
RAIRO-Oper. Res. 55 (2021) 3715–3742 RAIRO Operations Research
https://doi.org/10.1051/ro/2021174 www.rairo-ro.org

DESIGNING A SINGLE-VENDOR AND MULTIPLE-BUYERS’ INTEGRATED
PRODUCTION INVENTORY MODEL FOR INTERVAL TYPE-2 FUZZY

DEMAND AND FUZZY RULE BASED DETERIORATION

Chayanika Rout1, Ravi Shankar Kumar2, Arjun Paul1, Debjani Chakraborty1

and Adrijit Goswami1,*

Abstract. In this paper, a single-vendor and multiple-buyers’ integrated production inventory model
is investigated where demand of the item at the buyers’ location is considered as interval type-2 fuzzy
number (IT2FN). Deterioration rate of the item is assumed to change in accordance with the weather
conditions of a particular region. It relies upon the values of certain attributes that have a direct
influence on the extent of deterioration. These parameter values are easily forecasted and thereby
can be utilized to determine the item depletion rate, which is executed here using Mamdani fuzzy
inference scheme. Besides, a nearest interval approximation formula for the defuzzification of IT2FN
is developed and applied in the proposed integrated production inventory model. The model optimizes
the total number of shipments to be made to the buyers within a complete cycle so as to minimize the
overall integrated cost incurred. A detailed illustration of the theoretical results is further demonstrated
with the help of numerical example, followed by sensitivity analysis which provides insights into better
decision making.
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1. Introduction

Inventory modelling and supply chain management constitute the key issues in logistics system planning and
are among the most developed fields of operations management. An interesting and widely studied aspect of
inventory theory includes the mathematical modelling of deteriorating items. Different patterns of deterioration
rates have been widely suggested by researchers till date, which include constant, time-varying, probabilistic,
fuzzy, non-instantaneous, etc. Some notable contributions in this regard are discussed in Section 2. It is observed
in practical situations that most of the items have a deterioration rate which does not remain fixed in all
circumstances; instead, items get depleted at different rates depending upon how the weather conditions of a
particular region are or how good are the storage facilities for the items. So, it would be more practical to
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assume that the same item deteriorates at different rates when stocked in places having variations in their
weather conditions. In order to handle similar scenario, fuzzy rule base technique is implemented in this study.
Such a situation of fuzzy rule based deterioration could not be found in the literature till date.

Demand is known to be one of the major parameters in inventory modelling which depends on various
uncertain and unreliable activities of market as well as past records [13]. Thus, there can arise situations where
consideration of constant demand, time-varying demand or even fuzzy demand with crisp membership grade
will not be suitable at all. For instance, suppose the demand of a certain item is to be estimated by a group
of experts. After analyzing the previous demand patterns and predicting forthcoming scenarios, each expert
individually suggests a fuzzy demand with a certain grade of membership. This is because, considering all the
experts’ opinion, the membership grade of a particular demand value also turns fuzzy, so that the demand is
finally estimated as a type-2 fuzzy set (T2FS). The same is examined in the proposed model. Rout et al. [45]
investigated the possibility of occurrence of type-2 fuzziness in inventory parameters. Specifically, the authors
dealt with discrete type-2 fuzzy deterioration rate in their proposed inventory model. In this paper, we intend
to develop an integrated production inventory model for a single vendor and multiple buyers focusing on two
new ideas, namely, interval type-2 fuzzy demand and weather (of a specific location) dependent deterioration
rate. This varying deterioration rate at different locations is handled using fuzzy rule base approach in order
to derive its specific value. Another novel aspect of the paper lies in the development of a methodology for the
defuzzification of IT2FN and thereby incorporating it in the proposed inventory model for defuzzification of
interval type-2 fuzzy demand rate. A brief overview of related existing studies in the literature is carried out in
the next section.

The remainder of the paper is structured as follows: A comprehensive review on the literature of item
deterioration, integrated supply chain network and implementation of Fuzzy set theory (FST) in inventory
models is presented in Section 2. The proposed methodology of nearest interval approximation of IT2FN is
discussed in Section 3. Section 4 provides a situation description for the model with a detailed overview of the
notations and assumptions followed throughout the paper. The adopted policy is mathematically formulated in
Section 5. In Section 6, the model is developed in the fuzzy environment with a comprehensive discussion on the
procedure of determining the demand and deterioration rates. Section 7 exemplifies the developed theory with
the help of numerical experiments, followed by sensitivity analysis of some key parameters which is presented in
Section 8. Finally, some concluding remarks are drawn in Section 9, thereby identifying certain areas for future
research.

2. Literature review

Deterioration in inventory modelling was first examined by Ghare [19] in the form of an exponentially decaying
inventory. After that, many authors extrapolated Ghare and Schrader’s work presenting both Economic Order
Quantity (EOQ) and Economic Production Quantity (EPQ) models for more complex scenarios. A constant
rate of deterioration has been considered in the research works of Widyadana et al. [62], Chan et al. [3], Pando
et al. [43] and Rout et al. [48]. Skouri et al. [56] presented ramp-type demand rate with time-dependent rate
of deterioration. The idea of non-instantaneous deterioration was adopted by Wu et al. [63], Ouyang et al.
[41] and Sharma et al. [54]. Lee and Dye [30] presented an inventory model with stock-dependent demand
and controllable deterioration rate. Mohanty et al. [37] discussed a two-warehouse inventory model for non-
instantaneously deteriorating items with partial backlogging over a stochastic planning horizon. Tai et al. [57]
developed an inventory system with deterioration rate depending upon the maximum lifetime of items. A joint
pricing, replenishment and preservation technology investment problem was studied by Li et al. [32] for non-
instantaneous deteriorating items. Sarkar et al. [50] investigated a profit maximization model considering selling-
price and credit-period dependent demand and time-varying deterioration rate for the concerned products.

Inventory modelling incorporating vendor–buyer integrated approach has gained remarkable attention in the
recent decades. Yang and Wee [65] noticed that collaborative approach of both the vendor and the buyers can
further minimize the overall integrated cost in comparison to the independent approach by either of the two.



INTERVAL TYPE-2 FUZZY DEMAND AND FUZZY RULE BASED DETERIORATION 3717

Other relevant works in this direction include those of Rau et al. [44], Yao and Chiou [66], Lo et al. [34], Yan et al.
[64], Taleizadeh et al. [58], Jia et al. [25], Mohanty et al. [38] and Sarkar et al. [51]. A single-manufacturer and
single-buyer production model was developed by Kumar et al. [29] under fuzzy random demand of customers.
Recently, Chen [5] developed an EPQ model for deteriorating items comprising of a single manufacturer and
multiple retailers. Recently, a sustainable single-vendor single-buyer production model was investigated by Rout
et al. [46] incorporating emission regulation strategies. Pal et al. [42] studied an imperfect production inventory
model consisting of a manufacturer and a retailer for deteriorating items, where the deterioration occurs at
different rates in the manufacturer’s and the retailer’s level considering a fixed lifetime of the product. Some
recent notable contributions in this regard include the works of Dey et al. [15] and Khanna et al. [27] which
efficiently deal with the integrated approach of vendor and buyers.

In recent years, incorporation of fuzzy sets and its variants, such as intuitionistic fuzzy set, fuzzy random
variable, random fuzzy variable, etc., has been widely carried out in inventory modelling problems. A detailed
literature survey focusing on “fuzzy inventory modelling” was carried out by Shekarian et al. [55]. Inventory
models considering fuzzy parameters have been extensively studied by a large number of researchers till date.
Fuzzy rate of deterioration was established in the works of De and Goswami [11], De et al. [12], among others.
Dutta et al. [17, 18], Chang et al. [4], Dey and Chakraborty [13, 14], Kumar and Goswami [28], Kumar et al.
[29] and Chakraborty and Bhuiya [1] are some milestones in the literature addressing inventory models in
fuzzy random environment. Among the most recent studies, Rout et al. [46] demonstrated scenario-dependent
demand pattern based on historical records which is achieved using Mamdani fuzzy inference scheme. However,
it is observed that there is hardly any work done considering type-2 fuzzy demand rate which can also be the
scenario in certain situations, as discussed in this paper.

FST has always been beneficial in modelling and transforming imprecise information effectively. However,
sometimes it is required to approximate a given fuzzy set by a crisp quantity. Recently, Rout et al. [45] proposed
a production inventory model for items with type-2 fuzzy deterioration rate. A complete review of the available
research works related to T2FS defuzzification techniques can be obtained in Torshizi et al. [60]. Some notable
contributions in this aspect are presented in Section 3. In the literature, numerous studies are carried out with
constant, ramp type, random and fuzzy demand rates but type-2 fuzzy demand has not been implemented in
inventory problems as such. So, interval type-2 fuzzy demand rate is incorporated in the proposed model that
tends to fill this research gap in literature.

The purpose of this study is twofold: first one is to develop an integrated production inventory model of a
single vendor and multiple buyers by considering demand rate as IT2FN. In this process, a novel method of
defuzzification of IT2FN is proposed which approximates it directly to a crisp interval without any intermediate
type reduction phase. The second objective is to model a real life situation of weather-dependent deterioration
in a supply chain network. Deterioration rates of certain items like volatile liquids, iron products, etc., usually
depend upon weather conditions of the location, the preserving facilities where these items are stored and
several other parameters. These uncertain components perturb the deterioration situation. Hence, fuzzy rule
base technique is employed to forecast the rate of deterioration. To the best of our knowledge, such an inventory
model with the aforementioned assumptions could not be found in the literature.

