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SIMULTANEOUS OPTIMIZATION SCHEDULING WITH TWO AGENTS ON AN
UNBOUNDED SERIAL-BATCHING MACHINE

Cheng He1,*, Shi-Sheng Li2 and Jing Wu1

Abstract. This paper considers a class of simultaneous optimization scheduling with two competitive
agents on an unbounded serial-batching machine. The cost function of each agent depends on the
completion times of its jobs only. According to whether the jobs from different agents can be processed
in a common batch, compatible model and incompatible model are investigated. For the incompatible
model, we consider batch availability and item availability. For each problem, we provide a polynomial-
time algorithm that can find all Pareto optimal schedules.
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1. Introduction

There are two agents 𝐴 and 𝐵 with job sets ℱ𝐴 =
{︀
𝐽𝐴

1 , 𝐽𝐴
2 , · · · , 𝐽𝐴

𝑛𝐴

}︀
and ℱ𝐵 =

{︀
𝐽𝐵

1 , 𝐽𝐵
2 , · · · , 𝐽𝐵

𝑛𝐵

}︀
,

respectively. Agents 𝐴 and 𝐵 must schedule their jobs on a common unbounded serial-batching machine and
the jobs are processed in batches, where “unbounded” implies that the machine can process any number of jobs
in a batch and “a batch” refers to a set of jobs which are processed jointly and contiguously. The processing
time of a batch amounts to the sum of processing times of all jobs in the batch. A setup time is inserted
whenever a new batch starts. According to whether the jobs from different agents can be processed in the
same batch, we investigate compatible model (i.e., the jobs of two agents can be processed in a common batch,
short for co) and incompatible model (i.e., the jobs of two agents cannot be processed in a common batch,
short for inco). For compatible model, we suppose that the setup time equals to 𝑠. For incompatible model,
we suppose that the setup time that is inserted before a batch which belongs to agent 𝑋 is 𝑠𝑋 (𝑋 ∈ {𝐴, 𝐵}).
Moreover, in incompatible model, two kinds of batch scheduling cases are presented according to the time when
the jobs become available. In the case of batch availability (short for 𝑏𝑎𝑡𝑐ℎ-𝑎𝑣𝑎𝑖𝑙), a job is available only when
the batch to which it belongs has been processed. In the case of item availability (short for 𝑖𝑡𝑒𝑚-𝑎𝑣𝑎𝑖𝑙), a job
becomes available immediately after it is completed processing (see [19]). In the paper, the objective function
of agent 𝐴 is a lateness-like objective function, such as 𝐶𝐴

max, 𝐿
𝐴
max, 𝑇

𝐴
max, 𝑊𝐶𝐴

max and that of agent 𝐵 is a
lateness-like objective function or the special total weighted completion time, such as 𝐶𝐵

max, 𝐿
𝐵
max, 𝑇

𝐵
max, 𝑊𝐶𝐵

max,∑︀
𝑤𝐵

𝑗 𝐶𝐵
𝑗 with 𝑝𝐵

𝑗 = 𝑝 or 𝑤𝐵
𝑗 = 𝑤 for any 1 ≤ 𝑗 ≤ 𝑛𝐵 , where 𝐶𝑋

max, 𝐿
𝑋
max, 𝑇

𝑋
max, 𝑊𝐶𝑋

max and
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗 are
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the makespan, the maximum lateness, the maximum tardiness, the maximum weighted completion time (i.e.,
𝑊𝐶𝑋

max = max
{︀∑︀

𝑤𝑋
𝑗 𝐶𝑋

𝑗 : 1 ≤ 𝑗 ≤ 𝑛𝑋

}︀
), of agent 𝑋(𝑋 = 𝐴 or 𝑋 = 𝐵) and the total weighted completion

time of agent 𝐵 respectively. Each agent’s objective function depends on the completion times of its jobs only.
The aim is to find all Pareto optimal schedules for the two-agents’ objective functions under various scheduling
environment. Here, two objective functions may on behalf of different profits of two decision-makers. Moreover,
we first investigate the two problems with objective vectors

(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
and

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
, respectively, where

objective vector (𝛾1, 𝛾2) represents minimizing two criteria 𝛾1 and 𝛾2 simultaneously. Finally, we generalize the
results of each problem to a class of problems.

The problems depicted above can be found in many manufacturing applications and many negotiation pro-
cedures. For example, a mill can handle orders from two types of agents. The agents’ orders are interpreted
as jobs to be processed. Agent 𝐴 expects the maximum lateness of his jobs to be as small as possible, while
agent 𝐵 expects the maximum lateness or the total completion time of his jobs to be as small as possible.
Moreover, the manufacturer is also concerned about minimizing any order delays which cause economic loss.
For the purpose of meeting the needs of two agents to the maximum extent, the manufacturer needs to design
some strategies to stimulate the agents to cooperate. This circumstance can be modelled as the simultaneous
optimization problems under consideration, i.e., objective vector is

(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
or

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
.

Serial-batching scheduling problems are urged by grouped jobs’ processing environment with conversion times
between different groups. For example, when the machine switches from processing one batch to another batch,
the machine usually need to be changed a tool or to be cleaned, which shows that the machine needs a setup
time before a new batch is processed [4]. Besides, the management and technical constraints (e.g., different
processing environment, etc.) lead to the compatibility and incompatibility of jobs from different agents [14,16].

For serial-batching scheduling problems with batch availability, Albers and Brucker [3] show that
1|batch-avail|

∑︀
𝑤𝑗𝐶𝑗 is strongly 𝒩𝒫-hard while 1|batch-avail|

∑︀
𝐶𝑗 can be solved in 𝑂(𝑛 log 𝑛) time (see [6]).

He et al. [10,11] present an 𝑂(𝑛2)-time algorithm for 1|batch-avail|(𝐶max, 𝐿max) and 1|batch-avail|(𝐶max,
∑︀

𝐶𝑗),
respectively. Geng et al. [8] solve 1|batch-avail|(𝐶max, 𝑓max) in 𝑂

(︀
𝑛4

)︀
time. If the number of agents is given, the

single-machine scheduling problems, with item availability, to minimize the maximum lateness or the number
of tardy jobs or the total weighted completion time are polynomially solvable, while all these problems become
very intractable when the number of agents is a variable [17, 20]. Reviews of the research on the topic are
provided by Potts and Kovalyov [19] and Allahverdi [4].

The discuss on multi-agent scheduling originated from Baker and Smith [5] and Agnetis et al. [1]. Since it has
been surveyed by Perez-Gonzalez and Framinan [18] and Agnetis et al. [2], we only review the results related
to our study.

For two-agent constrained optimization scheduling on an unbounded serial-batching machine, Kovalyov et al.
[14] investigate a series of batch availability models, in which closely related to our problems are the problems
1|batch-avail, inco, 𝑓𝐴

max ≤ 𝑄|𝛾𝐵 with 𝛾𝐵 ∈
{︀
𝑓𝐵
max,

∑︀
𝐶𝐵

𝑗

}︀
. Yin et al. [21] generalize the work of [14] by adding

a delivery cost for each manufacture batch; Yin et al. [22, 23] study the problems in which there exist batch
delivery cost and due date assignment, etc. Li et al. [15] study a series of item availability models, in which
closely related to our problems are the problems 1|item-avail, inco, 𝐿𝐴

max ≤ 𝑄|𝛾𝐵 with 𝛾𝐵 ∈
{︀
𝐿𝐵

max,
∑︀

𝐶𝐵
𝑗

}︀
and 1|item-avail, inco, 𝑝𝐵

𝑗 = 𝑝, 𝐿𝐴
max ≤ 𝑄|

∑︀
𝑤𝐵

𝑗 𝐶𝐵
𝑗 . Li et al. [16] also investigated a series of job compatibility

problems, in which closely related to our problems are the problems 1|batch-avail, co, 𝑓𝐴
max ≤ 𝑄|𝛾𝐵 with 𝛾𝐵 ∈{︀

𝑓𝐵
max,

∑︀
𝐶𝐵

𝑗

}︀
.

For two-agent simultaneous optimization scheduling on a serial-batching machine, to the best of
our knowledge, the results are very few and the solved problems are very classical (see [2]). Feng
et al. [7] give an 𝑂

(︀
𝑛𝐴 + 𝑛4

𝐵

)︀
-time algorithm for 1|batch-avail, inco|

(︀
𝐶𝐴

max, 𝐿
𝐵
max

)︀
. He et al. [12] solve

the problem 1|batch-avail, inco|
(︀
𝐶𝐴

max, 𝑓
𝐵
max

)︀
in 𝑂

(︀
𝑛𝐴 + 𝑛5

𝐵

)︀
time. Agnetis et al. [2] show that problem

1|batch-avail, inco|
(︀
𝐶𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
can be solved in 𝑂

(︀
𝑛𝐴𝑛𝐵 + 𝑛4

𝐵

)︀
time and 1|batch-avail, inco|

(︀∑︀
𝑈𝐴

𝑗 , 𝛾𝐵
)︀

can
be solved in polynomial time, where 𝛾𝐵 ∈

{︀∑︀
𝑈𝐵

𝑗 , 𝑓𝐵
max

}︀
. He and Lin [9] give an improved 𝑂

(︀
𝑛𝐵 + 𝑛2

𝐴 log 𝑛𝐴

)︀
-

time algorithm for 1|batch-avail, inco|
(︀
𝐿𝐴

max, 𝐶
𝐵
max

)︀
and 1|batch-avail, inco|

(︁∑︀
𝑗 𝐶𝐴

𝑗 , 𝐶𝐵
max

)︁
, respectively. The
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paper investigates simultaneous optimization scheduling 1|𝛽|
(︀
𝐹𝐴

max, 𝐹
𝐵
max

)︀
and 1|𝛽, 𝑝𝐵

𝑗 = 𝑝 or 𝑤𝐵
𝑗 =

𝑤|
(︀
𝐹𝐴

max,
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗

)︀
and give polynomial-time algorithm for each problem respectively, where 𝐹𝑋

max ∈{︀
𝐶𝑋

max, 𝐿
𝑋
max, 𝑇

𝑋
max, 𝑊𝐶𝑋

max

}︀
(𝑋 = 𝐴 or 𝐵) and 𝛽 ∈ {{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}}.

