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EFFICIENCY DECOMPOSITION IN A THREE-STAGE NETWORK
STRUCTURE: COOPERATIVE DEA, NASH BARGAINING GAME MODELS
AND CONIC RELAXATIONS

NARGES TORABI GOLSEFID' AND MAZIAR SALAHI®*

Abstract. In this paper, for evaluating the efficiency in a three-stage DEA structure we use the
additive and the multiplicative cooperative models that comply with the cooperation paradigm in the
organizations, where for improving efficiency of system, stages cooperate together. Since the overall
efficiency from the cooperative models may not be unique and consequently the stages’ efficiencies,
then we combine them with the Nash bargaining game approach that besides maximizing efficiency
scores for stages and the whole system, provides a unique and fair efficiency decomposition. Second
order programming relaxation of the proposed nonlinear models are given in contrast to the parametric
linear models in the literature. Finally, the effectiveness of the proposed models are illustrated with
two numerical examples.
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1. INTRODUCTION

Since performance improvement is an important target of managers at each organization, it is crucial to use
appropriate criteria to make the best decision. Data envelopment analysis (DEA) is one of the most popular
performance measurement methods introduced by Charnes et al. [8]. It is a non-parametric approach to deter-
mine the relative efficiency of peer decision-making units (DMUs) without the need to the production function.
Original DEA models consider only the inputs consumed by and the outputs produced from the system. In other
words, they treat the system as a black box, so its internal operations are neglected in measuring efficiency.
Intermediate products connect stages together and play a key role in the efficiency assessment in the network
structures. Fare et al. [17,18] were among the first to study the system efficiency in such structures. To identify
the relationship between the overall efficiency and the stages efficiencies, several models are proposed in the
DEA literature [11,13,25,27]. Decomposition of the production process in the network structure helps to identify
the sources of inefficiency in the system. One popular approach for the efficiency decomposition in the network
structures is multiplicative efficiency decomposition (MED) approach introduced by Kao et al. [25] that defines
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the overall efficiency in the two-stage process as the product of stages’ efficiencies. The other one is the additive
efficiency decomposition (AED) introduced by Chen et al. [10]. They pointed out some weaknesses of MED and
as an alternative defined the overall efficiency as the weighted sum of stages’ efficiencies. In both approaches,
the stages’ efficiencies and the overall efficiency are estimated, separately. Since MED may not lead to a unique
decomposition, Despotis et al. [14] used a multi-objective programming approach in a multi-stage processes to
resolve this issue. However, in their proposed approach, there is no relation between the overall efficiency and
the stages’ efficiencies. In addition, in the overall efficiency determination intermediate products play no role.

Extensions to multi-stage structures are given by Castelli et al. [5]. In two different studies, Kao [22, 23]
discussed the efficiency measurement and decomposition of general multi-stage structures. However, both studies
limited to the assumption of constant returns to scale (CRS). To evaluate the efficiency in a three-stage structure
and to obtain a unique solution, Chao [6] used a two-phase algorithm and a fuzzy analytical hierarchical process.
Kao [24] presented a classification of slacks-based efficiency measures in a three-stage network DEA. He showed
that the cooperative type is appropriate for both external and internal evaluations of system. Zhang et al.
[43] studied multi-stage network DEA with semidefinite programming approach. They also extended multi-
stage processes with feedbacks based on additive efficiency decomposition. In another study, using efficiency
evaluations over consecutive periods of a three-stage system, Zhou et al. [44] identified more detailed information
of stages inefficiencies reasons. To evaluate the performance and to identify the projection points of bank
branches in a three-stage structure, Mahmoudabadi et al. [32] used a slack-based measure (SBM) DEA model.
Due to the existence of slacks in the SBM model, it determines the furthest efficient projections on the frontier
for the inefficient DMUs which leads to determination of unrealistic and unreachable targets for the inputs and
outputs such that the assessed inefficient DMU probably cannot achieve its targets [2].

