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OPTIMIZATION OF PRODUCT LINE CONSIDERING COMPATIBILITY AND
RELIABILITY VIA DISCRETE IMPERIALIST COMPETITIVE ALGORITHM

CHUNFENG L1U'®, X1A0 YANG!® AND JUFENG WANG2*

Abstract. In the era of mass customization, designing optimal products is one of the most critical
decision-making for a company to stay competitive. More and more customers like customized prod-
ucts, which will bring challenges to the product line design and the production. If a company adopts
customers’ favorite levels, this may lead to lower product reliability, or incompatibility among the com-
ponents that make up the product. Moreover, it is worth outsourcing certain attribute levels to reduce
production cost, but customers may dislike these levels because of their delivery delay. If managers con-
sider the compatibility issue, the quality issue, outsource determination, and the delivery due date in
the product design and production stages, they will avoid unreasonable product configuration and many
unnecessary expenses, thereby bringing benefits to the company. To solve this complicated problem, we
establish a nonlinear program that maximizes Per-capita-contribution Margin considering Reliability
Penalty. Since the integrated product line design and production problem is NP-hard, we propose an
improved Discrete Imperialist Competitive Algorithm (DICA). The proposed DICA is compared with
genetic algorithm (GA) and simulated annealing (SA) through extensive numerical experiment, and
the results show that DICA displays 6%~17% and 5%~14% improvement over GA and SA in terms
of solution quality, respectively.
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1. INTRODUCTION

Nowadays, the economic environment in which firms operate is more competitive than ever. The diversification
of customers’ demand is a significant characteristic of the market, and many manufacturing industries have paid
great attention to this phenomenon. The diversified and personalized demand drives enterprises to use a few
competitive strategies and computational intelligence for smart manufacturing, such as mass customization
(MCQC) [41,44], to increase their benefits and customers’ satisfaction.

The MC concept has emerged as a major manufacturing strategy. It focuses on changes in demand and
technology [12]. Vinodh et al. [55] suggested that a focus on customer’s requirement is the universal feature of MC
and manufacturing agility. In the process of mass customization, the paradigm of market-based product design
explores the integration of quantitative customer preference data and product design optimization problems.
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Tsafarakis et al. [51] pointed out that product design is a complex and not well formalized discipline, which
combines the fields of marketing and engineering.

To meet the needs of different customers, a company must continuously introduce new products or redesign
existing ones. However, such procedures are risky and expensive to implement. To minimize the associated
risks, managers assess the potential success of a new product concept at an early design stage. For example,
Abedi [1] designed a model that helps managers make decisions early in the product life. These optimal product
(line) design problems have constituted a wide area of research in quantitative marketing [51]. A product line
is defined as a set of product variants (products for short) offered by a single company with similar structures
and functions but with different configurations. The product line needs to be optimized under several specific
goals, such as market share and profit. Each product is represented as a set of attributes with several specific
levels. A wardrobe for example, consists of the attributes of board, color, and hardware accessory, which take
the levels of solid wood particle board or ecological board, pure color or combination color, and metal, alloy or
stainless steel, respectively. Customers can choose the levels of attributes according to their preferences.

The large number of attributes and levels increases the number of product configurations. It complicates
the selection of an appropriate product design configuration. For example, a company plans to introduce three
kinds of new wardrobe models. If each wardrobe consists of seven attributes, each taking six different levels,
the number of possible wardrobe profiles is 67 (i.e., 279936). For designing a line of three kinds of wardrobes,
the number of candidates is 2799363 (i.e., 2.2 x 10'6). At the same time, there are compatibility issues among
the levels of attributes. For example, when designing a customized wardrobe, the opening method of the cabinet
door should be compatible with its shape. Obviously, sliding door is not compatible with curved surface but flat
one. After the product is designed according to customers’ needs, it enters the production stage. The production
process must meet the requirements of product reliability and delivery time.

The inter-relationship between product design and production process also leads to high complexity. The
design of product line should balance customer preferences and production decision. A selection for a preferred
level may lead to lower product reliability, or incompatibility among the components that make up the product.
On the other hand, managers are willing to outsource certain attribute level in order to reduce production cost.
However, the outsourcing vendor may be far away from the company and cannot deliver the products in time;
or the outsourcing vendor may have too many other urgent orders and cannot process the products in time;
or although the company agrees on the delivery date with the outsourcing vendor, the delivery needs cannot
be met by the customers due to relatively long waiting time. Consequently, customers may not prefer this level
due to its delivery delay.

This paper constructs a nonlinear model around two intertwined issues of product design and production
process. The objective is to maximize Per-capita-contribution Margin (PM) considering Reliability Penalty
(PMRP), which implies the profit achieved from per customer. The imperialist competitive algorithm (ICA)
has been applied to optimization problems such as Flexible Job shop Scheduling Problem (FJSP) [16], Traveling
Salesman Problem (TSP) [7], and two-sided assembly lines [65]. However, the classical ICA is generally used
for continuous problems, because the movement distance of a colony toward its imperialist is a random variable
with uniform distribution in movement strategy. Discretizing the classical ICA is a necessity for solving discrete
problems. We propose a discrete ICA (DICA) to assist managers in designing attributes’ levels and making
outsourcing strategy.

The remainder of this paper is organized as follows. Section 2 introduces the related literature of product
line design optimization. Section 3 describes the integrated model of product line design optimization. Sec-
tions 4 and 5 introduce DICA, genetic algorithm (GA) and simulated annealing (SA) methods for the proposed
model. In Section 6, DICA is compared with GA and SA through extensive numerical experiments. Section 7
concludes this paper with further study direction.
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2. LITERATURE REVIEW

In this section, we present related literature review of studies about mass customization, product line design
problems, and intelligent optimization algorithms.