3. Proposed methodology: nearest interval approximation of IT2FN

In this section, we will discuss a novel defuzzification approach of IT2FN just after briefly reviewing the
existing methods of others. For the defuzzification of fuzzy numbers, Grzegorzewski [23] derived an interval
approximation operator with respect to a distance measure between fuzzy numbers. For type-2 fuzzy numbers
(T2FNs), Karnik and Mendel [26] introduced the centroid method of defuzzification through the intermediate
phase of type reduction. The traditional defuzzification methods, which include Karnik and Mendel [26] and
Nie and Tan [40] algorithms and the sampling method of defuzzification by Greenfield et al. [22], involve
quite a high computational complexity as far as the centroid calculation is concerned. Coupland and John [10]
suggested a fast geometric method in order to defuzzify T2FSs. The collapsing method of defuzzification of
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discretized interval type-2 fuzzy sets (IT2FSs) was developed by Greenfield et al. [21]. Signed distance method
of type-1 fuzzy set (T1FS) is extended for IT2FN by Chen et al. [7]. Torshizi and Zarandi [59] developed a
direct defuzzification method for general T2FSs, based on collapsing procedure and 𝛼-plane decomposition.
Runkler et al. [49] suggested some mathematical properties of type reduction, and proposed two methods
of type reduction of IT2FN, namely, consistent linear type reduction (CLTR) and consistent quadratic type
reduction (CQTR). Greenfield and Chiclana [20] proposed type reduction of continuous IT2FN by introducing
the concepts of truncation and truncation grade. Moreno et al. [39] developed a defuzzification methodology
for IT2FN, based on descriptive statistics and granular computing theory. With the purpose of reducing the
computational complexity involved in the process, Nie and Tan [40] developed a type-reduction operator having
a simple closed-form representation, computing the average of the upper and lower bounds of the footprint
of uncertainty. In 2017, Li et al. [31] proved that the Nie-Tan operator is actually an accurate method for
defuzzifying IT2FSs. However, using a defuzzification operator which replaces a T2FS by a single crisp number
might generally result in the loss of certain important information. Therefore, a crisp set approximation of a
fuzzy set is often advisable [23]. In this approach, we substitute a given IT2FN by a crisp interval, which is in
some sense close to the former one.

Type-reduction is considered to be a defuzzification bottleneck, the reason being the computational com-
plexity involved in the process. However, the proposed methodology reduces an IT2FN directly into a crisp
interval, instead of a single value, through alpha-cut computations. Unlike the iterative algorithms present in
the literature, it develops closed-form formulae for computing the end-points of the interval so that it does not
require any centroid calculation for an extraordinarily large number of T1FSs (embedded sets), and that also
without discretization of the continuous domains. The proposed methodology does not involve any intermediate
type reduction phase and is therefore comparatively much less laborious for handling continuous T2FS. The
method thus put forward is illustrated in the present section with the validity of the same. Throughout this
paper, tilde “∼” and double tilde “≈” over an alphabet represent a T1FS and T2FS respectively [6].

Our aim to find the nearest interval approximation requires the distance between the fuzzy number and the
corresponding interval to be minimum, which is achieved through the computations that follow henceforth.
Let ˜̃𝐴 =

(︁
𝐴𝐿, 𝐴𝑈

)︁
be an IT2FN where 𝐴𝐿 and 𝐴𝑈 represent the Lower Membership Function (LMF) and

Upper Membership Function (UMF) with heights ℎ
(︁
𝐴𝐿
)︁

and ℎ
(︁
𝐴𝑈
)︁

respectively [35]. The 𝛼-cut of ˜̃𝐴, where

𝛼 ∈ [0, 1] is given by 𝐴𝛼 =
(︀
𝐴𝐿

𝛼, 𝐴𝑈
𝛼

)︀
=
(︀[︀

𝑙𝐴𝐿
𝛼, 𝑟𝐴𝐿

𝛼

]︀
,
[︀
𝑙𝐴𝑈

𝛼 , 𝑟𝐴𝑈
𝛼

]︀)︀
. Following the idea of Grzegorzewski [23], we

define the distance metric 𝑑 between ˜̃𝐴 and a closed interval 𝐶𝑑

(︁
˜̃𝐴
)︁

= [𝐶𝐿, 𝐶𝑅] as

𝑑
(︁

˜̃𝐴, 𝐶𝑑

(︁
˜̃𝐴
)︁)︁

=

[︃∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝐿 − 𝑙𝐴𝐿

𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝐿 − 𝑙𝐴𝑈

𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝑅 − 𝑟𝐴𝐿

𝛼

)︀2
d𝛼

+
∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝑅 − 𝑟𝐴𝑈

𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝑈)

ℎ(𝐴𝐿)

(︀
𝐶𝐿 − 𝑙𝐴𝑈

𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝑈)

ℎ(𝐴𝐿)

(︀
𝐶𝑅 − 𝑟𝐴𝑈

𝛼

)︀2
d𝛼

]︃1/2

. (3.1)

Given ˜̃𝐴, the objective is to find its nearest closed interval 𝐶𝑑

(︁
˜̃𝐴
)︁

with respect to the metric 𝑑. It requires to

minimize 𝑑
(︁

˜̃𝐴, 𝐶𝑑

(︁
˜̃𝐴
)︁)︁

for which it would be sufficient to minimize 𝐷(𝐶𝐿, 𝐶𝑅) = 𝑑2
(︁

˜̃𝐴, 𝐶𝑑

(︁
˜̃𝐴
)︁)︁

given by:

𝐷(𝐶𝐿, 𝐶𝑅) =
∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝐿 − 𝑙𝐴𝐿

𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝐿 − 𝑙𝐴𝑈

𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝑅 − 𝑟𝐴𝐿

𝛼

)︀2
d𝛼

+
∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝑅 − 𝑟𝐴𝑈

𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝑈)

ℎ(𝐴𝐿)

(︀
𝐶𝐿 − 𝑙𝐴𝑈

𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝑈)

ℎ(𝐴𝐿)

(︀
𝐶𝑅 − 𝑟𝐴𝑈

𝛼

)︀2
d𝛼.
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The first order partial derivatives of 𝐷(𝐶𝐿, 𝐶𝑅) obtained by the application of Leibniz integral rule are as
follows:

𝜕𝐷(𝐶𝐿, 𝐶𝑅)
𝜕𝐶𝐿

= 2
∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝐿 − 𝑙𝐴𝐿

𝛼

)︀
d𝛼 + 2

∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝐿 − 𝑙𝐴𝑈

𝛼

)︀
d𝛼 + 2

∫︁ ℎ(𝐴𝑈)

ℎ(𝐴𝐿)

(︀
𝐶𝐿 − 𝑙𝐴𝑈

𝛼

)︀
d𝛼.

𝜕𝐷(𝐶𝐿, 𝐶𝑅)
𝜕𝐶𝑅

= 2
∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝑅 − 𝑟𝐴𝐿

𝛼

)︀
d𝛼 + 2

∫︁ ℎ(𝐴𝐿)

0

(︀
𝐶𝑅 − 𝑟𝐴𝑈

𝛼

)︀
d𝛼 + 2

∫︁ ℎ(𝐴𝑈)

ℎ(𝐴𝐿)

(︀
𝐶𝑅 − 𝑟𝐴𝑈

𝛼

)︀
d𝛼.

The necessary conditions for the minimum to exist are given by
𝜕𝐷(𝐶𝐿, 𝐶𝑅)

𝜕𝐶𝐿
= 0 and

𝜕𝐷(𝐶𝐿, 𝐶𝑅)
𝜕𝐶𝑅

= 0 which

imply

𝐶𝐿 =
1

ℎ
(︁
𝐴𝐿
)︁

+ ℎ
(︁
𝐴𝑈
)︁[︃∫︁ ℎ(𝐴𝐿)

0

𝑙𝐴𝐿
𝛼 d𝛼 +

∫︁ ℎ(𝐴𝑈)

0

𝑙𝐴𝑈
𝛼 d𝛼

]︃
and (3.2)

𝐶𝑅 =
1

ℎ
(︁
𝐴𝐿
)︁

+ ℎ
(︁
𝐴𝑈
)︁[︃∫︁ ℎ(𝐴𝐿)

0

𝑟𝐴𝐿
𝛼 d𝛼 +

∫︁ ℎ(𝐴𝑈)

0

𝑟𝐴𝑈
𝛼 d𝛼

]︃
. (3.3)

Moreover,

det

⎡⎢⎢⎣
𝜕2𝐷(𝐶𝐿, 𝐶𝑅)

𝜕𝐶2
𝐿

𝜕2𝐷(𝐶𝐿, 𝐶𝑅)
𝜕𝐶𝐿𝜕𝐶𝑅

𝜕2𝐷(𝐶𝐿, 𝐶𝑅)
𝜕𝐶𝐿𝜕𝐶𝑅

𝜕2𝐷(𝐶𝐿, 𝐶𝑅)
𝜕𝐶2

𝑅

⎤⎥⎥⎦ = det
[︂
6 0
0 6

]︂
= 36 > 0

and
𝜕2𝐷(𝐶𝐿, 𝐶𝑅)

𝜕𝐶2
𝐿

= 6 > 0.

Therefore 𝐶𝐿 and 𝐶𝑅 as expressed in (3.2) and (3.3) actually minimize 𝐷(𝐶𝐿, 𝐶𝑅). In other words, they minimize
𝑑
(︁

˜̃𝐴, 𝐶𝑑

(︁
˜̃𝐴
)︁)︁

. So, the interval with minimum distance from ˜̃𝐴 is obtained as

𝐶𝑑

(︁
˜̃𝐴
)︁

=
1

ℎ
(︁
𝐴𝐿
)︁

+ ℎ
(︁
𝐴𝑈
)︁[︃∫︁ ℎ(𝐴𝐿)

0

𝑙𝐴𝐿
𝛼 d𝛼 +

∫︁ ℎ(𝐴𝑈)

0

𝑙𝐴𝑈
𝛼 d𝛼,

∫︁ ℎ(𝐴𝐿)

0

𝑟𝐴𝐿
𝛼 d𝛼 +

∫︁ ℎ(𝐴𝑈)

0

𝑟𝐴𝑈
𝛼 d𝛼

]︃
. (3.4)

Now, it remains to prove that 𝐶𝑑

(︁
˜̃𝐴
)︁

is indeed the nearest interval approximation of ˜̃𝐴. Grzegorzewski [23]
suggested certain criteria required to be fulfilled by an operator 𝐶 to be an interval approximation of a fuzzy
number 𝐴. These are summarized as follows:

(C1) 𝐶
(︁
𝐴
)︁
⊆ support

(︁
𝐴
)︁

,

(C2) core
(︁
𝐴
)︁
⊆ 𝐶

(︁
𝐴
)︁

,
(C3) 𝐶 is a continuous interval approximation operator.

Based on the notion of fuzzy set as introduced by Dubois and Prade [16], the UMF of an IT2FN ˜̃𝐴 is
represented by four numbers 𝑎𝑈

1 , 𝑎𝑈
2 , 𝑎𝑈

3 , 𝑎𝑈
4 ∈ R and two functions 𝐿𝐴𝑈 , 𝑅𝐴𝑈 : R → [0, 1], where R denotes

the real line, 𝐿𝐴𝑈 is non-decreasing and 𝑅𝐴𝑈 is non-increasing, such that a membership function 𝜇𝐴𝑈 can be
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defined in the following manner:

𝜇𝐴𝑈 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if 𝑥 < 𝑎𝑈
1

𝐿𝐴𝑈 (𝑥), if 𝑎𝑈
1 ≤ 𝑥 < 𝑎𝑈

2

ℎ
(︁
𝐴𝑈
)︁
, if 𝑎𝑈

2 ≤ 𝑥 ≤ 𝑎𝑈
3

𝑅𝐴𝑈 (𝑥), if 𝑎𝑈
3 < 𝑥 ≤ 𝑎𝑈

4

0, if 𝑎𝑈
4 < 𝑥.

