more segments is the increase in computation time with the number of B-spline coefficients. In our
application to global minimization, we find that the B-spline having a number of segment equal to the order of
B-spline plus one is a good option.

(1) 𝑘 equal to order of B-spline (𝑘 = 𝑚 + 1):
Let us continue considering same polynomial 𝑝(𝑥) as above. Its polynomial B-spline form of degree 𝑚 = 3
and order 4 with the number of segments taken equal to order of B-spline, will consist of seven B-spline
coefficients, i.e. seven B-spline control points and seven B-spline basis functions. The plot of these seven
basis functions is shown in Figure 2. As seen from this figure, one of the B-spline basis function that is 𝑁3

3

lies on the entire domain of 𝑥.

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3747

Figure 2. Plot of B-spline basis functions for 𝑝(𝑥) = 3.371𝑥3− 10.10𝑥2 + 8.233𝑥+ 2; 𝑥 ∈ [0, 2]
with number of segments taken equal to order of the B-spline.

Figure 3. Plot of B-spline basis functions for 𝑝(𝑥) = 3.371𝑥3− 10.10𝑥2 + 8.233𝑥+ 2; 𝑥 ∈ [0, 2]
with number of segments taken equal to order of the B-spline plus one.

(2) 𝑘 taken equal to order of B-spline plus one (𝑘 = 𝑚 + 2):
We continue with the same polynomial 𝑝(𝑥) as above and obtain the polynomial B-spline form with the
number of segments equal to order plus one. Now, the B-spline has eight B-spline coefficients and eight
B-spline basis functions. As shown in Figure 3, half the B-spline basis functions are having the support of
lower domain value of 𝑥, whereas the other half has the support of upper domain value of 𝑥. Because of
this symmetry, a B-spline with the number of segments equal to order plus one is a good option for our
application of global minimization.

2.3. Multivariate case

Now, we derive the B-spline representation of a given multivariate polynomial

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑠) =
𝑛1∑︁

𝑖1=0

. . .

𝑛𝑠∑︁
𝑖𝑠=0

𝑎𝑖1...𝑖𝑠
𝑥𝑖1

1 . . . 𝑥𝑖𝑠
𝑠 =

∑︁
𝐼≤𝑁

𝑎𝐼𝑥
𝐼 , (2.10)

3748 D.D. GAWALI ET AL.

where 𝐼 := (𝑖1, 𝑖2, . . . , 𝑖𝑠), and 𝑁 := (𝑛1, 𝑛2, . . . , 𝑛𝑠). By substituting (2.1) for each 𝑥𝑖, equation (2.10) can be
written as

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑠) =
𝑛1∑︁

𝑖1=0

. . .

𝑛𝑠∑︁
𝑖𝑠=0

𝑎𝑖1...𝑖𝑠

𝑘1−1∑︁
𝑗1=−𝑚1

𝜋
(𝑖1)
𝑗1

𝑁𝑚1
𝑗1

(𝑥1) . . .

𝑘𝑠−1∑︁
𝑗𝑠=−𝑚𝑠

𝜋
(𝑖𝑠)
𝑗𝑠

𝑁𝑚𝑠
𝑗𝑠

(𝑥𝑠)

=
𝑘1−1∑︁

𝑗1=−𝑚1

. . .

𝑘𝑠−1∑︁
𝑗𝑠=−𝑚𝑠

(︃
𝑛1∑︁

𝑖1=0

. . .

𝑛𝑠∑︁
𝑖𝑠=0

𝑎𝑖1...𝑖𝑠
𝜋

(𝑖1)
𝑗1

. . .𝜋
(𝑖𝑠)
𝑗𝑠

)︃
𝑁𝑚1

𝑗1
(𝑥1) . . . 𝑁𝑚𝑠

𝑗𝑠
(𝑥𝑠)

=
𝑘1−1∑︁

𝑗1=−𝑚1

. . .

𝑘𝑠−1∑︁
𝑗𝑠=−𝑚𝑠

𝑑𝑗1...𝑗𝑠
𝑁𝑚1

𝑗1
(𝑥1) . . . 𝑁𝑚𝑠

𝑗𝑠
(𝑥𝑠), (2.11)

so that we have expressed 𝑝 as

𝑝(𝑥) =
𝐾−1∑︁

𝐽≤−𝑀

𝑑𝐽𝑁𝑀
𝐽 (𝑥), (2.12)

where 𝑀 := {𝑚1, . . . ,𝑚𝑠}; 𝐾 := {𝑘1, . . . , 𝑘𝑠} and 𝐽 := {𝑗1, . . . , 𝑗𝑠} and the B-spline coefficients 𝑑𝐽 are given
by

𝑑𝑗1,...,𝑗𝑠
:=

𝑛1∑︁
𝑖1=0

. . .

𝑛𝑠∑︁
𝑖𝑠=0

𝑎𝑖1...𝑖𝑠
𝜋

(𝑖1)
𝑗1

. . . .𝜋
(𝑖𝑠)
𝑗𝑠

. (2.13)

The B-spline form of a multivariate polynomial 𝑝 is defined by (2.11). The partial derivative of a polynomial
in a particular direction can be found from the B-spline coefficients of the original polynomial on a box b ⊆ x,
the first partial derivative with respect to 𝑥𝑟 of a polynomial 𝑝(𝑥) in B-spline form in [34]

𝑝′𝑟(b) =
𝑛𝑟

𝑢𝐼+𝑛𝑟+1 − 𝑢𝐼+1

∑︁
𝐼≤𝑁𝑟,−1

[︀
𝑑𝐼𝑟,1(b)− 𝑑𝐼(b)

]︀
𝑁𝑁𝑟,−1,𝐼(𝑥), 1 ≤ 𝑟 ≤ 𝑠, 𝑥 ∈ b (2.14)

where 𝑢 represents knot vector of 𝑝. Now, 𝑝′𝑟(b) contains an enclosure of the range of the partial derivative of
𝑝 on b.

2.4. Example

We consider following example to explain the above ideas.

Example 2.1. Let 𝑝(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑥 − 𝑦 + 0.34 and 𝑥, 𝑦 ∈ [0.5, 1.5]. We want to obtain the polynomial
B-spline form having two B-spline segments for given power form polynomial.

The matrix form representation of 𝑝(𝑥, 𝑦) is

𝑝(𝑥, 𝑦) =
[︀

1 𝑥 𝑥2
]︀⎡⎢⎣0.34 −1 1
−1 0 0
1 0 0

⎤⎥⎦
⎡⎢⎣1

𝑦

𝑦2

⎤⎥⎦.

The degree of variable 𝑥 in the given polynomial is 𝑛1 = 2 and that of 𝑦 is 𝑛2 = 2. The degree of B-spline
in 𝑥 direction 𝑚1, can be greater or equal to the degree of 𝑥. Similarly, the B-spline in 𝑦 direction will have a
degree 𝑚2 equal to or greater than degree of variable 𝑦. In practice, we can therefore take 𝑚1 = 𝑛1 = 2 and
𝑚2 = 𝑛2 = 2. Therefore, the order, 𝑂 of B-spline will be 𝑂 = 𝑚 + 1 = 3 in both the directions. As 𝑘 = 2, the
B-spline will have two segments in each direction. As 𝑥, 𝑦 ∈ [0.5, 1.5], the knot vector for both the variables will
be the same.

We have

control points = 𝑘 + 𝑚 = 2 + 2 = 4,

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3749

knot elements = 2× 𝑛 + 𝑘 + 1 = 2× 2 + 2 + 1 = 7.

Therefore, the knot vector u := {𝑢𝑙, 𝑙 = −𝑚, . . . 𝑚 + 𝑘} is

u := {0.5, 0.5, 0.5, 1, 1.5, 1.5, 1.5}.

From (2.11), B-spline representation of 𝑝(𝑥, 𝑦) can be expressed in matrix form as

𝑝(𝑥, 𝑦) =
[︀
𝑁2
−2(𝑥)𝑁2

−1(𝑥)𝑁2
0 (𝑥)𝑁2

1 (𝑥)
]︀
⎡⎢⎢⎢⎣

𝑑−2,−2 𝑑−2,−1 𝑑−2,0 𝑑−2,1

𝑑−1,−2 𝑑−1,−1 𝑑−1,0 𝑑−1,1

𝑑0,−2 𝑑0,−1 𝑑0,0 𝑑0,1

𝑑1,−2 𝑑1,−1 𝑑1,0 𝑑1,1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑁2
−2(𝑦)

𝑁2
−1(𝑦)

𝑁2
0 (𝑦)

𝑁2
1 (𝑦)

⎤⎥⎥⎥⎦.

From (2.13), we calculate the values of B-spline coefficients as⎡⎢⎢⎢⎣
𝑑−2,−2 𝑑−2,−1 𝑑−2,0 𝑑−2,1

𝑑−1,−2 𝑑−1,−1 𝑑−1,0 𝑑−1,1

𝑑0,−2 𝑑0,−1 𝑑0,0 𝑑0,1

𝑑1,−2 𝑑1,−1 𝑑1,0 𝑑1,1

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
𝜋0
−2(𝑦) 𝜋1

−2(𝑦) 𝜋2
−2(𝑦)

𝜋0
−1(𝑦) 𝜋1

−1(𝑦) 𝜋2
−1(𝑦)

𝜋0
0(𝑦) 𝜋1

0(𝑦) 𝜋2
0(𝑦)

𝜋0
1(𝑦) 𝜋1

1(𝑦) 𝜋2
1(𝑦)

⎤⎥⎥⎥⎦
⏟ ⏞

𝑃𝑖 Matrix of 𝑦

*

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
𝜋0
−2(𝑥) 𝜋1

−2(𝑥) 𝜋2
−2(𝑥)

𝜋0
−1(𝑥) 𝜋1

−1(𝑥) 𝜋2
−1(𝑥)

𝜋0
0(𝑥) 𝜋1

0(𝑥) 𝜋2
0(𝑥)

𝜋0
1(𝑥) 𝜋1

1(𝑥) 𝜋2
1(𝑥)

⎤⎥⎥⎥⎦
⏟ ⏞

𝑃𝑖 Matrix of 𝑥

*

⎡⎢⎣𝑎00 𝑎01 𝑎02

𝑎10 𝑎11 𝑎12

𝑎20 𝑎21 𝑎22

⎤⎥⎦
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

𝑇

.