2.1. Mass customization

Since the late 1980s, the analysis and implementation of mass customization (MC) systems have received
considerable attention from researchers and practitioners [12]. Mass customization provides customized products
or services in high volume at reasonable low cost through flexible processes. As demand for an individual product
and its variant increases, mass personalized customization becomes imperative [38-40, 56, 64].

Many researchers analyzed MC from different aspects such as organizational reform, influent factors, cus-
tomized capabilities, and product design method. Rungtusanatham and Salvador [44] studied organizational
changes related to the transition from mass production to mass customization. Fogliatto et al. [12] believed that
the main factors that determined the success of MC were customer demand, markets, value chain, technology, as
well as customizable offer and knowledge. They identified several promising areas for future research, including
rapid manufacturing, MC value, quality control, warranty, and empirical validation. Simon et al. [48] pointed
out that MC required three basic capabilities: Distinguishing the product attributes that vary among customers;
reusing or reorganizing existing production line resources; and helping customers recognize or create solutions
to their own demands. As one of the main strategies to satisfy customers and ensure the company’s survival in
today’s market, MC cannot be ignored [8]. In the process of mass customization, market-based product design
connects the marketing and engineering domains, bringing profits to the company while meeting the needs of
different customers.

2.2. Product line design problems

Product line design is an important part of mass customization. Its definition has been expanded with the
development of related theories. Draganska and Jain [10] believed that product line was a product collection
with the same core content and closely related products. The products in a product line have similar functions
and can meet similar but slightly different customer needs. In order to meet the personalized orders, companies
must continuously introduce new products or redesign existing ones. However, product configuration conflicts
cause enormous problems, such as ineffective product design and unnecessary expenses, in the product or service
design [4].

Many studies have proven that optimizing the product line at the product design stage can benefit both
enterprises and customers. For example, Modrak and Soltysova [39] believed that the incompatibility of product
components when customers customized products cause customer disappointment. A promising solution is to
eliminate or at least reduce mutually incompatible components in the early stages of the design process. Luo [36]
studied the product design of consumer durables, and pointed out the need to consider not only the relationship
between consumer preferences and the engineering feasibility of each product, but also the revenue and cost
interactions across products in the product line. He optimized the problem using GA. Albritton et al. [2] modeled
customers’ dynamic preferences in the development and robust design of a single product. Saridakis et al. [46]
developed a particle swarm optimization (PSO) algorithm to design car lines. The algorithm optimizes the
degree of differentiation vs. commonality among models in the line, and elevates customer satisfaction. Li et al.
[26] optimize the price and quality of new products when there are existing products in the product line. They
applied convex optimization and analyzed the properties of the optimal solution. Existing products often prompt
a company to provide new products with higher quality and price.

Some scholars further extended product line design problems combined with customization, cellular manu-
facturing, risk, and social factors. For example, Tookanlou and Wong [49] extended the standard product line
design problem by considering two interdependent aspects, namely customization level and product delivery
lead time. In another study [50], they studied the product line design from market channels with vertical and
horizontal consumer heterogeneity, and used mathematical analysis and game theory to analyze the influence of
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channel structure on the optimal quality and customization level. Liu et al. [33] constructed a model to deter-
mine product variants through product line design and resource allocation in cellular manufacturing. Aydin
and Badurdeen [3] proposed a new sustainable production line design method, which not only considered con-
flicting goals: total lifecycle profit (economic), as well as total energy and water usage (environmental), but
also multiple life cycle closed-loop logistics with different recycling strategies. Liu et al. [34] discussed the bal-
ance between configuration design and production line under uncertain production requirements. They applied
a heuristic algorithm based on greedy randomised adaptive search procedure combined with variable neigh-
bourhood search for operation assignment. Gupta and Krishnan [18] found that suppliers’ participation in the
early stages of product design could reduce product development risk, detect potential problems early, improve
product quality, eliminate product rework, reduce the internal complexity of product development by providing
possible outsourcing channels, improve communication and information exchange, reduce delays, and get many
other benefits. Jiao and Zhu [20] mainly studied the problems of product pricing and maintenance in the prod-
uct line. They provided insights into the influence of sales price, warranty period and preventive maintenance
interval. Luo et al. [37] proposed a multi-objective optimization model based on product platform. This model
can optimize product family configuration and supplier pre-selection from multiple perspectives in the early
stage of product design. The NSGA-II algorithm was developed to achieve Pareto non-dominated solutions of
the model. Based on predecessors’ attention to standardization work to simply product line, Yin et al. [61] put
forward a model to quantitatively evaluate the degree of standardization, which further enriched the content of
product line optimization research.

2.3. Optimization algorithms for product line design

Many researchers improved some classic intelligent algorithms to make them more suitable for the research
problems. Belloni et al. [5] compared nine methods of product line optimization. These methods are mainly
divided into three categories: (1) Methods that operate in attribute space (coordinate ascent, genetic algorithm,
and simulated algorithm); (2) Methods that operate in product space (greedy heuristic, divide-and-conquer
heuristic, and product-swapping heuristic); (3) Methods that partially evaluate formed products (dynamic
programming heuristic, beam search heuristic, and nested partitions heuristic). Dou et al. [9] took advantage of
iterative genetic algorithm (IGA), which makes the existing product and design process evolve bi-directionally
in the customized process to seek the optimal design. Tsafarakis et al. [52] applied a new hybrid PSO approach
to design an optimal industrial product line. They found that the incorporation of a mutation operator to the
standard PSO algorithm significantly improved its performance. The hybrid PSO approach outperformed GA
in a simulated study with artificial datasets pertaining to industrial cranes. Tsafarakis et al. [53] applied Fuzzy
Self-Tuning Differential Evolution to a product line optimization problem, and compared it to GA.

