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SIMULTANEOUS OPTIMIZATION SCHEDULING WITH TWO AGENTS ON AN
UNBOUNDED SERTIAL-BATCHING MACHINE

CHENG HEY*, SHI-SHENG LI1?2 AND JING WU!

Abstract. This paper considers a class of simultaneous optimization scheduling with two competitive
agents on an unbounded serial-batching machine. The cost function of each agent depends on the
completion times of its jobs only. According to whether the jobs from different agents can be processed
in a common batch, compatible model and incompatible model are investigated. For the incompatible
model, we consider batch availability and item availability. For each problem, we provide a polynomial-
time algorithm that can find all Pareto optimal schedules.
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1. INTRODUCTION

There are two agents A and B with job sets F4 = {J{‘,JQA,~-~ ,J;?A} and FB = {JlB,JQB,-~- 7*]7?5}7
respectively. Agents A and B must schedule their jobs on a common unbounded serial-batching machine and
the jobs are processed in batches, where “unbounded” implies that the machine can process any number of jobs
in a batch and “a batch” refers to a set of jobs which are processed jointly and contiguously. The processing
time of a batch amounts to the sum of processing times of all jobs in the batch. A setup time is inserted
whenever a new batch starts. According to whether the jobs from different agents can be processed in the
same batch, we investigate compatible model (i.e., the jobs of two agents can be processed in a common batch,
short for co) and incompatible model (i.e., the jobs of two agents cannot be processed in a common batch,
short for inco). For compatible model, we suppose that the setup time equals to s. For incompatible model,
we suppose that the setup time that is inserted before a batch which belongs to agent X is sx (X € {4, B}).
Moreover, in incompatible model, two kinds of batch scheduling cases are presented according to the time when
the jobs become available. In the case of batch availability (short for batch-avail), a job is available only when
the batch to which it belongs has been processed. In the case of item availability (short for item-avail), a job
becomes available immediately after it is completed processing (see [19]). In the paper, the objective function
of agent A is a lateness-like objective function, such as C4, LA TA WCA —and that of agent B is a

max’ max’ max? max
lateness-like objective function or the special total weighted completion time, such as C2,_ LB TB WCB

max’ max’ max’ max?

S wPCP with pP = p or wf = w for any 1 < j < np, where Cp,, Lo, T WO, and Y wPCP are
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the makespan, the maximum lateness, the maximum tardiness, the maximum weighted completion time (i.e.,
WY, = max{}> w]XC'JX :1<j<nx}), of agent X(X = A or X = B) and the total weighted completion
time of agent B respectively. Each agent’s objective function depends on the completion times of its jobs only.
The aim is to find all Pareto optimal schedules for the two-agents’ objective functions under various scheduling
environment. Here, two objective functions may on behalf of different profits of two decision-makers. Moreover,
we first investigate the two problems with objective vectors (Léax, Lﬁax) and (Léax7 > C’JB ), respectively, where
objective vector (71,72) represents minimizing two criteria 1 and 7, simultaneously. Finally, we generalize the
results of each problem to a class of problems.

The problems depicted above can be found in many manufacturing applications and many negotiation pro-
cedures. For example, a mill can handle orders from two types of agents. The agents’ orders are interpreted
as jobs to be processed. Agent A expects the maximum lateness of his jobs to be as small as possible, while
agent B expects the maximum lateness or the total completion time of his jobs to be as small as possible.
Moreover, the manufacturer is also concerned about minimizing any order delays which cause economic loss.
For the purpose of meeting the needs of two agents to the maximum extent, the manufacturer needs to design
some strategies to stimulate the agents to cooperate. This circumstance can be modelled as the simultaneous
optimization problems under consideration, i.e., objective vector is (Lﬁlax, Lflax) or (L;?lax, > CJB).

Serial-batching scheduling problems are urged by grouped jobs’ processing environment with conversion times
between different groups. For example, when the machine switches from processing one batch to another batch,
the machine usually need to be changed a tool or to be cleaned, which shows that the machine needs a setup
time before a new batch is processed [4]. Besides, the management and technical constraints (e.g., different
processing environment, etc.) lead to the compatibility and incompatibility of jobs from different agents [14,16].

For serial-batching scheduling problems with batch availability, Albers and Brucker [3] show that
1|batch-avail| Y w,;C; is strongly N'P-hard while 1|batch-avail| Y~ C; can be solved in O(nlogn) time (see [6]).
He et al. [10,11] present an O(n?)-time algorithm for 1|batch-avail|(Ciax, Lmax) and 1|batch-avail|(Crax, > Cj),
respectively. Geng et al. [8] solve 1|batch-avail|(Crax, fmax) i O(n4) time. If the number of agents is given, the
single-machine scheduling problems, with item availability, to minimize the maximum lateness or the number
of tardy jobs or the total weighted completion time are polynomially solvable, while all these problems become
very intractable when the number of agents is a variable [17,20]. Reviews of the research on the topic are
provided by Potts and Kovalyov [19] and Allahverdi [4].

The discuss on multi-agent scheduling originated from Baker and Smith [5] and Agnetis et al. [1]. Since it has
been surveyed by Perez-Gonzalez and Framinan [18] and Agnetis et al. [2], we only review the results related
to our study.

For two-agent constrained optimization scheduling on an unbounded serial-batching machine, Kovalyov et al.
[14] investigate a series of batch availability models, in which closely related to our problems are the problems
1|batch-avail, inco, fa.. < Q|v? with 4% € {f5. .5 CP}. Yin et al. [21] generalize the work of [14] by adding
a delivery cost for each manufacture batch; Yin et al. [22,23] study the problems in which there exist batch
delivery cost and due date assignment, etc. Li et al. [15] study a series of item availability models, in which
closely related to our problems are the problems 1|item-avail, inco, L, < Q[y® with P € {Lflax,ZC]B}

and 1|item-avail, inco,pf =p L3 <Q|Y waJB. Li et al. [16] also investigated a series of job compatibility

max —

problems, in which closely related to our problems are the problems 1|batch-avail, co, f4,, < Q|y? with vZ €
[fE Y CP).