A simple computation leads to the B-spline coefficient matrix

⎡⎢⎢⎢⎣
𝑑−2,−2 𝑑−2,−1 𝑑−2,0 𝑑−2,1

𝑑−1,−2 𝑑−1,−1 𝑑−1,0 𝑑−1,1

𝑑0,−2 𝑑0,−1 𝑑0,0 𝑑0,1

𝑑1,−2 𝑑1,−1 𝑑1,0 𝑑1,1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0.5 0.25
1 0.75 0.5
1 1.25 1.5
1 1.5 2.25

⎤⎥⎥⎥⎦
⏟ ⏞

𝑃𝑖 Matrix of 𝑦

*

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
1 0.5 0.25
1 0.75 0.5
1 1.25 1.5
1 1.5 2.25

⎤⎥⎥⎥⎦
⏟ ⏞

𝑃𝑖 Matrix of 𝑥

*

⎡⎢⎣0.34 −1 1
−1 0 0
1 0 0

⎤⎥⎦
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

𝑇

=

⎡⎢⎢⎢⎣
−0.16 −0.16 0.34 0.84
−0.16 −0.16 0.34 0.84
0.34 0.34 0.84 1.34
0.84 0.84 1.34 1.84

⎤⎥⎥⎥⎦.

3. B-spline constrained global optimization

Let 𝑠 ∈ N be the number of variables and 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑠) ∈ R𝑠. A multi-index 𝐼 is defined as 𝐼 =
(𝑖1, 𝑖2, . . . , 𝑖𝑠) ∈ (N ∪ {0})𝑠 and the multi-power 𝑥𝐼 is defined as 𝑥𝐼 = (𝑥𝑖1

1 , 𝑥𝑖2
2 , . . . , 𝑥𝑖𝑠

𝑠). Given a multi-index
𝑁 = (𝑛1, 𝑛2, . . . , 𝑛𝑠) and an index 𝑟, we define 𝑁𝑟,−𝑙 = (𝑛1,, 𝑛𝑟−1, 𝑛𝑟 − 𝑙, 𝑛𝑟+1,, 𝑛𝑠), where 0 ≤ 𝑛𝑟 −
𝑙 ≤ 𝑛𝑟. Inequalities 𝐼 ≤ 𝑁 for multi-indices are meant componentwise, i.e. 𝑖𝑙 ≤ 𝑛𝑙, 𝑙 = 1, 2, . . . , 𝑠. With

3750 D.D. GAWALI ET AL.

𝐼 = (𝑖1, . . . , 𝑖𝑟−1, 𝑖𝑟, 𝑖𝑟+1, . . . , 𝑖𝑠) we associate the index 𝐼𝑟,𝑙 given by 𝐼𝑟,𝑙 = (𝑖1, . . . , 𝑖𝑟−1, 𝑖𝑟 + 𝑙, 𝑖𝑟+1, . . . , 𝑖𝑠),
where 0 ≤ 𝑖𝑟 + 𝑙 ≤ 𝑛𝑟. A real bounded and closed interval x𝑟 is defined as

x𝑟 ≡ [x𝑟,x𝑟] := [inf x𝑟 = min x𝑟, sup x𝑟 = max x𝑟] ∈ IR,

where IR denotes the set of compact intervals. Let wid x𝑟 denotes the width of x𝑟, that is wid x𝑟 := x𝑟 − x𝑟.
Global optimization of polynomials using the polynomial B-spline approach needs transformation of the given

multivariate polynomial from its power form into its polynomial B-spline form. Then B-spline coefficients are
collected in an array 𝐷(x) = (𝑑𝐼(x))𝐼∈𝑆 , where 𝑆 = {𝐼 : 𝐼 ≤ 𝑁}. This array is called a patch. We denote 𝑆0 as
a special subset of the index set 𝑆 comprising indices of the vertices of this array, that is

𝑆0 := {0, 𝑛1 + 𝑘1 − 1} × {0, 𝑛2 + 𝑘2 − 1} × . . .× {0, 𝑛𝑠 + 𝑘𝑠 − 1}. (3.1)

3.1. Range enclosure property

The following lemma describes the range enclosure property of the B-spline coefficients.

Lemma 3.1 ([21–23, 29]). Let 𝑝 be a polynomial of degree 𝑁 and let 𝑝(x) denote the range of 𝑝 on the given
domain x. Then, for a patch 𝐷(x) of B-spline coefficients it holds

𝑝(x) ⊆ [min 𝐷(x), max 𝐷(x)].

Obtaining the B-spline coefficients of multivariate polynomials by transforming the polynomial from power
form to B-spline form provides an enclosure of the range of the multivariate polynomial 𝑝 on x. Then by
Lemma 3.1, the minimum and the maximum values of B-spline coefficient provide lower and upper bounds
for the range of polynomial 𝑝. This range enclosure will be sharp if and only if min(𝑑𝐼(x))𝐼∈𝑆 (respectively
max(𝑑𝐼(x))𝐼∈𝑆) is attained at the indices of the vertices of the array 𝐷(x), as described in Lemma 3.2. This
condition is known as the vertex condition.

Based on Bernstein coefficients range enclosure proofs [32], the proof of Lemma 3.1 is given next.

Proof. Let 𝐼𝑏
𝑎 = 𝐼𝑘+𝑚

1 represent the set of integers between 𝑎 and 𝑏 (𝑎 < 𝑏). Also let

𝑝(𝑥) =
𝑚+𝑘∑︁
𝑗=1

𝑑𝑗𝑁𝑗(𝑥), 𝑗 ∈ 𝐼𝑏
𝑎,

be the B-spline representation for polynomial 𝑝 and let 𝑝 be its range,

𝑝([𝑎, 𝑏]) ⊆
[︂

min
1≤𝑗≤𝑚+𝑘

𝑑𝑗 , max
1≤𝑗≤𝑚+𝑘

𝑑𝑗

]︂
,

that is
min

1≤𝑗≤𝑚+𝑘
𝑑𝑗 ≤

∑︁
𝑗

𝑑j𝑁j(𝑥) ≤ max
1≤𝑗≤𝑚+𝑘

𝑑𝑗 ,

which means
min

1≤𝑗≤𝑚+𝑘
𝑑𝑗 ≤ min 𝑝 ≤ max 𝑝 ≤ max

1≤𝑗≤𝑚+𝑘
𝑑𝑗 .

�

Lemma 3.2 ([32] Vertex condition). Let 𝑝 be a polynomial of degree 𝑁 and let 𝑝(x) = [𝑎, 𝑏]. Then

𝑎 = min
0≤𝐼≤𝑁

𝑑𝐼(x) if and only if min
0≤𝐼≤𝑁

𝑑𝐼(x) = min
𝐼∈𝑆0

𝑑𝐼(x),

and
𝑏 = max

0≤𝐼≤𝑁
𝑑𝐼(x) if and only if max

0≤𝐼≤𝑁
𝑑𝐼(x) = max

𝐼∈𝑆0
𝑑𝐼(x).

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3751

Proof. Let

𝑝(𝑥) =
𝑚+𝑘∑︁
𝑗=1

𝑑𝑗𝑁𝑗(𝑥),

be the B-spline representation for polynomial 𝑝 and let 𝑝 be its range,

𝑝([0, 1]) = [𝑎, 𝑏].

We first note that
𝑝(0) = 𝑑1,

and
𝑝(1) = 𝑑𝑚+𝑘.

Suppose now that
𝑎 = min

1≤𝑗≤𝑚+𝑘
𝑑𝑗 ,

and that 𝑥 ∈ [0, 1], then if 𝑑1 = 𝑑2 = . . . = 𝑑𝑚+𝑘. We have that 𝑝(0) = 𝑑1 = 𝑎 = 𝑑𝑚+𝑘 = 𝑝(1) and the property
is valid. If 𝑑1 = 𝑑2 = . . . = 𝑑𝑚+𝑘 is not satisfied, then

𝑚+𝑘∑︁
𝑗=1

𝑑𝑗𝑁𝑗(𝑥) > min
1≤𝑗≤𝑚+𝑘

𝑑𝑗 ,

which means that the minimum cannot occur at an interior point of [0, 1] because

𝑎 = min
1≤𝑗≤𝑚+𝑘

𝑑𝑗 ,

and
𝑝(0) = 𝑎,

hence it must occur at an end point of the interval. Conversely, suppose that

min
1≤𝑗≤𝑚+𝑘

𝑑𝑗 = min(𝑑1, 𝑑𝑚+𝑘),

and assume that
min

1≤𝑗≤𝑚+𝑘
𝑑𝑗 = 𝑑1,

for simplicity. Then the bound is sharp, i.e.

𝑎 = 𝑝(0) = 𝑑1 = min
1≤𝑗≤𝑚+𝑘

𝑑𝑗 ,

the same argument is valid if
min

1≤𝑗≤𝑚+𝑘
𝑑𝑗 = 𝑑𝑚+𝑘.

�

Definition 3.3. The vertex condition is said to be met within a given tolerance 𝜖, if

min
𝑆0

𝐷(x)−min 𝐷(x) ≤ 𝜖 and max 𝐷(x)−max
𝑆0

𝐷(x) ≤ 𝜖.

As said earlier set 𝑆0 comprises of indices of the vertices of the B-spline coefficient array 𝐷(x), where min
𝑆0

𝐷(x)

gives the minimum value of B-spline coefficient at any vertex point. If the difference between the minimum value
of B-spline coefficient at any vertex and the minimum value in B-spline coefficient array is less than 𝜖, then
vertex condition is said to be met within a given tolerance 𝜖.

3752 D.D. GAWALI ET AL.

3.2. B-spline subdivision procedure

The proposed algorithm is based on branch and bound framework of global optimization. Therefore we need
to use domain subdivision. Generally, the range enclosure obtained from Lemma 3.1 is over-estimated and can
be improved either by subdividing the domain, degree elevation of the B-spline or by increasing the number of
B-spline segments. Subdivision is generally more efficient than degree elevation strategy [6] or increasing the
number of B-spline segments. Therefore subdivision strategy is preferred over the latter two. A subdivision in
the 𝑟th direction (1 ≤ 𝑟 ≤ 𝑠) is a bisection perpendicular to this direction. Let

x =
[︀
x1,x1

]︀
× . . .×

[︀
x𝑟,x𝑟

]︀
× . . .×

[︀
x𝑠,x𝑠

]︀
, (3.2)

be any subbox. Further suppose that x is bisected along the 𝑟th component direction then, two subboxes x𝐴

and x𝐵 are generated as

x𝐴 =
[︀
x1,x1

]︀
× . . .×

[︀
x𝑟, 𝑚(x𝑟)

]︀
× . . .×

[︀
x𝑠,x𝑠

]︀
, (3.3)

x𝐵 =
[︀
x1,x1

]︀
× . . .× [𝑚(x𝑟),x𝑟]× . . .×

[︀
x𝑠,x𝑠

]︀
, (3.4)

where, 𝑚(x𝑟) denotes the midpoint of [x𝑟,x𝑟].