2.4. Research gap

Product line design of personalized customized products usually depends on the marketing and engineering
fields. Although existing research has proposed complex technologies to deal with the unique problems of
each field, most of the interdependent problems across marketing and engineering have not been solved. In
addition, existing research focused on balancing product cost and income, or on optimizing product diversity
and universality of component assembly molds. However, there is a lack of research on the process of product
design and production, compatibility issues among product components, product reliability, delivery time of
finished products, and outsourcing decision-making. Although some optimization software, such as LINGO and
CPLEX [17,25], can solve these complicated models, they are only suitable for small-sized problems due to
their long runtime. Consequently, this paper constructs a product line design model with the consideration of
compatibility and reliability, and develops DICA to solve it even for large-sized instances.
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3. PROBLEM STATEMENT AND FORMULATION

3.1. Background of the problem

Consider a company that produces customized cell-phones, computers and pads. Each product has different
attributes and each attribute has several levels, which is shown in Table 1. Although managers hope to design
products according to customers’ preferences to increase market share, some configurations give rise to problems
of compatibility and reliability. There is a compatibility case in Table 1. If a customer chooses the level of
customized camera in the media attribute for a cell phone, the camera needs a high-solution screen to match it.

Reliability refers to the quality standard that the product must reach before it can be put into use in the
market. The reliability of product depends on the quality of its components. Some customers prefer new products
that are associated with immature processing technology or components, and some choose low-cost material for
cost saving. Such cases result in poor quality; thus, can’t be produced. For example, the integrated graphics
card of Table 1 is cheap, but it occupies the system’s memory and affects the reliability performance. It may fail
when dealing with complex images and videos due to low reliability. In contrast, the discrete graphics card is
expensive and has its own memory source and power source, so it provides higher reliability performance than
the integrated graphics card. Therefore, the choice of graphics card level should be based on a certain reliability
standard. Low-reliability of products may easily cause product failure, which gives rise to high product rework
rate and production cost, and thus reduces PM. Consequently, PMRP penalizes low-reliability products based on
PM. The lower the reliability is, the smaller PMRP is. In addition, the company needs to consider the production
time during designing and production process, because customers wish their products to be delivered on time.
The production time depends on the decision of attributes’ levels, and whether the associated components are
outsourced. In order to maximize PMRP, company managers must make reasonable decisions including design,
production planning, etc.

3.2. Problem hypotheses and notations
The problem is formulated based on the following hypotheses:

(1) Customers: the number of customers is known in advance. Each customer has his/her own favorite product
configuration. That is to say, each customer has different preference for certain level of a product’s attribute,
which is denoted by the variable part-worth.

(2) Products: the number of products in a product line is known in advance. Each product has the same number
of attributes, and each attribute has the same number of levels. There are some competitive counterparts
in the market for each product variant in the product line.

(3) Cost: the basic production cost and the cost of each component are known. If the operation for certain level
of attribute in the production needs to be outsourced, the outsourcing cost will occur.

(4) Reliability: the reliability of a product is calculated from the reliability of the components that make up
the product. The more the product is unreliable, the larger the penalty cost is.

(5) Time: the basic production time of product configuration is known, and the additional production time of
customized components can be estimated. The total production time cannot be larger than the delivery
due time expected by customers.

The input parameters and decision variables used in the model are listed as follows.
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TABLE 1. The attributes and corresponding levels of each product.

Products Attributes Levels

64GB
Capacity 128 GB
256 GB
Camera
Media MP3
Cell-phones Camera+MP3
Basic screen
Screen Color screen
High solution screen
8GB
Memory 16 GB
32GB
512GB SSD
Computers  Storage 1TB SSD
2TB SSD
Integrated graphics card
Graphics card  Discrete graphics card
Core graphics card

Input parameters

1
J

K

L

N

Cb

Ciki
;’kl

m

Wikl

B

Rjriwr

!
djkl

128 GB
Capacity 256 GB
1TB
8 MP Wide camera
Pads Camera 12 MP Wide camera
12 MP+10 MP Ultra Wide cameras
Silver
Color Space gray
Rose gold
Number of customers, i denotes the index of customer (i =1,2,...,1).
Number of products of a product line in a company, j denotes the index of product (j =

1,2,....,J).

Number of product attributes, k denotes the index of attribute (k =1,2,..., K).

Number of levels for each product attribute, [ denotes the index of level (I =1,2,...,L).
Number of products in the market, n denotes the index of product (n =1,2,...,N).
Basic production cost.

Customized cost of component associated with level [ of attribute k£ of product j.
Outsourcing cost of component associated with level [ of attribute k£ of product j.

The ratio of profit to cost.

The part-worth that customer i perceives for level [ of attribute k.

Penalty coefficient for reliability.

1 if level I of attribute k is compatible with level I’ of attribute k&’ for product j, and 0
otherwise (k # k).

Reliability of component associated with level [ of attribute k& of product j.

Threshold for reliability of product j.

Basic production time of product j.

Internal customized time of component associated with level [ of attribute k& of product j.
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s; i Outsourcing time of component associated with level [ of attribute & of product j.
D;  Customer’s expected delivery due time for product j.

Decision variables
X 1 if customers choose level [ of attribute k of product j, and 0 otherwise.
Yir  1if outsourcing is needed for the component associated with level [ of attribute & of product
7, and 0 otherwise.

Intermediate variables

According to the input parameters and decision variables, the intermediate variables are defined as follows:

P; The cost of product j, P; = Cl+ Zszl Zlel (Cjkl - Xje + C;kl -ijl).
Ui; The utility that customer ¢ perceives for product j. It is the sum of the part-worths. U;; =
K L
D b1 2y Wikt Xkt
Dij The probability that customer ¢ will choose product j using Bradley Terry Luce (BTL)

- _ Uy
model [6,35], Dij = SN Uin®

Q;  Reliability of product j, 5 = [T}, (S0 bort - Xut )

I - i=1 N ]
2i—1Pii T Yn=1Uin

SOP; The share of preference for product j, SOP; = =5 = ——=p=l-tn =
1 SF S @ikt Xk
SN SR S @ik X
- .