Functions 𝐿𝐴𝑈 and 𝑅𝐴𝑈 are called the left and right sides of the fuzzy number 𝐴𝑈 respectively. Similar arguments
also hold for the LMF 𝐴𝐿.

Theorem 3.1. Consider an IT2FN ˜̃𝐴 with continuous and strictly monotonic sides 𝐿𝐴𝑈 , 𝑅𝐴𝑈 and 𝐿𝐴𝐿 , 𝑅𝐴𝐿

for the UMF and LMF respectively and [𝐶𝐿, 𝐶𝑅] be its nearest interval approximation. Then, [𝐶𝐿, 𝐶𝑅] ⊆[︀
𝑎𝑈
1 , 𝑎𝑈

4

]︀
.

Proof. Using the well-known formulae of integration by substitution, derivative of the inverse function and
integration by parts as suggested by Grzegorzewski [23], we have,

𝐶𝐿 =
1

ℎ
(︁
𝐴𝐿
)︁

+ ℎ
(︁
𝐴𝑈
)︁[︃∫︁ ℎ(𝐴𝐿)

0

𝑙𝐴𝐿
𝛼 d𝛼 +

∫︁ ℎ(𝐴𝑈)

0

𝑙𝐴𝑈
𝛼 d𝛼

]︃

=
1

ℎ
(︁
𝐴𝐿
)︁

+ ℎ
(︁
𝐴𝑈
)︁[︃𝑎𝐿

2 −
∫︁ 𝑎𝐿

2

𝑎𝐿
1

𝐿𝐴𝐿(𝑥) d𝑥 + 𝑎𝑈
2 −

∫︁ 𝑎𝑈
2

𝑎𝑈
1

𝐿𝐴𝑈 (𝑥) d𝑥

]︃

≥ 𝑎𝐿
1 + 𝑎𝑈

1

ℎ
(︁
𝐴𝐿
)︁

+ ℎ
(︁
𝐴𝑈
)︁ ·

The inequality follows from the fact that 𝐿𝐴𝐿(𝑥) ≤ 1 for all 𝑥 and that 𝐿𝐴𝐿 is continuous so that∫︀ 𝑎𝐿
2

𝑎𝐿
1

𝐿𝐴𝐿(𝑥) d𝑥 ≤
∫︀ 𝑎𝐿

2
𝑎𝐿
1

d𝑥 holds. Moreover, we know that the height of UMF or LMF must not exceed 1.

Hence, ℎ
(︁
𝐴𝐿
)︁
≤ 1, ℎ

(︁
𝐴𝑈
)︁
≤ 1 and 𝑎𝐿

1 ≥ 𝑎𝑈
1 is trivially true. Therefore,

𝐶𝐿 ≥ 𝑎𝑈
1 . (3.5)

With similar arguments, it can be shown that

𝐶𝑅 ≤ 𝑎𝑈
4 . (3.6)

Combining the results of (3.5) and (3.6), we can conclude that

[𝐶𝐿, 𝐶𝑅] ⊆
[︀
𝑎𝑈
1 , 𝑎𝑈

4

]︀
.

This completes the proof. �

Theorem 3.2. The operator 𝐶𝑑 : IF2(R) → P(R) defined by (3.4) is a continuous interval approximation
operator where IF2(R) denotes the space of all IT2FNs and P(R) denotes the family of all closed intervals on
the real line.

Proof. It is required to prove that if two IT2FNs ˜̃𝐴 and ˜̃𝐵 are close, then their interval approximations are
also close which means the following condition must be satisfied:
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for every 𝜖 > 0,∃𝛿 > 0 such that 𝑑
(︁

˜̃𝐴, ˜̃𝐵
)︁

< 𝛿 =⇒ 𝑑
(︁
𝐶𝑑

(︁
˜̃𝐴
)︁
, 𝐶𝑑

(︁
˜̃𝐵
)︁)︁

< 𝜖

(it is assumed that ˜̃𝐴 and ˜̃𝐵 have same corresponding heights for LMF and UMF).

Given 𝑑
(︁

˜̃𝐴, ˜̃𝐵
)︁

< 𝛿 =⇒ 𝑑2
(︁

˜̃𝐴, ˜̃𝐵
)︁

< 𝛿2. So, we have,[︃∫︁ ℎ(𝐴𝐿)

0

(︀
𝑙𝐴𝐿

𝛼 − 𝑙𝐵𝐿
𝛼

)︀
d𝛼

]︃2

+

[︃∫︁ ℎ(𝐴𝐿)

0

(︀
𝑙𝐴𝑈

𝛼 − 𝑙𝐵𝑈
𝛼

)︀
d𝛼

]︃2

+

[︃∫︁ ℎ(𝐴𝐿)

0

(︀
𝑟𝐴𝐿

𝛼 − 𝑟𝐵𝐿
𝛼

)︀
d𝛼

]︃2

+

[︃∫︁ ℎ(𝐴𝐿)

0

(︀
𝑟𝐴𝑈

𝛼 − 𝑟𝐵𝑈
𝛼

)︀
d𝛼

]︃2

+

[︃∫︁ ℎ(𝐴𝑈)

ℎ(𝐴𝐿)

(︀
𝑙𝐴𝑈

𝛼 − 𝑙𝐵𝑈
𝛼

)︀
d𝛼

]︃2

+

[︃∫︁ ℎ(𝐴𝑈)

ℎ(𝐴𝐿)

(︀
𝑟𝐴𝑈

𝛼 − 𝑟𝐵𝑈
𝛼

)︀
d𝛼

]︃2

≤
∫︁ ℎ(𝐴𝐿)

0

(︀
𝑙𝐴𝐿

𝛼 − 𝑙𝐵𝐿
𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝐿)

0

(︀
𝑙𝐴𝑈

𝛼 − 𝑙𝐵𝑈
𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝐿)

0

(︀
𝑟𝐴𝐿

𝛼 − 𝑟𝐵𝐿
𝛼

)︀2
d𝛼

+
∫︁ ℎ(𝐴𝐿)

0

(︀
𝑟𝐴𝑈

𝛼 − 𝑟𝐵𝑈
𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝑈)

ℎ(𝐴𝐿)

(︀
𝑙𝐴𝑈

𝛼 − 𝑙𝐵𝑈
𝛼

)︀2
d𝛼 +

∫︁ ℎ(𝐴𝑈)

ℎ(𝐴𝐿)

(︀
𝑟𝐴𝑈

𝛼 − 𝑟𝐵𝑈
𝛼

)︀2
d𝛼

< 𝛿2. (3.7)

Inequality (3.7) indicates that the sum of certain square terms is less than 𝛿2 which implies that each square
term must be less than 𝛿2 i.e.,[︃∫︁ ℎ(𝐴𝐿)

0

(︀
𝑙𝐴𝐿

𝛼 − 𝑙𝐵𝐿
𝛼

)︀
d𝛼

]︃2

< 𝛿2 =⇒ −𝛿 <

∫︁ ℎ(𝐴𝐿)

0

(︀
𝑙𝐴𝐿

𝛼 − 𝑙𝐵𝐿
𝛼

)︀
d𝛼 < 𝛿 (3.8)

and the same is true for the remaining five terms also. Using (3.4) and the results obtained above, the following
can be established:

𝑑2(𝐶𝑑(𝐴), 𝐶𝑑(𝐵)) =
∫︁ 1

0

[𝐶𝐿(𝐴)− 𝐶𝐿(𝐵)]2 d𝛼 +
∫︁ 1

0

[𝐶𝑅(𝐴)− 𝐶𝑅(𝐵)]2 d𝛼

which means,

𝑑2(𝐶𝑑(𝐴), 𝐶𝑑(𝐵)) = [𝐶𝐿(𝐴)− 𝐶𝐿(𝐵)]2 + [𝐶𝑅(𝐴)− 𝐶𝑅(𝐵)]2

[since the integrands are independent of 𝛼]

<
1[︁

ℎ
(︁
𝐴𝐿
)︁

+ ℎ
(︁
𝐴𝑈
)︁]︁2 [︀𝛿2 + 2

(︀
𝛿2 + 𝛿2 + 𝛿2 + 𝛿2 + 𝛿2 + 𝛿2

)︀]︀
=

13𝛿2[︁
ℎ
(︁
𝐴𝐿
)︁

+ ℎ
(︁
𝐴𝑈
)︁]︁2

= 𝜖2 (say). (3.9)

Therefore, if ˜̃𝐴 and ˜̃𝐵 are close enough, then it is proved that their nearest interval approximations obtained
by operator 𝐶𝑑 are also close i.e., 𝐶𝑑 is a continuous interval approximation operator. This completes the
proof. �

Thus, it is evident from the results of Theorems 3.1 and 3.2 that the deduced formula (3.4) for [𝐶𝐿, 𝐶𝑅] is
indeed the nearest interval approximation of ˜̃𝐴.
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Table 1. Computational results.

Proposed operator Karnik–Mendel
𝐶𝐿 𝐶𝑅 𝑐𝑙 𝑐𝑟

3.7467 6.2533 3.5955 6.4045

Notes. 𝑐𝑙 denotes the minimum of the centroids of embedded sets, 𝑐𝑟 denotes the maximum of the centroids of embedded
sets.

3.1. Comparison with the Karnik–Mendel algorithm [36]

Symmetric Gaussian Membership Functions with uncertain deviation:

𝐴𝐿 = exp
[︂
−1

2
{4(𝑥− 5)}2

]︂
, 0 ≤ 𝑥 ≤ 10

𝐴𝑈 = exp

[︃
−1

2

{︂
4
7

(𝑥− 5)
}︂2
]︃
, 0 ≤ 𝑥 ≤ 10.