The paper is arranged as follows. In Section 2, we elaborate some preliminaries and list an overview of the
results in the paper. Section 3 is dedicated to two-agent problems of minimizing objective vectors

(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
and

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
with batch availability and incompatibility. Section 4 is focused on two-agent problems

of minimizing objective vectors
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
and

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
with item availability and incompatibility.

Section 5 concentrates on two-agent problems of minimizing objective vectors
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
and

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
with batch availability and compatibility. Section 6 expands on the results in Sections 3–5. Section 7 gives a
concluding remarks.

2. Preliminaries and overview of the results

Suppose that agents 𝐴 and 𝐵 have job sets ℱ𝐴 =
{︀
𝐽𝐴

1 , 𝐽𝐴
2 , · · · , 𝐽𝐴

𝑛𝐴

}︀
and ℱ𝐵 =

{︀
𝐽𝐵

1 , 𝐽𝐵
2 , · · · , 𝐽𝐵

𝑛𝐵

}︀
, respec-

tively. For 𝑋 ∈ {𝐴, 𝐵}, the jobs in ℱ𝑋 are also called 𝑋-jobs, job 𝐽𝑋
𝑗 (𝑋 ∈ {𝐴, 𝐵}) has a processing time

𝑝𝑋
𝑗 , a weight 𝑤𝑋

𝑗 and a due date 𝑑𝑋
𝑗 . Let 𝑛 = 𝑛𝐴 + 𝑛𝐵 . Given a feasible schedule 𝜎, the completion time

of job 𝐽𝑋
𝑗 (𝑋 ∈ {𝐴, 𝐵}, 1 ≤ 𝑗 ≤ 𝑛𝑋) is denoted by 𝐶𝑋

𝑗 (𝜎) in 𝜎, 𝐿𝑋
𝑗 (𝜎) = 𝐶𝑋

𝑗 (𝜎) − 𝑑𝑋
𝑗 and 𝑇𝑋

𝑗 (𝜎) =
max

{︀
0, 𝐶𝑋

𝑗 (𝜎)− 𝑑𝑋
𝑗

}︀
are the lateness and the tardiness of job 𝐽𝑋

𝑗 in 𝜎, respectively; 𝐿𝑋
max(𝜎) = max𝑛

𝑗=1 𝐿𝑋
𝑗 (𝜎)

and 𝑇𝑋
max(𝜎) = max𝑛

𝑗=1 𝑇𝑋
𝑗 (𝜎) are the maximum lateness and the maximum tardiness of agent 𝑋 in 𝜎, respec-

tively; 𝑊𝐶𝑋
max(𝜎) = max

{︀
𝑤𝑋

𝑗 𝐶𝑋
𝑗 (𝜎) : 1 ≤ 𝑗 ≤ 𝑛𝑋

}︀
and

∑︀
𝑤𝑋

𝑗 𝐶𝑋
𝑗 (𝜎) are the maximum weighted completion

time and the total weighted completion time of agent 𝑋 in 𝜎, where the summation notation is taken over all
jobs of agent 𝑋. When the jobs of two agents cannot be processed in a common batch (the model is called
incompatible), an agent-dependent setup time 𝑠𝑋 is inserted before each new batch of agent 𝑋 (𝑋 ∈ {𝐴, 𝐵}) is
processed. When the jobs of two agents can be processed in the same batch (the model is called compatible), a
setup time 𝑠 is inserted before each new batch. The processing time of a batch is equal to the sum of processing
times of all jobs in the batch. According to the time when the jobs become available, batch availability model
and item availability model are investigated. In the case of batch availability, a job is available only when the
batch to which it belongs has been processed. In the case of item availability, a job is available immediately
after it is processed.

The paper considers the simultaneous optimization scheduling 1|𝛽|
(︀
𝐹𝐴

max, 𝐹
𝐵
max

)︀
and 1|𝛽, 𝑝𝐵

𝑗 = 𝑝 or 𝑤𝐵
𝑗 =

𝑤|
(︀
𝐹𝐴

max,
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗

)︀
, where 𝛽 ∈ {{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}} and 𝐹𝑋

max ∈{︀
𝐶𝑋

max, 𝐿
𝑋
max, 𝑇

𝑋
max, 𝑊𝐶𝑋

max

}︀
and 𝑋 = 𝐴 or 𝐵. Note that “batch-avail” and “item-avail” represent that the

considered problems are batch availability and item availability respectively, “inco” and “co” denote that 𝐴-jobs
and 𝐵-jobs are incompatible and compatible respectively. The purpose is to find all Pareto optimal schedules
in respect to two criteria in polynomial time for each problem.

Note that each job is available at time zero and each objective involved in the paper is regular (i.e., nonde-
creasing in the completion times). So there exists an optimal schedule such that all jobs (batches) are processed
continuously from time zero onwards. Throughout this paper, we focus our attention on the schedules with the
property.

Definition 2.1. A feasible schedule 𝜎 is Pareto optimal, or nondominated, with respect to the performance
criteria 𝑓 and 𝑔 if there is no feasible schedule 𝜋 such that both 𝑓(𝜋) ≤ 𝑓(𝜎) and 𝑔(𝜋) ≤ 𝑔(𝜎), where at least
one of the inequalities is strict. Besides, (𝑓(𝜎), 𝑔(𝜎)) is called a Pareto optimal point corresponding to Pareto
optimal schedule 𝜎.

The following theorem provides a general approach, the so-called 𝜀-constraint approach, for finding Pareto
optimal schedules.

Theorem 2.2 ([13]). Let 𝑦 be the optimal value of constraint problem 𝛼|𝑓 ≤ ̂︀𝑥|𝑔 (where ̂︀𝑥 is a upper bound of
𝑓), and let 𝑥 be the optimal value of the problem 𝛼|𝑔 ≤ 𝑦|𝑓 . Then (𝑥, 𝑦) is a Pareto optimal point for 𝛼||(𝑓, 𝑔).
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Suppose that problem 𝛼|𝑔 ≤ 𝑦|𝑓 is efficiently solvable. Then the other method to find Pareto optimal schedules
is unilateral 𝜀-constraint approach in the following.

Unilateral 𝜀-constraint approach ([13]). Let (𝑥𝑖, 𝑦𝑖) be a previously obtained point. Then solve the problem
𝛼|𝑔 < 𝑦𝑖|𝑓 (or 𝛼|𝑔 ≤ 𝑦𝑖−1|𝑓 if 𝑔 is integral) and obtain a schedule 𝜋𝑖+1 which give the next point (𝑥𝑖+1, 𝑦𝑖+1) =
(𝑓(𝜋𝑖+1), 𝑔(𝜋𝑖+1)). Repeat the above process until the problem 𝛼|𝑔 < 𝑦𝑖|𝑓 is infeasible.

Theorem 2.3 ([13]). Let (𝑥1, 𝑦1) be the first point obtained by Unilateral 𝜀-constraint approach, where 𝑦1 be
an upper bound of 𝑔. Then all Pareto optimal schedules of problem 𝛼||(𝑓, 𝑔) can by obtained by Unilateral
𝜀-constraint approach.

Definition 2.4. A schedule is called EDD-EDD-schedule if 𝐴-jobs and 𝐵-jobs are sequenced in the Earliest
Due Date (EDD) order, respectively.

Definition 2.5. A schedule is called EDD-SPT-schedule if 𝐴-jobs are processed in the EDD order and 𝐵-jobs
are processed in the Shortest Processing Time (SPT) order.

The results in the paper are summarized in the Table 1.

3. Incompatible two-agent problems with batch availability

In this section, we study the two-agent scheduling problems under the batch availability and incompatible
assumption.

Lemma 3.1 ([14]). If problem 1|batch-avail, inco, 𝐿𝐴
max ≤ 𝐿|𝐿𝐵

max is feasible, then the problem has an optimal
EDD-EDD-schedule.

Lemma 3.2 ([14]). If problem 1|batch-avail, inco, 𝐿𝐴
max ≤ 𝐿|

∑︀
𝐶𝐵

𝑗 is feasible, then the problem has an optimal
EDD-SPT-schedule.

3.1. 1|batch-avail, inco|
(︀
𝐿𝐴max, 𝐿𝐵max

)︀
The goal of this subsection is to find all Pareto optimal schedules of 1|batch-avail, inco|

(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
. Note

that for any Pareto optimal point of 1|batch-avail, inco|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
, there is an EDD-EDD-schedule cor-

responding to it by Lemma 3.1 and the definition of Pareto optimal point. Re-index the jobs such that
𝑑𝐴
1 ≤ 𝑑𝐴

2 ≤ · · · ≤ 𝑑𝐴
𝑛𝐴

and 𝑑𝐵
1 ≤ 𝑑𝐵

2 ≤ · · · ≤ 𝑑𝐵
𝑛𝐵

.
For the feasible problem 1|batch-avail, inco, 𝐿𝐴

max ≤ 𝐿, 𝐿𝐵
max ≤ 𝐿′|−, Kovalyov et al. [14] presented a dynamic

programming algorithm (denoted by DP1) to solve it, and obtained the following result.

Lemma 3.3 ([14]). For problem 1|batch-avail, inco, 𝐿𝐴
max ≤ 𝐿, 𝐿𝐵

max ≤ 𝐿′|−, DP1 can either find a feasible
EDD-EDD-schedule or show that it is infeasible in 𝑂(𝑛𝐴𝑛𝐵𝑛) time.

Lemma 3.4 ([10]). The optimal schedule of problem 1|batch-avail|𝐿max can be obtained in 𝑂(𝑛2) time, where
𝑛 is the total number of jobs.

Let 𝜎* and 𝜋* be the optimal schedules (with the minimum makespan 𝐶max) of the problem 1|batch-avail|𝐿max

in respect to 𝐴-jobs and 𝐵-jobs, respectively. Let 𝐿* := 𝐿𝐴
max(𝜎*), 𝐿 := 𝐿* + 𝐶𝐵

max(𝜋*), 𝐿′* := 𝐿𝐵
max(𝜋*) and

𝐿′ := 𝐿′* + 𝐶𝐴
max(𝜎*) in the following. Then we have the following lemma by the definition of Pareto optimal

point.