3.3. Mathematical model

The problem can be formulated as a non-linear integer programming model as follows:

J J

Max PMRP =Y P;-m-SOP;~ > (1-Q;)-f
Jj=1 j=1
J K L
:Z <Cb + ZZ (Cirt - Xju + Cliya - ijl)) -m
j=1 k=11=1

ZI Sy iy wint- Xkt
= Y e Dy Wikt Xk

~

-2 [1 - ﬁ (ZL:Z’W 'Xjkzﬂ f (3.1)

Jj=1 k=1 =1
L
st Y X =1, Vi, k (3.2)
=1
Ry — X - Xjry 20, Vi kLK - (k#K)
(3.3)
K /L
H (Z bkl 'Xjkl> > Bj, i (3.4)
k=1 \I=1
L
dj + ke{l\l/[axK} (Z [ Xkt (1= Yjrt) - dijpy + Xt - Y - 5;‘kl]> <Dj, Vj (3.5)
=1
Xjm € {0,1}, Vi, k,1 (3.6)

Yiju € {0,1}, Vi, k1. (3.7)



3780 C.LIU ET AL.

TABLE 2. A customer’s score of each level of different attributes for product 1 and its com-
petitive products.

Attribute 1 Attribute 2 Attribute 3
Level 1 Level 2 Level 3 Levell Level2 Levell Level2 Level 3 Level 4
Product 1 3 5 2 4 3 4 4 5 3
Competitive 9 3 4 3 1 5 3 4 9
product 2
Competitive 3 4 5 9 5 4 1 5 3
product 3
Competitive 3 4 3 4 5 3 4 3 4
product 4

Objective function (3.1) is to maximize Per-capita-contribution Margin considering Reliability Penalty
(PMRP), which consists of two terms defined as follows:

The first term is Per-capita-contribution Margin (PM), which implies that the profitability of a product is
approximately evaluated using contribution margin per customer in the market.

— Cost P; is incurred when product j is produced. The cost includes the basic production cost and the cost
of producing customized components. The latter contains internal customized cost for those components
produced inside the company and outsourcing cost for those components produced outside the company.

— SOP; is the average of choice probabilities of all customers for product j. Table 2 gives an example of
customers’ preference scores for each level of various product attributes. The scores of product 1 and its
competitive products are randomly selected from the integer interval [1,5]. The scores can be transformed
into part-worths of the attribute levels. The utility value of product 1 is usually expressed as the sum of
the part-worths (with superscript “*”) of the preferred attribute levels. The utility values of competitive
products are similarly calculated based on the preferred levels of product 1 (see e.g., Tab. 3). Through the
use of BTL choice model, the utilities that each customer assigns to each product and its competitive ones
can be converted to choice probability p;;. SOP; is then derived from the aggregation of choice probabilities
across the whole customer population.

— PM is obtained by multiplying the production cost P;, the ratio of profit to cost m, and the preference share
SOP;.

The second term is the penalty cost which occurs when the product does not reach ideal reliability. Q; is
obtained by accumulating the reliability of all components of product j. Penalty coefficient 3 is set according
to the actual situation.

Constraint (3.2) ensures that only one level of each attribute of each product is selected. Constraint (3.3)
ensures that the level selection for different attributes of each product can not violate the compatibility between
each other when designing customized products. Constraint (3.4) guarantees that the accumulative value of all
components’ reliability can not be less than a given reliability threshold of the product. Constraint (3.5) ensures
that the product can be delivered to the customer no later than his/her expected delivery time. Constraints
(3.6) and (3.7) indicate that the decision variables are binary.

Previous studies have proved that the product line design problem belongs to the class of NP-hard combina-
torial optimization problems [23,24,54], and thus no algorithm can identify the global optimum of the problem
in tractable time [43]. The proposed model has two simultaneous phases. The first phase is mainly to solve the
problem of product line design. The second phase is to make decision of outsourcing. Consequently, the pro-
posed model is reasonably NP-hard since it integrates two above phases along with compatibility among product
components, product reliability, and product delivery time. This excludes the chance of applying exhaustive
exact algorithms such as backtracking, dynamic programming, or branch-and-bound technique, because these
algorithms would be too time consuming even for a moderate scale problem.
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TABLE 3. The part-worth that a customer assign to each level of different attributes for product
1 and its competitive products (normalized score).

Attribute 1 Attribute 2 Attribute 3
Level 1 Level 2 Level 3 Levell Level2 Levell Level2 Level3 Level 4

Product 1 0.300 0.500*  0.200 0.571*  0.429 0.250 0.250 0.312*  0.188 1.383

Utility

Competitive 909 0333* 0445  0.750* 0250 0357 0214  0.286* 0143  1.369
_product 2
Competitive 7o 0364* 0714 0.286* 0714 0308 0077  0385% 0230  1.035
_product 3
Competitive 350 (400% 0300  0.444% 0556 0214 0286  0214% 0286  1.058
product 4

4. DISCRETE IMPERIALIST COMPETITIVE ALGORITHM

Imperialist Competitive Algorithm (ICA) is classified into population-based methods, like genetic algorithm.
ICA is a useful method in optimization because of its reasonable runtime and effectiveness [32,45]. Moreover,
ICA is a new solution approach, which has not been applied to product line design optimization problems. In
ICA, a “virtual” country represents an encoded solution to the problem. The better countries are chosen to
become the imperialists. The other countries are divided among the imperialists as colonies. The whole set of
an imperialist and its colonies is called an empire. After seizing some colonies, the imperialists try to penetrate
into their colonies by making them similar to themselves. Then the imperialists compete with each other to
seize more colonies and gain more power. This process makes some empires more powerful and some weaker.
The weaker empires eventually collapse.