For two-agent simultaneous optimization scheduling on a serial-batching machine, to the best of
our knowledge, the results are very few and the solved problems are very classical (see [2]). Feng

et al. [7] give an O(na +n})-time algorithm for 1|batch-avail, inco|(Ciaay, LE,,). He et al. [12] solve

max

the problem 1[batch-avail, inco| (Citay, f.) in O(na+n%) time. Agnetis et al. [2] show that problem

max

1|batch-avail, inco|(Ciia, 3 CJB) can be solved in O(nanp + n) time and 1|batch-avail, inco| () UJA7 v5) can
B } He and Lin [9] give an improved O(nB +n? log nA)—

yJmax

) and 1|batch-avail, inco|(2 ; Cf,CgaX), respectively. The

be solved in polynomial time, where vZ € {Z U JB

time algorithm for 1|batch-avail, inco|(LéaX, ck

max



SIMULTANEOUS OPTIMIZATION SCHEDULING WITH TWO AGENTS 3703

B

paper investigates simultaneous optimization scheduling 1|ﬂ|(FA FB ) and 1|5,p§3 = p or wy =

max’ max

w| (F;r‘l‘ax, > wf CJB ) and give polynomial-time algorithm for each problem respectively, where Fi = €
{CFX s Lt > T, WO} (X = A or B) and 3 € {{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}}.
The paper is arranged as follows. In Section 2, we elaborate some preliminaries and list an overview of the
results in the paper. Section 3 is dedicated to two-agent problems of minimizing objective vectors (Lﬁ‘lax, Lﬁax)
and (Lrﬁax,ECJB ) with batch availability and incompatibility. Section 4 is focused on two-agent problems
of minimizing objective vectors (Lfr‘lax,l)ﬁax) and (Lflax, ECJB) with item availability and incompatibility.
Section 5 concentrates on two-agent problems of minimizing objective vectors (Li., LE,) and (Li,., > CF)

with batch availability and compatibility. Section 6 expands on the results in Sections 3-5. Section 7 gives a
concluding remarks.

2. PRELIMINARIES AND OVERVIEW OF THE RESULTS

Suppose that agents A and B have job sets F4 = {J{‘, J{‘, e ,J;?A} and FB = {J{B,JQB, e ,JEB}, respec-
tively. For X € {4, B}, the jobs in FX are also called X-jobs, job JJ-X (X € {A, B}) has a processing time
p}x, a weight w;x and a due date d}X. Let n = ngq + np. Given a feasible schedule o, the completion time
of job JJ-X (X € {A,B}, 1 < j < nyx) is denoted by CJX(U) in o, Li((a) = CJX(O') - di( and T]-X(O') =
max{0,C;X (o) — dX } are the lateness and the tardiness of job JX in o, respectively; Ly, (o) = max_, LX ()
and T,y (0) = max//_, T;X (o) are the maximum lateness and the maximum tardiness of agent X in o, respec-
tively; WCX, (o) = max{wj(CJX(a) :1<j<nx} and > wC;¥(0) are the maximum weighted completion
time and the total weighted completion time of agent X in o, where the summation notation is taken over all
jobs of agent X. When the jobs of two agents cannot be processed in a common batch (the model is called
incompatible), an agent-dependent setup time sx is inserted before each new batch of agent X (X € {A, B}) is
processed. When the jobs of two agents can be processed in the same batch (the model is called compatible), a
setup time s is inserted before each new batch. The processing time of a batch is equal to the sum of processing
times of all jobs in the batch. According to the time when the jobs become available, batch availability model
and item availability model are investigated. In the case of batch availability, a job is available only when the
batch to which it belongs has been processed. In the case of item availability, a job is available immediately
after it is processed.

The paper considers the simultaneous optimization scheduling 1| ﬁ|(F£aX,FmBaX) and 1|3, pf =por w]B
w|(Fia, X wPCP), where € {{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}} and FyX,. €
{CFX s Lt o> Troasy WO} and X = A or B. Note that “batch-avail” and “item-avail” represent that the
considered problems are batch availability and item availability respectively, “inco” and “co” denote that A-jobs
and B-jobs are incompatible and compatible respectively. The purpose is to find all Pareto optimal schedules
in respect to two criteria in polynomial time for each problem.

Note that each job is available at time zero and each objective involved in the paper is regular (i.e., nonde-
creasing in the completion times). So there exists an optimal schedule such that all jobs (batches) are processed

continuously from time zero onwards. Throughout this paper, we focus our attention on the schedules with the
property.

Definition 2.1. A feasible schedule ¢ is Pareto optimal, or nondominated, with respect to the performance
criteria f and g if there is no feasible schedule 7 such that both f(7) < f(o) and g(7) < g(o), where at least
one of the inequalities is strict. Besides, (f(c),g(0)) is called a Pareto optimal point corresponding to Pareto
optimal schedule o.

The following theorem provides a general approach, the so-called e-constraint approach, for finding Pareto
optimal schedules.

Theorem 2.2 ([13]). Let y be the optimal value of constraint problem a|f < Z|g (where T is a upper bound of
f), and let x be the optimal value of the problem alg < y|f. Then (x,y) is a Pareto optimal point for o||(f,g).
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Suppose that problem a|g < y|f is efficiently solvable. Then the other method to find Pareto optimal schedules
is unilateral e-constraint approach in the following.

Unilateral e-constraint approach ([13]). Let (z¢,y%) be a previously obtained point. Then solve the problem
alg < y'|f (or alg < y' —1]|f if g is integral) and obtain a schedule 7**1 which give the next point (1, yit1) =
(f(m**1), g(7**1)). Repeat the above process until the problem alg < y|f is infeasible.

Theorem 2.3 ([13]). Let (z',y') be the first point obtained by Unilateral e-constraint approach, where y' be
an upper bound of g. Then all Pareto optimal schedules of problem al|(f,g) can by obtained by Unilateral
e-constraint approach.

Definition 2.4. A schedule is called EDD-EDD-schedule if A-jobs and B-jobs are sequenced in the Earliest
Due Date (EDD) order, respectively.

Definition 2.5. A schedule is called EDD-SPT-schedule if A-jobs are processed in the EDD order and B-jobs
are processed in the Shortest Processing Time (SPT) order.

The results in the paper are summarized in the Table 1.

3. INCOMPATIBLE TWO-AGENT PROBLEMS WITH BATCH AVAILABILITY

In this section, we study the two-agent scheduling problems under the batch availability and incompatible
assumption.

Lemma 3.1 ([14]). If problem 1|batch-avail, inco, L, < L|LB. is feasible, then the problem has an optimal
EDD-EDD-schedule.

Lemma 3.2 ([14]). If problem 1|batch-avail, inco, LA, < L| > CP is feasible, then the problem has an optimal
EDD-SPT-schedule.