Lemma 3.5. Let (𝐿1, 𝐿
′
1), (𝐿2, 𝐿

′
2), · · · , (𝐿𝑘, 𝐿′𝑘) be all Pareto optimal points of problem

1|batch-avail, inco|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
and 𝐿1 < 𝐿2 < · · · < 𝐿𝑘. Then 𝐿1 = 𝐿* and 𝐿 ≥ 𝐿𝑘 and

𝐿′ ≥ 𝐿′1 > 𝐿′2 > · · · > 𝐿′𝑘 = 𝐿′*.
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Table 1. Complexity results for two-agent scheduling.

Problem Complexity Reference

1|batch-avail, inco|
(︀
𝐶𝐴

max, 𝐶
𝐵
max

)︀
𝑂(𝑛) Agnetis et al. [2]

1|batch-avail, inco|
(︀
𝐶𝐴

max, 𝐿
𝐵
max

)︀
𝑂
(︀
𝑛𝐴 + 𝑛2

𝐵 log 𝑛𝐵

)︀
He and Lin [9]

1|batch-avail, inco|
(︀
𝐶𝐴

max, 𝐹
𝐵
max

)︀
𝑂
(︀
𝑛𝐴 + 𝑛2

𝐵 log 𝑛𝐵

)︀
Theorem 6.4

where 𝐹 𝐵
max ∈

{︀
𝑇 𝐵

max, 𝑊𝐶𝐵
max

}︀

1|batch-avail, inco|
(︀
𝐶𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
𝑂
(︀
𝑛𝐴 + 𝑛2

𝐵 log 𝑛𝐵

)︀
He and Lin [9]

1|batch-avail, inco, 𝑝𝐵
𝑗 = 𝑝|

(︀
𝐶𝐴

max,
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗

)︀
𝑂
(︀
𝑛𝐴 + 𝑛2

𝐵 log 𝑛𝐵

)︀
Remark in Section 6

1|batch-avail, inco|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
𝑂
(︀
𝑛3

𝐴𝑛3
𝐵𝑛2
)︀

Theorem 3.6

1|batch-avail, inco|
(︀
𝐹 𝐴

max, 𝐹
𝐵
max

)︀
𝑂
(︀
𝑛3

𝐴𝑛3
𝐵𝑛2
)︀

Theorem 6.12

where 𝐹 𝑋
max ∈

{︀
𝐿𝑋

max, 𝑇
𝑋
max, 𝑊𝐶𝑋

max

}︀
and 𝑋 ∈ {𝐴, 𝐵}

1|batch-avail, inco|
(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
𝑂
(︀
𝑛5

𝐴𝑛4
𝐵𝑛
)︀

Theorem 3.8

1|batch-avail, inco|
(︀
𝐹 𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
𝑂
(︀
𝑛5

𝐴𝑛4
𝐵𝑛
)︀

Theorem 6.13

where 𝐹 𝐴
max ∈

{︀
𝑇 𝐴

max, 𝑊𝐶𝐴
max

}︀

1|batch-avail, inco, 𝑝𝐵
𝑗 = 𝑝|

(︀
𝐹 𝐴

max,
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗

)︀
𝑂
(︀
𝑛5

𝐴𝑛4
𝐵𝑛
)︀

Remark in Section 6

where 𝐹 𝐴
max ∈

{︀
𝐿𝐴

max, 𝑇
𝐴
max, 𝑊𝐶𝐴

max

}︀

1|item-avail, inco|
(︀
𝐶𝐴

max, 𝐶
𝐵
max

)︀
𝑂(𝑛) Theorem 6.3

1|item-avail, inco|
(︀
𝐶𝐴

max, 𝐹
𝐵
max

)︀
𝑂
(︀
𝑛𝐴 + 𝑛2

𝐵

)︀
Theorem 6.5

where 𝐹 𝐵
max ∈

{︀
𝐿𝐵

max, 𝑇
𝐵
max, 𝑊𝐶𝐵

max

}︀

1|item-avail, inco|
(︀
𝐶𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
𝑂
(︀
𝑛𝐴 + 𝑛2

𝐵

)︀
Theorem 6.5

1|item-avail, inco, 𝑝𝐵
𝑗 = 𝑝|

(︀
𝐶𝐴

max,
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗

)︀
𝑂
(︀
𝑛𝐴 + 𝑛2

𝐵

)︀
Remark in Section 6

1|item-avail, inco|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
𝑂
(︀
𝑛2

𝐴𝑛2
𝐵𝑛
)︀

Theorem 4.4

1|item-avail, inco|
(︀
𝐹 𝐴

max, 𝐹
𝐵
max

)︀
𝑂
(︀
𝑛2

𝐴𝑛2
𝐵𝑛
)︀

Theorem 6.12

where 𝐹 𝑋
max ∈

{︀
𝐿𝑋

max, 𝑇
𝑋
max, 𝑊𝐶𝑋

max

}︀
and 𝑋 ∈ {𝐴, 𝐵}

1|item-avail, inco|
(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
𝑂
(︀
𝑛4

𝐴𝑛3
𝐵

)︀
Theorem 4.6

1|item-avail, inco|
(︀
𝐹 𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
𝑂
(︀
𝑛4

𝐴𝑛3
𝐵

)︀
Theorem 6.13

where 𝐹 𝐴
max ∈

{︀
𝑇 𝐴

max, 𝑊𝐶𝐴
max

}︀

1|item-avail, inco, 𝑝𝐵
𝑗 = 𝑝|

(︀
𝐹 𝐴

max,
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗

)︀
𝑂
(︀
𝑛4

𝐴𝑛3
𝐵

)︀
Remark in Section 6

where 𝐹 𝐴
max ∈

{︀
𝐿𝐴

max, 𝑇
𝐴
max, 𝑊𝐶𝐴

max

}︀

1|batch-avail, co|
(︀
𝐶𝐴

max, 𝐶
𝐵
max

)︀
𝑂(𝑛) Theorem 6.3

1|batch-avail, co|
(︀
𝐶𝐴

max, 𝐹
𝐵
max

)︀
𝑂
(︀
𝑛𝐴 + 𝑛4

𝐵 log 𝑛𝐵

)︀
Theorem 6.8

where 𝐹 𝐵
max ∈

{︀
𝐿𝐵

max, 𝑇
𝐵
max, 𝑊𝐶𝐵

max

}︀

1|batch-avail, co|
(︀
𝐶𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
𝑂
(︀
𝑛𝐴 + 𝑛5

𝐵

)︀
Theorem 6.11

1|batch-avail, co, 𝑝𝐵
𝑗 = 𝑝|

(︀
𝐶𝐴

max,
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗

)︀
𝑂
(︀
𝑛𝐴 + 𝑛5

𝐵

)︀
Remark in Section 6

1|batch-avail, co|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
𝑂
(︀
𝑛𝐴𝑛𝐵𝑛3 log 𝑛

)︀
Theorem 5.4

1|batch-avail, co|
(︀
𝐹 𝐴

max, 𝐹
𝐵
max

)︀
𝑂
(︀
𝑛𝐴𝑛𝐵𝑛3

)︀
Theorem 6.12

where 𝐹 𝑋
max ∈

{︀
𝐿𝑋

max, 𝑇
𝑋
max, 𝑊𝐶𝑋

max

}︀
and 𝑋 ∈ {𝐴, 𝐵}

1|batch-avail, co|
(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
𝑂
(︀
𝑛4

𝐴𝑛3
𝐵𝑛2
)︀

Theorem 5.6

1|batch-avail, co|
(︀
𝐹 𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
𝑂
(︀
𝑛4

𝐴𝑛3
𝐵𝑛2
)︀

Theorem 6.13

where 𝐹 𝐴
max ∈

{︀
𝑇 𝐴

max, 𝑊𝐶𝐴
max

}︀

1|batch-avail, co, 𝑝𝐵
𝑗 = 𝑝|

(︀
𝐹 𝐴

max,
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗

)︀
𝑂
(︀
𝑛4

𝐴𝑛3
𝐵𝑛2
)︀

Remark in Section 6

where 𝐹 𝐴
max ∈

{︀
𝐿𝐴

max, 𝑇
𝐴
max, 𝑊𝐶𝐴

max

}︀
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Let 𝜎 = (𝐵1, 𝐵2, · · · , 𝐵𝑙) be any feasible EDD-EDD-schedule for 1|batch-avail, inco|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
, where

𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑙) is the 𝑖-th batch of 𝜎. Since 𝜎 is an EDD-EDD-schedule, without loss of generality, let
⋃︀𝑘

𝑖=1 𝐵𝑖 ={︀
𝐽𝐴

1 , 𝐽𝐴
2 , · · · , 𝐽𝐴

𝑔𝑘

}︀ ⋃︀{︀
𝐽𝐵

1 , 𝐽𝐵
2 , · · · , 𝐽𝐵

ℎ𝑘

}︀
for any 1 ≤ 𝑘 ≤ 𝑙. Let 𝜃𝑘 and 𝜗𝑘 denote the numbers of batches of

agent 𝐴 and agent 𝐵 in the first 𝑘 batches 𝐵1, 𝐵2, · · · , 𝐵𝑘, respectively. Let 𝑡(𝑔𝑘, 𝜃𝑘, ℎ𝑘, 𝜗𝑘) be the completion
time of batch 𝐵𝑘. Then 𝜃𝑘 + 𝜗𝑘 = 𝑘 and 𝑡(𝑔𝑘, 𝜃𝑘, ℎ𝑘, 𝜗𝑘) = 𝜃𝑘 · 𝑠𝐴 +

∑︀𝑔𝑘

𝑗=1 𝑝𝐴
𝑗 + 𝜗𝑘 · 𝑠𝐵 +

∑︀ℎ𝑘

𝑗=1 𝑝𝐵
𝑗 , where

0 ≤ 𝜃𝑘 ≤ 𝑔𝑘 ≤ 𝑛𝐴 and 0 ≤ 𝜗𝑘 ≤ ℎ𝑘 ≤ 𝑛𝐵 . If the jobs contained in batch 𝐵𝑘 belong to agent 𝐵, then let 𝐵𝑘 =
{𝐽𝐵

𝜆𝑘
, 𝐽𝐵

𝜆𝑘+1, · · · , 𝐽𝐵
ℎ𝑘
} because the jobs of agent 𝐵 are scheduled in EDD order in 𝜎, where 1 ≤ 𝜗𝑘 ≤ 𝜆𝑘 ≤ ℎ𝑘.