In order to better adapt to the real situation, some effective changes are made in the classical ICA as follows.
As mentioned above, each imperialist assimilates its colonies by making them similar to itself, which is called
movement strategy. In the proposed DICA, colony movement is redefined to be a mutation or a mutation
followed by at most S swimming. Movement strategy also applies the idea of simulated annealing (SA) to accept
an inferior solution from a mutation or swimming. Although movement strategy helps the colonies to become
better, it lessens the diversity of the population and makes the algorithm to trap into local optima easily. Thus,
in order to prevent this situation and make the colonies to have better movement goal, each imperialist obtains
a better solution from a mutation if possible.

Instead of using the possession probability method in classical ICA, we employ more intuitive and effective
“roulette wheel” sampling to select the prior empire and let it to seize the weakest colony in the weakest empire
in competition strategy.

In real world, the imperialists usually make some strategies to develop their power and domination, but the
classical ICA does not provide a corresponding method. Obviously it is a shortcoming of the classical ICA [21].
Hence, to make up for that, a strategy called the imperialists’ development plan is applied in the proposed
DICA. This helps the countries in the population to learn from each other to get better power.

4.1. The proposed DICA procedure

Some notations to be used in DICA are summarized as follows. The pseudo-code of DICA is shown in
Algorithm 1, which is explained in Sections 4.2-4.5.

Popsize  Population size.
NP Number of imperialists.
Neol Number of colonies.
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C;™  PMRP of imperialist i. (i = 1,2,---, N'™P),
CJC»O1 PMRP of colony j. (j =1,2,---, N},
Ci°" PMRP of country k. (k=1,2,--- ,Popsize).
NC; Normalized power of imperialist 4.

I Number of colonies controlled by imperialist ¢ in the initial population.
Sgol - Set of colonies of empire 7. (i = 1,2,--- , N'™P).

s Counter for swimming steps.

S Maximum number of swimming steps.

T Temperature.

p Cooling rate.

TC;  Total power of empire i. (i = 1,2,--- , N'™P),

0 Weight coefficient for mean colony cost.

Algorithm 1. DICA algorithm.
1: Input: Popsize = 50, N™P = 10, N°°' = 40, S = 10,6 = 0.1;

7|OFV();7‘()O;?FV(X’)| ,where OFV(X;) and OFV(X}) are the objective function values

of random solutions X; and X, respectively [22]; Cooling rate p = 0.8;
: Initial population: Randomly generate Popsize = 50 feasible countries;
: Calculate initial power of each country k: Cp°" = PMRP of country k;
. Select N'™P most powerful countries as the imperialists, and the remaining N countries as the colonies;
o

: Calculate number of colonies controlled by each imperialist i: I = round{NCi . NCOl};

2: Input: Initial temperature T' =

: For each imperialist 7, randomly choose If°! unallocated colonies to it;
: while (N"™" > 1) do
10: for (i =1— N'"™P) do

3
4
5
6: Calculate initial normalized power of each imperialist i: NC; =
7
8
9

11: Implement movement strategy for the countries in empire 7 (Algorithm 2);

12: end for

13: Implement competition strategy among all empires (Algorithm 3);

14: Implement development strategy for all countries in the population (Algorithm 4);
15: T:=Txp

16: end while

4.2. Encoding scheme, initialization, and empires’ formation

(1) Encoding scheme.
Each country we designed consists of two parts, namely the configuration decision of the products and the
outsourcing decision of associated configuration components.
The first ingredient, named matrix P_Lg, is the specific product configuration, and shown in equation (4.1).
The components of this J x K x L matrix are variables X;i; which are either 0 or 1. For example, in
Figure 1 the term X314 = 1 means that attribute 1 of product 3 has a level of 4. While completing the
matrix, constraints (3.2)—(3.6) should be satisfied.

Xik1 - Xuka
P.Ly=|Xikr X1 - Xjn|. (4.1)

Xur - Xnr
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The second ingredient, named O_Lyg, is related to whether the corresponding configuration component of
the product needs to be outsourced, and shown in equation (4.2). The components of this J x K x L matrix
are variables Yj;; which are either 0 or 1. For example, in Figure 1 the term Y34; = 1 means the component
associated with level 1 of attribute 4 of product 3 requires external assistance. While completing the matrix,
constraints (3.5) and (3.7) should be satisfied.

Yiki -+ Yika
OLy= |Yikr Y - Yy |. (4.2)

Yiip -+ Yo
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Combining the two ingredients described above, the solution representation is shown in (4.3). Figure 1 shows
a typical instance.

Xik1 - Xy Yikr - Yik1
Xigkr X o Xgun Yinn oo Yo

Xur - X Yur - Yoo
(P_Lo|O-Lo). (4.3)

(2) Population initialization and empires’ formation.
In DICA, a population including Popsize = 50 countries is generated randomly, and some parameters
(Nmp_ Neol 'S @ p) are initialized. The parameters are set according to some previous related works [7,16,65]
and the results of pre-experiments. The initial temperature is specified by using Kia et al.’s method [22].
Some powerful countries with better objective function values are selected as the imperialists, and the rest
as their colonies. It is assumed that the population initially contains N™™P imperialist countries and their
Ne°! colonies (see Eq. (4.4)).

Popsize = N'™P 4 N, (4.4)

To assign the colonies to all imperialists, calculate the initial power (C’;mp) of each imperialist. Then ijp
is normalized as NC; which is in the interval of (0,1) (see Eq. (4.5)). If°' colonies are randomly chosen from
the population and assigned to each imperialist ¢ using equation (4.6). Each imperialist and its colonies
form an empire.