Here, ℎ
(︁
𝐴𝐿
)︁

= ℎ
(︁
𝐴𝑈
)︁

= 1. For 𝛼 ∈ [0, 1], the 𝛼-cuts of 𝐴𝐿 and 𝐴𝑈 are

[︃
5− 1

2
√

2

√︃
ln
(︂

1
𝛼

)︂
, 5 +

1
2
√

2

√︃
ln
(︂

1
𝛼

)︂]︃

and

[︃
5− 7

2
√

2

√︃
ln
(︂

1
𝛼

)︂
, 5 +

7
2
√

2

√︃
ln
(︂

1
𝛼

)︂]︃
respectively so that the nearest interval approximation of ˜̃𝐴 =(︁

𝐴𝐿, 𝐴𝑈
)︁

is computed as
𝐶𝑑 = [𝐶𝐿, 𝐶𝑅] = [3.7467, 6.2533].

The results are in good agreement with the well-known Karnik–Mendel approach as shown in Table 1. The

mean value of the interval [𝐶𝐿, 𝐶𝑅] i.e.,
𝐶𝐿 + 𝐶𝑅

2
accurately matches the center of the centroid i.e.,

𝑐𝑙 + 𝑐𝑟

2
.

4. Model formulation

This section illustrates the proposed model, thereby presenting the notations, assumptions and problem
description as follows:

4.1. Notations

Listed below are the terminologies followed throughout the paper. Some additional notations, wherever
required, will be listed accordingly in the paper.

4.2. Situation description and assumptions

This paper investigates a supply chain model for a single vendor and multiple buyers, trading over an infinite
planning horizon. Depending upon experts’ prediction on the customers’ demand pattern, buyers place their
respective orders to the vendor. The latter procures raw materials from a supplier (who is not a part of this
integrated supply chain) and manufactures the finished product which is then delivered to the buyers in multiple
shipments. The item under consideration deteriorates both at the vendor and the buyers’ warehouses with
different rates, depending upon the temperature, humidity, etc., of the concerned location.

Following are some assumptions taken for the development of the model:

(1) Integrated production inventory model for a single vendor and multiple buyers is developed.
(2) Single type of item is taken into consideration.
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Parameters

Notation Description

𝑁 Number of buyers

𝐷𝑖 Demand rate of the 𝑖th buyer (units per unit time), 𝑖 = 1, 2, . . ., 𝑁

𝑃 Production rate (units per unit time)
(︁
𝑃 >

∑︀𝑁
𝑖=1 𝐷𝑖

)︁

𝛽 Proportion of good quality items manufactured (0 < 𝛽 ≤ 1)

𝜃𝑣 Item deterioration rate per unit time at the vendor location (0 < 𝜃𝑣 < 1)

𝜃𝑖 Item deterioration rate per unit time at the 𝑖th buyer location (0 < 𝜃𝑖 < 1), 𝑖 = 1, 2, . . ., 𝑁

𝑐𝑣 Unit production cost for the vendor ($/unit)

𝑐𝑏 Unit purchase price for the buyers ($/unit)

𝐾𝑣 Production setup cost for the vendor ($/setup)

𝐾𝑏 Ordering cost for the buyers ($/order)

ℎ𝑣 Holding cost for the vendor ($/unit/unit time)

ℎ𝑏𝑖 Holding cost for the 𝑖th buyer ($/unit/unit time), 𝑖 = 1, 2, . . ., 𝑁

𝑐𝑠 Scrapping cost ($/unit)

Decision variables

Notation Description

𝑛𝑖 Number of deliveries to the 𝑖th buyer per cycle, a positive integer, 𝑖 = 1, 2, . . ., 𝑁

𝑇 Cycle length

𝑇1 Production run time in cycle 𝑇

Other terminologies

Notation Description

𝐼𝑣(𝑡) Inventory level for the vendor at time 𝑡

𝐼𝑏𝑖(𝑡) Inventory level for the 𝑖th buyer at time 𝑡, 𝑖 = 1, 2, . . ., 𝑁

𝐼𝑚𝑣 Maximum inventory level of the vendor

𝐼𝑚𝑖 Maximum inventory level of the 𝑖th buyer, 𝑖 = 1, 2, . . ., 𝑁

TC1 Total integrated inventory cost per cycle ($)

TC Total integrated inventory cost per unit time ($)

(3) Shortages are not allowed.
(4) Production rate is constant and the number of perfectly produced items is greater than the sum of the

demands of all the buyers.
(5) Machine turns faulty after multiple uses, so certain imperfections in the produced items are considered

which are instantly scrapped assuming that they are non-reworkable.
(6) Item deterioration rate varies from region to region depending upon the weather conditions.
(7) Deteriorated inventory is non-recoverable i.e., there is no replacement or repair of deteriorated items [47].
(8) Experts provide their opinion regarding the demand rates at the buyers’ locations. Based on the same,

resulting demand patterns are visualized as IT2FNs.

5. Mathematical modelling

The proposed model is schematically illustrated in Figures 1 and 2 which respectively demonstrate the
instantaneous inventory behaviours at the vendor and the buyers’ locations over a complete cycle [65]. The
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Figure 1. Inventory level for the vendor during a complete cycle.

Figure 2. Inventory level for the 𝑖th buyer during a complete cycle.

elapsed time and the instantaneous level of inventory are respectively denoted by the horizontal and vertical
axes.

The instantaneous states of the level of inventory are described in the differential equations that follow:

d𝐼𝑣1(𝑡1)
d𝑡1

= 𝛽𝑃 −
𝑁∑︁

𝑖=1

𝐷𝑖 − 𝜃𝑣𝐼𝑣1(𝑡1), 0 ≤ 𝑡1 ≤ 𝑇1, 𝐼𝑣1(0) = 0. (5.1)

d𝐼𝑣2(𝑡1)
d𝑡1

= −
𝑁∑︁

𝑖=1

𝐷𝑖 − 𝜃𝑣𝐼𝑣2(𝑡1), 𝑇1 ≤ 𝑡1 ≤ 𝑇, 𝐼𝑣2(𝑇 ) = 0. (5.2)

d𝐼𝑏𝑖(𝑡)
d𝑡

= −𝐷𝑖 − 𝜃𝑖𝐼𝑏𝑖(𝑡), 0 ≤ 𝑡 ≤ 𝑇/𝑛𝑖, 𝐼𝑏𝑖(𝑇/𝑛𝑖) = 0 (𝑖 = 1, 2, . . ., 𝑁). (5.3)

Solutions to the corresponding differential equations are obtained as

𝐼𝑣1(𝑡1) =
𝛽𝑃 −

∑︀𝑁
𝑖=1 𝐷𝑖

𝜃𝑣

(︀
1− 𝑒−𝜃𝑣𝑡1

)︀
, 0 ≤ 𝑡1 ≤ 𝑇1. (5.4)

𝐼𝑣2(𝑡1) =
∑︀𝑁

𝑖=1 𝐷𝑖

𝜃𝑣

[︁
𝑒𝜃𝑣(𝑇−𝑡1) − 1

]︁
, 𝑇1 ≤ 𝑡1 ≤ 𝑇. (5.5)

𝐼𝑏𝑖(𝑡) =
𝐷𝑖

𝜃𝑖

[︁
𝑒𝜃𝑖(𝑇/𝑛𝑖−𝑡) − 1

]︁
, 0 ≤ 𝑡 ≤ 𝑇/𝑛𝑖 (𝑖 = 1, 2, . . ., 𝑁). (5.6)
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Deterioration rates being very small quantities, their second and higher powers can be neglected for ease of
computation. Using the boundary conditions 𝐼𝑣2(𝑇1) = 𝐼𝑚𝑣 and 𝐼𝑏𝑖(0) = 𝐼𝑚𝑖 in (5.5) and (5.6) respectively and
applying the Taylor’s series expansion as used by Widyadana and Wee [61], the following relations appear to
hold:

𝐼𝑚𝑣 =
𝑁∑︁

𝑖=1

𝐷𝑖(𝑇 − 𝑇1)
[︂
1 +

𝜃𝑣

2
(𝑇 − 𝑇1)

]︂
and (5.7)

𝐼𝑚𝑖 =
𝐷𝑖𝑇

𝑛𝑖

[︂
1 +

𝜃𝑖𝑇

2𝑛𝑖

]︂
, (𝑖 = 1, 2, . . ., 𝑁). (5.8)

Following similar arguments, the continuity of inventory at 𝑇1 i.e., 𝐼𝑣1(𝑇1) = 𝐼𝑣2(𝑇1) establishes the following
relation:

𝑇 ≈ 𝑇1∑︀𝑁
𝑖=1 𝐷𝑖

[︃
𝜃𝑣

2
𝑇1

𝑁∑︁
𝑖=1

𝐷𝑖 + 𝛽𝑃

(︃
1− 𝜃𝑣

2
𝑇1

)︃]︃
(assuming 𝜃𝑣, 𝜃𝑖 ≪ 1). (5.9)

Our objective is to construct the overall integrated cost incurred by both the vendor and the buyers. Accordingly,
the cost components related to various operations are separately listed below:

Costs incurred by the vendor per cycle:

Production cost = 𝑐𝑣𝑃𝑇1.

Setup cost = 𝐾𝑣.

Scrapping cost = 𝑐𝑠(1− 𝛽)𝑃𝑇1.

Holding cost = ℎ𝑣

[︃∫︁ 𝑇𝑙

0

𝐼𝑣1(𝑡1)d𝑡1 +
∫︁ 𝑇2

𝑇1

𝐼𝑣2(𝑡1)d𝑡1 −
𝑁∑︁

𝑖=1

𝑛𝑖

∫︁ 𝑇/𝑛𝑖

0

𝐼𝑏𝑖(𝑡)d𝑡

]︃

= ℎ𝑣

[︃
𝛽𝑃 −

∑︀𝑁
𝑖=1 𝐷𝑖

𝜃𝑣

∫︁ 𝑇𝑙

0

(︀
1− 𝑒−𝜃𝑣𝑡1

)︀
d𝑡1 +

∑︀𝑁
𝑖=1 𝐷𝑖

𝜃𝑣

∫︁ 𝑇2

𝑇1

[︁
𝑒𝜃𝑣(𝑇−𝑡1) − 1

]︁
d𝑡1

−
𝑁∑︁

𝑖=1

𝑛𝑖
𝐷𝑖

𝜃𝑖

∫︁ 𝑇/𝑛𝑖

0

[︁
𝑒𝜃𝑖(𝑇/𝑛𝑖−𝑡) − 1

]︁
d𝑡

]︃
.

Deterioration cost = 𝑐𝑣

[︃
𝛽𝑃𝑇1 −

𝑁∑︁
𝑖=1

𝑛𝑖𝐼𝑚𝑖

]︃
.