3.3. The cut-off test

As mentioned earlier, the minimum and maximum B-spline coefficients provide the range enclosure of the
function. Let 𝑝 be the current minimum estimate, and {b, 𝐷(b)} be the current item for processing. We denote
the minimum over the second entry of item {b, 𝐷(b)} as 𝑝. If 𝑝 is greater than 𝑝, then this item cannot contain
global minimum and it can be discarded. If the maximum over the second entry of item {b, 𝐷(b)} is lesser than
𝑝, then the current minimum estimate can be updated, and 𝑝 takes this maximum value as the new value. Next
we present the cut-off test algorithm.

Algorithm 1: Cut-off test.
if min 𝐷(b) > 𝑝 then
ℒ = ℒ − {b,𝒟(b)};

else if max 𝐷(b) < 𝑝 then
𝑝 = max 𝐷(b);

end

3.4. A basic B-spline constrained global optimization algorithm

In this subsection, we present the basic B-spline algorithm for constrained global optimization of multivariate
nonlinear polynomials. The algorithm is inspired by the one described in [31,33].

This basic algorithm uses the polynomial coefficients of the objective function, the inequality constraints,
and the equality constraints. The inputs to the algorithm are the polynomial degrees and the initial search box,
while the outputs are the global minimum and global minimizers. The polynomial degree is used to compute
the B-spline segment number, as the B-spline is constructed with number of segments equal to order of the
B-spline plus one. As equality constraints ℎ𝑗(𝑥) = 0 are difficult to verify on computers with finite precision, the
equality constraints ℎ𝑗(𝑥) = 0 in (1.3) are replaced by relaxed constraints ℎ𝑗(𝑥) ∈ [−𝜖zero, 𝜖zero], 𝑗 = 1, 2, . . . , 𝑞,
where 𝜖zero > 0 is a very small number.

The basic algorithm works as follows. We start the algorithm by computing the B-spline segment vectors
𝐾𝑜, 𝐾𝑔𝑖

and 𝐾ℎ𝑗
, where 𝐾 = [𝑘1, . . . , 𝑘𝑠], for each variable occurring in the objective, inequality and equality

polynomials. We keep it as 𝑜𝑟𝑑𝑒𝑟 + 1 for each variable, giving 𝐾 = [𝑛1 + 2, . . . , 𝑛𝑠 + 2]. Then, we compute the

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3753

B-spline coefficients of objective, inequality and equality constraint on the initial search box. We store them in
arrays 𝐷𝑜(x), 𝐷𝑔𝑖

(x) and 𝐷ℎ𝑗
(x) respectively. We initialize the current minimum estimate 𝑝 to the maximum

B-spline coefficient of the objective function on x. Next, we initialize a flag vector 𝐹 with each component to
zero, a working list ℒ with the item {x, 𝐷𝑜(x), 𝐷𝑔𝑖

(x), 𝐷ℎ𝑗
(x), 𝐹}, and a solution list ℒsol to the empty list.

We then pick the last item from the list ℒ and delete its entry from ℒ. For this item, we subdivide the box
x along the longest width direction creating two subboxes b1 and b2. We compute the B-spline coefficients
arrays {b𝑟, 𝐷𝑜(b𝑟), 𝐷𝑔𝑖

(b𝑟), 𝐷ℎ𝑗
(b𝑟)}, 𝑟 = 1, 2 for b1,b2 and the B-spline range enclosures D𝑜(b𝑟), D𝑔𝑖

(b𝑟)
and Dℎ𝑗 (b𝑟) of objective, inequality and equality constraint polynomials respectively. We check the feasibility
of the inequality and equality constraints for b1, b2 using the B-spline coefficients of the constraint polynomials
functions by doing the following tests:

– If D𝑔𝑖
(b𝑟) ≤ 0, 0 ∈ Dℎ𝑗

(b𝑟), Dℎ𝑗
(b𝑟) ⊆ [−𝜖zero, 𝜖zero] for all 𝑖 = 1, 2, . . . , 𝑝 and 𝑗 = 1, 2, . . . , 𝑞, then b𝑟 is a

feasible box.

– If D𝑔𝑖(b𝑟) > 0 for some 𝑖, then b𝑟 is a infeasible box and can be deleted.

– If 0 /∈ Dℎ𝑗
(b𝑟), Dℎ𝑗

(b𝑟) * [−𝜖zero, 𝜖zero] for some 𝑗, then b𝑟 is a infeasible box and can be deleted.

If b𝑟 survives these tests and if each component of the flag vector 𝐹 𝑟 (see Rem. 3.4 below) is equal to unity,
we update the current minimum estimate 𝑝, and add the item {b𝑟, 𝐷𝑜(b𝑟), 𝐷𝑔𝑖

(b𝑟), 𝐷ℎ𝑗
(b𝑟), 𝐹 𝑟} to the list

ℒ , and sort the list in descending order of the minimum of the B-spline coefficients of the objective function.
Next, we discard item(s) {y, 𝐷𝑜(y), 𝐷𝑔𝑖

(y), 𝐷ℎ𝑗
(y), 𝐹} from the list ℒ, if min 𝐷𝑜(y) > 𝑝. The last item in the

list ℒ is picked for further processing. If the width of the box and the width of the B-spline range enclosure of
the objective polynomial are within the desired accuracy, then we put this item in the solution list ℒsol, else we
continue the algorithm until the list ℒ becomes empty.

Remark 3.4. The flag vector 𝐹 is used to make the algorithm more efficient. Consider, 𝑖th inequality constraint
is satisfied for 𝑥 ∈ b i.e. 𝑔𝑖(𝑥) ≤ 0 for 𝑥 ∈ b. Then there is no need to check again 𝑔𝑖(𝑥) ≤ 0 for any subbox b0 ⊆
b. The same holds true for ℎ𝑗(𝑥). To handle this information we use flag vector 𝐹 = (𝐹1, . . . , 𝐹𝑝, 𝐹𝑝+1, . . . , 𝐹𝑝+𝑞),
where the components 𝐹𝑓 , takes the value 0 or 1, as follows

– 𝐹𝑓 = 1 if the 𝑓th inequality or equality constraint is satisfied for the box.
– 𝐹𝑓 = 0 if the 𝑓th inequality or equality constraint is not yet been verified for the box.

Algorithm 2: Basic (𝐴𝑐, Nc, 𝐾𝑐,x, 𝜖, 𝜖zero).
Input : Here 𝐴𝑐 is a cell structure containing the coefficients array of objective and all the constraints

polynomial, 𝑁𝑐 is a cell structure, containing degree vector 𝑁 for objective and all constraints. The
elements of degree vector 𝑁 define the degree of each variable occurring in the objective function
and all constraints polynomial, 𝐾𝑐 is a cell structure containing vectors corresponding to objective
polynomial, 𝐾𝑜 and all constraints, i.e. 𝐾𝑔𝑖

, 𝐾ℎ𝑗
. The elements of this vector define the number of

B-spline segments in each variable direction, the initial box x, the tolerance limit 𝜖 and tolerance
parameter 𝜖zero to which the equality constraints are to be satisfied.

Output: Global minimum 𝑝 and all the global minimizers 𝑧(𝑖) in the initial search box x to the specified
tolerance 𝜖.

3754 D.D. GAWALI ET AL.

Begin Algorithm
1 {Compute the B-spline segment numbers};

For each entry of 𝐾 in 𝐾𝑐, compute 𝐾 = 𝑁 + 2.;
2 {Compute the B-spline coefficients};

Compute the B-spline coefficients array for objective and constraints polynomial on initial search
domain x i.e. 𝐷𝑜(x), 𝐷𝑔𝑖(x) and 𝐷ℎ𝑗 (x) respectively. The algorithm in [8] is suggested for the
computation.;

3 {Initialize current minimum estimate}
Initialize the current minimum estimate 𝑝 = max 𝐷𝑜(x).

4 {Initialize current minimum estimate}
Initialize the current minimum estimate 𝑝 = max 𝐷𝑜(x).

5 {Set flag vector}
Set 𝐹 = (𝐹1, . . . , 𝐹𝑝, 𝐹𝑝+1, . . . , 𝐹𝑝+𝑞) := (0, . . . , 0).

6 {Initialize lists}
ℒ ← {x, 𝐷𝑜(x), 𝐷𝑔𝑖(x), 𝐷ℎ𝑗 (x), 𝐹}, ℒsol ← {}

7 {Sort the list ℒ}
Sort the list ℒ in descending order of (min 𝐷𝑜(x)).

8 {Start iteration}
if ℒ = ∅ then

go to 13
else
pick the last item from ℒ, denote it as {b, 𝐷𝑜(b), 𝐷𝑔𝑖

(b), 𝐷ℎ𝑗
(b), 𝐹}, and delete this item entry

from ℒ.
end

9 {Perform cut-off test} {See Section 3.3}
if min 𝐷𝑜(b) > 𝑝 then

Discard the item {b, 𝐷𝑜(b), 𝐷𝑔𝑖
(b), 𝐷ℎ𝑗

(b), 𝐹}
&
go to 8

else if max 𝐷𝑜(b) < 𝑝 then
𝑝 = max 𝐷𝑜(b)

end
10 {Subdivision decision}

if (wid b)& (max 𝐷𝑜(b)−min 𝐷𝑜(b)) < 𝜖 then
enter the item {b, min 𝐷0(b)} to ℒsol & go to 8
else
go to 11

end

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3755

11 {Generate two sub boxes}
Choose the subdivision direction along the longest direction of b and the subdivision point as the midpoint.
Subdivide b into two subboxes b1 and b2 such that b = b1 ∪ b2.

12 for 𝑟 ← 1 to 2
(a) {Set flag vector}

Set 𝐹 𝑟 = (𝐹 𝑟
1 , . . . , 𝐹 𝑟

𝑝 , 𝐹 𝑟
𝑝+1, . . . , 𝐹

𝑟
𝑝+𝑞) := 𝐹

for 𝑟 ← 1 to 2
(b) {Compute B-spline coefficients and corresponding B-spline range enclosure for b𝑟}

Compute the B-spline coefficient arrays of objective and constraints polynomial on box b𝑟 and
compute corresponding B-spline range enclosure D𝑜(b𝑟), D𝑔𝑖

(b𝑟) and Dℎ𝑗
(b𝑟) for objective and

constraints polynomial.
(c) {Set local current minimum estimate}

Set 𝑝local = min(D𝑜(b𝑟))
(d) if (𝑝local < 𝑝) then

1 for 𝑖← 1 to 𝑝 do

if (𝐹𝑖 = 0) & (D𝑔𝑖(b𝑟) ≤ 0) then
𝐹 𝑟

𝑖 = 1
end

end

2 for 𝑗 ← 1 to 𝑞 do

if (𝐹𝑝+𝑗 = 0) &
(︀
Dℎ𝑗

(b𝑟) ⊆ [−𝜖zero, 𝜖zero]
)︀

then
𝐹 𝑟

𝑝+𝑗 = 1
end

end

end

(e) if 𝐹 𝑟 = (1, . . . , 1) then

set 𝑝 := min(𝑝, max(D𝑜(b𝑟)))
end

(f) Enter {b𝑟, 𝐷𝑜(b𝑟), 𝐷𝑔𝑖(b𝑟), 𝐷ℎ𝑗 (b𝑟), 𝐹 𝑟} into the list ℒ.

end

13 {Compute the global minimum}
Set the global minimum to the current minimum estimate 𝑝 = 𝑝.