C;mP
Ze:l Ce
It = round {NC; - NCOI}. (4.6)

4.3. The movement strategy (Algorithm 2)

In DICA, colony movement is regarded as a mutation or a mutation followed by at most S swimming.
Colony mutation refers to a change in a random dimensional direction toward its imperialist. For example,
Figures 2a and 2b shows that a colony runs a mutation in the first /second dimension. Swimming indicates that
when PMRP of the above colony is better than its last one, the colony mutates further in a random vector
of the same dimension. If the colony continues to increase its PMRP, it continues swimming up to S times.
This represents that the colony tends to keep moving if it is headed in the direction of increasingly favorable
positions. The main idea of steps 2-19 in Algorithm 2 is that if PMRP of a colony after movement is better than
its last one, accept the movement, and otherwise accept the movement by certain probability. The probability
of accepting a worse solution is high to begin with, but it gets lower as the temperature goes down. It is
worth noting that if all colonies of an imperialist move toward it, many identical colonies are obtained after
some iterations. To prevent such assimilation among colonies, after all colonies of an imperialist complete their
movement, the imperialist itself will mutate for the next iteration (steps 21-26 in Algorithm 2). If the best
colony in an empire reaches a position with larger PMRP than that of its imperialist, exchange the positions
of the colony and imperialist. When accomplishing the movement strategy, constraints (3.2)—(3.7) should be
satisfied.

4.4. The competition strategy (Algorithm 3)

In Algorithm 3, first calculate the power of each country in the population. In order to model the fact that
the total power of an empire is mainly affected by the power of its imperialist and partly affected by that of its
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FIGURE 2. Movement of the colony toward its imperialist. (a) First matrix P_Lg. (b) Second
matrix O_Lg.

colonies, we define total power as equation (4.7) in step 1 of Algorithm 3. A small value for 0 (say 0.1) makes the
total power of the empire mainly determined by the imperialist. Based on their total power, all empires start to
make a competition. All empires try to take possession of colonies of other empires and control them. The empire
with more total power may more likely possess colonies. Instead of using the possession probability method in
classical ICA, we employ more intuitive and effective “roulette wheel” sampling to select the prior empire and
hand the weakest colony to it in steps 2 and 3 of Algorithm 3. The advantage of roulette operator is that it will
not disregard any individual in the pool. Consequently, it maintains the diversity of individuals within solution
space [11]. In modeling collapse mechanism different criteria can be defined for considering empire’s powerless.
In classical ICA, an empire collapses and is eliminated when it loses all of its colonies. To keep the population
size invariant, we model the collapse mechanism by assuming that the imperialist with no colony is colonized
by the prior empire (step 7 in Algorithm 3).

TC; =C™ +0- Y  C (4.7)

jesge!

4.5. The development strategy (Algorithm 4)

Each iteration of competition urges each country to learn from others and develop itself. Inspired by the
crossover operator in genetic algorithm, DICA adds and models this development strategy by assuming that
each country is crossed over with any other country in the population. When finishing the development strategy,
constraints (3.2)—(3.7) should be satisfied.

After many iterations of movement, competition, development strategies, only the most powerful empire
remains.

5. GENETIC ALGORITHM AND SIMULATED ANNEALING

Genetic algorithm (GA) and simulated annealing (SA) have been proven to be effective algorithms, and are
often used to act as comparison benchmark [28-31,57].
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Algorithm 2. Movement strategy.

1: for (each j € S§°') do
2: Calculate current PMRP C’JC-O1 of colony j;

3: Try to mutate colony j in a random dimensional direction toward imperialist ¢, and then calculate the temporary
Cjc_ol/ :
4 Let s =0;
5 while (s < S) do
6 if (€5 > C5') then
7 Accept the movement, and C;Ol = C;Ol,;
8 Try to swim in the previous dimensional direction, and then calculate the temporary C;Ol/;
9: s:=s4+1;
10: else
11: Generate a random number r in the interval [0, 1], and set A = C’JC-Ol - CJC-OI';
12: if (exp(—A +T) > r) then
13: Accept the movement, and C5°' = C’jOV;
14: else
15: Abandon the movement;
16: end if
17: Break;
18: end if
19: end while

20: end for
21: Try to mutate imperialist ¢ in a random dimensional direction, and then calculate the temporary PMRP (C;mp);

22: if (Cj“‘p, > ijp) then

23: Accept the mutation, and C™P = C’;mp/;
24: else

25: Abandon the mutation;

26: end if
27: Identify the colony j* with the highest PMRP in S, j* : C;i’l = Max;e geol C;Ol;

28: if (C52' > CI"™) then

29: Exchange position of colony j* and imperialist ¢, and update their PMRP;
30: end if

Algorithm 3. Competition strategy.

. Calculate total power of each empire :: TC; = CI™ 46 - > jeseol o5l

: The “roulette wheel” sampling is used to select a prior empire i* according to TC;;
Hand the weakest colony of the weakest empire to the empire 7*;

: The imperialist with no colony is colonized by the empire i*;

: Update N'"™P if necessary.

U W e

Algorithm 4. Development strategy

1: Try to crossover each country k with any other country in the population, generate a new temporary country k', and
calculate its PMRP (C}9"); The crossover mechanism is described in Algorithm 5 and displayed in Figure 3.
: if (O™ > CF°Y) then
replace country k with the new country k’;
else
Abandon the new country k’;
: end if

S N
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FIGURE 3. Crossover operator. (a) Crossover of P_Lg. (b) Crossover of O_Lg. (c) New offspring
(P-Lo|O-Lo).
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Algorithm 5. Crossover operator.

1: Each of two selected countries is divided into two parts (P_Lo and O_Lg);

2: Randomly select a dash plane as crossover point among P_Lg (or O_Lg) in each parent country;

3: The left part of the dash plane in P_Lo (or O_Lg) of the first country and the right one in P_Lg (or O_Lg) of the
second country are combined into a new sub-offspring P_L; (or O_L1). See Figures 3a and 3b;

4: Combining the new sub-offspring P_L; and O_L; into a new country. See Figure 3c.