Hence max𝜆𝑘≤𝑗≤ℎ𝑘
𝐿𝐵

𝑗 (𝜎) = 𝑡(𝑔𝑘, 𝜃𝑘, ℎ𝑘, 𝜗𝑘) − 𝑑𝐵
𝜆𝑘

by 𝑑𝐵
𝜆𝑘
≤ 𝑑𝐵

𝜆𝑘+1 ≤ · · · ≤ 𝑑𝐵
ℎ𝑘

. Thus by the arbitraries of 𝜎

and 𝑘, we can derive all possible values of maximum lateness 𝐿𝐵
max belong to the set

𝒞𝐵 :=
{︀
𝑡(𝑔𝑘, 𝜃𝑘, ℎ𝑘, 𝜗𝑘)− 𝑑𝐵

𝜆𝑘
|0 ≤ 𝜃𝑘 ≤ 𝑔𝑘 ≤ 𝑛𝐴, 1 ≤ 𝜗𝑘 ≤ 𝜆𝑘 ≤ ℎ𝑘 ≤ 𝑛𝐵

}︀
. (3.1)

If the jobs contained in batch 𝐵𝑘 belong to agent 𝐴, then we infer similarly that all possible values of maximum
lateness 𝐿𝐴

max belong to the set

𝒞𝐴 :=
{︀
𝑡(𝑔𝑘, 𝜃𝑘, ℎ𝑘, 𝜗𝑘)− 𝑑𝐴

𝜆𝑘
|1 ≤ 𝜃𝑘 ≤ 𝜆𝑘 ≤ 𝑔𝑘 ≤ 𝑛𝐴, 0 ≤ 𝜗𝑘 ≤ ℎ𝑘 ≤ 𝑛𝐵

}︀
. (3.2)

Suppose that (𝐿, 𝐿′) is any Pareto optimal point for problem 1|batch-avail, inco|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
. Then we

further get 𝐿′ ∈
{︀
𝑝|𝑝 ∈ 𝒞𝐵 and 𝐿′* ≤ 𝑝 ≤ 𝐿′

}︀
from Lemma 3.5. Let ℰ𝐵 :=

{︀
𝑝|𝑝 ∈ 𝒞𝐵 and 𝐿′* ≤ 𝑝 ≤ 𝐿′

}︀
and

ℰ𝐴 :=
{︀
𝑝|𝑝 ∈ 𝒞𝐴 and 𝐿* ≤ 𝑝 ≤ 𝐿

}︀
. Hence 𝐿′ ∈ ℰ𝐵 . Similar to the above discussion, we have 𝐿 ∈ ℰ𝐴. Moreover,

|ℰ𝐴| ≤ 𝑂
(︀
𝑛3

𝐴𝑛2
𝐵

)︀
and |ℰ𝐵 | ≤ 𝑂(𝑛2

𝐴𝑛3
𝐵), where |ℰ𝑋 | denotes the number of the elements in set ℰ𝑋 , 𝑋 ∈ {𝐴, 𝐵}.

Lemma 3.3 implies that problem 1|batch-avail, inco, 𝐿𝐴
max ≤ 𝐿|𝐿𝐵

max can be solved by solving a series of
feasible problems 1|batch-avail, inco, 𝐿𝐴

max ≤ 𝐿, 𝐿𝐵
max ≤ 𝐿′|− with decreasing 𝐿′. From the above discussion, we

can only consider the values 𝐿′ ∈ ℰ𝐵 . Similarly, 1|batch-avail, inco, 𝐿𝐵
max ≤ 𝐿′|𝐿𝐴

max can be solved by solving a
series of feasible problems 1|batch-avail, inco, 𝐿𝐴

max ≤ 𝐿, 𝐿𝐵
max ≤ 𝐿′|− with decreasing 𝐿, where 𝐿 ∈ ℰ𝐴.

Assume that ℰ𝐴 = {𝑙1, 𝑙2, · · · , 𝑙𝑟} and ℰ𝐵 = {𝑙′1, 𝑙′2, · · · , 𝑙′𝑠} with 𝑙1 < 𝑙2 < · · · < 𝑙𝑟 and 𝑙′1 < 𝑙′2 < · · · < 𝑙′𝑠
in the following, where 𝑟 ≤ 𝑂

(︀
𝑛3

𝐴𝑛2
𝐵

)︀
and 𝑠 ≤ 𝑂(𝑛2

𝐴𝑛3
𝐵). Then the following algorithm can solve problem

1|batch-avail, inco|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
.

Algorithm PO-
(︀
𝐿𝐴

max, 𝐿𝐵
max

)︀
Step 1. Let 𝑙𝑖 (1 ≤ 𝑖 ≤ 𝑟) and 𝑙′𝑗 (1 ≤ 𝑗 ≤ 𝑠) be defined as above, 𝑘 := 𝑟, ℎ := 1, 𝐿 := 𝑙𝑘, 𝐿′ := 𝑙′ℎ, 𝑓 := 0 and

𝑔 := 0.
Step 2. Solve problem 1|batch-avail, inco, 𝐿𝐴

max ≤ 𝐿, 𝐿𝐵
max ≤ 𝐿′|− by DP1. If the current constrained problem

is infeasible, then go to Step 3; otherwise we get a new schedule 𝜎𝑓+1 and let 𝑓 := 𝑓 + 1 and 𝐿 := 𝐿𝐴
max(𝜎𝑓 )

(it is obvious that 𝐿 ≤ 𝑙𝑘 and 𝐿 ∈ ℰ𝐴) and go to Step 4.
Step 3. If ℎ = 𝑠, then return all Pareto optimal schedules 𝜋1, 𝜋2, · · · , 𝜋𝑔 and stop. Otherwise ℎ < 𝑠, let

ℎ := ℎ + 1, 𝐿′ := 𝑙′ℎ and go back to Step 2.
Step 4. If 𝐿 = 𝑙1, then let 𝑔 := 𝑔 + 1 and 𝜋𝑔 := 𝜎𝑓 and return all Pareto optimal schedules 𝜋1, 𝜋2, · · · , 𝜋𝑔 and

stop. If 𝐿 > 𝑙1, then assume that 𝐿 = 𝑙𝑖𝑘
(where 2 ≤ 𝑖𝑘 ≤ 𝑘). Let 𝑘 := 𝑖𝑘 − 1, 𝐿 := 𝑙𝑘.

Step 5. Solve problem 1|batch-avail, inco, 𝐿𝐴
max ≤ 𝐿, 𝐿𝐵

max ≤ 𝐿′|− by DP1. If the current constrained problem
is infeasible, then let 𝑔 := 𝑔 + 1 and 𝜋𝑔 := 𝜎𝑓 and go back to Step 3; otherwise we get a new schedule 𝜎𝑓+1

and let 𝑓 := 𝑓 + 1 and 𝐿 := 𝐿𝐴
max(𝜎𝑓 ) and go back to Step 4.

Theorem 3.6. Algorithm PO-
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
can solve problem 1|batch-avail, inco|

(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
in 𝑂(𝑛3

𝐴𝑛3
𝐵𝑛2)

time.

Proof. The validity of Algorithm PO-
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
is guaranteed by Theorem 2.2 and Lemmas 3.3 and 3.5 and

the above discussion. Next, we discuss the time bound.
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Step 1 takes 𝑂
(︀(︀

𝑛3
𝐴𝑛2

𝐵 + 𝑛2
𝐴𝑛3

𝐵

)︀)︀
= 𝑂

(︀
𝑛2

𝐴𝑛2
𝐵𝑛

)︀
time to compute all 𝑙𝑖 (1 ≤ 𝑖 ≤ 𝑟) and 𝑙′𝑗 (1 ≤ 𝑗 ≤ 𝑠) and takes

𝑂
(︀
𝑛3

𝐴𝑛2
𝐵 log 𝑛 + 𝑛2

𝐴𝑛3
𝐵 log 𝑛

)︀
= 𝑂

(︀
𝑛2

𝐴𝑛2
𝐵𝑛 log 𝑛

)︀
time to sort the sets ℰ𝒜 and ℰℬ. On the other hand, Steps 2 and

3 have at most
⃒⃒
𝜀𝐵

⃒⃒
≤ 𝑂(𝑛2

𝐴𝑛3
𝐵) rounds and Steps 4 and 5 have at most

⃒⃒
𝜀𝐴

⃒⃒
≤ 𝑂(𝑛3

𝐴𝑛2
𝐵) rounds. Each round

needs 𝑂(𝑛𝐴𝑛𝐵𝑛) time by Lemma 3.3. Therefore, the overall time complexity is 𝑂
(︀(︀

𝑛2
𝐴𝑛3

𝐵 + 𝑛3
𝐴𝑛2

𝐵

)︀
𝑛𝐴𝑛𝐵𝑛

)︀
=

𝑂
(︀
𝑛3

𝐴𝑛3
𝐵𝑛2

)︀
time. �

3.2. 1|batch-avail, inco|
(︁
𝐿𝐴max,

∑︀
𝐶𝐵𝑗

)︁
Let (𝑥, 𝑦) be a Pareto optimal point of problem 1|batch-avail, inco|

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
. Then there exists an EDD-

SPT-schedule 𝜎 corresponding to (𝑥, 𝑦) (i.e., (𝑥, 𝑦) =
(︀
𝐿𝐴

max(𝜎),
∑︀

𝐶𝐵
𝑗 (𝜎)

)︀
) by Lemma 3.2 and the definition of

Pareto optimal point. Re-index the jobs such that 𝑑𝐴
1 ≤ 𝑑𝐴

2 ≤ · · · ≤ 𝑑𝐴
𝑛𝐴

and 𝑝𝐵
1 ≤ 𝑝𝐵

2 ≤ · · · ≤ 𝑝𝐵
𝑛𝐵

.
For problem 1|batch-avail, inco, 𝐿𝐴

max ≤ 𝐿|
∑︀

𝐶𝐵
𝑗 , Kovalyov et al. [14] presented a dynamic programming

algorithm (denoted by DP2), and obtained the following result.