14 {Compute the global solution}
Find all those items in ℒsol for which min 𝐷𝑜(b) = ̂︀𝑝. The first entries of these items are the global
minimizer(s) z(𝑖).

15 return the global minimum 𝑝 and all the global minimizers z(𝑖) found above.

End Algorithm

3756 D.D. GAWALI ET AL.

3.5. Convergence property of the basic algorithm

The problem of polynomial optimization can be reduced to evaluate the range of the polynomial. On
the expansion of the polynomial 𝑝(𝑥) into polynomial B-spline form, the range enclosure property of the B-
spline form (see Lem. 3.1), i.e. the minimum B-spline coefficient, min 𝐷(x) and the maximum B-spline coef-
ficient, max 𝐷(x) provide lower and upper bounds for the range of the polynomial 𝑝(𝑥), i.e. 𝑝(x) ⊆ 𝐷(x) =
[min 𝐷(x), max 𝐷(x)]. The B-spline range enclosure 𝐷(x) is an interval extension of 𝑝(𝑥), where an interval
extension is defined as

Definition 3.5 (Interval extension and Inclusion monotonicity [2]). Let 𝑓 be a real-valued function of real
variables and 𝐹 be an interval function [2]. Then, 𝐹 is an interval extension of 𝑓 if

𝑓(𝑥) = 𝐹 (𝑥) for all 𝑥 ∈ R𝑠 and 𝑓(x) ⊆ 𝐹 (x) for all x ∈ IR𝑠.

If 𝐹 is an interval extension of 𝑓 , then 𝐹 (x) bounds the range of 𝑓 on x. An interval extension 𝐹 is said to
be inclusion monotonic if

x𝑖 ⊆ y𝑖, 𝑖 = 1, 2, . . . , 𝑠⇒ 𝐹 (x1, . . . ,x𝑠) ⊆ 𝐹 (y1, . . . ,y𝑠).

Definition 3.6 (Convergence). We say that a sequence of intervals 𝐷
(︀
b𝑘

1

)︀
𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 to 𝑝*, if both sequences{︀

𝐷
(︀
b𝑘

1

)︀}︀
of left endpoints and

{︀
𝐷
(︀
b𝑘

1

)︀}︀
of right endpoints, converge to 𝑝*.

The main assumptions we need are the contraction properties of the inclusion functions: 𝐹 , 𝐺, and 𝐻 are
the inclusion functions of 𝑓 ,𝑔, and ℎ, we consider the following assumptions:

𝑤(𝐹 (y))→ 0 as 𝑤(y)→ 0 for y ∈ x (3.5)
𝑤(𝐺(y))→ 0, 𝑤(𝐻(y))→ 0 as 𝑤(y)→ 0 for y ∈ x (3.6)

equation (3.5) implies the continuity of 𝑓 , and (3.6) implies the continuity of 𝑔 and ℎ.

Lemma 3.7. Let 𝑍𝑛1, . . . , 𝑍𝑛𝑙𝑛 be the boxes which are in 𝐿𝑛 that is, the list at the 𝑛-th iteration. Let

𝑈𝑛 =
𝑙𝑛∪

𝑖=1
𝑍𝑛𝑖.

We then have the following theorem,

Theorem 3.8. If the contraction assumption (3.5) and (3.6) hold, then the sequence (𝑈𝑛) forms a nested
sequence and ∩∞𝑛=1 𝑈𝑛 = D which means that 𝑈𝑛 → D if D ̸= 0. Where D is a set of all 𝑥 ∈ x satisfying (1.2)
and (1.3) i.e. feasible set of the problem.

Proof. See [33]. �

Let 𝑍𝑛1, . . . , 𝑍𝑛𝑙𝑛 be the boxes of list 𝐿𝑛 and 𝑈𝑛 = ∪𝑙𝑛
𝑖=1𝑍𝑛𝑖 where 𝑙𝑛 is the length of 𝐿𝑛.

Let 𝑦𝑛 be the current value of 𝑦 in the list 𝐿𝑛 where 𝑦 := min 𝐹 (x) and let 𝑓𝑛 be the current value of 𝑓 in
the list 𝐿𝑛 where 𝑓 := max 𝐹 (𝑥̃) if a feasible point 𝑥̃ is given else 𝑓 :=∞.

The convergence properties of basic constrained algorithm depend on the possibility of applying the midpoint
test as often as in order to exhaust all points which are not global minimizers this leads to the following
assumption which is mainly of a topological character:

(𝑇)

⎧⎨⎩There exists a sequence of points
𝑥𝑛 lying in the interior of the feasible domain D
and converging to some global minimizers 𝑥* ∈ x*.

The following theorem discusses the convergence properties of basic constrained global optimization algo-
rithm.

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3757

Theorem 3.9. Let basic constrained global optimization algorithm applied to the box x, the inclusion functions
𝐹 , 𝐺, and 𝐻 of 𝑓 , 𝑔, and ℎ, respectively. Let the contraction assumption (3.5) and (3.6) and condition (𝑇) be
satisfied. Then the sequence (𝑈𝑛) is nested and ∩∞𝑛=1𝑈𝑛 = D which means that 𝑈𝑛 → D. Furthermore 𝑦𝑛 → 𝑓*

with 𝑦𝑛 ≤ 𝑓* and 𝑓𝑛 ↘ 𝑓* as 𝑛→∞.

Proof. See [33]. �

The similar proof for convergence of algorithm for global optimization of B-spline constrained problems is
given in [13].

4. Improved algorithm with B-spline consistency techniques

We can apply the concept of consistency to each constraints of the problem to eliminate subboxes of the
given box that cannot contains the solution. Let 𝑞(𝑥) = 𝑓(𝑥1, . . . , 𝑥𝑛) = 0, 𝑥 ∈ x be a constraint that must
be satisfied in an optimization problem we use B-spline box and hull consistency to eliminate subboxes of x
that cannot contain a point satisfying 𝑞(𝑥) = 𝑓(𝑥1, . . . , 𝑥𝑛) = 0. The B-spline box and hull consistency can be
applied for inequalities. Suppose that in place of the equality we have an inequality 𝑞(𝑥) ≤ 0. We can replace
this inequality by 𝑞(𝑥) = [−∞, 0] and obtain the equation 𝑞(𝑥) + [0, +∞] = 0. B-spline box consistency requires
application of interval Newton method, generally it does not perform well when the variable bound is very wide.
Next we present the B-spline box consistency (BsBC) and B-spline hull consistency (BsHC) techniques with
an examples which show that B-spline hull consistency gives 60% pruning and B-spline box consistency gives
38% pruning in variable bound. These can be viewed as extensions of the ideas in [27] in the context of the
polynomial B-spline based approach to global optimization.

4.1. B-spline hull consistency

In this subsection, we present the B-spline hull consistency to reduce the search region. B-spline hull consis-
tency can be viewed as extension of interval hull consistency in the context of the B-spline form. We present
next the procedure of interval hull consistency described in [14,30].

Let us start by considering to apply hull consistency for domain reduction of a variable 𝑥1 using a two variable
equality constraint ℎ(𝑥1, 𝑥2) = 0,

ℎ(𝑥1, 𝑥2) = 𝑎0,0 + 𝑎1,0𝑥1 + 𝑎0,1𝑥2 + 𝑎1,1𝑥1𝑥2 + · · ·+ 𝑎0,2𝑥
2
2 + · · ·+ 𝑎𝑛,0𝑥

𝑛
1 + · · ·+ 𝑎𝑜,𝑛𝑥𝑛

2 = 0. (4.1)

The implementation of the hull consistency involves the constraint inversion. To obtain constraint inversion
we select term having only one variable with highest degree. Lets consider 𝑎𝑛,0𝑥

𝑛
1 then constraint inversion is

given as,

𝑎𝑛,0𝑥
𝑛
1 = −𝑎0,0 − 𝑎1,0𝑥1 − 𝑎0,1𝑥2 − 𝑎1,1𝑥1𝑥2 − · · · − 𝑎0,2𝑥

2
2 − · · · − 𝑎𝑜,𝑛𝑥𝑛

2 = ℎ′(𝑥1, 𝑥2).

Then we use B-spline expansion to obtain the range h′(x1,x2) of constraint inversion function ℎ′(𝑥1, 𝑥2).
The new value for interval x1 is estimated in [14] as

x1,𝑛𝑒𝑤 =
(︂

h′(x1,x2)
𝑎𝑛,0

)︂1/𝑛
∩ x1. (4.2)

This procedure is repeated to contract the domain of 𝑥2 variable using the same constraint function
ℎ(𝑥1, 𝑥2) = 0. This domain box is further contracted in a similar way using the remaining equality constraints.
The hull consistency method can also be applied to inequality constraints, we need only replace an inequality
of the form 𝑔(𝑥) ≤ 0 by the equation 𝑔(𝑥) = [−∞, 0] in [14]. Then B-spline hull consistency can be applied as
before to this equality constraint. We illustrate the B-spline hull consistency method for equality constraint via
an example.

3758 D.D. GAWALI ET AL.

Example 4.1. Consider the following equality constraint

ℎ(𝑥) = 𝑥2
1 − 3𝑥1𝑥

2
2 + 2.5𝑥2

1𝑥
2
2 + 2𝑥2 − 2𝑥1𝑥2 = 0, (4.3)

with x1 = [1, 2],x2 = [1, 2]. The B-spline coefficients of this equality constraint are

𝐷ℎ(𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.3750 0.0625 −0.3125 −0.75 −1
0.75 0.6563 0.4375 0.1875 −0.0936 −0.25
1.6875 1.7344 1.8984 2.1328 2.4375 2.6250
3.0625 3.3281 4.0703 5.0234 6.1875 6.8750
4.8750 5.4375 6.9531 8.8594 11.1563 12.5
6 6.75 8.75 11.25 14.25 16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Suppose we choose the term 𝑥2
1 to contract the interval x1. From (4.3),

𝑥2
1 = 3𝑥1𝑥

2
2 − 2.5𝑥2

1𝑥
2
2 − 2𝑥2 + 2𝑥1𝑥2,

and the constraint inverse is

ℎ1(𝑥) = 3𝑥1𝑥
2
2 − 2.5𝑥2

1𝑥
2
2 − 2𝑥2 + 2𝑥1𝑥2,

which is obtained by substituting 0 as coefficient of term 𝑥2
1 in (4.3) and multiplying by −1 to equation (4.3),

i.e.