Costs incurred by all the buyers per cycle:

Purchase price = 𝑐𝑏

𝑁∑︁
𝑖=1

𝑛𝑖𝐼𝑚𝑖.

Ordering cost (includes transportation cost) = 𝐾𝑏

𝑁∑︁
𝑖=1

𝑛𝑖.

Holding cost =
𝑁∑︁

𝑖=1

ℎ𝑏𝑖𝑛𝑖

∫︁ 𝑇/𝑛𝑖

0

𝐼𝑏𝑖(𝑡)d𝑡
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=
𝑁∑︁

𝑖=1

ℎ𝑏𝑖𝑛𝑖
𝐷𝑖

𝜃𝑖

∫︁ 𝑇/𝑛𝑖

0

[︁
𝑒𝜃𝑖(𝑇/𝑛𝑖−𝑡) − 1

]︁
d𝑡.

Deterioration cost = 𝑐𝑏

𝑁∑︁
𝑖=1

𝑛𝑖

(︂
𝐼𝑚𝑖 −𝐷𝑖

𝑇

𝑛𝑖

)︂
·

Summing up all the components and simplifying the same, the overall integrated inventory cost per cycle can
be obtained as a function of 𝑇1 (production run time) and 𝑛𝑖 (number of deliveries to the 𝑖th buyer) as given
below:

TC1(𝑛𝑖, 𝑇1) = 𝑐𝑣(1 + 𝛽)𝑃𝑇1 + (𝑐𝑏 − 𝑐𝑣)𝑇
𝑁∑︁

𝑖=1

𝐷𝑖

(︂
1 +

𝜃𝑖𝑇

2𝑛𝑖

)︂
+ 𝑐𝑏

𝑇 2

2

𝑁∑︁
𝑖=1

𝐷𝑖
𝜃𝑖

𝑛𝑖

+ 𝐾𝑣 + 𝐾𝑏

𝑁∑︁
𝑖=1

𝑛𝑖 + 𝑐𝑠(1− 𝛽)𝑃𝑇1 +
𝑇 2

2

𝑁∑︁
𝑖=1

(ℎ𝑏𝑖 − ℎ𝑣)
𝐷𝑖

𝑛𝑖

(︂
1 +

𝜃𝑖𝑇

3𝑛𝑖

)︂

+ ℎ𝑣
𝛽𝑃𝑇 2

1

2

(︂
1− 𝜃𝑇1

3

)︂
+ ℎ𝑣

𝑇 2

2

{︂
1 +

𝜃

3
(𝑇 − 𝑇1)

}︂ 𝑁∑︁
𝑖=1

𝐷𝑖 + ℎ𝑣
𝜃

6

× 𝑇 2
1 𝑇

𝑁∑︁
𝑖=1

𝐷𝑖 − ℎ𝑣𝑇𝑇1

(︂
1 +

𝜃

3
(𝑇 − 𝑇1)

)︂ 𝑁∑︁
𝑖=1

𝐷𝑖. (5.10)

6. Model in fuzzy environment

In this section, the mathematical model derived in Section 5 is extended to fuzzy environment by considering
buyers’ demand patterns as IT2FNs and through the application of fuzzy rule base technique to forecast the
deterioration rate. As discussed in the introduction section, deterioration rate depends upon several attributes
such as temperature, humidity and amount of rainfall of a region, so that the item depletion rates at the vendor’s
and buyers’ locations can be determined with the application of suitable fuzzy rule base scheme.

Besides, when the buyers plan to place their orders, they may not know exactly the upcoming demand
of customers. They would depend on the past experiences or data sets available regarding buyers’ ordering
behaviour. Such uncertain and vague information encourages an expert to suggest fuzzy demand with certain
grade of membership. The fuzzy opinions may vary from expert to expert so that the membership function
itself turns fuzzy. In such a situation, the resultant demand pattern is modelled as an IT2FN represented bỹ︀̃︀𝐷𝑖 (say). Similar scenario is taken into consideration in this paper. Therefore, the demand and deterioration
rates are the fuzzy parameters in the model. The procedures to compute their values from the available data
are elaborately discussed in the following two subsections.

6.1. Determination of deterioration rates

Records regarding certain attributes, namely, temperature, pressure, humidity, precipitation, etc., of a con-
cerned location are readily available, which are known to have a direct influence on the deterioration rate of the
item produced. Depending upon the weather conditions and preserving facilities at different locations as well
as the nature of the item concerned, knowledge can be gathered as to how the deterioration rate of the item
will get affected (as can be seen in the work of Liang and Zhou [33] where the same item deteriorates at a lower
rate at the rented warehouse compared to the own warehouse due to better preserving facilities at the former).
These help to formulate a set of fuzzy if-then rules that can be utilized to infer the corresponding deterioration
rates by the application of a suitable fuzzy inference scheme.

Consider a manufacturing company which transports the finished products to 𝑁 buyers located at different
places having variations in their weather conditions. The production schedule is to be made by the vendor for a
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certain period (say the coming month) when the exact deterioration rates of the product at the buyers’ locations
are not known to him/her. However, depending on the weather conditions of the respective region, the same
can be determined with the application of Mamdani fuzzy inference scheme [9]. Taking into account the extent
of deterioration of the items based on, say, 𝑚 parameters, a set of 𝑝 fuzzy if-then rules can be described as given
below:

R𝑗 : if 𝑥1 is ̃︀𝐴1𝑗 and 𝑥2 is ̃︀𝐴2𝑗 . . .𝑥𝑚 is ̃︀𝐴𝑚𝑗 then 𝜃𝑣 is ̃︀𝐶0𝑗 , 𝜃1 is ̃︀𝐶1𝑗 , . . ., 𝜃𝑁 is ̃︀𝐶𝑁𝑗 .
Input: 𝑥1 is 𝑦1 and 𝑥2 is 𝑦2 . . . 𝑥𝑚 is 𝑦𝑚

Output: 𝜃𝑘 is 𝜃𝑘𝑀

where ̃︀𝐴𝑞𝑗 and ̃︀𝐶𝑘𝑗 represent the term sets containing linguistic values for the linguistic variables 𝑥𝑞 and 𝜃𝑘

respectively for 𝑗 = 1, 2, . . ., 𝑝, 𝑞 = 1, 2, . . ., 𝑚 and 𝑘 = 0, 1, . . ., 𝑁 . The notations clearly indicate that ̃︀𝐴𝑞𝑗 and̃︀𝐶𝑘𝑗 take the form of T1FSs. The crisp output 𝜃𝑘𝑀 is calculated from the crisp input vector (𝑦1, 𝑦2, . . ., 𝑦𝑚)
with the application of Mamdani fuzzy inference scheme. In this context, Takagi-Sugeno approach is not helpful
since the consequent of each fuzzy if-then rule is also fuzzy in nature. Again, Tsukamoto’s inference scheme also
fails in this regard because the consequent fuzzy membership function is not necessarily strictly monotonic [2].
Accordingly, Mamdani approach is found most suitable for the present scenario and is therefore selected over
others. The corresponding procedure of obtaining 𝜃𝑘𝑀 from 𝑦 = (𝑦1, 𝑦2, . . ., 𝑦𝑚) is briefly outlined below:

(1) Initially, a set of fuzzy if-then rules {R1, R2, . . ., R𝑝} is determined.
(2) Fuzzification: using input membership functions, the crisp inputs 𝑦𝑞 are fuzzified, 𝑞 = 1, 2, . . ., 𝑚.
(3) Fuzzy operations: a rule strength is established by combining the fuzzified inputs according to the rules.

The formula

𝑙𝑗 = 𝑡
(︁
𝜇 ̃︀𝐴𝑗1

(𝑦1), 𝜇 ̃︀𝐴𝑗2
(𝑦2), . . ., 𝜇 ̃︀𝐴𝑗𝑚

(𝑦𝑚)
)︁
, (6.1)

determines the degree to which the input matches the 𝑗th rule R𝑗 , 𝑗 = 1, 2, . . ., 𝑝. Here 𝑡 represents product
or minimum operator.

(4) Implication: rule strength is combined with output membership function to obtain the consequence. The
output membership function gets truncated at height 𝑙𝑗 .

(5) Aggregation: an output distribution is obtained by the combination of all the consequences for all the
applicable rules using maximum operator.

(6) Defuzzification: centroid of area formula is finally applied to defuzzify the output distribution in order to
obtain the crisp output 𝜃𝑘𝑀 .

6.2. Determination of demand rates

As mentioned earlier, the demand of buyer 𝑖 is in the form of IT2FN ̃︀̃︀𝐷𝑖, 𝑖 = 1, 2, . . ., 𝑁 according to the

experts’ opinion. Therefore, for a given demand rate ̃︀̃︀𝐷𝑖, the nearest approximated interval denoted by [𝐷𝑖𝐿, 𝐷𝑖𝑅]
(𝑖 = 1, 2, . . ., 𝑁) can be computed from the formula (3.4) as derived in Section 3, where 𝐷𝑖𝐿 and 𝐷𝑖𝑅 respectively
denote the lower and upper limits of the nearest interval. Accordingly, the cycle length 𝑇 also turns into an
interval because of its dependence upon demand. Therefore, using interval arithmetic, the cycle length 𝑇 given
by (5.9) and the cost function TC1 given by (5.10) can be rewritten as

𝑇 = [𝑇𝐿, 𝑇𝑅] =

[︃
𝛽𝑃𝑇1∑︀𝑁
𝑖=1 𝐷𝑖𝑅

{︃
1− 𝜃0𝑀

2
𝑇1 +

𝜃0𝑀

2𝛽𝑃
𝑇1

𝑁∑︁
𝑖=1

𝐷𝑖𝐿

}︃
,

𝛽𝑃𝑇1∑︀𝑁
𝑖=1 𝐷𝑖𝐿

{︃
1− 𝜃0𝑀

2
𝑇1 +

𝜃0𝑀

2𝛽𝑃
𝑇1

𝑁∑︁
𝑖=1

𝐷𝑖𝑅

}︃]︃
.