3.1. 1|batch-avail, inco|(LA, ,LE

max’ max)

The goal of this subsection is to find all Pareto optimal schedules of 1|batch-avail, inco| (Lfl,‘lax, Lflax). Note

that for any Pareto optimal point of 1|batch-avail, inco| (L{,, LZ,), there is an EDD-EDD-schedule cor-
responding to it by Lemma 3.1 and the definition of Pareto optimal point. Re-index the jobs such that
dit <dgf <---<df and dP <dPf <. <dP .

For the feasible problem 1|batch-avail, inco, LA < L,LE_ < L'|—, Kovalyov et al. [14] presented a dynamic

programming algorithm (denoted by DP1) to solve it, and obtained the following result.

Lemma 3.3 ([14]). For problem 1|batch-avail, inco, LA, < L,LB._ < L'|—, DP1 can either find a feasible

max max

EDD-EDD-schedule or show that it is infeasible in O(nanpn) time.

Lemma 3.4 ([10]). The optimal schedule of problem 1|batch-avail|Lyay can be obtained in O(n?) time, where
n is the total number of jobs.

Let 0* and 7* be the optimal schedules (with the minimum makespan Ciax) of the problem 1|batch-avail| Lyax
in respect to A-jobs and B-jobs, respectively. Let L* := L4 (¢*), L := L* + CB_ (7*), L' := LB, (7*) and

_ max max max
L' := L' + C4,.(0*) in the following. Then we have the following lemma by the definition of Pareto optimal
point.

Lemma 3.5. Let (L, L}), (L2, L3), -+, (Lg, L))  be all  Pareto  optimal  points  of  problem
1|batch-avail, inco| (LA, LE,) and Ly < Ly < -+ < Ly. Then Ly = L* and L > L, and

max

L'>Ly>Ly>--->L,=L".



SIMULTANEOUS OPTIMIZATION SCHEDULING WITH TWO AGENTS

TABLE 1. Complexity results for two-agent scheduling.

Problem

Complexity

Reference

1|batch-avail, inco| ( axs Cﬁax)
1|batch-avail, inco| (Cihax, LEax)

1|batch-avail, inco| (Ciaax, Fikax)

where FB € {Trfa)n

1|batch-avail, 1nco\( max,ZCB)
1|batch-avail, inco, pJ —p|( max,ZwBC'B)
1|batch-avail, inco| ( haxs Lf,ax)
1|batch-avail, 1nco\( max,F,faX)

where FX,. € {Lmax,T,fax, WCiax} and X € {A, B}
1|batch-avail, 1nco\( fhaxs O CB)
1|batch-avail, 1nco\ (F,f,‘ax, M CJB)

where F4 € { axs WC{gax}
1|batch-avail, inco pJ = p|( s ZwBCB)
where Filox € { Liax, Titax> W Ciaax }
1|item-avail, 1nco\( max,C’,Eax)

1]item-avail, inco| ( axs F,fax)

where FB € {Lmax,Tfax, WCrEaX}
1]item-avail, incol ( mamZC’B)
1]item-avail, inco pJ = p\( axs ZwBC’B)
1|item-avail, inco| ( Thaxs Lﬁax)

1]item-avail, incol ( mdx,F,de)

where F,,. € {me,:r;fax, WCiax} and X € {A, B}
1|item-avail, 1nco\( fhaxs O CB)
1|item-avail, 1nco\( max7ZCB)

where Fji,, € {T;ﬁax, Wclﬁdx}

1|item-avail, inco pj = p\( axs ZwBCB)
where Filax € { Linax: Tiax> W Cinax }
1|batch-avail, co| (Cﬁax7 Cﬁax)

1|batch-avail, co| (Ciax, Fiftax)

where FB € {Lmax,Tgax, WC’EaX}
1|batch-avail, co|( maX,ZCB)
1|batch-avail, co pj —p|( maX,ZwBCB)
1|batch-avail, col (L,‘;‘]ax, Lfmx)

1|batch-avail, co| (F,;‘,‘ax, Ffax)

where FX.. € {LmaX,T[ffax, WC’,}rfaX} and X € {A, B}
1|batch-avail, co|(Liax, 3. CF)
1|batch-avail, col (F,‘gax, > CJB)

A A
where El\ax S {T'mapu

1|batch-avail, co,pJ = p|( s ZwBCB)
where Fmax € {Lma)u Trjr?axv Wcrﬁax}

B
C(m ax

A
Cm ax

O(n)
O(nA +n% lognB)
O(nA +n% lognB)

O(nA +ng lognB)

na + nB)
na+ nB)
NANBN logn)

o(
o(
o(
o(

nAngn )

Agnetis et al. [2]
He and Lin [9]
Theorem 6.4

He and Lin [9]
Remark in Section 6
Theorem 3.6
Theorem 6.12

Theorem 3.8
Theorem 6.13

Remark in Section 6

Theorem 6.3
Theorem 6.5

Theorem 6.5
Remark in Section 6
Theorem 4.4
Theorem 6.12

Theorem 4.6
Theorem 6.13

Remark in Section 6

Theorem 6.3
Theorem 6.8

Theorem 6.11
Remark in Section 6
Theorem 5.4
Theorem 6.12

Theorem 5.6
Theorem 6.13

Remark in Section 6
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Let 0 = (By,Bs, -+, B;) be any feasible EDD-EDD-schedule for 1[batch-avail, inco| (L max,LﬁaX) where
B; (1 <i <) is the i-th batch of o. Since o is an EDD-EDD-schedule, without loss of generality, let Ui:1 B;, =
{Jf,JQA,-~ , gk}U{J1 LB ,J}i} for any 1 < k < [. Let 6; and ¥y denote the numbers of batches of
agent A and agent B in the first k batches By, Ba, - - , By, respectively. Let t(gg, 0k, hi, 9x) be the completion
time of batch By. Then 0y + 9y = k and t(gx, Ok, hi, V%) = Ok - 54 + E?ilpf + 9 - sp + Z;‘Lir pf, where
0<0r <gr<nygand 0< Y, <hg<ng.If the jobs contained in batch B} belong to agent B, then let B, =
{Jﬁ, Jﬁ_H, e ,J,ﬁ} because the jobs of agent B are scheduled in EDD order in o, where 1 < ¥y < A < hg.
Hence maxy, <j<n, L7 (0) = t(gk, Ok, hi, Ox) — d§ by df < df ., < --- < df} . Thus by the arbitraries of o

and k, we can derive all possible values of maximum 1atenebs LB belong to the set
B = {t(gk, O, hie, 1) — dX [0 < O < g Sma, 1 <0 < N\ < hi <l (3.1)