ℎ(𝑥) = −0𝑥2
1 + 3𝑥1𝑥

2
2 − 2.5𝑥2

1𝑥
2
2 − 2𝑥2 + 2𝑥1𝑥2 = 0.

To get a new interval for 𝑥2
1, the interval methods require the evaluation of ℎ1(x), so computing the B-spline

coefficients for ℎ1(x) we get

𝐷ℎ1(𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.6250 0.9375 1.3125 1.75 2
0.5 0.5938 0.8125 1.0625 1.3438 1.5
0.1875 0.1406 −0.0234 −0.2578 −0.5625 −1.75
−0.4375 −0.7031 −1.4453 −2.3984 −3.5625 −4.25
−1.3750 −1.9375 −3.4531 −5.3594 −7.6563 −9
−2 −2.75 −4.75 −7.25 −10.25 −12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

giving the range enclosure for ℎ1(x) as h′ = [min 𝐷ℎ1(x), max 𝐷ℎ1(x)] = [−12, 2]. Thus, a new interval value
x′1 for x1 is given by

(x′1)2 = [−12, 2].

Since (x′1)2 must be non-negative

x′1 = ±[0, 2]1/2 = [−1.412, 1.412].

The updated value of x1 is therefore

x1 = x′1 ∩ x1 = [1, 1.412].

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3759

Next we present B-spline hull consistency (BsHC) algorithm.

Algorithm 3: BsHC (𝐴𝑐, 𝑁𝑐, 𝐾𝑐,x, 𝑠𝑐𝑣, 𝑝, 𝑞).
Input : Here 𝐴𝑐 is a cell structure containing the coefficients array of all the constraints, 𝑁𝑐 is a cell

structure, containing degree vector 𝑁 for all constraints. Where elements of degree vector 𝑁 defines
the degree of each variable occurring in all constraints polynomial, 𝐾𝑐 is a cell structure containing
vectors corresponding to all constraints, i.e. 𝐾𝑔𝑖

, 𝐾ℎ𝑗
. Where elements of this vector define the

number of B-spline segments in each variable direction, the number of constraint variables 𝑠𝑐𝑣,
number of inequality constraints 𝑝 and number of equality constraints 𝑞.

Output: A box x that is contracted using B-spline box consistency technique for the given constraints.
Begin Algorithm

1 Set 𝑟 = 0.
for 𝑖← 1 to 𝑝 + 𝑞 do

for 𝑗 ← 1 to 𝑠𝑐𝑣(𝑖) do
(a) Set 𝑟 = 𝑟 + 1.

if 𝑟 > 𝑠𝑐𝑣(𝑖) then
𝑟 = 1.

end
(b) {Formulate the constraint inverse polynomial}

From the coefficient matrix 𝐴𝑐(𝑖), choose the monomial term in 𝑥𝑟 i.e. 𝑎𝑟𝑥
𝑖𝑟
𝑟 having the highest

degree and substitute zero for its coefficient i.e 𝑎𝑟 = 0, then multiply the coefficient matrix 𝐴𝑐(𝑖)
by −1.

(c) {Compute h′}
Compute the B-spline coefficients of the constraint inverse polynomial, and then obtain h′, as
minimum to maximum of these B-spline coefficients. The algorithm in [8] is suggested for the
computation.
if 𝑖 < 𝑝 + 1 then

Compute an interval 𝑤 = [−∞, 0] ∩
[︀
min 𝐷𝑐(𝑖)(𝑥), max 𝐷𝑐(𝑖)(𝑥)

]︀
.

if 𝑤 = ∅ then
set x′ = ∅ & EXIT the algorithm.
else
modify ℎ′ as ℎ′ = ℎ′ + 𝑤.

end

end
if 𝑎𝑟 ̸= 0 then

compute x′𝑟 =
(︁

h′

𝑎𝑟

)︁1/𝑖𝑟 ∩ x𝑟

else
EXIT loop 𝑗.

end

3760 D.D. GAWALI ET AL.

(d) Update x𝑟 = x𝑟 ∩ x′𝑟.
end
Set 𝑟 = 0.

end
2 return x′ = x

End Algorithm

4.2. B-spline box consistency

First of all, we recall the procedure of interval box consistency described in [14, 30]. The implementation of
interval box consistency involves the application of a one dimensional Newton method, to solve a single equation
for a single variable. Let us start by applying box consistency to the following equality constraint

ℎ(𝑥) = 0, 𝑥 ∈ x. (4.4)

We use box consistency to eliminate those subboxes of x that do not satisfy ℎ(𝑥) = 0. If we replace all the
variables except 𝑟th variable by their interval bounds, we obtain the equation

ℎ(𝑥𝑟) = ℎ(x1, . . . ,x𝑟−1, 𝑥𝑟,x𝑟+1, . . . ,x𝑠) = 0. (4.5)

If 0 /∈ ℎ(𝑥𝑟) for 𝑥𝑟 in some subinterval x′𝑟 of x𝑟, then we do not have consistency for 𝑥𝑟 ∈ x′𝑟 and the subbox
(x1, . . . ,x𝑟−1,x′𝑟,x𝑟+1, . . . ,x𝑠) can be deleted. If a subinterval x′𝑟 of x𝑟, cannot be deleted entirely, then it can
be contracted by box consistency techniques, using interval Newton operator. Let x′𝑟 = [𝑎, 𝑏] and we seek to
bound 𝑎𝑧 and 𝑏𝑧 in an interval x𝑟. Contracting the interval bound involves left narrowing and right narrowing
operations. The left narrowing operation is done to increase the lower bound 𝑎 and the right narrowing operation
is done to decrease the upper bound 𝑏. Consequently the width of the interval reduces.

Left narrowing can be done only when the interval range enclosure value of the constraint function h over
the interval (x1, . . . ,x𝑟−1, 𝑎,x𝑟+1, . . . ,x𝑠) is

h(𝑎) = ℎ(x1, . . . ,x𝑟−1, 𝑎,x𝑟+1, . . . ,x𝑠) ̸∋ 0. (4.6)

If 0 /∈ h(𝑎), then 𝑎 < 𝑎𝑧 so we use a interval Newton method to remove points from the lower end of x𝑟 that
are less than 𝑎𝑧. Thus, the Newton result when expanding about the point 𝑎 is [14]

𝒩 (𝑎,x𝑟) = 𝑎− h(𝑎)/
(︂

𝜕ℎ(x1, . . . ,x𝑟−1,x𝑟,x𝑟+1, . . . ,x𝑠)
𝜕𝑥𝑟

)︂
· (4.7)

The new contracted interval can be obtained by intersecting the interval values of x𝑟 and 𝒩 . That is,

x𝑟,𝑛𝑒𝑤 = x𝑟 ∩𝒩 (𝑎,x𝑟). (4.8)

Similarly, the upper bound 𝑏 can be contracted using the right narrowing operation. This procedure is repeated
for x𝑟, 𝑟 = 1, . . . , 𝑠, using the other equality constraints.

We can also apply box consistency to an inequality constraints, by replacing an inequality of the form 𝑔(𝑥) ≤ 0
by the equation 𝑔(𝑥) = [−∞, 0] in [14], that is rewrite this an another function ℎ(𝑥) given by

ℎ(𝑥) = 𝑔(𝑥)− [−∞, 0] = 𝑔(𝑥) + [0,∞] = 0. (4.9)

Lets consider to apply box consistency for domain reduction of variable x′𝑟 = [𝑎, 𝑏] using equality constraint
(4.9). To apply B-spline Newton contractor for ℎ(x𝑟) for end point 𝑎, we required interval range enclosure h(𝑎)
of equality constraint (4.9). To obtain h(𝑎) we first find interval range enclosure g(𝑎) for 𝑔(𝑥) then the interval

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3761

range enclosure h(𝑎) is obtained by considering min g(𝑎) and ∞ as lower and upper bound of h(𝑎) respectively.
Thus by applying B-spline Newton contractor for ℎ(𝑥) for end point 𝑎, we obtain

𝒩 (𝑎,x𝑟) = 𝑎− (h(𝑎)/ℎ′𝑥𝑟
) = 𝑎−

(︁
[min g(𝑎),∞]⧸︀

𝑔′𝑥𝑟

)︁
, (4.10)

x𝑟,new = x𝑟 ∩𝒩 (𝑎,x𝑟) (4.11)

where ℎ′𝑥𝑟
=
(︁

𝜕ℎ(x1,...,x𝑟−1,x𝑟,x𝑟+1,...,x𝑠)
𝜕𝑥𝑟

)︁
and 𝑔′𝑥𝑟

=
(︁

𝜕𝑔(x1,...,x𝑟−1,x𝑟,x𝑟+1,...,x𝑠)
𝜕𝑥𝑟

)︁
.

When we apply the B-spline box consistency to a selected variable of a multivariate constraint, then only that
variable’s domain will be contracted. The domains of the remaining variables will remain unaffected. We apply
B-spline box consistency to each variable in turn, to get a contracted box in all variables. Suppose ℎ(𝑥) = 0 is
the given equality constraint. We compute the B-spline coefficients array 𝐷(x) for this constraint, and consider
a variable direction, say the first one x1 = [𝑎, 𝑏]. In the B-spline box consistency, we try to increase the value of
𝑎 and decrease the value of 𝑏, thus effectively reducing the width of x1. The procedure to increase the value of
𝑎 is listed in the below steps,

(1) Compute interval ℎ(𝑎).
Corresponding to 𝑥1 = 𝑎, find all B-spline coefficients in 𝐷(x). The minimum to maximum of these B-spline
coefficients gives an interval ℎ(𝑎).

(2) Check ℎ(𝑥) is feasible or infeasible at end point 𝑎.
If 0 /∈ ℎ(𝑎) i.e. ℎ(𝑎) is completely positive interval, means ℎ(𝑥) is infeasible at the end point 𝑎 else it is
feasible.