(6.2)
TC1 = [TC1𝐿, TC1𝑅].
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Here, TC1𝐿 and TC1𝑅 represent the costs calculated corresponding to the demand [𝐷𝑖𝐿, 𝐷𝑖𝑅], the expressions
for which are provided below:

TC1𝐿(𝑛𝑖, 𝑇1) = 𝑐𝑣(1 + 𝛽)𝑃𝑇1 + (𝑐𝑏 − 𝑐𝑣)𝑇𝐿

𝑁∑︁
𝑖=1

𝐷𝑖𝐿

(︂
1 +

𝜃𝑖𝑀𝑇𝐿

2𝑛𝑖

)︂
+ 𝑐𝑏

𝑇 2
𝐿

2

𝑁∑︁
𝑖=1

𝐷𝑖𝐿

× 𝜃𝑖𝑀

𝑛𝑖
+ 𝐾𝑣 + 𝐾𝑏

𝑁∑︁
𝑖=1

𝑛𝑖 + 𝑐𝑠(1− 𝛽)𝑃𝑇1 +
𝑇 2

𝐿

2

𝑁∑︁
𝑖=1

(ℎ𝑏𝑖 − ℎ𝑣)
𝐷𝑖𝐿

𝑛𝑖

×
(︂

1 +
𝜃𝑖𝑀𝑇𝐿

3𝑛𝑖

)︂
+ ℎ𝑣

𝑇 2
𝐿

2

{︂
1 +

𝜃0𝑀

3
(𝑇𝐿 − 𝑇1)

}︂ 𝑁∑︁
𝑖=1

𝐷𝑖𝐿 + ℎ𝑣
𝛽𝑃𝑇 2

1

2

×
(︂

1− 𝜃0𝑀𝑇1

3

)︂
− ℎ𝑣𝑇𝑅𝑇1

{︂
1 +

𝜃0𝑀

3
(𝑇𝑅 − 𝑇1)

}︂ 𝑁∑︁
𝑖=1

𝐷𝑖𝑅 + ℎ𝑣
𝜃0𝑀

6
× 𝑇 2

1 𝑇𝐿

𝑁∑︁
𝑖=1

𝐷𝑖𝐿. (6.3)

TC1𝑅(𝑛𝑖, 𝑇1) = 𝑐𝑣(1 + 𝛽)𝑃𝑇1 + (𝑐𝑏 − 𝑐𝑣)𝑇𝑅

𝑁∑︁
𝑖=1

𝐷𝑖𝑅

(︂
1 +

𝜃𝑖𝑀𝑇𝑅

2𝑛𝑖

)︂
+ 𝑐𝑏

𝑇 2
𝑅

2

𝑁∑︁
𝑖=1

𝐷𝑖𝑅

× 𝜃𝑖𝑀

𝑛𝑖
+ 𝐾𝑣 + 𝐾𝑏

𝑁∑︁
𝑖=1

𝑛𝑖 + 𝑐𝑠(1− 𝛽)𝑃𝑇1 +
𝑇 2

𝑅

2

𝑁∑︁
𝑖=1

(ℎ𝑏𝑖 − ℎ𝑣)
𝐷𝑖𝑅

𝑛𝑖

×
(︂

1 +
𝜃𝑖𝑀𝑇𝑅

3𝑛𝑖

)︂
+ ℎ𝑣

𝑇 2
𝑅

2

{︂
1 +

𝜃0𝑀

3
(𝑇𝑅 − 𝑇1)

}︂ 𝑁∑︁
𝑖=1

𝐷𝑖𝑅 + ℎ𝑣
𝛽𝑃𝑇 2

1

2

×
(︂

1− 𝜃0𝑀𝑇1

3

)︂
− ℎ𝑣𝑇𝐿𝑇1

{︂
1 +

𝜃0𝑀

3
(𝑇𝐿 − 𝑇1)

}︂ 𝑁∑︁
𝑖=1

𝐷𝑖𝐿 + ℎ𝑣
𝜃0𝑀

6
× 𝑇 2

1 𝑇𝑅

𝑁∑︁
𝑖=1

𝐷𝑖𝑅. (6.4)

Therefore, overall integrated cost per unit time can be determined using basic interval arithmetic operations
[53] as follows:

TC =[TC𝐿, TC𝑅] =
[TC1𝐿, TC1𝑅]

[𝑇𝐿, 𝑇𝑅]
=
[︂

TC1𝐿

𝑇𝑅
,

TC1𝑅

𝑇𝐿

]︂
· (6.5)

Our objective is to minimize it and determine the optimal policy to be followed corresponding to the minimum
cost.

6.3. Solution procedure

For the minimization problem, certain assumptions are taken into account which are summarized below [52]:

(1) Low cost is better than high cost.
(2) More certainty is better than less certainty.
(3) If less cost is associated with more uncertainty, a Decision Maker (DM) makes a trade-off between the two.
(4) To a pessimistic (optimistic) DM, assumption 2 (1) is somewhat more important than assumption 1 (2).

Now the basic problem reduces to the minimization of an interval objective function given by (6.5). Based
upon the formulation of a general non-linear optimization problem with interval valued parameters [52], the
model is transformed using linear weighted sum method to develop a composite goal, thereby defining the
composite objective function as provided below:⎧⎪⎨⎪⎩

Minimize 𝑍 = {𝜆TC𝑚 + (1− 𝜆)TC𝑤}
subject to 𝑛𝑖 > 0, discrete variables,

𝑇1 > 0, a continuous variable,
𝜆 ∈ [0, 1]

(6.6)
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where, TC𝑚 = 𝑚(TC) =
1
2

[TC𝐿 + TC𝑅] (mid-value of the interval objective function) and TC𝑤 = 𝑤(TC) =
1
2

[TC𝑅 − TC𝐿] (half-width of the interval objective function). The factor 𝜆 defines the DMs pessimistic or
optimistic bias. The DM is more inclined towards optimism for a value of 𝜆 closer to unity whereas the DMs
pessimistic bias is reflected by smaller values of 𝜆 closer to zero. Therefore, a Pareto front is obtained which
indicates a set of feasible solutions for the corresponding problem.

It is to be mentioned here that in absence of any uncertainty in the parameters i.e., if a constant demand
rate 𝐷𝑖 is considered for the 𝑖th buyer with a fixed deterioration rate 𝜃 at all locations, then the results would
have been reduced to the following:

TC(𝑛𝑖, 𝑇1) =
TC1(𝑛𝑖, 𝑇1)

𝑇
(6.7)

where, 𝑇 and TC1(𝑛𝑖, 𝑇1) are as expressed in (5.9) and (5.10). These are in good agreement with the results
described in [65] (assuming 𝛽 = 1).

We will illustrate the theoretical results with the help of a numerical example in the next section.

7. Numerical illustration

In this section, we present a numerical example to demonstrate the model. The data set is hypothetically
generated as per requirement. Consider the production of a volatile liquid by a manufacturing company which
transports the finished products to 2 buyers located at different places having different weather conditions.
The physical depletion of the liquid by evaporation can be regarded as deterioration in this case. The different
parameter values are summarized below:
𝑁 = 2, 𝑃 = 65 000 gallons/month, 𝛽 = 0.98, 𝑐𝑣 = $8/gallon, 𝑐𝑏 = $10/gallon, 𝐾𝑣 = $2000/production setup,
𝐾𝑏 = $100/order, ℎ𝑣 = $1.5/gallon/month, ℎ𝑏1 = $2/gallon/month, ℎ𝑏2 = $2.4/gallon/month, 𝑐𝑠 = $3/gallon.

Approximate temperature and humidity at the vendor location for the coming month = 36∘ and 51%,
approximate temperature and humidity at buyer 1 location for the coming month = 24∘ and 86%, approximate
temperature and humidity at buyer 2 location for the coming month = 46∘ and 12%.

Every linguistic variable is interpreted with the help of a term set {very low, low, medium, high, very high}
where each term is characterized by a triangular fuzzy number. Rules are constructed according to the fact that
the rate of deterioration in the present scenario is high under high temperature and low humidity.

Tables 2–4 display each linguistic term with its corresponding scale which is represented by a triangular fuzzy
number. The L-R representation of every fuzzy number is expressed in the tables.

The rate of evaporation is found to increase with rise in temperature and fall in humidity (see https:
//serc.carleton.edu/196548). Based on the aforementioned facts, Table 5 presents a complete list of fuzzy
if-then rules which shows how the deterioration rate 𝜃 (𝜃 represents any one of 𝜃𝑘 for 𝑘 = 0, 1, 2) varies according
to the variations in the two stated factors. The temperature and humidity values at the 𝑖th buyer location act
as input vector for the fuzzy rule base system given by {𝑦1𝑖, 𝑦2𝑖} for 𝑖 = 1, 2, . . ., 3.

Table 2. Term set of 𝑥1 (Temperature).

Term Fuzzy number

Very Low (VL) (0; 0, 12.5)
Low (L) (12.5; 12.5, 12.5)
Medium (M) (25; 12.5, 12.5)
High (H) (37.5; 12.5, 12.5)
Very High (VH) (50; 12.5, 0)

https://serc.carleton.edu/196548
https://serc.carleton.edu/196548
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Table 3. Term set of 𝑥2 (Humidity).

Term Fuzzy number

Very Low (VL) (0; 0, 25)
Low (L) (25; 25, 25)
Medium (M) (50; 25, 25)
High (H) (75; 25, 25)
Very High (VH) (100; 25, 0)

Table 4. Term set of 𝜃 (Deterioration rate).

Term Fuzzy number

Very Low (VL) (0; 0, 0.025)
Low (L) (0.025; 0.025, 0.025)
Medium (M) (0.05; 0.025, 0.025)
High (H) (0.075; 0.025, 0.025)
Very High (VH) (0.1; 0.025, 0)

Table 5. Fuzzy if-then rules for 𝑥1, 𝑥2 and 𝜃.

if 𝑥1 and 𝑥2 then 𝜃 if 𝑥1 and 𝑥2 then 𝜃

R1 VH VH M R14 M L M
R2 VH H H R15 M VL H
R3 VH M H R16 L VH VL
R4 VH L VH R17 L H L
R5 VH VL VH R18 L M L
R6 H VH M R19 L L M
R7 H H M R20 L VL M
R8 H M H R21 VL VH VL
R9 H L H R22 VL H VL
R10 H VL VH R23 VL M L
R11 M VH L R24 VL L L
R12 M H L R25 VL VL M
R13 M M M

Given a set of inputs for the temperature and humidity of a region, Mamdani inference procedure, based upon
the defined fuzzy if-then rules, can be implemented to obtain the desired rate of deterioration. Considering the
vendor location, following are the rules contributing to the scheme for the input vector {𝑦11, 𝑦21} = {36∘, 51%}:

R7: if 𝑥1 is high and 𝑥2 is high then 𝜃 is medium
R8: if 𝑥1 is high and 𝑥2 is medium then 𝜃 is high
R12: if 𝑥1 is medium and 𝑥2 is high then 𝜃 is low
R13: if 𝑥1 is medium and 𝑥2 is medium then 𝜃 is medium.
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Figure 3. Mamdani Fuzzy Inference System for the first set of inputs (temperature = 36∘ and
humidity = 51%).