5.1. Genetic algorithm

GA was designed and proposed according to the evolution law of organisms in nature. It is a computational
model of biological evolution that simulates the natural selection and genetic mechanism of Darwinian biological
evolution. It acts as a widely used method for searching the optimal solution by simulating the natural evolution
process [15]. The solutions are represented as chromosomes. A set of solutions defines the population of a
generation. The population evolves as more fit solutions (chromosomes) substitute less fit solutions. In this way
GA gradually nears to optimal solutions [42]. GA for the proposed model is described as follows.

— Chromosome representation: the chromosome representation employs the same solution structure of DICA.

— Fitness function: let FJ denote the fitness of s-th chromosome in generation g before selection. Fj is equal
to the corresponding objective function value (i.e., PMRP) of the s-th chromosome.

— Initial population: randomly generate Popsize = 50 chromosomes to form the initial population. While
generating the initial population, constraints (3.2)—(3.7) should be satisfied.

— Crossover: all chromosomes in the parent generation cross over mutually, the crossover probability is P, = 0.9.
The crossover mechanism is similar to Algorithm 5. If the fitness value of the offspring is better than that of
the parent, the offspring will be retained in the new generation, and otherwise, it will be discarded. When
finishing the crossover operator, constraints (3.2)—(3.7) should be satisfied.

— Mutation: each chromosome will mutate according to a given mutation probability P,, = 0.2. The mutation
mechanism is to randomly generate new chromosomes. All off-springs from the mutation will be accepted for
the new generation. When accomplishing the mutation operator, constraints (3.2)—(3.7) should be satisfied.

— Selection: the method “roulette wheel” sampling is used in the selection. Each chromosome is assigned a slice
of the circular roulette wheel, and the size of the slice is proportional to the fitness value of the chromosome.
The wheel is spun Popsize times. On each spin, the chromosome under the wheel’s marker is selected into
the pool of parents for the next generation.

— Stopping rule: the calculation is stopped when its runtime reaches DICA’s.

5.2. Simulated annealing (Algorithm 6)

SA is a stochastic optimization algorithm based on Monte-Carlo iterative solution strategy. Its main idea
is based on the similarity between the annealing process of solid matter in physics and general combinatorial
optimization problems [62,63]. SA repeats the neighbor generation process to improve the objective function
value. When exploring solution space, SA will accept an inferior solution probabilistically according to the
metropolis criterion, jump out of the local optima, and obtain the global optimal solution [19]. It has been
widely used in various optimization problems due to its strong local searching ability, easy operation and fast
solving speed [27]. SA for the proposed model is described in Algorithm 6.

If an initial solution generated in DICA, GA, and SA is infeasible, it is eliminated, and another one is regen-
erated until it is feasible. If a solution generated through an operator (e.g., mutation, swimming, development
strategy, or crossover) is infeasible, it is eliminated, and the individual abandons this operator.

6. COMPUTATIONAL EXPERIMENTS

In this section, we validate DICA by comparing it with GA and SA. They are performed on a Core-based
Lenovo-compatible personal computer with 1.60 GHz clock-pulse and 8 GB RAM. They are coded in C++,
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Algorithm 6. Simulated annealing.
1: Input: Counter n = 0, Markov chain length ¢ = 150;

_|OFV()1?()()‘_5())FV(X1)| ,where OFV(X;) and OFV(X}) are the objective function values
of random solutions X; and X respectively; Cooling rate p = 0.8;

3: Initialization: The solution representation employs the same solution structure as that of DICA. Randomly generate
an initial solution X.. Set Xpest = X and compare objective function value OFV(X.).

4: while (1) do

5: while (n < ¢) do

6: Generate neighborhood solution X by using mutation strategy and random method with the same rate.

Compute OFV(Xy).

2: Input: Initial temperature T' =

7: if (OFV (X)) > OFV(X.)) then

8: Xe = Xg

9: if (OFV(X.) > OFV(Xpest)) then
10: Xbcst = XC
11: end if

12: else
13: Generate a random number r in the interval [0, 1], and set A = OFV(X.) — OFV(Xy)
14: if (exp(—A/T) > r) then
15: Xe = Xi

16: end if

17: end if

18: n:=n+1

19: if (runtime reaches a given CPU time) then
20: Terminate the procedure
21: end if
22: end while
23: T:=Txp,n=0

24: end while

complied with the Microsoft Visual C++ 9.0 compiler, and tested under Microsoft Windows 10 operating
system.

We observe the difference among solutions obtained by DICA, GA and SA within the same runtime. The
CPU in Table 4 is the runtime of DICA without including input and output time, which is recorded by its
program. Denote the CPU time of DICA as ¥. GA and SA are terminated when their CPU time reaches .
The results of experiment are shown in Table 4.

The performance of the mentioned algorithms is evaluated by the number of customers (I), the number of
products (J), the number of product attributes (KX'), the number of corresponding levels of product attributes
(L), and the number of similar competitive products in the market (V). The instances have been randomly
generated to verify the proposed algorithm. The parameters used in the instances are also randomly generated.
The experiment has five sets. For example, in the first set in Table 4, I is allowed to vary to test its effect, given
J=4,K =4,L =4 and N = 8. The other four sets in Table 4 test the effects of varying J, K, L and N. The other
parameters for the randomly generated instances are given in Table 5. These parameters are given corresponding
to the random values between the minimum and the maximum except three constants C®,m and §. In order
to make the optimization model meaningful, we should ensure that certain parts of the objective function are
relatively balanced when setting the maximum and minimum values of the parameters. The constants can be set
according to the real situation in the company. Given a typical instance with I = 2000,J = 3, K = 3, L = 4 and
N = 3, Figure 4 shows their convergence within the same runtime, and Figure 5 illustrates the optimal solution.
Table 4 represents the average of its associated 10 randomly generated instances. In Table 4, Vg denotes the
average objective function value using algorithm ©, and Avg denotes the increasing percentage of Vg over
V. A specific example in Table 6 illustrates how to obtain the blue values (Vg and CPU) in Table 4.
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TABLE 4. Performance comparison between DICA, GA and SA for impact parameters.