(3) If ℎ(𝑥) is infeasible at end point 𝑎.
Then search starting from 𝑎, along x1 = [𝑎, 𝑏], for the first point at which the constraint becomes just
feasible i.e. we seek a zero of ℎ. Let us denote this zero as 𝑥1 = 𝑎′. Clearly ℎ(𝑥) is infeasible over [𝑎, 𝑎′) and
so we can discard it to get a contraction [𝑎′, 𝑏].

(4) Else (for feasible ℎ(𝑥)).
As 0 ∈ ℎ(𝑎), means ℎ(𝑎) is not completely positive interval, then we cannot increase 𝑎. We instead switch
over to the other end point 𝑏 and try to decrease it in the same way as we try to increase 𝑎.

We illustrate the BsBC method for equality constraints via an example.

Example 4.2. Consider the following equality constraint

ℎ(𝑥) = 3𝑥2
1 − 𝑥2 = 0,

with x1 = [0.2, 1] and x2 = [0, 1]. The B-spline coefficients of ℎ(𝑥) are

𝐷(𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.12 −0.2133 −0.5467 −0.88
0.24 −0.0933 −0.4267 −0.76
0.72 0.3867 0.0533 −0.28
1.44 1.1067 0.7733 0.44
2.4 2.0667 1.7333 1.4
3 2.667 2.333 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that we are constructing B-spline with 𝑜𝑟𝑑𝑒𝑟 + 1 number of segments. Consider the application of
BsBC along the first component direction, that is, along 𝑥1. Along the direction 𝑥1, the first row corresponds
to 𝑥1 = 𝑎 = 0.2, and the sixth row corresponds to 𝑥1 = 𝑏 = 1. Along the first row, the minimum to maximum
values of the B-spline coefficients, are −0.88 and 0.12 giving h(𝑎) = [−0.88, 0.12]. Along the sixth row, the
minimum and maximum values of the B-spline coefficients, respectively are 2 and 3 giving h(𝑏) = [2, 3]. Since

3762 D.D. GAWALI ET AL.

0 ∈ h(𝑎) the left end point cannot be increased. However, 0 ̸∈ h(𝑏), hence the right end point can be decreased.
The partial derivative in the direction 𝑥1, that is, h′𝑥1

will be as follows

h′𝑥1
=

⎡⎢⎢⎢⎣
1.2 2.4 3.6 4.8 6
1.2 2.4 3.6 4.8 6
1.2 2.4 3.6 4.8 6
1.2 2.4 3.6 4.8 6

⎤⎥⎥⎥⎦
𝑇

.

Hence h′𝑥1
= [1.2, 6]. Now we can perform one iteration of B-spline Newton contractor as

𝒩 (x1) = 𝑏− (h(𝑏)/h′𝑥1
)

= 1− [2, 3]
[1.2, 6]

= [−1.5, 0.66].

Therefore, the updated value of x1 is

x′1 = 𝒩 (x1) ∩ x1

= [−1.5, 0.66] ∩ [0.2, 1]
= [0.2, 0.66].

Next we present B-spline box consistency (BsBC) algorithm.

Algorithm 4: BsBC (𝐴𝑐, 𝑁𝑐, 𝐾𝑐,x, 𝑠𝑐𝑣, 𝑝, 𝑞).
Input : Here 𝐴𝑐 is a cell structure containing the coefficients array of all the constraints, 𝑁𝑐 is a cell

structure, containing degree vector 𝑁 for all constraints. Where elements of degree vector 𝑁 defines
the degree of each variable occurring in all constraints polynomial, 𝐾𝑐 is a cell structure containing
vectors corresponding to all constraints, i.e. 𝐾𝑔𝑖

, 𝐾ℎ𝑗
. Where elements of this vector define the

number of B-spline segments in each variable direction, the number of constraint variables 𝑠𝑐𝑣,
number of inequality constraints 𝑝 and number of equality constraints 𝑞.

Output: A box x that is contracted using B-spline box consistency technique for the given constraints.
Begin Algorithm

1 Set 𝑟 = 0.
for 𝑖← 1 to 𝑝 + 𝑞 do

for 𝑗 ← 1 to 𝑠𝑐𝑣(𝑖) do
Set 𝑟 = 𝑟 + 1.
if 𝑟 > 𝑠𝑐𝑣(𝑖) then

𝑟 = 1.
end

(a) {Compute B-spline coefficient for constraint polynomial}
𝐷𝑐(𝑖)(𝑥) using (𝐴𝑐(𝑖), 𝑁𝑐(𝑖), 𝐾𝑐(𝑖),x). The algorithm in [8] is suggested for the computation.

(b) Set 𝑎 = inf x𝑟, 𝑏 = sup x𝑟.
(c) {Compute domain reduction for x𝑟}

for 𝑙← {𝑎, 𝑏} do

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3763

(d) {Obtain the B-spline range enclosure, h(𝑙)}
Obtain h(𝑙), as the minimum to maximum of the B-spline coefficient at 𝑥𝑟 = 𝑙, occurring
along the first row in variable direction 𝑟 of the B-spline coefficient array 𝐷𝑐(𝑖)(𝑥).

(e) {Obtain the derivative enclosure ℎ′𝑥𝑟
}

Use equation (2.14) and the B-spline coefficient array 𝐷𝑐(𝑖)(𝑥), to compute the derivative
enclosure ℎ′𝑥𝑟

, in the direction 𝑥𝑟.
if 𝑖 < 𝑝 + 1 then

modify h(𝑙) as h(𝑙) = [min h(𝑙),∞].
end
if 0 ∈ h(𝑙) and 𝑙 == 𝑎 then

we cannot increase 𝑎 and try from the right end point 𝑏 of the interval x𝑟.
else if 0 ∈ h(𝑙) and 𝑙 == 𝑏 then

we cannot decrease 𝑏, go to sub step (g).
end

(f) Do one iteration of the univariate B-spline Newton method

𝒩 (x𝑟) = 𝑙 −
(︀
h(𝑙)/h′𝑥𝑟

)︀
,

x′𝑟𝑙
= x𝑟 ∩𝒩 (x𝑟).

if x′𝑟𝑙
= ∅ then

there is no zero of ℎ in entire interval x𝑟, and hence the constraint ℎ is infeasible over
box x. Exit the algorithm in this case with x′ = ∅.

end

end
(g) {Compute x′𝑟 as follows}

x′𝑟 = x′𝑟𝑎
∩ x′𝑟𝑏

, if both x′𝑟𝑎
and x′𝑟𝑏

are computed.
x′𝑟 = x′𝑟𝑎

or x′𝑟𝑏
, which ever is computed.

x′𝑟 = x𝑟, if both x′𝑟𝑎
and x′𝑟𝑏

are not computed.
(h) Update x𝑟 = x𝑟 ∩ x′𝑟.

end
Set 𝑟 = 0.

end
3 return x′ = x

End Algorithm

3764 D.D. GAWALI ET AL.

4.3. Proposed improved algorithm for constrained global optimization

To apply the proposed B-spline box and B-spline hull consistency algorithms using the basic algorithm (see
Sect. 3.4), we modify step 7 of basic algorithm to step *7 given below. We refer to the resulting modified
algorithm as improved algorithm.

*7 {Start iteration}
if ℒ = ∅ then

go to 13
else
pick the last item from ℒ, denote it as {b, 𝐷𝑜(b), 𝐷𝑔𝑖

(b), 𝐷ℎ𝑗
(b), 𝐹}, and delete this item entry

from ℒ.
end

(a) {Apply B-spline hull consistency to contract domain box}
Apply the algorithm BsHC, b′ = BsHC (𝑁𝑐, 𝐴𝑐, 𝐾𝑐,b, 𝑠𝑐𝑣, 𝑝, 𝑞).

(b) {Compute B-spline coefficients for new box}
Compute the B-spline coefficients array of objective and constraint polynomials on the box b′,
respectively as 𝐷𝑜(b′), 𝐷𝑔𝑖

(b′) and 𝐷ℎ𝑗
(b′), 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑞.

(c) {Apply B-spline box consistency to contract domain box}
Apply the algorithm BsBC, b′′ = BsBC (𝑁𝑐, 𝐴𝑐, 𝐾𝑐,b′, 𝑠𝑐𝑣, 𝑝, 𝑞)

(d) {Compute B-spline coefficients for new box}
Compute the B-spline coefficients array of objective and constraint polynomials on the box b′′,
respectively as 𝐷𝑜(b′′), 𝐷𝑔𝑖

(b′′) and 𝐷ℎ𝑗
(b′′), 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑞.

5. Numerical test

In this section, we present the result and analysis of our tests. The computations are done on a PC Intel
i3-370M 2.40 GHz processor, 6 GB RAM, while the algorithms are implemented in MATLAB [24]. An accuracy
𝜖 = 10−6 is prescribed for computing the global minimum and minimizer(s) in each test problem. For the tests,
we select 11 benchmark optimization problems taken from [1, 4, 5, 10, 16] (described in Appendix A). Table 1
reports the global minimum obtained with the proposed algorithms.

5.1. Comparisons between basic and improved proposed algorithms

First, we test and compare the performance of the basic and improved B-spline constrained global optimization
algorithms on a set of 11 test problems. The performance metrics are taken as the number of subdivisions and
computation time (in seconds) required to compute the global minimum for the problem. These values are
reported in Tables 2 and 3 respectively. For these metrics, we give the 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 computed as

% Reduction =
PMBA− PMIA

PMBA
× 100

where PMBA is the performance metric with the basic algorithm, and PMIA is the performance metric with the
improved algorithm. In Table 2, we compare the number of subdivisions required for obtaining global minima
using the basic and improved algorithms. It is found that except problem P2 for all test problems the number
of subdivisions required to compute the global minimum reduces in the range of 2.22% to 96%. Whereas 𝑏𝑎𝑠𝑖𝑐
algorithm is unable to solve problem P10.

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3765

Table 1. Test problems with their domains, dimensions, and the global minimum with the
proposed B-spline optimization algorithm.