Lemma 3.7 ([14]). Problem 1|batch-avail, inco, 𝐿𝐴
max ≤ 𝐿|

∑︀
𝐶𝐵

𝑗 can be solved by DP2 in 𝑂(𝑛2
𝐴𝑛2

𝐵𝑛) time.

Similar to the discussion of Section 3.1, all possible values of the maximum lateness 𝐿𝐴
max belong to the set

𝒞𝐴 and |𝒞𝐴| = 𝑂
(︀
𝑛3

𝐴𝑛2
𝐵

)︀
, where 𝒞𝐴 is defined as that in (3.2) of Section 3.1.

Next, we give an algorithm to solve problem 1|batch-avail, inco|
(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
.

Algorithm PO-
(︁
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︁
Step 1. Let 𝑙𝑖 (1 ≤ 𝑖 ≤ 𝑟) be defined as that in Section 3.1, 𝑘 := 𝑟, ℎ := 0 and 𝐿 := 𝑙𝑘.
Step 2. Solve problem 1|batch-avail, inco, 𝐿𝐴

max ≤ 𝐿|
∑︀

𝐶𝐵
𝑗 by DP2. If the current constrained problem is

infeasible, then return all feasible schedules 𝜎1, 𝜎2, · · · , 𝜎ℎ and go to Step 4; otherwise we get a new schedule
𝜎ℎ+1 and let ℎ := ℎ + 1 and 𝐿 := 𝐿𝐴

max(𝜎ℎ) (it is obvious that 𝐿 ≤ 𝑙𝑘 and 𝐿 ∈ 𝒞𝐴).
Step 3. If 𝐿 = 𝑙1, then return all feasible schedules 𝜎1, 𝜎2, · · · , 𝜎ℎ and go to Step 4. If 𝐿 > 𝑙1, then assume

that 𝐿 = 𝑙𝑖𝑘
(where 2 ≤ 𝑖𝑘 ≤ 𝑘). Let 𝑘 := 𝑖𝑘 − 1, 𝐿 := 𝑙𝑘 and go back to Step 2.

Step 4. For each schedule 𝜎𝑗 (1 ≤ 𝑗 ≤ ℎ), compute the corresponding objective values
(︀
𝐿𝐴

max(𝜎𝑗),
∑︀

𝐶𝐵
𝑗 (𝜎𝑗)

)︀
and pick out all Pareto optimal points and the corresponding Pareto optimal schedules.

Theorem 3.8. Algorithm PO-
(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
can solve 1|batch-avail, inco|

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
in 𝑂

(︀
𝑛5

𝐴𝑛4
𝐵𝑛

)︀
time.

Proof. The validity of Algorithm PO-
(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
is guaranteed by Theorem 2.3 and Lemma 3.7 and the

above discussion. Next, we discuss the time bound.
Step 1 takes 𝑂

(︀
𝑛3

𝐴𝑛2
𝐵

)︀
time to compute all 𝑙𝑖 (1 ≤ 𝑖 ≤ 𝑟) and takes 𝑂

(︀
𝑛3

𝐴𝑛2
𝐵 log 𝑛

)︀
time to sort the sets

𝒞𝒜. Step 2-Step 3 have at most |𝒞𝒜|= 𝑂
(︀
𝑛3

𝐴𝑛2
𝐵

)︀
rounds (since 𝐿 = 𝑙𝑘 ∈ 𝒞𝒜). Each round needs 𝑂(𝑛2

𝐴𝑛2
𝐵𝑛)

time by Lemma 3.7. Since ℎ ≤ 𝑂
(︀
𝑛3

𝐴𝑛2
𝐵

)︀
and computing each pair of objective values needs 𝑂(𝑛) time and

picking out all Pareto optimal points and the corresponding Pareto optimal schedules need 𝑂(𝑛) time (since
𝐿𝐴

max(𝜎1) > 𝐿𝐴
max(𝜎2) > · · · > 𝐿𝐴

max(𝜎ℎ) and
∑︀

𝐶𝐵
𝑗 (𝜎1) ≤

∑︀
𝐶𝐵

𝑗 (𝜎2) ≤ · · · ≤
∑︀

𝐶𝐵
𝑗 (𝜎ℎ)), Step 4 needs

𝑂(𝑛3
𝐴𝑛2

𝐵𝑛) time. Therefore, the overall time complexity is 𝑂
(︀
𝑛5

𝐴𝑛4
𝐵𝑛

)︀
time. �

4. Incompatible two-agent problems with item availability

In this section, we study the two-agent scheduling problems under the item availability and incompatible
assumption. Notice that under the item availability assumption, if two batches of the same agent are processed
consecutively, then these two batches can be merged into a large batch with only one setup time retained (which
is impossible under the batch availability assumption), i.e., the batches belonging to different agents appear
alternately. We restrict our search to the schedules with this property.
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Lemma 4.1 ([15]). If problem 1|item-avail, inco, 𝐿𝐴
max ≤ 𝐿|𝐿𝐵

max is feasible, then the problem has an optimal
EDD-EDD-schedule.

Lemma 4.2 ([15]). If problem 1|item-avail, inco, 𝐿𝐴
max ≤ 𝐿|

∑︀
𝐶𝐵

𝑗 is feasible, then the problem has an optimal
EDD-SPT-schedule.

4.1. 1|item-avail, inco|
(︀
𝐿𝐴max, 𝐿𝐵max

)︀
Let (𝑥, 𝑦) be a Pareto optimal point of problem 1|item-avail, inco|

(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
. Then there exists an EDD-

EDD-schedule 𝜎 corresponding to (𝑥, 𝑦) by Lemma 4.1 and the definition of Pareto optimal point. Re-index the
jobs such that 𝑑𝐴

1 ≤ 𝑑𝐴
2 ≤ · · · ≤ 𝑑𝐴

𝑛𝐴
and 𝑑𝐵

1 ≤ 𝑑𝐵
2 ≤ · · · ≤ 𝑑𝐵

𝑛𝐵
.

Let 𝜎 = (𝐵1, 𝐵2, · · · , 𝐵𝑙) be any feasible EDD-EDD-schedule for 1|item-avail, inco|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
. Suppose

that job 𝐽𝐵
𝜆 ∈ ℱ𝐵 and 𝐽𝐵

𝜆 ∈ 𝐵𝑘. Then 𝐵𝑘 is a batch of agent 𝐵. Further, batch 𝐵𝑘−1 must be a batch of agent
𝐴 by the rotation of batches from the different agents. Let 𝜃𝑘 and 𝜗𝑘 denote the numbers of batches of agent
𝐴 and agent 𝐵 in the first 𝑘 batches 𝐵1, 𝐵2, · · · , 𝐵𝑘, respectively. Then 𝜃𝑘 + 𝜗𝑘 = 𝑘 and

𝜗𝑘 =
{︂

𝑘+1
2 if 𝑘 is odd number

𝑘
2 if 𝑘 is even number

according to the rotation of batches from the different agents. Hence,

𝜃𝑘 =
{︂

𝜗𝑘 − 1 if 𝑘 is odd number
𝜗𝑘 if 𝑘 is even number. (4.1)

Since 𝐴-jobs are scheduled in EDD order in 𝜎, without loss of generality, let the 𝐴-jobs that are scheduled
before 𝐽𝐵

𝜆 are 𝐽𝐴
1 , 𝐽𝐴

2 , · · · , 𝐽𝐴
𝑔𝑘

. From the definition of item availability, we know that the completion time of
job 𝐽𝐵

𝜆 is only related to the numbers 𝜃𝑘 and 𝜗𝑘 of batches and the jobs that is scheduled before job 𝐽𝐵
𝜆 . So let

𝑡(𝑔𝑘, 𝜃𝑘, 𝜆, 𝜗𝑘) be the completion time of job 𝐽𝐵
𝜆 . Then 𝑡(𝑔𝑘, 𝜃𝑘, 𝜆, 𝜗𝑘) = 𝜃𝑘 · 𝑠𝐴 +

∑︀𝑔𝑘

𝑗=1 𝑝𝐴
𝑗 + 𝜗𝑘 · 𝑠𝐵 +

∑︀𝜆
𝑗=1 𝑝𝐵

𝑗

because 𝜎 is an EDD-EDD-schedule, where 0 ≤ 𝜃𝑘 ≤ 𝑔𝑘 ≤ 𝑛𝐴 and 1 ≤ 𝜗𝑘 ≤ 𝜆 ≤ 𝑛𝐵 . Hence 𝐿𝐵
𝜆 (𝜎) =

𝑡(𝑔𝑘, 𝜃𝑘, 𝜆, 𝜗𝑘)− 𝑑𝐵
𝜆 . Thus by the arbitraries of 𝜎 and 𝜆, we can derive all possible values of maximum lateness

𝐿𝐵
max belong to the set

𝒞𝐵 :=
{︀
𝑡(𝑔𝑘, 𝜃𝑘, 𝜆, 𝜗𝑘)− 𝑑𝐵

𝜆 |0 ≤ 𝜃𝑘 ≤ 𝑔𝑘 ≤ 𝑛𝐴, 1 ≤ 𝜗𝑘 ≤ 𝜆 ≤ 𝑛𝐵

}︀
and 𝜃𝑘 and 𝜗𝑘 satisfy (4.1).