If the jobs contained in batch By belong to agent A, then we infer similarly that all possible values of maximum
lateness LA belong to the set

max

A= {t(gr: Ok, e, Ok) — d3, 1L < Ok < M < g Sma, 0< 0y < hy <npl. (3.2)

Suppose that (L,L’) is any Pareto optimal point for problem 1[batch-avail, inco| (L{ ., L2, ). Then we
further get L' € {p|p eCPand L' <p< L’} from Lemma 3.5. Let £8 := {p\p eCBand L'*<p< F} and
£ = {p|p €Cland L* <p< L} Hence L' € £B. Similar to the above discussion, we have L € £4. Moreover,
|EA] < O(n¥n%) and |E8] < O(n%n%), where [£¥| denotes the number of the elements in set £X, X € {A, B}.
Lemma 3.3 implies that problem 1|batch-avail, inco, LA, < L|LB _ can be solved by solvrng a series of
feasible problems 1|batch-avail, inco, L2, < L, LB < L' |— with decreasing L’. From the above discussion, we

max max
can only consider the values L' € £ L Slmllarly, 1|batch-avail, inco, LB, < L/|LA.  can be solved by solving a
< L'|— with decreasmg L, where L € £4.

series of feasible problems 1|batch-avail, inco, L2, § L Lﬁax
Assume that €4 = {l1,l,--+,1,.} and EB = {0, U withl; <lpg < - <land lf <l <--- <
in the following, Where r < O(ni‘nQB) and s < O(n AnB) Then the followmg algorithm can solve problem

1|batch-avail, inco| (L., LB, ).

Algorithm PO- (LA LB

max’ max)

Step 1. Let [; (1 <i<r)andl; (1 <j <s)be defined as above, k:=r, h:=1, L =1, L' :== 1}, f:=0 and
g:=0.

Step 2. Solve problem 1|batch-avail, inco, L, < L, LB < L'|— by DP1. If the current constrained problem

is infeasible, then go to Step 3; otherwise we get a new schedule o741 and let f := f+1 and L := LA _ (o)
(it is obvious that L < Ij, and L € £4) and go to Step 4.

X

Step 3. If h = s, then return all Pareto optimal schedules 7,79, -, 7, and stop. Otherwise h < s, let
h:=h+1, L' := 1} and go back to Step 2.
Step 4. If L = [y, then let g := g+ 1 and 7, := 0oy and return all Pareto optimal schedules 71,72, -+ , 74 and

stop. If L > [, then assume that L = I; (where 2<ip <k) Let k:=ix — 1, L := .
Step 5. Solve problem 1|batch-avail, inco, Lmax < L,LB . < L'|- by DPL. If the current constrained problem
is infeasible, then let g := g+ 1 and 7, := o and go back to Step 3; otherwise we get a new schedule o,

and let f:= f+1and L := L, (o) and go back to Step 4.

Theorem 3.6. Algorithm PO-(LL,.,LE..) can solve problem 1|batch-avail, inco|(LL,, LE,.) in O(n3n%n?)
time.
Proof. The validity of Algorithm PO-(La,,, LZ,.) is guaranteed by Theorem 2.2 and Lemmas 3.3 and 3.5 and

the above discussion. Next, we discuss the time bound.
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Step 1 takes O((nAnB +nin%)) = O(ningn) time to compute all I; (1 < i < r)and I} (1 < j < s) and takes
O(n3n%logn +n%n3logn) = O(n%n%nlogn) time to sort the sets £4 and £5. On the other hand, Steps 2 and
3 have at most |EB| < O(n%n%) rounds and Steps 4 and 5 have at most |5A’ < O(n®n%) rounds. Each round
needs O(nanpn) time by Lemma 3.3. Therefore, the overall time complexity is O((n%n% + n®n%)nangn) =

O(n%n%n?) time.

3.2. 1|batch-avail, inco| (Liax’ > Cf)

Let (z,y) be a Pareto optimal point of problem 1|batch-avail, inco| (L., > CF). Then there exists an EDD-
SPT-schedule o corresponding to (z,y) (i.e., (z,y) = (Liax(0), Y. CP(0))) by Lemma 3.2 and the definition of
Pareto optimal point. Re-index the jobs such that dA < dA << d,‘?A and plB < pQB <. < pr.

For problem 1|batch-avail, inco, L2, < L] ECJB ) Kovalyov et al. [14] presented a dynamic programming

algorithm (denoted by DP2), and obtained the following result.

Lemma 3.7 ([14]). Problem 1|batch-avail, inco, LA, < L CJB can be solved by DP2 in O(n%n%n) time.

Similar to the discussion of Section 3.1, all possible values of the maximum lateness L,
A and |C4| = O(n®n%), where C# is defined as that in (3.2) of Sectlon 3.1.
Next we give an algorithm to solve problem 1|batch-avail, inco| (L., > C’B ).

belong to the set

Algorithm PO-(LA,,, 5 CF)

Step 1. Let [; (1 <i <r) be defined as that in Section 3.1, k :=r, h:= 0 and L := .

Step 2. Solve problem 1|batch-avail, inco, L7, < L] ZC]B by DP2. If the current constrained problem is
infeasible, then return all feasible schedules 01,09, -+ , 0, and go to Step 4; otherwise we get a new schedule
ony1 and let h:=h+ 1 and L := L3, (04) (it is obvious that L <[ and L € C4).

Step 3. If L = [y, then return all feasible schedules 01,05, -+ ,0n, and go to Step 4. If L > [, then assume
that L =[;, (where 2 <1 < k). Let k := i — 1, L := I}, and go back to Step 2.

Step 4. For each schedule o; (1 < j < h), compute the corresponding objective values (L{},.(0;), > CF(0;))
and pick out all Pareto optimal points and the corresponding Pareto optimal schedules.

Theorem 3.8. Algorithm PO-(L4,., ZC’B) can solve 1|batch-avail, inco| (L4, ZCJB) in O(nngn) time.