Ex. Test
Functions Dim. Con. Domain Global minimum

1 P1 2 1 [0, 0.5]2 0.06857
2 P2 2 2 [−1, 1]2 −4
3 P3 2 2 [0, 3][0, 4] −5.50796
4 P4 2 2 [0, 1]2 0.7418
5 P5 3 3 [0, 2][0, 10][0, 3] −4
6 P6 3 4 [−5, 5]3 0
7 P7 4 7 [0, 5]4 1.089
8 P8 5 1 [0, 1]5 −17
9 P9 6 2 [0, 1]5[0, 20] −361.5
10 P10 7 11 [2.6, 3.6][0.7, 0.8][17, 28][7.3, 8.3] −2994.47

[7.3, 8.3][2.9, 3.9][5, 5.5]
11 STP1 5 1 [0, 1]5 −11

In Table 3, we compare the computation time required for obtaining the global minima using the basic
and improved algorithm, it is observed that the improved algorithm computes the results slower than that of
the basic algorithm except for the problems number 3, 6, 7 and 9. The use of B-spline box and B-spline hull
consistency algorithms found to be very effective in pruning the search domain by discarding those subboxes
that cannot contain global minimizers. As shown in Section 4.3 during each iteration improved algorithm
requires to compute B-spline coefficients more than once (like steps *7(𝑏) and *7(𝑑) in improved algorithm) as
compared to basic algorithm. In improved algorithm during each iteration B-spline coefficients are computed
after domain pruning by the B-spline box and B-spline hull consistency. Also, in each iteration of B-spline
hull consistency algorithm requires to compute B-spline coefficients after each constraint inversion (cf. 4.1) to
contract the variable bounds. All the variable bounds are contracted using each constraint function individually.
This is also evident from the results in the Table 3 for an improved algorithm. We would like to mention that, a
more sophisticated implementation of B-spline box and hull consistencies can alleviate the computational bottle
neck associated with them. In case of problem P2 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 algorithm is unable to minimize the number of
subdivision still it is slow because B-spline box consistency (Newton method) is fast when the initial intervals
are small. Unfortunately, the running time of algorithm increases linearly with the size of the initial interval
[36].

5.2. Comparison with GloptiPoly and other NLP solvers

Next, we compare the optimal value of global minimum found using the proposed B-spline algorithms (𝑏𝑎𝑠𝑖𝑐
& 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑) with CENSO, GloptiPoly [16, 20] and BARON, LINDO Global and SCIP NLP solvers. For the
current tests, we consider the above set of 11 test functions. The idea is to investigate where same optimal value
of global minimum can be found with the considered methods. The CENSO solver implements the algorithm
in [13] and is available on Github: https://github.com/bgrimstad/censo. The GAMS and GloptiPoly source
code for these problems are available at [https://bit.ly/2YHonrh].The GAMS interface for BARON, LINDO
Global and SCIP is available through the NEOS server [28].

Table 4 report only those test functions from the above set of 11 test functions for which the proposed
algorithms provides the optimal value of global minimum compare to CENSO, GloptiPoly and NLP solvers.
The bold values in the table indicate the local minimum value. For P8 and STP1 BARON, LINDOGlobal and
SCIP are able to capture the local minimum, where CENSO, GloptiPoly and proposed algorithms found the

https://github.com/bgrimstad/censo
https://bit.ly/2YHonrh

3766 D.D. GAWALI ET AL.

Table 2. Performance comparison of the number of subdivisions required by the basic and
improved B-spline algorithms.

Ex. Test
functions Dim. Con. Basic Algo. Improved Algo. Subdivision

% reduction

1 P1 2 1 4377 2601 40.57
2 P2 2 2 45 44 2.22
3 P3 2 2 155 34 78.06
4 P4 2 2 162 75 53.70
5 P5 3 3 693 287 58.58
6 P6 3 4 6331 461 92.71
7 P7 4 7 1143 45 96.06
8 P8 5 1 211 166 21.32
9 P9 6 2 570 119 79.12
10 P10 7 11 * 106 –
11 STP1 5 1 344 222 35.46

Notes. (⋆)Indicates that the algorithm did not give the result even after one hour and therefore terminated.

Table 3. Performance comparison of the computational time taken by the basic and improved
B-spline algorithms.

Ex. Test
functions Dim. Con. Basic Algo. Improved Algo. Computation time

% reduction

1 P1 2 1 114.86 160.96 −40.39
2 P2 2 2 1.45 2.68 −84.82
3 P3 2 2 6.18 3.36 45.63
4 P4 2 2 2.89 3.59 −24.22
5 P5 3 3 20.40 23.90 −17.15
6 P6 3 4 390.13 48.22 87.64
7 P7 4 7 66.52 5.61 91.56
8 P8 5 1 7.19 13.35 −85.67
9 P9 6 2 24.32 13.08 46.21
10 P10 7 11 # 86.75 –
11 STP1 5 1 10.92 28.79 −163.64

Notes. (#)Indicates that the algorithm did not give the result even after one hour and therefore terminated.

Table 4. Comparison of optimal value of global minimum obtained using the proposed B-spline
algorithm with CENSO, GloptiPoly 3.7 and state-of-the-art NLP solvers.

Sr. Test
function

B-spline
algorithm

CENSO BARON LINDO
Global

SCIP GloptiPoly
(Used relaxation order)

1 P8 −17 −17 –16.5 –16.5 −17 −17 (RO = 3)
2 P10 −2994.47 −2994.47 –2994.38 –2994.38 –2994.38 **
3 STP1 −11 −11 –10.60 –10.60 −11 −11 (RO = 3)

Notes. (**)Indicates that the solver is unable to solve the test problem. The bold values in the table show the
solutions missed by BARON, LINDO Global, and SCIP.

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3767

correct global minimum. In P10, BARON, LINDOGlobal and SCIP are able to capture the local minimum and
GloptiPoly did not give the result even after an hour and is therefore terminated. In P8 and STP1 (STP1 is
a problem constructed by authors based on P8), the relaxation order for GloptiPoly had to be systematically
increased to a high order to obtain convergence to the final results.

The proposed algorithms and CENSO find the optimal value of global minimum for all the test problem
considered. Where as BARON and LINDO Global are unable to capture optimal value of global minimum in
all the 3 test functions even after specifying a large value of the AbsConFeasTol option in GAMS. The SCIP
solver is unable to find the optimal value of global minimum for P10 test problem.

For GloptiPoly, the relaxation order need to be systematically increased to a higher order to obtain con-
vergence to the optimal value of global minimum. As the dimension and number of constraints in problem
increases, to obtain convergence the relaxation order is gradually increased to a value greater than or equal to
the dimension of the problem. For medium dimension problem (like 7 with 11 constraints) GloptiPoly exhausts
with memory even with small relaxation order. Whereas other NLP solvers may be able to solve large dimension
problems with non-optimal value of global minimum. Here, we want to mention that proposed algorithms are
implemented in MATLAB, whereas except GloptiPoly all other NLP solvers mentioned above are implemented
in different languages and therefore comparison based on computation time between proposed algorithms and
these NLP solvers is not carried out.

6. Conclusion

We presented the basic and improved algorithm for constrained global optimization of multivariate polyno-
mials using polynomial B-spline form. The performance of the basic and improved algorithm are tested and
compared on 11 test problems. The test problems had dimensions ranging from 2 to 7 and number of constraints
varying from 1 to 11. The results of the test show that improved algorithm is more efficient, in terms of a number
of subdivisions with little extra computational time. We also compared the optimal value of global minimum
obtained with the proposed algorithms with CENSO, GloptiPoly and some of the well known NLP solvers, on
a set of 3 test problems. The result shows the superiority of the proposed algorithm and CENSO solver, in that
it captures the global minimum to user specified accuracy. One possible extension of this research work is to
investigate the performance of proposed B-spline approach for solving problems with more number of variables.
This problem will be addressed in a future work.

Appendix A.

Test problems

We denote the objective functions as 𝑓(𝑥) and the initial bounds as x𝑖, where 𝑖 = 1, 2, . . . , 𝑠.

(1) Test problem P1 [16]:

min 𝑓(𝑥) = 𝑥2
1 + 𝑥2

2,

s.t.
− 8𝑥3

1 − 4𝑥2
1𝑥2 − 2𝑥1𝑥

2
2 − 28𝑥2

1 + 𝑥1𝑥2 − 3𝑥2
2 − 22𝑥1 − 7𝑥2 + 8 = 0,

where x1 = [0, 0.5],x2 = [0, 0.5].
(2) Test problem P2 [10]:

min 𝑓(𝑥) = 10(𝑥2
1 − 𝑥2)2 − (𝑥1 − 1)2,

s.t.
3𝑥1 + 4𝑥2 − 25 ≤ 0,

𝑥1 − 𝑥1𝑥2 = 0,

where x1 = [−1, 1],x2 = [−1, 1].

3768 D.D. GAWALI ET AL.

(3) Test problem P3 [5]:

min 𝑓(𝑥) = −𝑥1 − 𝑥2,

s.t.
𝑥2 ≤ 2 + 2𝑥4

1 − 8𝑥3
1 + 8𝑥2

1,

𝑥2 ≤ 4𝑥4
1 − 32𝑥3

1 + 88𝑥2
1 − 96𝑥1 + 36,

where x1 = [0, 3],x2 = [0, 4].
(4) Test problem P4 [1]:

min 𝑓(𝑥) = 2𝑥1 + 𝑥2,

s.t.
− 16𝑥1𝑥2 ≤ 0,

− 4𝑥2
1 − 4𝑥2

2 ≤ −1,

where x1 = [0, 1],x2 = [0, 1].
(5) Test problem P5 [5]:

min 𝑓(𝑥) = −2𝑥1 + 𝑥2 − 𝑥3,

s.t.

x𝑇 A𝑇 Ax− 2y𝑇 Ax + ‖y‖2 − 0.25‖b− z‖2 ≥ 0,

𝑥1 + 𝑥2 + 𝑥3 − 4 ≤ 0,

3𝑥2 + 𝑥3 − 6 ≤ 0,

where

A =

⎛⎝0 0 1
0 −1 0
−2 1 −1

⎞⎠, b = (3, 0,−4)𝑇 ,

and

x1 = [0, 2],x2 = [0, 10],x3 = [0, 3],y = (1.5,−0.5,−5)𝑇 , z = (0,−1,−6)𝑇 .

(6) Test problem P6 [10]:

min 𝑓(𝑥) = 𝑥3,

s.t.
2𝑥2

2 + 4𝑥1𝑥2 − 42𝑥1 + 4𝑥3
1 − 𝑥3 ≤ 14,

− 2𝑥2
2 − 4𝑥1𝑥2 + 42𝑥1 − 4𝑥3

1 − 𝑥3 ≤ −14,

2𝑥2
1 + 4𝑥1𝑥2 − 26𝑥2 + 4𝑥3

2 − 𝑥3 ≤ 22,

− 2𝑥2
1 − 4𝑥1𝑥2 + 26𝑥2 − 4𝑥3

2 − 𝑥3 ≤ −22,

where x𝑖 = [−5, 5], 𝑖 = 1, . . . , 3.
(7) Test problem P7 [10]:

min 𝑓(𝑥) = 𝑥4,

s.t.