Mamdani fuzzy inference scheme is graphically represented in Figure 3. With the application of centroid of
area formula, the crisp output (rate of deterioration) is obtained as

𝜃𝑘𝑀 =
∫︀

𝜃𝜇𝜃 d𝜃∫︀
𝜇𝜃 d𝜃

(𝑘 = 0, 1, 2). (7.1)

Here, 𝜇𝜃 represents the membership function of 𝜃 and the integration is taken over the entire shaded region
of output distribution as shown in Figure 3. The defuzzified output corresponding to the first set of inputs is
therefore computed as:

𝜃0𝑀 =

(︃∫︁ 0.001

0

𝜃

0.025
𝜃 d𝜃 +

∫︁ 0.026

0.001

0.04𝜃 d𝜃 +
∫︁ 0.028

0.026

𝜃 − 0.025
0.025

𝜃 d𝜃 +
∫︁ 0.053

0.028

0.12𝜃 d𝜃
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+
∫︁ 0.072

0.053

𝜃 − 0.05
0.025

𝜃 d𝜃 +
∫︁ 0.078

0.072

0.88𝜃 d𝜃 +
∫︁ 0.1

0.078

0.1− 𝜃

0.025
𝜃 d𝜃

)︃⧸︃ (︃∫︁ 0.001

0

𝜃

0.025
d𝜃

+
∫︁ 0.026

0.001

0.04 d𝜃 +
∫︁ 0.028

0.026

𝜃 − 0.025
0.025

d𝜃 +
∫︁ 0.053

0.028

0.12 d𝜃 +
∫︁ 0.072

0.053

𝜃 − 0.05
0.025

d𝜃

+
∫︁ 0.078

0.072

0.88 d𝜃 +
∫︁ 0.1

0.078

0.1− 𝜃

0.025
d𝜃

)︃
= 0.069. (7.2)

[Integration is carried out using the formula given by (7.1) for smaller sections of the shaded output distribution,
which are then summed up.]

Similarly, the rules which contribute for the second set of inputs {𝑦12, 𝑦22} = {24∘, 86%} related to buyer 1
are listed below:

R11: if 𝑥1 is medium and 𝑥2 is very high then 𝜃 is low
R12: if 𝑥1 is medium and 𝑥2 is high then 𝜃 is low
R16: if 𝑥1 is low and 𝑥2 is very high then 𝜃 is very low
R17: if 𝑥1 is low and 𝑥2 is high then 𝜃 is low

and those for the third set of inputs {𝑦13, 𝑦23} = {46∘, 12%} are:

R4: if 𝑥1 is very high and 𝑥2 is low then 𝜃 is very high
R5: if 𝑥1 is very high and 𝑥2 is very low then 𝜃 is very high
R9: if 𝑥1 is high and 𝑥2 is low then 𝜃 is high
R10: if 𝑥1 is high and 𝑥2 is very low then 𝜃 is very high.

Following similar procedure as in (7.2), the corresponding crisp outputs for the second and third cases are
obtained as 𝜃1𝑀 = 0.025 and 𝜃2𝑀 = 0.079. So, the product deteriorates at the rates of 𝜃0𝑀 = 0.069, 𝜃1𝑀 = 0.025
and 𝜃2𝑀 = 0.079 at the vendor, buyer 1 and buyer 2 locations respectively.

After observing the previous demand records and experts’ opinions, demand for buyer 1 is modelled as an

IT2FN ̃︀̃︀𝐷1 with UMF1 and LMF1 given by Type 1 Gaussian Fuzzy Numbers as presented below:

UMF1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑒
−

1
2

(︃
𝑥− 14 500

155

)︃2

, 14 000 ≤ 𝑥 ≤ 14 500

𝑒
−

1
2

(︃
𝑥− 14 500

90

)︃2

, 14 500 ≤ 𝑥 ≤ 14 800
0, otherwise.

LMF1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.8𝑒

−
1
2

(︃
𝑥− 14 470

80

)︃2

, 14 200 ≤ 𝑥 ≤ 14 470

0.8𝑒
−

1
2

(︃
𝑥− 14 470

60

)︃2

, 14 470 ≤ 𝑥 ≤ 14 700
0, otherwise.
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Figure 4. Demand pattern ̃︀̃︀𝐷1 for buyer 1.

Similarly, the demand pattern for buyer 2 is modelled as an IT2FN ̃︀̃︀𝐷2 with UMF2 and LMF2 given by

UMF2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑒
−

1
2

(︃
𝑥− 19 740

100

)︃2

, 19 400 ≤ 𝑥 ≤ 19 740

𝑒
−

1
2

(︃
𝑥− 19 740

170

)︃2

, 19 740 ≤ 𝑥 ≤ 20 300
0, otherwise.

LMF2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.65𝑒

−
1
2

(︃
𝑥− 19 810

90

)︃2

, 19 500 ≤ 𝑥 ≤ 19 810

0.65𝑒
−

1
2

(︃
𝑥− 19 810

70

)︃2

, 19 810 ≤ 𝑥 ≤ 20 050
0, otherwise.

Figures 4 and 5 pictorially represent the demand patterns for buyers 1 and 2 respectively.
For 𝛼 ∈ [0, 1], the 𝛼-cut of UMF1 is[︃

14 500− 155

√︂
2 ln

1
𝛼

, 14 500 + 90

√︂
2 ln

1
𝛼

]︃
and that of LMF1 is [︃

14 470− 80

√︂
2 ln

0.8
𝛼

, 14 470 + 60

√︂
2 ln

0.8
𝛼

]︃
·

Therefore, 𝐷1𝐿 = 14 334.18 and 𝐷1𝑅 = 14 582.75 which suggest that the nearest interval approximation is
[14 334.18, 14 582.75].
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Figure 5. Demand pattern ̃︀̃︀𝐷2 for buyer 2.

Likewise, the 𝛼-cut of UMF2 is[︃
19 740− 100

√︂
2 ln

1
𝛼

, 19 740 + 170

√︂
2 ln

1
𝛼

]︃

and that of LMF2 is [︃
19 810− 90

√︂
2 ln

0.65
𝛼

, 19 810 + 70

√︂
2 ln

0.65
𝛼

]︃
·

The nearest interval approximation is therefore computed for buyer 2 and is expressed as [𝐷2𝐿, 𝐷2𝑅] =
[19 647.18, 19 931.27]. Thus the interval valued demand for both the buyers are given by

[𝐷1𝐿, 𝐷1𝑅] = [14 334.18, 14 582.75]
and [𝐷2𝐿, 𝐷2𝑅] = [19 647.18, 19 931.27].

Based on the discussions made in Section 6.2, the reduced optimization problem expressed by (6.6) needs to
be solved subject to 2 discrete variables 𝑛1, 𝑛2 and a continuous variable 𝑇1, where the value of 𝜆 ∈ [0, 1]
represents the DMs pessimistic and optimistic attitude. Both TC𝑚 and TC𝑤 are observed to undergo changes
with alterations in the value of the weighting coefficient 𝜆. Such variations are demonstrated through plots
presented in Figure 6.

Within the range [0, 1] for 𝜆, a set of optimal solutions is obtained in the form of a Pareto front. The Pareto
optimal solutions for the formulated problem are marked with a continuous blue curve in Figure 7.

For an elaborate discussion, we select a particular solution from the Pareto front corresponding to 𝜆 = 0.8
i.e., when the DM wishes to give more importance to the minimization of the mid-value of the interval objective
function compared to the half-width.
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Figure 6. Variations in TC𝑚 and TC𝑤 with 𝜆.

Figure 7. Pareto optimal front.
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Table 6. Optimal solution for 𝜆 = 0.8.

Min 𝑍 𝑛1 𝑛2 𝑇1 𝑇 TC𝑚 TC𝑤 TC

513 259.61 3 5 0.1898 [0.349, 0.355] 639 956 6473.46 [633 483, 646 430]

The optimal values 𝑛*1 and 𝑛*2 for the single objective optimization problem corresponding to 𝜆 = 0.8 are
derived when the following is satisfied:

𝑍(𝑛*1 − 1, 𝑛*2 − 1, 𝑇1) ≥ 𝑍(𝑛*1, 𝑛
*
2, 𝑇1) ≤ 𝑍(𝑛*1 + 1, 𝑛*2 + 1, 𝑇1)

where, 𝑍 = 0.8TC𝑚 + 0.2TC𝑤.
The result presented in Table 6 shows that the solution to the proposed optimization problem corresponding

to 𝜆 = 0.8 is TC = [TC𝐿, TC𝑅] = [633 483, 646 430] with (𝑛1, 𝑛2, 𝑇1) = (3, 5, 0.1898).
Convexity of the functions TC𝑚 and TC𝑤 is investigated by computing the leading principal minors (LPM)

of the Hessian matrices 𝐻𝑚 and 𝐻𝑤 respectively at the point (3, 5, 0.1898). All of these calculations are carried
out in MATLAB R2019a and the obtained results are as follows:

First LPM of 𝐻𝑚 = 151.13 > 0,
Second LPM of 𝐻𝑚 = 15 611.3 > 0,
Third LPM of 𝐻𝑚 = 4.89× 109 > 0 and similarly,

First LPM of 𝐻𝑤 = 4.84 > 0,
Second LPM of 𝐻𝑤 = 15.29 > 0,
Third LPM of 𝐻𝑤 = 33 463.7 > 0.

This proves the positive definiteness of the Hessian matrices which indicates that the functions TC𝑚 and
TC𝑤, for the adopted set of numerical data, are convex at the point (𝑛1, 𝑛2, 𝑇1) = (3, 5, 0.1898).

However, if the changes in the deterioration rate of the item due to changes in the weather conditions are
ignored, that is if 𝜃𝑣 = 𝜃1 = 𝜃2 = 0.069 with all the other parameter values being kept unchanged, the resultant
total cost is computed as [TC𝐿, TC𝑅] = [633 851, 646 784]. This suggests that if the vendor assumes the item
to deteriorate at the same rate in any other region as it does at his location, then the cost incurred per unit
time is found to be comparatively high. In the next section, we conduct the sensitivity analysis by changing the
values of input parameters of the numerical example for providing better insights into decision making.