Similarly, all possible values of maximum lateness 𝐿𝐴
max belong to the set

𝒞𝐴 :=
{︀
𝑡(𝜆, 𝜃𝑘, ℎ𝑘, 𝜗𝑘)− 𝑑𝐴

𝜆 |1 ≤ 𝜃𝑘 ≤ 𝜆 ≤ 𝑛𝐴, 0 ≤ 𝜗𝑘 ≤ ℎ𝑘 ≤ 𝑛𝐵

}︀
, where

𝜗𝑘 =
{︂

𝜃𝑘 − 1 if 𝑘 is odd number
𝜃𝑘 if 𝑘 is even number. (4.2)

Hence, |𝒞𝐴| = 𝑂
(︀
𝑛2

𝐴𝑛𝐵

)︀
and |𝒞𝐵 | = 𝑂

(︀
𝑛𝐴𝑛2

𝐵

)︀
.

Remark. Li et al. [15] present an 𝑂(𝑛2
𝐴𝑛2

𝐵 log 𝑛)-time algorithm for 1|item-avail, inco, 𝐿𝐴
max ≤ 𝐿|𝐿𝐵

max, in which
the time bound is decided by sorting set 𝒞𝐵 with |𝒞𝐵 | = 𝑂(𝑛2

𝐴𝑛2
𝐵). Hence we can improve the time bound to

𝑂(𝑛𝐴𝑛2
𝐵 log 𝑛) by |𝒞𝐵 | = 𝑂

(︀
𝑛𝐴𝑛2

𝐵

)︀
.

Lemma 4.3 ([15]). Problem 1|item-avail, inco, 𝐿𝐴
max ≤ 𝐿, 𝐿𝐵

max ≤ 𝐿′|− can be solved in 𝑂(𝑛𝐴𝑛𝐵) time.

By Lemma 4.3 and the above discussion, problem 1|item-avail, inco, 𝐿𝐴
max ≤ 𝐿|𝐿𝐵

max can be solved by solving
a series of feasibility problems 1|item-avail, inco, 𝐿𝐴

max ≤ 𝐿, 𝐿𝐵
max ≤ 𝐿′|− with the the decreasing values 𝐿′

and 𝐿′ ∈ 𝒞𝐵 . Similarly, 1|item-avail, inco, 𝐿𝐵
max ≤ 𝐿′|𝐿𝐴

max can also be solved by solving a series of feasibility
problems 1|item-avail, inco, 𝐿𝐴

max ≤ 𝐿, 𝐿𝐵
max ≤ 𝐿′|− with the decreasing values 𝐿 and 𝐿 ∈ 𝒞𝐴.

By slightly modifying Algorithm PO-
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
in Section 3.1 at the corresponding place, we derive the

following result.
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Theorem 4.4. Problem 1|item-avail, inco|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
can be solved in 𝑂

(︀
𝑛2

𝐴𝑛2
𝐵𝑛

)︀
time.

4.2. 1|item-avail, inco|
(︁
𝐿𝐴max,

∑︀
𝐶𝐵𝑗

)︁
Notice that for any Pareto optimal point of 1|item-avail, inco|

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
, there is an EDD-SPT-schedule

corresponding to it by Lemma 4.2 and the definition of Pareto optimal point. Re-index the jobs such that
𝑑𝐴
1 ≤ 𝑑𝐴

2 ≤ · · · ≤ 𝑑𝐴
𝑛𝐴

and 𝑝𝐵
1 ≤ 𝑝𝐵

2 ≤ · · · ≤ 𝑝𝐵
𝑛𝐵

.

Lemma 4.5 ([15]). Problem 1|item-avail, inco, 𝐿𝐴
max ≤ 𝐿|

∑︀
𝐶𝐵

𝑗 can be solved in 𝑂(𝑛2
𝐴𝑛2

𝐵) time.

Through the similar discussion in Section 4.1, all possible values of the maximum lateness 𝐿𝐴
max belong to

the set 𝒞𝐴 and |𝒞𝐴| = 𝑂
(︀
𝑛2

𝐴𝑛𝐵

)︀
, where 𝒞𝐴 is defined as that in Section 4.1. By slightly modifying Algorithm

PO-
(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
in Section 3.1 at the corresponding place, we derive the following result.

Theorem 4.6. Problem 1|item-avail, inco|
(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
can be solved in 𝑂(𝑛4

𝐴𝑛3
𝐵) time.

5. Compatible two-agent problems with batch availability

In this section, we study the two-agent scheduling problems under the batch availability and compatible
assumption.

Lemma 5.1 ([16]). If problem 1|batch-avail, co, 𝐿𝐴
max ≤ 𝐿|𝐿𝐵

max is feasible, then the problem has an optimal
EDD-EDD-schedule.

Lemma 5.2 ([16]). If problem 1|batch-avail, co, 𝐿𝐴
max ≤ 𝐿|

∑︀
𝐶𝐵

𝑗 is feasible, then the problem has an optimal
EDD-SPT-schedule.

5.1. 1|batch-avail, co|
(︀
𝐿𝐴max, 𝐿𝐵max

)︀
For any Pareto optimal point of 1|batch-avail, co|

(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
, there exists a corresponding EDD-EDD-

schedule by Lemma 5.1 and the definition of Pareto optimal point. Re-index the jobs such that 𝑑𝐴
1 ≤ 𝑑𝐴

2 ≤
· · · ≤ 𝑑𝐴

𝑛𝐴
and 𝑑𝐵

1 ≤ 𝑑𝐵
2 ≤ · · · ≤ 𝑑𝐵

𝑛𝐵
.

Let 𝜎 = (𝐵1, 𝐵2, · · · , 𝐵𝑙) be any feasible EDD-EDD-schedule for 1|batch-avail, co|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
. Without loss

of generality, for any 1 ≤ 𝑘 ≤ 𝑙, let
⋃︀𝑘

𝑖=1 𝐵𝑖 =
{︀
𝐽𝐴

1 , 𝐽𝐴
2 , · · · , 𝐽𝐴

𝑔𝑘

}︀ ⋃︀{︀
𝐽𝐵

1 , 𝐽𝐵
2 , · · · , 𝐽𝐵

ℎ𝑘

}︀
since 𝜎 is an EDD-EDD-

schedule. Let 𝑡(𝑔𝑘, ℎ𝑘, 𝑘) be the completion time of batch 𝐵𝑘. Then 𝑡(𝑔𝑘, ℎ𝑘, 𝑘) = 𝑘 · 𝑠 +
∑︀𝑔𝑘

𝑗=1 𝑝𝐴
𝑗 +

∑︀ℎ𝑘

𝑗=1 𝑝𝐵
𝑗 ,

where 0 ≤ 𝑔𝑘 ≤ 𝑛𝐴 and 0 ≤ ℎ𝑘 ≤ 𝑛𝐵 and 1 ≤ 𝑘 ≤ 𝑔𝑘 + ℎ𝑘. For any job 𝐽𝑋
𝑗 ∈ 𝐵𝑘 with 𝑋 = 𝐴 or 𝑋 = 𝐵 (for

𝐴-jobs and 𝐵-jobs are compatible), we have 𝐿𝑋
𝑗 (𝜎) = 𝑡(𝑔𝑘, ℎ𝑘, 𝑘)− 𝑑𝑋

𝑗 , where 1 ≤ 𝑗 ≤ 𝑔𝑘 if 𝑋 = 𝐴; otherwise
1 ≤ 𝑗 ≤ ℎ𝑘. By the arbitraries of 𝜎 and 𝑘, we can derive all possible values of maximum lateness 𝐿𝐴

max belong
to the set

𝒞𝐴 :=
{︀
𝑡(𝑔𝑘, ℎ𝑘, 𝑘)− 𝑑𝐴

𝑗 |1 ≤ 𝑗 ≤ 𝑔𝑘 ≤ 𝑛𝐴, 0 ≤ ℎ𝑘 ≤ 𝑛𝐵 , 1 ≤ 𝑘 ≤ 𝑔𝑘 + ℎ𝑘 ≤ 𝑛
}︀
.

Similarly, all possible values of maximum lateness 𝐿𝐵
max belong to the set

𝒞𝐵 :=
{︀
𝑡(𝑔𝑘, ℎ𝑘, 𝑘)− 𝑑𝐵

𝑗 |0 ≤ 𝑔𝑘 ≤ 𝑛𝐴, 1 ≤ 𝑗 ≤ ℎ𝑘 ≤ 𝑛𝐵 , 1 ≤ 𝑘 ≤ 𝑔𝑘 + ℎ𝑘 ≤ 𝑛
}︀
.

Observe that, |𝒞𝐴| = 𝑂(𝑛2
𝐴𝑛𝐵𝑛) and |𝒞𝐵 | = 𝑂(𝑛𝐴𝑛2

𝐵𝑛).

Lemma 5.3 ([16]). Problem 1|batch-avail, co, 𝐿𝐴
max ≤ 𝐿, 𝐿𝐵

max ≤ 𝐿′|− can be solved in 𝑂(𝑛 log 𝑛) time.

By Lemma 5.3 and the above discussion, problem 1|batch-avail, co, 𝐿𝐴
max ≤ 𝐿|𝐿𝐵

max can be solved by solving
a series of feasibility problems 1|batch-avail, co, 𝐿𝐴

max ≤ 𝐿, 𝐿𝐵
max ≤ 𝐿′|− with the decreasing values 𝐿′, where

𝐿′ ∈ 𝒞𝐵 . Similarly, 1|batch-avail, co, 𝐿𝐵
max ≤ 𝐿′|𝐿𝐴

max can also be solved by solving a series of feasibility problems
1|batch-avail, co, 𝐿𝐴

max ≤ 𝐿, 𝐿𝐵
max ≤ 𝐿′|− with the decreasing values 𝐿, where 𝐿 ∈ 𝒞𝐴.

By slightly modifying Algorithm PO-
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
in Section 3.1 at the corresponding place, we derive the

following result.
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Theorem 5.4. Problem 1|batch-avail, co|
(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
can be solved in 𝑂

(︀
𝑛𝐴𝑛𝐵𝑛3 log 𝑛

)︀
time.