Proof. The validity of Algorithm PO-(L mdx,EC’B ) is guaranteed by Theorem 2.3 and Lemma 3.7 and the
above discussion. Next, we discuss the time bound

Step 1 takes O(nAnB) time to compute all ; (1 < i < r) and takes O(n%n%logn) time to sort the sets
CA. Step 2-Step 3 have at most [C4|= O(n%n%) rounds (since L = [, € C*). Each round needs O(n%n%n)
time by Lemma 3.7. Since h < O(nin%) and computing each pair of objective values needs O(n) time and
picking out all Pareto optimal points and the corresponding Pareto optimal schedules need O(n) time (since
LA, (o1) > LA, (02) > -+ > LA, (o) and ZOB(O'l) < ZC’B(JQ) <. < ZCJB((Th)), Step 4 needs

max max
O(n3n%n) time. Therefore, the overall time complexity is O (n’n Bn) time. O

4. INCOMPATIBLE TWO-AGENT PROBLEMS WITH ITEM AVAILABILITY

In this section, we study the two-agent scheduling problems under the item availability and incompatible
assumption. Notice that under the item availability assumption, if two batches of the same agent are processed
consecutively, then these two batches can be merged into a large batch with only one setup time retained (which
is impossible under the batch availability assumption), i.e., the batches belonging to different agents appear
alternately. We restrict our search to the schedules with this property.
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Lemma 4.1 ([15]). If problem 1|item-avail, inco, L} is feasible, then the problem has an optimal

max < L|L
EDD-EDD-schedule.

max

Lemma 4.2 ([15]). If problem 1|item-avail, inco, L2

ax < L ZCJB is feasible, then the problem has an optimal
EDD-SPT-schedule.

4.1. 1|item-avail, inco|(L A4 oLB.)

Let (z,y) be a Pareto optimal point of problem 1|item-avail, inco| (L, LZ ). Then there exists an EDD-
EDD-schedule o correspondmg to (z,y) by Lemma 4.1 and the definition of Pareto optimal point. Re-index the
jobs such that d‘f‘ < dA <. < dAA and dB < dB < < dB

Let 0 = (By,Ba,- - Bl) be any feasible EDD- EDD—bchedule for 1|item-avail, inco| (L., LE,,). Suppose
that job Jf € FB and J)\ € Bj.. Then By, is a batch of agent B. Further, batch Bj_; must be a batch of agent
A by the rotation of batches from the different agents. Let 6 and 9 denote the numbers of batches of agent

A and agent B in the first k£ batches By, Bs, - - - , By, respectively. Then 6 + ¥ = k and

{ k£l if k is odd number
Yy, =

2
k if k is even number

2
according to the rotation of batches from the different agents. Hence,

{ﬂk —1 if k is odd number
0, =

I, if k is even number. (4.1)

Since A-jobs are scheduled in EDD order in o, without loss of generality, let the A-jobs that are scheduled
before J f are Jit, J3, - ,Jg‘i . From the definition of item availability, we know that the completion time of
job JB is only related to the numbers 6 and 9}, of batches and the jobs that is scheduled before job JZ. So let
t(gk, Ok, A, V%) be the completion time of job JZ. Then (g, Ok, A\, %) = Ok - 54 + Ej 1pj +9 s+ Z;‘Zl pJB
because ¢ is an EDD-EDD-schedule, where 0 < 6 < gr < nyg and 1 < 9 < A < ng. Hence Lf(a) =
t(gk, O, A, I5) — df . Thus by the arbitraries of 0 and A, we can derive all possible values of maximum lateness
LB Dbelong to the set

max

5= {t(gr, 0k, X, U%) — dZ10 < 0 < g <na, 1 <Y <A< np} and 6 and U, satisfy (4.1).

Similarly, all possible values of maximum lateness L2, belong to the set

A = {t()\,Hk,hk,ﬁk) - df|1 S 9k S A S nAa, 0 S 19]C § hk S TLB}, where

_ [0 —1 if k is odd number
Ve = {Hk if k is even number. (42)
Hence, [C4| = O(n%np) and [CB| = O(nan%).
Remark. Li et al. [15] present an O(n%n% logn)-time algorithm for 1|item-avail, inco, LA, < L|LE__ in which
the time bound is decided by sorting set CP with |CP| = O(n%n%). Hence we can improve the time bound to
O(nan%logn) by |CB| = O(nan).
Lemma 4.3 ([15]). Problem 1|item-avail, inco, L, < L, LB, < L'|— can be solved in O(nang) time.

By Lemma 4.3 and the above discussion, problem 1|1tern avail, inco, L7, < L|LE_ can be solved by solving
a series of feasibility problems 1|item-avail, inco, L2

e <L Lﬁax < L'|— with the the decreasing values L’
and L' € CP. Similarly, 1|1tem avail, inco, LB, < L'|LA,. can also be solved by solving a series of feasibility
problems 1|item-avail, inco, LA, < L Lflax < L'|— with the decreasing values L and L € C4.

By slightly modifying Algorithm PO- ( max,Lﬁax) in Section 3.1 at the corresponding place, we derive the

following result.
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Theorem 4.4. Problem 1|item-avail, mco\( haxs Lﬁax) can be solved in O(ninan) time.

4.2. 1|item-avail, inc0|(LﬁlaX, ZCf)

Notice that for any Pareto optimal point of 1|item-avail, inco|(Lia, > CB ), there is an EDD-SPT-schedule
correspondlng to it by Lemma 4.2 and the definition of Pareto optimal pomt. Re-index the jobs such that
dit <dgt <---<dff, and pf <pf <. <pf .

na

Lemma 4.5 ([15]). Problem 1|item-avail, inco, L, < L| Y- CP can be solved in O(n’n%) time.

Through the similar discussion in Section 4.1, all possible values of the maximum lateness L2 belong to
the set CA and |C4| = (nAnB) where C4 is defined as that in Section 4.1. By slightly modifying Algorithm
PO-(LA.. > C’B ) in Section 3.1 at the corresponding place, we derive the following result.

Theorem 4.6. Problem 1|item-avail, inco|(L{,, > CF) can be solved in O(nyn%) time.

5. COMPATIBLE TWO-AGENT PROBLEMS WITH BATCH AVAILABILITY

In this section, we study the two-agent scheduling problems under the batch availability and compatible
assumption.

Lemma 5.1 ([16]). If problem 1|batch-avail, co, LA, < L|LB
EDD-EDD-schedule.

Lemma 5.2 ([16]). If problem 1|batch-avail, co, L, < L| Y CP is feasible, then the problem has an optimal
EDD-SPT-schedule.