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3769

𝑥4
1𝑥

4
2 − 𝑥4

1 − 𝑥4
2𝑥3 = 0,

1.4− 0.25𝑥4 − 𝑥1 ≤ 0,

− 1.4− 0.25𝑥4 + 𝑥1 ≤ 0,

1.5− 0.2𝑥4 − 𝑥2 ≤ 0,

− 1.5− 0.2𝑥4 + 𝑥2 ≤ 0,

0.8− 0.2𝑥4 − 𝑥3 ≤ 0,

− 0.8− 0.2𝑥4 + 𝑥3 ≤ 0,

where x𝑖 = [0, 5], 𝑖 = 1, . . . , 4.
(8) Test problem P8 [4]:

min 𝑓(𝑥) = c𝑇 x− 0.5x𝑇 Qx,

s.t.
20𝑥1 + 12𝑥2 + 11𝑥3 + 7𝑥4 + 4𝑥5 ≤ 40,

where

c = (42, 44, 45, 47, 47.5)𝑇 ,Q = 100I,

and x𝑖 = [0, 1], 𝑖 = 1, . . . , 5.
(9) Test problem P9 [5]:

min 𝑓(𝑥) = c𝑇 x− 0.5x𝑇 Qx− 10𝑦,

s.t.
6𝑥1 + 3𝑥2 + 3𝑥3 + 2𝑥4 + 𝑥5 ≤ 6.5,

10𝑥1 + 10𝑥3 + 𝑥6 ≤ 20,

where

c = (−10.5,−7.5,−3.5,−2.5,−1.5)𝑇 ,Q = I,

and x1 = [0, 1],x2 = [0, 1],x3 = [0, 1],x4 = [0, 1],x5 = [0, 1],x6 = [0, 20].
(10) Test problem P10 [4]:

min 𝑓(𝑥) = 0.7854𝑥1𝑥
2
2

(︀
3.3333𝑥2

3 + 14.9334𝑥3 − 43.0934
)︀
− 1.508𝑥1

(︀
𝑥2

6 + 𝑥2
7

)︀
+ 7.477

(︀
𝑥3

6 + 𝑥3
7

)︀
+ 0.7854

(︀
𝑥4𝑥

2
6 + 𝑥5𝑥

2
7

)︀
,

s.t.
𝑥1𝑥

2
2𝑥3 ≥ 27,

𝑥1𝑥
2
2𝑥

2
3 ≥ 397.5,

𝑥2𝑥
4
6𝑥3𝑥

−3
4 ≥ 1.93,

𝑥2𝑥
4
7𝑥3𝑥

−3
5 ≥ 1.93,{︁(︀

745𝑥4𝑥
−1
2 𝑥−1

3

)︀2
+ 16.91 * 106

}︁0.5

/
(︀
.1𝑥3

6

)︀
≤ 1100,{︁(︀

745𝑥5𝑥
−1
2 𝑥−1

3

)︀2
+ 157.5 * 106

}︁0.5

/
(︀
.1𝑥3

7

)︀
≤ 850,

𝑥2𝑥3 ≤ 40,

𝑥1𝑥
−1
2 ≥ 5,

3770 D.D. GAWALI ET AL.

𝑥1𝑥
−1
2 ≤ 12,

1.5𝑥6 − 𝑥4 ≤ −1.9,

1.1𝑥7 − 𝑥5 ≤ −1.9,

where

x1 = [2.6, 3.6],x2 = [0.7, 0.8],x3 = [17, 28],x4 = [7.3, 8.3],
x5 = [7.3, 8.3],x6 = [2.9, 3.9],x7 = [5, 5.5]

Special test problem

(1) STP1:

min 𝑓(𝑥) = −80𝑥2
1 − 80𝑥2

2 − 80𝑥2
3 − 80𝑥2

4 − 80𝑥2
5 + 72𝑥1 + 74𝑥2 + 76𝑥3 + 77𝑥4 + 77.5𝑥5,

s.t.
50𝑥1 + 42𝑥2 + 41𝑥3 + 37𝑥4 + 34𝑥5 ≤ 90,

where x𝑖 = [0, 1], 𝑖 = 1, . . . , 5.

References

[1] E.G. Birgin, C. Floudas and J.M. Mart́ınez, Global minimization using an Augmented Lagrangian method with variable
lower-level constraints. Math. Program. 125 (2010) 139–162.

[2] M.J. Cloud, R.E. Moore and R.B. Kearfott, Introduction to Interval Analysis. Siam, Philadelphia (2009).

[3] C. De Boor, On Calculating with B-splines. J. Approximation Theory 6 (1972) 50–62.

[4] C.A. Floudas and P.M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Vol. 455.
Springer (1990).

[5] C.A. Floudas, P.M. Pardalos, C. Adjiman, W.R. Esposito, Z.H. Gümüs, S.T. Harding, J.L. Klepeis, C.A. Meyer and C.A.
Schweiger, Handbook of Test Problems in Local and Global Optimization. Springer Science & Business Media (2013).

[6] J. Garloff, The Bernstein algorithm. Interval Comput. 6 (1993) 154–168.

[7] D.D. Gawali, A. Zidna and P.S.V. Nataraj, Solving nonconvex optimization problems in systems and control: a polynomial
B-spline approach. In: Modelling, Computation and Optimization in Information Systems and Management Sciences. Springer
(2015) 467–478.

[8] D.D. Gawali, A. Zidna and P.S.V. Nataraj, Algorithms for unconstrained global optimization of nonlinear (polynomial) pro-
gramming problems: the single and multi-segment polynomial B-spline approach. Comput. Oper. Res. 87 (2017) 205–220.

[9] D.D. Gawali, B.V. Patil, A. Zidna and P.S.V. Nataraj, A B-spline global optimization algorithm for optimal power flow
problem. In: World Congress on Global Optimization. Springer (2019) 58–67.

[10] Global library. available online at http://www.gamsworld.org/global/globallib.

[11] B. Grimstad, A MIQCP formulation for B-spline constraints. Optim. Lett. 12 (2018) 713–725.

[12] B. Grimstad and B.R. Knudsen, Mathematical programming formulations for piecewise polynomial functions. J. Global Optim.
77 (2020) 455–486.

[13] B. Grimstad and A. Sandnes, Global optimization with spline constraints: a new branch-and-bound method based on B-splines.
J. Global Optim. 65 (2016) 401–439.

[14] E. Hansen and G. Walster, Global Optimization Using Interval Analysis, 2nd edition. Revised and Expanded. Vol. 264, Marcel
DEKKER, INC. New York (2004).

[15] D. Henrion and J.B. Lasserre, Gloptipoly: global optimization over polynomials with matlab and sedumi. ACM Trans. Math.
Softw. (TOMS) 29 (2003) 165–194.

[16] D. Henrion and J.B. Lasserre, Solving nonconvex optimization problems. IEEE Control Syst. Mag. 24 (2004) 72–83.

[17] R. Horst and P.M. Pardalos, Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands
(1995).

[18] L. Jaulin, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Vol. 1.
Springer Science & Business Media (2001).

[19] R.B. Kearfott, Rigorous Global Search: Continuous Problems. Vol. 13. Springer Science & Business Media (2013).

[20] J.B. Lasserre, Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11 (2001) 796–817.

[21] Q. Lin and J. Rokne, Methods for bounding the range of a polynomial. J. Comput. Appl. Math. 58 (1995) 193–199.

[22] Q. Lin and J. Rokne, Interval approximation of higher order to the ranges of functions. Comput. Math. App. 31 (1996) 101–109.

[23] T. Lyche and K. Morken, Spline Methods Draft. Department of Informatics, Centre of Mathematics for Applications, University
of Oslo (2008).

http://www.gamsworld.org/global/globallib

CONSTRAINED GLOBAL OPTIMIZATION OF MULTIVARIATE POLYNOMIALS 3771

[24] Mathworks Inc., MATLAB version 8.0.0.783 (R 2012 b), Inc. Natick, Massachusetts, United States (2012).

[25] D. Michel, H. Mraoui, D. Sbibih and A. Zidna, Computing the range of values of real functions using B-spline form. Appl.
Math. Comput. 233 (2014) 85–102.

[26] P.S.V. Nataraj and M. Arounassalame, An algorithm for constrained global optimization of multivariate polynomials using
the Bernstein form and John optimality conditions. Opsearch 46 (2009) 133–152.

[27] P.S.V. Nataraj and M. Arounassalame, Constrained global optimization of multivariate polynomials using Bernstein branch
and prune algorithm. J. Global Optim. 49 (2011) 185–212.

[28] NEOS Server for optimization. http://www.neos-server.org/neos/solvers/ (2018).

[29] S. Park, Approximate branch-and-bound global optimization using B-spline hypervolumes. Adv. Eng. Softw. 45 (2012) 11–20.

[30] B.V. Patil, Global optimization of polynomial mixed-integer nonlinear problems using the Bernstein form. Ph.D. thesis, Indian
Institute of Technology, Bombay (2012).

[31] B.V. Patil, P.S.V. Nataraj and S. Bhartiya, Global optimization of mixed-integer nonlinear (polynomial) programming prob-
lems: the bernstein polynomial approach. Computing 94 (2012) 325–343.

[32] H. Ratschek and J. Rokne, Computer Methods for the Range of Functions. Ellis Horwood Limited, Chichester, England (1984).

[33] H. Ratschek and J. Rokne, New Computer Methods for Global Optimization. Ellis Horwood Limited, Chichester, England
(1988).

[34] C.K. Shene, CS3621 Introduction to computing with geometry notes. http://www.cs.mtu.edu/shene/COURSES/cs3621/NOTES/
(2014).

[35] R. Vaidyanathan and M. El-Halwagi, Global optimization of nonconvex nonlinear programs via interval analysis. Comput.
Chem. Eng. 18 (1994) 889–897.

[36] P. Van Hentenryck, D. McAllester and D. Kapur, Solving polynomial systems using a branch and prune approach. SIAM J.
Numer. Anal. 34 (1997) 797–827.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

http://www.neos-server.org/neos/solvers/
http://www.cs.mtu.edu/shene/COURSES/cs3621/NOTES/
mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	B-spline form
	Univariate case
	Multi segment B-splines
	Multivariate case
	Example

	B-spline constrained global optimization
	Range enclosure property
	B-spline subdivision procedure
	The cut-off test
	A basic B-spline constrained global optimization algorithm
	Convergence property of the basic algorithm

	Improved algorithm with B-spline consistency techniques
	B-spline hull consistency
	B-spline box consistency
	Proposed improved algorithm for constrained global optimization

	Numerical test
	Comparisons between basic and improved proposed algorithms
	Comparison with GloptiPoly and other NLP solvers

	Conclusion
	
	Test problems
	Special test problem

	References