5.2. 1|batch-avail, co|
(︁
𝐿𝐴max,

∑︀
𝐶𝐵𝑗

)︁
For any Pareto optimal point of problem 1|batch-avail, co|

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
, there exists a corresponding EDD-

SPT-schedule by Lemma 5.2 and the definition of Pareto optimal point. Re-index the jobs such that 𝑑𝐴
1 ≤ 𝑑𝐴

2 ≤
· · · ≤ 𝑑𝐴

𝑛𝐴
and 𝑝𝐵

1 ≤ 𝑝𝐵
2 ≤ · · · ≤ 𝑝𝐵

𝑛𝐵
.

For problem 1|batch-avail, co, 𝐿𝐴
max ≤ 𝐿|

∑︀
𝐶𝐵

𝑗 , Li et al. [16] showed that 𝐿𝐴
max(𝜎) ∈ 𝒞𝐴 (defined in Sect. 5.1)

and present a polynomial time algorithm for it.

Lemma 5.5 ([16]). Problem 1|batch-avail, co, 𝐿𝐴
max ≤ 𝐿|

∑︀
𝐶𝐵

𝑗 can be solved in 𝑂(𝑛2
𝐴𝑛2

𝐵𝑛) time.

By modifying Algorithm PO-
(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
in Section 3.2 slightly on the corresponding place, we get the

following result.

Theorem 5.6. Problem 1|batch-avail, co|
(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
can be solved in 𝑂(𝑛4

𝐴𝑛3
𝐵𝑛2) time.

6. A class of problems with lateness-like objective function

For each of the above problems studied in Sections 3–5, there is an optimal schedule with a specific structure,
such as EDD-EDD or EDD-SPT that depends on the objective functions held by the two agents. We note that
the specific structure is a key to solving our problems so that our methods are applicable to a class of problems
with the specific structure. We introduce two concepts in [24].

– An objective function 𝐹𝑋
max of agent 𝑋 that needs to be minimized is named a lateness-like objective func-

tion of agent 𝑋 when 𝐹𝑋
max is regular and all 𝑋-jobs have a order (without loss of generality, denoted

by (𝐽𝑋
1 , 𝐽𝑋

2 , · · · , 𝐽𝑋
𝑛𝑋

)) so that 𝐹𝑋
1 (𝑡) ≥ 𝐹𝑋

2 (𝑡) ≥ · · · ≥ 𝐹𝑋
𝑛𝑋

(𝑡) for any time 𝑡, where 𝐹𝑋
max(𝜎) =

max1≤𝑗≤𝑛𝑋
{𝐹𝑋

𝑗 (𝐶𝑋
𝑗 (𝜎))} and 𝑋 ∈ {𝐴, 𝐵} for a given schedule 𝜎. Moreover, order

(︀
𝐽𝑋

1 , 𝐽𝑋
2 , · · · , 𝐽𝑋

𝑛𝑋

)︀
is called an EDD-like order.

Observe that a scheduling problem in which agent 𝑋 has a lateness-like objective function has an optimal
schedule so that 𝑋-jobs are scheduled in the EDD-like order

(︀
𝐽𝑋

1 , 𝐽𝑋
2 , · · · , 𝐽𝑋

𝑛𝑋

)︀
. For example, when 𝐹𝑋

max =
𝐿𝑋

max, the EDD-like order is
(︀
𝐽𝑋

1 , 𝐽𝑋
2 , · · · , 𝐽𝑋

𝑛𝑋

)︀
with 𝑑𝑋

1 ≤ 𝑑𝑋
2 ≤ · · · ≤ 𝑑𝑋

𝑛𝑋
(see [24]).

𝐶𝑋
max, 𝐿𝑋

max, 𝑇𝑋
max and 𝑊𝐶𝑋

max are common lateness-like objective functions. Assuming their EDD-like orders
are

(︀
𝐽𝑋

1 , 𝐽𝑋
2 , · · · , 𝐽𝑋

𝑛𝑋

)︀
. Then the EDD-like order is arbitrary for 𝐶𝑋

max, the EDD-like order is 𝑑𝑋
1 ≤ 𝑑𝑋

2 ≤ · · · ≤
𝑑𝑋

𝑛𝑋
for 𝐿𝑋

max and 𝑇𝑋
max, the EDD-like order is 𝑤𝑋

1 ≥ 𝑤𝑋
2 ≥ · · · ≥ 𝑤𝑋

𝑛𝑋
for 𝑊𝐶𝑋

max.

Lemma 6.1. Let (𝑥, 𝑦) be a Pareto optimal point of 1|𝛽|
(︀
𝐹𝐴

max, 𝐹
𝐵
max

)︀
. Then there is a correspond-

ing Pareto optimal schedule so that all 𝑋-jobs are scheduled in the EDD-like order, where 𝛽 ∈
{{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}} and 𝐹𝑋

max ∈
{︀
𝐶𝑋

max, 𝐿
𝑋
max, 𝑇

𝑋
max, 𝑊𝐶𝑋

max

}︀
. Especially,

if 𝐹𝑋
max = 𝐶𝑋

max, then all 𝑋-jobs belong to a common batch.

Proof. We can prove the lemma by job-shifting argument. �

Lemma 6.2. Let (𝑥, 𝑦) be a Pareto optimal point of 1|𝛽|
(︀
𝐹𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
. Then there is a corre-

sponding Pareto optimal schedule so that all 𝐴-jobs are scheduled in the EDD-like order and all
𝐵-jobs are scheduled in the SPT order, where 𝐹𝐴

max ∈
{︀
𝐶𝐴

max, 𝐿
𝐴
max, 𝑇

𝐴
max, 𝑊𝐶𝐴

max

}︀
and 𝛽 ∈

{{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}}. Especially, if 𝐹𝐴
max = 𝐶𝐴

max, then all 𝐴-jobs belong
to a common batch.
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Proof. We can prove the lemma by 𝐴-job-shifting argument and 𝐵-job-exchanging argument. �

Theorem 6.3. Problem 1|𝛽|
(︀
𝐶𝐴

max, 𝐶
𝐵
max

)︀
with 𝛽 ∈ {{item-avail, inco}, {batch-avail, co}} can be solved in 𝑂(𝑛)

time.

Proof. By Lemma 6.1 and the symmetry of 𝐴 and 𝐵, problem 1|item-avail, inco|
(︀
𝐶𝐴

max, 𝐶
𝐵
max

)︀
has only two

Pareto optimal schedules
(︀
ℱ𝐴,ℱ𝐵

)︀
and

(︀
ℱ𝐵 ,ℱ𝐴

)︀
, 1|batch-avail, co|

(︀
𝐶𝐴

max, 𝐶
𝐵
max

)︀
has only three Pareto optimal

schedules
(︀
ℱ𝐴,ℱ𝐵

)︀
and

(︀
ℱ𝐵 ,ℱ𝐴

)︀
and

(︀
ℱ𝐴ℱ𝐵

)︀
, where ℱ𝑋 and ℱ𝐴ℱ𝐵 denote a batch composed of all 𝑋-jobs

(𝑋 = 𝐴 or 𝐵) and a batch composed of all jobs, respectively. Hence, the problems can be solved in 𝑂(𝑛)
time. �

Theorem 6.4. Problem 1|batch-avail, inco|
(︀
𝐶𝐴

max, 𝐹
𝐵
max

)︀
with 𝐹𝐵

max ∈
{︀
𝑇𝐵

max, 𝑊𝐶𝐵
max

}︀
can be solved in

𝑂
(︀
𝑛𝐴 + 𝑛2

𝐵 log 𝑛𝐵

)︀
time.

Proof. From Lemma 6.1 and EDD-like order, the proof for 1|batch-avail, inco|
(︀
𝐶𝐴

max, 𝐿
𝐵
max

)︀
in [9] is applicable

to 1|batch-avail, inco|
(︀
𝐶𝐴

max, 𝐹
𝐵
max

)︀
with 𝐹𝐵

max ∈
{︀
𝑇𝐵

max, 𝑊𝐶𝐵
max

}︀
. �

Theorem 6.5. Problems 1|item-avail, inco|
(︀
𝐶𝐴

max, 𝐹
𝐵
max

)︀
with 𝐹𝐵

max ∈
{︀
𝐿𝐵

max, 𝑇
𝐵
max, 𝑊𝐶𝐵

max

}︀
and

1|item-avail, inco|
(︀
𝐶𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
can be solved in 𝑂

(︀
𝑛𝐴 + 𝑛2

𝐵

)︀
time.

Proof. Due to alternate batches from the different agents in any Pareto optimal schedule, each Pareto
optimal schedule of each problem contains either two batches or three batches by Lemmas 6.1 and 6.2.
Hence there is at most 𝑂(𝑛𝐵) Pareto optimal schedules. It takes 𝑂(𝑛𝐵) time to compute each objec-
tive vector when

∑︀
𝑗 𝑝𝐴

𝑗 is computed in advance and all 𝐵-jobs is sorted in advance. And sorting 𝐵-
jobs needs 𝑂(𝑛𝐵 log 𝑛𝐵) time and computing

∑︀
𝑗 𝑝𝐴

𝑗 needs 𝑂(𝑛𝐴) time. So the total time complexity is
𝑂

(︀
𝑛𝐴 + 𝑛𝐵 log 𝑛𝐵 + 𝑛2

𝐵

)︀
= 𝑂

(︀
𝑛𝐴 + 𝑛2

𝐵

)︀
. �

Lemma 6.6 ([16]). For problem 1|batch-avail, co, 𝐹𝐵
max ≤ 𝐿|𝐶𝐴

max, 𝐶𝐴
max has at most 𝑂(𝑛2

𝐵) possible values,
where 𝐹𝐵

max ∈
{︀
𝐿𝐵

max, 𝑇
𝐵
max, 𝑊𝐶𝐵

max

}︀
.

Lemma 6.7 ([16]). Problem 1|batch-avail, co, 𝐹𝐵
max ≤ 𝐿|𝐶𝐴

max with 𝐹𝐵
max ∈

{︀
𝐿𝐵

max, 𝑇
𝐵
max, 𝑊𝐶𝐵

max

}︀
can be solved

in 𝑂(𝑛𝐵 log 𝑛𝐵) time if
∑︀

𝑗 𝑝𝐴
𝑗 are computed in advance and all 𝑂

(︀
𝑛2

𝐵

)︀
possible values of 𝐶𝐴

max are sorted in
advance and all 𝐵-jobs are sorted in the nondecreasing order of their deadlines in advance.