J=AK=4 o AVOTA  AVEY  CPU
L=4,N=38 (%) (%) (s)
1000 4474 3996 4045 12 11 52
;4000 4503 3986 4109 13 10 205
7000 4514 3944 4005 14 13 375
10000 4426 3908 4009 13 10 527
I=1000,K =5
L=5N=12
3 3133 2710 2839 16 10 117
; B 5845 5038 5124 16 14 230
7 8532 7381 7486 16 14 355
9 10929 9621 9900 14 10 480
I =4000,J =5
L=3N=38
3 3518 3274 3269 7 8 145
x 4 4553 4123 4180 10 9 195
5 5543 4749 4881 17 14 253
6 6478 5604 5748 16 13 790
I =17000,J = 4
—4,N=6
2 3941 3619 3712 9 6 156
;6 7869 6881 7097 14 11 394
10 11220 10223 10422 10 8 640
14 14617 13487 13681 8 7 881
1=10000,J =3
K=3L=4
4 5131 4859 4877 6 5 158
N 10 2155 1937 2000 11 8 354
16 1282 1155 1189 11 8 528
22 891 825 829 7 689

DICA is compared with GA and SA to examine its performance. In Table 4, we can observe that Avng

can reach 6%~17% notwithstanding the different parameters. At the same time, AVSDII\CA can reach 5%~14%
in spite of the change of parameters.
The reasons why DICA gets better results than GA and SA are as follows:

(1) In DICA, colony movement is modified to a mutation or a mutation followed by a given swimming strategy.
That is to say, the colony tends to keep moving if it is headed in the direction of increasingly advantageous
position. This will result in a deep search in the solution space.

(2) In order to prevent falling into local optima, DICA accepts colony’s worse movement with a probability
which drops along with the iterations.

(3) Each imperialist tries to mutate after colony movement, which increases the diversity of population for the
next iteration.

(4) We have designed a new empire collapse mechanism, i.e., the imperialist without a colony will be ruled by
the prior empire. This can maintain the stability of the population size.
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TABLE 5. Parameters for randomly generated instances.

Parameter Value Min Max
C®: Basic production cost 2000
m: The ratio of profit to cost 0.3
(: Penalty coefficient for reliability 1000
Cjri: Customized cost for level [ of attribute k of product j 100 3000
C]'-k,l: Outsourcing cost for level [ of attribute k of product j 500 3000
wiki: The part-worth that customer ¢ assigns to level [ of attribute k 0.1 0.5
bjri: Reliability of components for level [ of attribute k of product j 0.97 0.99
Bj: Threshold for reliability of product j 091 0.93
d;: Basic production time of product j 1 4
djjy,: Internal customized time for level [ of attribute k of product j 1 3
59 r1: Outsourcing time for level I of attribute k of product j 1 3
Dj: Customer’s expected delivery due time for product j 15 20
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F1cURE 4. Typical convergence of DICA, GA and SA within the same runtime.

(5) We incorporate the development strategy into DICA, so that the countries can learn from each other.
Based on the above analysis, we find the internal logicality and principle that DICA can show better ability
of exploitation and exploration than GA and SA.

7. CONCLUSIONS

This paper proposes a product line optimization model that considers design constraint and reliability, and
develops an effective Discrete Imperialist Competitive Algorithm (DICA). This optimization model integrates
many practical factors of multi-product design and production decision-making. The main considerations include
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TABLE 6. Results of 10 randomly generated instances.

1 2 3 4 5 6 7 8 9 10 Average value

DICA 4452 4765 4425 4528 4297 4423 4442 4600 4651 4156 4474
GA 3931 3985 4098 4282 4054 3955 4170 3956 3990 3539 3996
SA 3987 4084 4170 4184 4005 4097 4023 3939 4135 3823 4045
CPU 47 52 51 51 51 55 52 54 53 53 52

the customized cost inside and outside the company, the costumers’ bias towards various attributes’ levels, the
quality of customized components and finished products, the compatibility among different attributes’ levels,
and the delivery due date of finished products. The objective is to maximize the Per-capita-contribution Margin
considering Reliability Penalty (PMRP).

Considerable modifications made to the classical ICA in DICA include:

(1) The classic ICA is mainly used to solve continuous optimization problems, which is not suitable for our
discrete problem. So we design a new movement strategy including mutation and swimming for the discrete
colonies in the population. In order to prevent the reduction of population diversity due to colony movement
toward its imperialist, we let the imperialist mutate after the colony movement in each iteration.
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(2) In the process of empire competition, we use “roulette wheel” sampling instead of possession probability to
select the prior empire that will control the other colony.

(3) In the collapse mechanism, the weakest empire with no colony will be reassigned instead of being destroyed
directly as in ICA.

(4) We supplement a development strategy so that all countries can learn from each other actively.

An interesting direction for future research is to optimize multiple objectives at the same time. Since con-
sumer preferences may be affected by past experience and previous choices, future research can consider dynamic
customer preference levels that change over time to make product design more robust. In addition, the intro-
duction of new products will generate a competitive response in the market. It has an impact on the sales of
the company’s existing products, or gives rise to the imitation of other companies in developing the same type
of new products. Game theory is worth to be tried in this kind of product line design problems with market
competition and evolution. Some advanced heuristic methods, such as bees algorithm and evolutionary algo-
rithm [13-15, 59, 63], are worthy of comparison with the proposed DICA to further verify the effectiveness of
DICA. In the future, the proposed nonlinear programming model will be linearized, and solved by CPLEX to
obtain global optimal solutions for small-size or medium-size problems. We can check the performance of certain
heuristic method according to the gap between the near optimal solution by the heuristic and the global optimal
solution by CPLEX. The proposed DICA can also be extensively applied to the distributed, collaborative and
intelligent social manufacturing mode [47,58,60], such that customers can customize the products with superior
compatibility and reliability in the processes of innovation and design.
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