8. Sensitivity analysis and managerial implication

In a decision-making environment, due to uncertainties related to dynamic market conditions, variations
inevitably occur in some parameter values. Sensitivity analysis in this regard is of immense help to encounter
the impact of such changes in the values of the concerned parameters. Same is carried out in this section by
deviating the value of each parameter from −20% to +20%, and the corresponding impact on the decision
variables 𝑛1, 𝑛2, 𝑇1 and cost function TC(𝑛1, 𝑛2, 𝑇1) is taken into account. A single parameter value is changed
at a time, when all the others are kept fixed and the resultant solution is computed. The outcomes of the
conducted sensitivity analysis are presented in Figure 8 and the corresponding observations are summarized
accordingly.

With an increase in the production rate 𝑃 , the optimal production time tends to decrease. This brings
reduction in the production lot per cycle as well, so that the quantities delivered to the buyers 𝐼𝑚1 and 𝐼𝑚2

tend to decrease, provided the optimal number of shipments 𝑛1 and 𝑛2 remain unchanged. For a 20% increment
in 𝑃 , the reduction in optimal 𝑛1 and 𝑛2 explains the respective rise in 𝐼𝑚1 and 𝐼𝑚2. Decrease in the cycle time
increases the total integrated cost per unit time.
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Figure 8. Variations in TC with changes in parameter values.

If the demand rate 𝐷1 rises while all the other factors remain the same, the quantity delivered to the first
buyer 𝐼𝑚1 is found to increase accordingly in order to satisfy the increased demand. Similarly, 𝐷2 has a direct
effect on 𝐼𝑚2.

Further analysis shows that an increase in the unit production cost 𝑐𝑣 reduces the maximum inventory of the
vendor in order to mitigate the deterioration and holding cost pressure. Likewise, it is evident that an increment
in the purchase price 𝑐𝑏 results in a lower shipment size for the buyers as no discounts are offered from the
vendor for procuring a larger lot.

When the production setup cost 𝐾𝑣 is increased, it is observed that the optimal production run time 𝑇1

increases accordingly thereby increasing the maximum inventory level 𝐼𝑚𝑣 of the vendor. Greater cycle length
𝑇 reduces the setup cost per unit time. Likewise, with an increase in the ordering cost 𝐾𝑏 for the buyers, the
delivery quantities 𝐼𝑚1 and 𝐼𝑚2 tend to increase.

The holding costs of the item for both the vendor and the buyers are found to have an inverse effect on each
of 𝐼𝑚𝑣, 𝐼𝑚1 and 𝐼𝑚2 so as to counteract other cost components.

Variations in the scrapping cost 𝑐𝑠 hardly bring any change in the production run time 𝑇1 or any of the other
factors. Only its increment tends to increase the total cost.

Some of the parameters such as 𝛽, 𝜃𝑣, 𝜃1, 𝜃2 and 𝜆 can only assume values restricted within the closed
interval [0, 1]. Therefore, instead of changing by percentage, a separate analysis is carried out by keeping their
values within the permissible range as illustrated in Table 7. The percentage of increase index (PII) is defined

as
TC− TC*

TC*
× 100% where TC* denotes the solution corresponding to 𝜆 = 0.8.

When there is an increase in the value of the proportion 𝛽, a larger fraction of the produced items is obtained
as good quality. The maximum inventory level 𝐼𝑚𝑣 for the vendor tends to increase in a shorter production time.
Slight changes are noticed due to variations in the values of the deterioration rates. The total cost is observed
to increase with higher deterioration rates.

It is evident from the tabulated results that variation in the value of 𝜆 from 0 to 1 accordingly reflects the
change from DM’s pessimistic to optimistic bias. It is clearly delineated from the graphs plotted in Figure 6
that the minimum values of TC𝑚 and TC𝑤 are respectively attained at 𝜆 = 1 and 𝜆 = 0. Therefore, assigning
a smaller value to 𝜆 close to zero indicates that the DM wants to put more importance on the minimization of
the half-width compared to the mid-value, thereby reflecting his/her pessimistic bias. In a similar manner, more
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Table 7. Sensitivity analysis of parameters 𝛽, 𝜃𝑣, 𝜃1, 𝜃2, 𝜆.

𝛽 0.9 0.95 0.98 0.99 1.0

𝑛1 3 3 3 3 3
𝑛2 5 5 5 5 5
𝑇1 0.212 0.197 0.189 0.187 0.185
𝑇 [0.358, 0.363] [0.352, 0.358] [0.349, 0.355] [0.348, 0.354] [0.348, 0.353]
TC [666 980, 680 511] [645 389, 658 542] [633 483, 646 430] [629 673, 642 554] [625 939, 638 756]
PII [+5.288, +5.272] [+1.879, +1.874] [0, 0] [−0.601,−0.600] [−1.191,−1.187]
𝜃𝑣 0.06 0.065 0.069 0.075 0.08
𝑛1 3 3 3 3 3
𝑛2 5 5 5 5 5
𝑇1 0.192 0.191 0.189 0.188 0.187
𝑇 [0.354, 0.360] [0.351, 0.357] [0.349, 0.355] [0.346, 0.351] [0.343, 0.349]
TC [633 257, 646 207] [633 383, 646 331] [633 483, 646 430] [633 631, 646 577] [633 754, 646 698]
PII [−0.036,−0.034] [−0.016,−0.015] [0, 0] [+0.023, +0.023] [+0.043, +0.041]
𝜃1 0.015 0.02 0.025 0.03 0.035
𝑛1 2 3 3 3 3
𝑛2 5 5 5 5 5
𝑇1 0.184 0.190 0.189 0.189 0.189
𝑇 [0.340, 0.344] [0.350, 0.356] [0.349, 0.355] [0.348, 0.354] [0.347, 0.352]
TC [633 391, 646 319] [633 432, 646 378] [633 483, 646 430] [633 534, 646 481] [633 585, 646 532]
PII [−0.015,−0.017] [−0.008,−0.008] [0, 0] [+0.008, +0.008] [+0.016, +0.016]
𝜃2 0.07 0.075 0.079 0.085 0.09

𝑛1 3 3 3 3 3
𝑛2 5 5 5 5 5
𝑇1 0.191 0.190 0.189 0.189 0.189
𝑇 [0.351, 0.356] [0.350, 0.355] [0.349, 0.355] [0.348, 0.354] [0.347, 0.353]
TC [633 407, 646 353] [633 449, 646 396] [633 483, 646 430] [633 533, 646 480] [633 575, 646 522]
PII [−0.012,−0.012] [−0.005,−0.005] [0, 0] [+0.008, +0.008] [+0.015, +0.014]
𝜆 0 0.2 0.5 0.8 1
𝑛1 2 2 3 3 3
𝑛2 3 4 5 5 5
𝑇1 0.061 0.161 0.186 0.189 0.191
𝑇 [0.113, 0.115] [0.296, 0.301] [0.342, 0.348] [0.349, 0.355] [0.352, 0.357]
TC [642 773, 655 294] [633 658, 646 502] [633 496, 646 426] [633 483, 646 430] [633 479, 646 432]
PII [+1.466, +1.371] [+0.028, +0.011] [+0.002,−0.001] [0, 0] [−0.001, +0.0003]

emphasis is put on the minimization of TC𝑚 when the DM chooses a value of 𝜆 closer to unity. It is observed
from both the plots that the minimal value of TC𝑚 leads to quite a high value for TC𝑤 and vice versa, so that
the DM has to make a trade-off between the two depending upon his priorities.

TC is observed to be more sensitive to the parameters 𝐷1, 𝐷2, 𝑐𝑣 and 𝑐𝑏. In other words, even a slight change
in the values of these parameters tends to affect the cost of the system. TC is found to be much less sensitive
to variations in the values of the rest of the parameters involved. This can also be clearly visualized from the
sensitivity graph presented in Figure 8 where all plots are obtained by reducing the interval costs to their mean
values.

8.1. Managerial implications

This study aims at developing a novel method of defuzzification of IT2FNs, thereby incorporating the same in
our proposed supply chain production model. As already discussed in Section 3, the proposed methodology will
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be more convenient (both in terms of computational time and accuracy) compared to the existing techniques.
Accordingly, our study is supposed to be highly beneficial for researchers dealing with IT2FNs in their studies.
Besides, modeling customer demand rate in the form of an interval type-2 fuzzy number will allow authors to
visualize and model such crucial inventory parameters in several novel patterns.

Moreover, keeping in mind one of the major difficulties that is being faced by the decision makers, the novel
approach presented in this study manages to more accurately predict the deterioration rate for a certain item.
Specifically for items facing variations in their rates of depletion due to fluctuations in weather parameters,
the proposed strategy will be far beneficial to the firms in forecasting the deterioration rate compared to the
existing ones.

9. Concluding remarks

The novelty of this study lies in two aspects: firstly, it takes into account a situation in which the rate of
deterioration of the item is dependent upon certain attributes such as temperature and humidity of the region.
Based on the forecasted values of these parameters, it is possible to determine the exact values of deterioration
rates employing fuzzy rule base technique. As it is unrealistic to assume a constant rate of deterioration of
a product in every environmental condition, the scenario presented in this paper serves better to encounter
more practical situations. The outcomes reveal that ignoring the influence of temperature and humidity on item
deterioration results in an increased cost per unit time as compared to the situation when the effect of weather
is taken into account. Secondly, an interval approximation method is developed for the defuzzification of IT2FN,
and the same is implemented in the proposed model. The suggested methodology is more convenient than the
existing ones as it converts an IT2FN to a crisp interval instead of a single crisp quantity and that also without
any intermediate type reduction phase. Application of the same is brought off by considering imprecise demand
patterns in the form of IT2FNs.

Imperfections in the produced items have been considered in the model without any rework process for the
same, they are scrapped assuming non-reworkable. So, remodelling it including rework setup can be considered
as a future scope for researchers [61, 67]. The approach taken in this work can also be further extended to
include even more complicated scenarios. Introducing probabilistic theory while considering fuzzy rule base in
deterioration or assuming demand parameter as generalized type-2 fuzzy number instead of IT2FN may be
included among few ideas for future research. In the current scenario, one of the major concerns of the firms is
to reduce carbon emissions generated through various operations. Based on some recent findings by Chen et al.
[8], Hovelaque and Bironneau [24] and Rout et al. [46], carbon emission constraints can also be imposed into
the proposed model.
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