Proof. The feasibility problem 1|batch-avail, co, 𝑓max ≤ 𝐿|− can be solved in 𝑂(𝑛) if the deadlines of all
jobs are given in advance (see [16]). So problem 1|batch-avail, co, 𝐹𝐵

max ≤ 𝐿, 𝐶𝐴
max ≤ 𝐿′|− can be solved in

𝑂(𝑛𝐵 + log 𝑛𝐵) = 𝑂(𝑛𝐵) if
∑︀

𝑗 𝑝𝐴
𝑗 is computed in advance and all 𝐵-jobs are sorted in the nondecreasing order

of their deadlines in advance by Lemma 6.1 (where all 𝐴-jobs are looked as a merged large job and log 𝑛𝐵 is
the time taken to insert the merged job into 𝐵-jobs). Since problem 1|batch-avail, co, 𝐹𝐵

max ≤ 𝐿|𝐶𝐴
max can be

solved by solving a series of feasibility problems 1|batch-avail, co, 𝐹𝐵
max ≤ 𝐿, 𝐶𝐴

max ≤ 𝐿′|− with varied 𝐿′, where
the varied 𝐿′ is determined by binary search on all 𝑂

(︀
𝑛2

𝐵

)︀
possible values of 𝐶𝐴

max, which needs 𝑂(log 𝑛𝐵) time
if all 𝑂(𝑛2

𝐵) possible values of 𝐶𝐴
max is sorted in advance, and the order of all 𝐵-jobs keeps no change, problem

1|batch-avail, co, 𝐹𝐵
max ≤ 𝐿|𝐶𝐴

max with 𝐹𝐵
max ∈

{︀
𝐿𝐵

max, 𝑇
𝐵
max, 𝑊𝐶𝐵

max

}︀
can be solved in 𝑂(𝑛𝐵 log 𝑛𝐵) time if∑︀

𝑗 𝑝𝐴
𝑗 is computed in advance and all 𝑂

(︀
𝑛2

𝐵

)︀
possible values of 𝐶𝐴

max is sorted in advance and all 𝐵-jobs are
sorted in the nondecreasing order of their deadlines in advance. �

Theorem 6.8. Problem 1|batch-avail, co|
(︀
𝐶𝐴

max, 𝐹
𝐵
max

)︀
with 𝐹𝐵

max ∈ {𝐿𝐵
max, 𝑇

𝐵
max, 𝑊𝐶𝐵

max} can be solved in
𝑂

(︀
𝑛𝐴 + 𝑛4

𝐵 log 𝑛𝐵

)︀
time.
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Proof. Problem 1|batch-avail, co|
(︀
𝐶𝐴

max, 𝐹
𝐵
max

)︀
can be solved by solving a series of constraint problem

1|batch-avail, co, 𝐹𝐵
max ≤ 𝐿|𝐶𝐴

max with the decreasing values 𝐿, where 𝐿 is all possible values of 𝐹𝐵
max.

From reference [16], 𝐹𝐵
max has at most 𝑂

(︀
𝑛𝐴𝑛2

𝐵𝑛
)︀

possible values if 𝐶𝐴
max is replaced by 𝐿𝐴

max. From
Lemma 6.1, all 𝐴-jobs can be treated as a merged large job with processing time

∑︀
𝑗 𝑝𝐴

𝑗 . Thus our prob-
lem is equivalent to 𝑛𝐴 = 1 jobs. So 𝐹𝐵

max has at most 𝑂
(︀
𝑛3

𝐵

)︀
values in our problem. Note that the order of

all 𝐵-jobs (provided that they are scheduled in nondecreasing order of their deadlines) has no change in each
round. So if we sort all 𝐵-jobs in advance, then each time sorting all jobs needs only to insert one merged 𝐴-jobs
into 𝐵-jobs, which takes 𝑂(log 𝑛𝐵) time. And computing

∑︀
𝑗 𝑝𝐴

𝑗 needs 𝑂(𝑛𝐴) time and sorting all 𝐵-jobs needs
𝑂(𝑛𝐵 log 𝑛𝐵) time in advance. Sorting all 𝑂

(︀
𝑛2

𝐵

)︀
possible values of 𝐶𝐴

max needs 𝑂
(︀
𝑛2

𝐵 log 𝑛𝐵

)︀
time. Hence, the

total time complexity is 𝑂
(︀
𝑛𝐴 + 𝑛𝐵 log 𝑛𝐵 + 𝑛2

𝐵 log 𝑛𝐵 + 𝑛𝐵 log 𝑛𝐵 · 𝑛3
𝐵

)︀
= 𝑂

(︀
𝑛𝐴 + 𝑛4

𝐵 log 𝑛𝐵

)︀
time. �

Lemma 6.9 ([16]). Problem 1|batch-avail, co, 𝐹𝐴
max ≤ 𝐿|

∑︀
𝐶𝐵

𝑗 can be solved in 𝑂
(︀
𝑛𝑛2

𝐴𝑛2
𝐵

)︀
time, where 𝐹𝐵

max ∈{︀
𝐿𝐵

max, 𝑇
𝐵
max, 𝑊𝐶𝐵

max

}︀
.

Corollary 6.10. Problem 1|batch-avail, co, 𝐶𝐴
max ≤ 𝐿|

∑︀
𝐶𝐵

𝑗 can be solved in 𝑂(𝑛3
𝐵) time if

∑︀
𝑗 𝑝𝐴

𝑗 is computed
in advance.

Theorem 6.11. Problem 1|batch-avail, co|
(︀
𝐶𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
can be solved in 𝑂(𝑛𝐴 + 𝑛5

𝐵) time.

Proof. Since 𝐶𝐴
max has at most 𝑂(𝑛2

𝐵) possible values (see ([16])), sorting the values needs 𝑂(𝑛2
𝐵 log 𝑛𝐵)

time and computing
∑︀

𝑗 𝑝𝐴
𝑗 needs 𝑂(𝑛𝐴) time in advance. The remaining proof is similar to that of

Theorem 6.8. �

Since lateness-like objective functions and the maximum lateness have a similar property (see
Lemmas 6.1 and 6.2), the methods used to solve problem1|𝛽|

(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
and problem 1|𝛽|

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
in Sections 3–5 are also applicable to problems 1|𝛽|

(︀
𝐹𝐴

max, 𝐹
𝐵
max

)︀
and 1|𝛽|

(︀
𝐹𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
, where 𝛽 ∈

{{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}} and 𝐹𝑋
max ∈

{︀
𝐿𝑋

max, 𝑇
𝑋
max, 𝑊𝐶𝑋

max

}︀
(𝑋 = 𝐴 or 𝐵).

Hence we have the following theorems.

Theorem 6.12. Problems 1|𝛽|
(︀
𝐹𝐴

max, 𝐹
𝐵
max

)︀
and 1|𝛽|

(︀
𝐿𝐴

max, 𝐿
𝐵
max

)︀
have the same time complexity, where 𝛽 ∈

{{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}} and 𝑋 ∈ {𝐴, 𝐵} and 𝐹𝑋
max ∈

{︀
𝐿𝑋

max, 𝑇
𝑋
max, 𝑊𝐶𝑋

max

}︀
.

Theorem 6.13. Problems 1|𝛽|
(︀
𝐹𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
and 1|𝛽|

(︀
𝐿𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
have the same time complexity, where

𝛽 ∈ {{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}} and 𝐹𝐴
max ∈ {𝑇𝐴

max, 𝑊𝐶𝐴
max}.

Remark. For 𝛽 ∈ {{batch-avail, inco}, {item-avail, inco}, {batch-avail, co}} and 𝐹𝐴
max ∈

{𝐶𝐴
max, 𝐿

𝐴
max, 𝑇

𝐴
max, 𝑊𝐶𝐴

max}, Pareto optimal schedules of problem 1|𝛽|
(︀
𝐹𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
and Pareto optimal

schedules of problem 1|𝛽, 𝑝𝐵
𝑗 = 𝑝|

(︀
𝐹𝐴

max,
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗

)︀
have a similar property, i.e., their 𝐴-jobs are scheduled

in the EDD-like order, and all 𝐵-jobs are scheduled in the SPT order for former problem and all 𝐵-jobs
are scheduled in the SPT-like order (i.e., 𝑤𝐵

1 ≥ 𝑤𝐵
2 ≥ · · · ≥ 𝑤𝐵

𝑛𝐵
) for latter problem. Therefore, problems

1|𝛽|
(︀
𝐹𝐴

max,
∑︀

𝐶𝐵
𝑗

)︀
and 1|𝛽, 𝑝𝐵

𝑗 = 𝑝|
(︀
𝐹𝐴

max,
∑︀

𝑤𝐵
𝑗 𝐶𝐵

𝑗

)︀
have the same time complexity.

7. Concluding remarks

In the foregoing discussion, we study two-agent simultaneous optimization scheduling, in which the objective
function of agent 𝐴 is lateness-like objective function, such as 𝐶𝐴

max, 𝐿
𝐴
max, 𝑇

𝐴
max, 𝑊𝐶𝐴

max and that of agent 𝐵 is a
lateness-like objective function or the special total weighted completion time, on an unbounded serial-batching
machine. Moreover, the problems are considered under three cases: batch availability and incompatibility, item
availability and incompatibility, and batch availability and compatibility. For all problems studied in the paper,
we give a polynomial-time algorithm, respectively. On the one hand, our future work would be to generalize the
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objective vectors, for example, (𝑓𝐴
max, 𝑓

𝐵
max) and (

∑︀
𝐶𝐵

𝑗 ,
∑︀

𝐶𝐵
𝑗 ) and (𝑓𝐴

max,
∑︀

𝐶𝐵
𝑗 ). On the other hand, we can

also consider the corresponding bounded cases for the problems in the paper.
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