5.1. 1|batch-avail, co| (L

max 08 feasible, then the problem has an optimal

B
max’ Lmax)
For any Pareto optimal point of 1|batch-avail, co\( mlx,Lﬁlx) there exists a corresponding EDD-EDD-
schedule by Lemma 5.1 and the definition of Pareto optimal point. Re-index the jobs such that dft < d3' <

c<df and dP <df <. <dB
Let 0 = (By,Ba, -+, B;) be any feasible EDD-EDD-schedule for 1|batch-avail, co|(Liay, LE,,). Without loss
of generality, for any 1 < k < [, let Ui:1 B; = {Jl /SR gk}U{Jl LB Jh } since ¢ is an EDD-EDD-

schedule. Let t(gx, hi, k) be the completion time of batch By. Then t(gx, hi, k) = k- s+ ] 1pj + Zj 1pJ ,
where 0 < g, < ny and 0 < hy < np and 1 < k < g + hg. For any job JXGBk with X = A or X = B (for
A-jobs and B-jobs are compatible), we have L]X(U) = t(gg, hi, k) — d ,where 1 < j < g, if X = A otherwise

1 < j < hg. By the arbitraries of o and k, we can derive all possible valueb of maximum lateness L
to the set

4 . belong

A= {t(g, b k) —dM1 < j < ge <ma, 0< by <np, 1<k < gp+hy <n}.
Similarly, all possible values of maximum lateness LZ__ belong to the set
Bri= {t(gr hi k) —dP|0 < ge <na, 1<j<hp <np, 1<k <gp+he <n}.
Observe that, |C4| = O(n}ngn) and |CB| = O(nankn).
Lemma 5.3 ([16]). Problem 1|batch-avail, co, LA, < L,LB. < L'|— can be solved in O(nlogn) time.
By Lemma 5.3 and the above discussion, problem 1|batch-avail, co, LA, < L|LB__ can be solved by solving
a series of feasibility problems 1|batch-avail, co, LA, < L,LE. < L'|- with the decreasing values L/, where
L' € CB. Similarly, 1|batch avail, co, LB < L’ |Lmax can also be solved by solving a series of feasibility problems
1|batch-avail, co, L2, < L Lf]ax < L'|- w1th the decreasing values L, where L € C4.
By slightly modifying Algorithm PO—( s Lﬁax) in Section 3.1 at the corresponding place, we derive the
following result.
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B
max)? Lmax

Theorem 5.4. Problem 1|batch-avail, co|( ) can be solved in O(nAan3 log n) time.

5.2. 1|batch-avail, co| (Lﬁax, > CJB>

For any Pareto optimal point of problem 1|batch-avail, co|( s D CJB), there exists a corresponding EDD-
SPT-schedule by Lemma 5.2 and the definition of Pareto optimal point. Re-index the jobs such that dft < d4' <
< dd and pP <pf <. <pn

For problem 1|batch-avail, co, LA,
and present a polynomial time algorithm for it.

< L| Y CP, Li et al. [16] showed that L/}

max

(o) € CA (defined in Sect. 5.1)

Lemma 5.5 ([16]). Problem 1|batch-avail, co, LA, < L] ZC’B can be solved in O(n n%n) time.

max —

By modifying Algorithm PO—( ey D CB ) in Section 3.2 slightly on the corresponding place, we get the
following result.

Theorem 5.6. Problem 1|batch-avail, co|(L{ ., > CB) can be solved in O(nYnin?) time.

6. A CLASS OF PROBLEMS WITH LATENESS-LIKE OBJECTIVE FUNCTION

For each of the above problems studied in Sections 3-5, there is an optimal schedule with a specific structure,
such as EDD-EDD or EDD-SPT that depends on the objective functions held by the two agents. We note that
the specific structure is a key to solving our problems so that our methods are applicable to a class of problems
with the specific structure. We introduce two concepts in [24].

— An objective function Féfax of agent X that needs to be minimized is named a lateness-like objective func-

tion of agent X when FX _ is regular and all X-jobs have a order (without loss of generality, denoted

by (Ji%,J55, -+, J:X)) so that F{¥(t) > F5X(¢t) > --- > FX () for any time ¢, where F, (o) =
maxi <j<ny {F;* (C;* (o))} and X € {A, B} for a given schedule . Moreover, order (Ji¥,J5*, -, JX )

is called an EDD-like order.

Observe that a scheduling problem in which agent X has a lateness-like objective function has an optimal
schedule so that X-jobs are scheduled in the EDD-like order (Jlx, T ,Jff ) For example, when F,

max -

LX. ., the EDD like order is (J{¥, J5¥, -+ | JX ) with dff <df <--- < d¥ (see [24]).

CX . LE max: TX . and WCX, are common lateness-like objective functions. Assuming their EDD-like orders
are (J1 LI5S X ) Then the EDD-like order is arbitrary for C:X, | the EDD-like order is df <d¥ <--- <
dx . for Lfn(ax and Tmax7 the EDD-like order is wi* > w3 > .- > wX for WCX,,

Lemma 6.1. Let (z,y) be a Pareto optimal point of 1|B|(Fiu, Fl.y). Then there is a correspond-

ing Pareto optimal schedule so that all X-jobs are scheduled in the EDD-like order, where [ €

{{batch avazl inco}, {item-avail, inco}, {batch-avail, co}} and FX.. {CﬁaX,LiaX,TH}faX,WCgaX} Especially,
if FX = CX ., then all X-jobs belong to a common batch.
Proof. We can prove the lemma by job-shifting argument. O

Lemma 6.2. Let (z,y) be a Pareto optimal point of 1|B|( maX?ZCjB)' Then there is a corre-
sponding Pareto optimal schedule so that all A-jobs are scheduled m the EDD-like order and all
B-jobs are scheduled in the SPT order, where F2,_ € {ca max; L., de,WC’éaX} and B €
{{batch-avail, inco}, {item-avail, inco},{batch-avail, co}}. Especially, if FA. = CA. ., then all A-jobs belong

to a common batch.

max
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Proof. We can prove the lemma by A-job-shifting argument and B-job-exchanging argument. O

Theorem 6.3. Problem 1|3|(Cia.y CE..) with B € {{item-avail, inco}, {batch-avail, co}} can be solved in O(n)
time.

Proof. By Lemma 6.1 and the symmetry of A and B, problem 1|item-avail, inco|(C;ﬁaX, Cﬁax) has only two
Pareto optimal schedules (f A FB ) and (}' B F A), 1|batch-avail, col (C’I‘gax, Cgax) has only three Pareto optimal
schedules (fA, .7:3) and (TB7 TA) and (.7’-'/‘.7’:3)7 where F¥X and FAFB denote a batch composed of all X-jobs
(X = A or B) and a batch composed of all jobs, respectively. Hence, the problems can be solved in O(n)

time. O

Theorem 6.4. Problem 1|batch-avail, inco|(Ciany, o) with FB

B ) Bx € {TE. WCEB.} can be solved in
O(nA +n23 lognB) time.

Proof. From Lemma 6.1 and EDD-like order, the proof for 1|batch-avail, inco|(C,,, LE,.) in [9] is applicable

max

to 1|batch-avail, inco|(Cia,,, F.5..) with FB e {TE - WCE 1. O

Theorem 6.5. Problems 1|item-avail, inco|(C4,., FB.) with FZ

e {LB.TE.  WCB.} and
1]item-avail, inco|(Ciiay. > CP) can be solved in O(na +n%) time.

max? max?

Proof. Due to alternate batches from the different agents in any Pareto optimal schedule, each Pareto
optimal schedule of each problem contains either two batches or three batches by Lemmas 6.1 and 6.2.
Hence there is at most O(np) Pareto optimal schedules. It takes O(np) time to compute each objec-
tive vector when Zj pj‘ is computed in advance and all B-jobs is sorted in advance. And sorting B-
jobs needs O(nplognp) time and computing }, p;‘ needs O(n4) time. So the total time complexity is

O(nA+nBlognB+n2B):O(nA—i-nzB). O
Lemma 6.6 ([16]). For problem 1|batch-avail, co, FE, < LICA, ., CA . has at most O(n%) possible values,
where FE € {LE, . T5 WCE, }.

Lemma 6.7 ([16]). Problem 1|batch-avail, co, 5, < L|CZ,. with FE € {LE TE WCE. } can be solved

in O(nglogng) time if Zj pf are computed in advance and all O(nQB) possible values of CA,  are sorted in
advance and all B-jobs are sorted in the nondecreasing order of their deadlines in advance.

Proof. The feasibility problem 1|batch-avail, co, fnax < L|— can be solved in O(n) if the deadlines of all
jobs are given in advance (see [16]). So problem 1|batch-avail, co, FE, < L,CA < L'|— can be solved in
O(np +logng) = O(ngp) if 3_; pj‘ is computed in advance and all B-jobs are sorted in the nondecreasing order
of their deadlines in advance by Lemma 6.1 (where all A-jobs are looked as a merged large job and lognp is
the time taken to insert the merged job into B-jobs). Since problem 1|batch-avail, co, F2, < L|C4,. can be
solved by solving a series of feasibility problems 1|batch-avail, co, FE, < L,CA4, < L'|— with varied L/, where
the varied L’ is determined by binary search on all O(n%) possible values of C4,,, which needs O(lognp) time
if all O(n%) possible values of C, is sorted in advance, and the order of all B-jobs keeps no change, problem
1|batch-avail, co, F5, . < L|Ci., with F5. € {LE . T5 WCE.  } can be solved in O(nglogng) time if

ax max max? max?
> j p;‘ is computed in advance and all O(nQB) possible values of CA__ is sorted in advance and all B-jobs are

max

sorted in the nondecreasing order of their deadlines in advance. (I
Theorem 6.8. Problem 1|batch-avail, co|(Ciaun, Fiyy) with FE € {LE . TE WCE, Y can be solved in

O(nA + n‘}g log nB) time.
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Proof. Problem 1|batch- avall col( maX,FIEaX) can be solved by solving a series of constraint problem
1|batch-avail, co, B, < L|

ax fax With the decreasing values L, where L is all possible values of F;
From reference [16], F.Z = has at most O(n AT Bn) possible values if CA, .

Lemma 6.1, all A-jobs can be treated as a merged large job with processing time Zj p] . Thus our prob-

de

is replaced by LA . From

X

lem is equivalent to na = 1 jobs. So FZ _ has at most O( ) values in our problem. Note that the order of
all B-jobs (provided that they are scheduled in nondecreasing order of their deadlines) has no change in each
round. So if we sort all B-jobs in advance, then each time sorting all jobs needs only to insert one merged A-jobs
into B-jobs, which takes O(lognpg) time. And computing Z p;‘ needs O(n4) time and sorting all B-jobs needs
fax Deeds O(nQB log nB) time. Hence, the

total time complexity is O(nA +nplognpg + nB lognpg +nplogng - nB) = O(nA + n‘}g lognB) time. O

O(nplognp) time in advance. Sorting all O(nB) possible values of C4

Lemma 6.9 ([16]). Problem 1|batch-avail, co, FA, .
{Lmaxa 1nax7WC£ax}'

Corollary 6.10. Problem 1|batch-avail, co, C4, .
in advance.

<L|> C’B can be solved in O(nnAnB) time, where FB €

max
<L|Y CJB can be solved in O(n%) time if > pj‘ is computed

Theorem 6.11. Problem 1|batch-avail, co|(Ch,., > CF) can be solved in O(na + n) time.

Proof. Since C2,. has at most O(n%) possible values (see ([16])), sorting the values needs O(n%lognp)
time and computing Zj pf needs O(na) time in advance. The remaining proof is similar to that of

Theorem 6.8. U

Since lateness-like objective functions and the maximum lateness have a similar property (see
Lemmas 6.1 and 6.2), the methods used to solve problem1|3|(La,,,LE,,) and problem 1|3|(L max?ZCjB)
in Sections 3-5 are also applicable to problems 1|8|(Fa,, FZ,.) and 1|ﬁl( max,ZCB), where €
{{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}} and F:X WCX.} (X =Aor B).

max 6 {Lmax7 max’
Hence we have the following theorems.

Theorem 6.12. Problems 1|8|(Fi., F5..) and 1|3|(L{ .. LE ) have the same time comple:city, where g e
{{batch-avail, inco}, {item-avail, inco},{batch-avail, co}} and X € {A, B} and Fi, € { Lo Tk Wi }-

Theorem 6.13. Problems 1|5]( max,ZCB) and 1|B|(L max,ZCB) have the same time complexity, where
B € {{batch-avail, inco}, {item-avail, inco},{batch-avail, co}} and FA € {TA,  ,WCA }.

Remark For Ié; € {{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}} and  F4,. €
{ca LA ., maX,WC’rﬁax} Pareto optimal schedules of problem 1[8]( max,ZC’B) and Pareto optimal
schedules of problem 1|3, p7 = pl( maX,ZwB C’B ) have a similar property, i.e., their A-jobs are scheduled
in the EDD-like order, and all B-jobs are scheduled in the SPT order for former problem and all B-jobs
are scheduled in the SPT-like order (i.e., wf > wf > ... > wph ) for latter problem. Therefore, problems
1B(Faae X CP) and 118, pF = p|(Fiax, X2 wPCF) have the same time complexity.

7. CONCLUDING REMARKS

In the foregoing discussion, we study two-agent simultaneous optimization scheduling, in which the objective
function of agent A is lateness-like objective function, such as CA, LA TA WCA,  and that of agent B is a
lateness-like objective function or the special total weighted completion time, on an unbounded serial-batching
machine. Moreover, the problems are considered under three cases: batch availability and incompatibility, item
availability and incompatibility, and batch availability and compatibility. For all problems studied in the paper,

we give a polynomial-time algorithm, respectively. On the one hand, our future work would be to generalize the
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objective vectors, for example, (fa., f5.) and (32 CP, 3 CP) and (fi,., > CF). On the other hand, we can

max’ J max max?

also consider the corresponding bounded cases for the problems in the paper.

Acknowledgements. He was supported by the Key Research Project of Henan Higher Education Institutions (20A110003)
and STAPHNOS (No. 2020-70) and IFPHNUT (No. 2020ZKCJ08). Li was supported by the Key Research Project of
Henan Higher Education Institutions (20A110037) and the Young Backbone Teachers training program of Zhongyuan
University of Technology (2018XQG15).

REFERENCES

[1] A. Agnetis, P.B. Mirchani, D. Pacciarelli and A. Pacifici, Scheduling problems with two competing agents. Oper. Res. 52
(2004) 229-242.

[2] A. Agnetis, J.-C. Billaut, S. Gawiejnowicz, D. Pacciarelli and A. Soukhal, Multiagent Scheduling: Models and Algorithms.
Springer-Verlag (2014).

[3] S. Albers and P. Brucker, The complexity of one-machine batching problems. Discrete Appl. Math. 47 (1993)
87-107.

[4] A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs. Eur. J. Oper. Res. 246 (2015)
345-378.

[5] K.R. Baker and J.C. Smith, A multiple-criterion model for machine scheduling. J. Scheduling 6 (2003) 7-16.

[6] E.G. Coffman, M. Yannakakis, M.J. Magazine and C. Santos, Batch sizing and job sequencing on a single machine. Ann. Oper.
Res. 26 (1990) 135-147.
[7] Q. Feng, Z.Y. Yu and W.P. Shang, Pareto optimization of serial-batching scheduling problems on two agents. In: The 2011
International Conference on Advanced Mechatronic Systems. IEEE (2011).
[8] Z.C. Geng, J.J. Yuan and J.L. Yuan, Scheduling with or without precedence relations on a serial-batch machine to minimize
makespan and maximum cost. Appl. Math. Comput. 332 (2018) 1-18.
[9] C. He and H. Lin, Improved algorithms for two-agent scheduling on an unbounded serial-batching machine. Discrete Optim.
41 (2021) 100655.
[10] C. He, Y.X. Lin and J.J. Yuan, Bicriteria scheduling of minimizing maximum lateness and makespan on a serial-batching
machine. Found. Comput. Decis. Sci. 33 (2008) 369-376.
[11] C. He, Y.X. Lin and J.J. Yuan, A DP algorighm for minimizing makespan and total completion time on a series-batching
machine. Inf. Process. Lett. 109 (2009) 603-607.
[12] C. He, C.Q. Xu and H. Lin, Serial-batching scheduling with two agents to minimize makespan and maximum cost. J. Scheduling
23 (2020) 609-617.
[13] H. Hoogeveen, Multicriteria scheduling. Eur. J. Oper. Res. 167 (2005) 592-623.
[14] M.Y. Kovalyov, A. Oulamara and A. Soukhal, Two-agent scheduling with agent specific batches on an unbounded serial
batching machine. J. Scheduling 18 (2015) 423-434.
[15] S.S. Li, R.X. Chen and Q. Feng, Scheduling two job families on a single machine with two competitive agents. J. Comb. Optim.
32 (2016) 784-799.
[16] S.S. Li, T.C.E. Cheng, C.T. Ng and J.J. Yuan, Two-agent scheduling on a single sequential and compatible batching machine.
Nav. Res. Logistics 64 (2017) 628—641.
[17] C.L. Monma and C.N. Potts, On the complexity of scheduling with batch setup times. Oper. Res. 37 (1989)
798-804.
[18] P. Perez-Gonzalez and J.M. Framinan, A common framework and taxonomy for multicriteria scheduling problems with inter-
fering and competing jobs: multi-agent scheduling problems. Fur. J. Oper. Res. 235 (2014) 1-16.
[19] C.N. Potts and M.Y. Kovalyov, Scheduling with batching: a review. Eur. J. Oper. Res. 120 (2000) 228-249.
[20] S. Webster and K.R. Baker, Scheduling groups of jobs on a single machine. Oper. Res. 43 (1995) 692-703.
[21] Y.Q. Yin, Y. Wang, T.C.E.Cheng, D.J. Wang and C.-C. Wu, Two-agent single-machine scheduling to minimize the batch
delivery cost. Comput. Ind. Eng. 92 (2016) 16-30.
[22] Y.Q. Yin, Y.J. Yang, D.J. Wang, T.C.E.Cheng and C.-C. Wu, Integrated production, inventory, and batch delivery scheduling
with due date assignment and two competing agents. Nav. Res. Logistics 65 (2018) 393-409.

[23] Y.Q. Yin, D.D. Li, D.J. Wang and T.C.E. Cheng, Single-machine serial-batch delivery scheduling with two competing agents
and due date assignment. Ann. Oper. Res. 298 (2021) 497-523.



3714 C. HE ET AL.

[24] J.J. Yuan, C.T. Ng and T.C.E. Cheng, Scheduling with release dates and preemption to minimize multiple max-form objective
functions. Eur. J. Oper. Res. 280 (2020) 860-875.

Subscribe to Open (S20)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S20). S20 is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S20 programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o0-programme



mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Preliminaries and overview of the results
	Incompatible two-agent problems with batch availability
	1|batch-avail, inco|(LmaxA, LmaxB)
	Algorithm PO-bold0mu mumu (LmaxA,LmaxB)(LmaxA,LmaxB)(LmaxA,LmaxB)(LmaxA,LmaxB)(LmaxA,LmaxB)(LmaxA,LmaxB)

	1|batch-avail, inco|(LmaxA,CjB)
	Algorithm PO-bold0mu mumu (LmaxA,CjB)(LmaxA,CjB)(LmaxA,CjB)(LmaxA,CjB)(LmaxA,CjB)(LmaxA,CjB)


	Incompatible two-agent problems with item availability
	1|item-avail, inco|(LmaxA,LmaxB)
	1|item-avail, inco|(LmaxA,CjB)

	Compatible two-agent problems with batch availability
	1|batch-avail, co|(LmaxA,LmaxB)
	1|batch-avail, co|(LmaxA,CjB)

	A class of problems with lateness-like objective function
	Concluding remarks
	References