To deal with network DEA models, there are two different approaches from the perspective of game theory:
cooperative [15] and non-cooperative [35], where a stage makes a choice by considering the choice of other stages.
In the cooperative models, the overall efficiency of system is estimated first and then the stages efficiencies are
obtained. In other words, the system is evaluated using the set of common weights. Also, in the cooperative
models, unlike the non-cooperative models, the stages have no priority, that means their importance degrees
are equal and the focus is on maximizing the overall efficiency of system and the efficiency scores of stages.
Indeed to improve the overall efficiency of the whole system, all stages cooperate together. To show the conflict
between the stages, Liang et al. [29] examined the relation among the non-cooperative, cooperative and standard
DEA approaches. To achieve a unique solution in simple network structure without the exogenous inputs and
outputs, they used the leader-follower approach, where the priority is with the leader stage. Also, they showed
that the overall efficiency is the product of the stages’ efficiencies in the two-satge. Using the non-cooperative
approach, Tavana et al. [36] proposed an efficienct two-stage fuzzy DEA model to calculate the overall efficiency
and the stages’ efficiencies. To provide an approach for analyzing the reuse of undesirable intermediate outputs
in a two-stage production process with shared resources, Wu et al. [40] proposed additive efficiency measures
and non-cooperative effciency measures. In another study, Tavana et al. [37] presented a two-stage DEA model
to evaluate the performance that can be easily implemented for comprehensive analysis of multi-level supply
chains. To generate a pareto solution and identify the leader stage, Li et al. [28] extended the work by Despoits
et al. [14]. They showed that the optimal solution for the extended model is also a non-cooperative solution.

All the abovementioned models may result in non-unique efficiency decomposition, thus in order to obtain a
fair and unique efficiency and no precondition in the multi-stage structures, the Nash bargaining game approach
is used [33,34]. For measuring performance of a basic two-stage network, Du et al. [16] proposed a nonlinear
Nash bargaining game model. They first constructed the least ideal DMU and used its DEA efficiency score
as the breakdown point. Then, they showed that their nonlinear model can be converted into a parametric
linear programming problem where the optimal solution is obtained using a heuristic search. Since multiple
optimal weights may lead to some flexibility in decomposing the overall efficiency into the stages’ efficiencies
in the cooperative model, Zhou et al. [45] developed a Nash bargaining game model for a basic two-stage
network DEA to obtain a fair efficiency decomposition, while keeping the overall efficiency unchanged. They
used the minimum achievable efficiencies of the two stages as the breakdown points. However, none of the
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two latter studies considered the exogenous inputs and outputs in the network structure. Also, models of both
latter studies can only deal with the assumption of CRS. To make an equilibrium between desirable outputs
and undesirable outputs in a two-stage sustainable manufacturing process, Wu et al. [41] proposed a Nash
bargaining game model. Recently, using the cooperative approach in a three-stage network with external inputs
and outputs, Amirkhan et al. [1] decomposed the overall efficiency into the stages’ efficiencies. They developed
a three-stage DEA model based on the Nash bargaining game that provided a unique and fair decomposition
of the overall efficiency among the stages. To solve the proposed nonlinear bargaining model, they utilized a
heuristic search approach. However, to calculate the overall efficiency in the three-stage structure with external
inputs and outputs, their proposed method has neglected the existence of intermediate products. Using the
concept borrowed from Nash bargaining game, Mahmoudi et al. [31] also handled insufficient number of DMUs
and inputs issue in the network structure.

Utilizing the exogenous inputs and outputs in the network structure, such as the outputs that are sent directly
to the outside from the first stage and the additional inputs to intermediate stages, make the multi-stage DEA
models highly nonlinear. Applying Charnes—Cooper transformations to such models usually lead to parametric
linear programs for which heuristic methods often are used [27]. To surmount this issue, Chen et al. [9] developed
a second-order cone program (SOCP) approach to solve nonlinear two-stage DEA models. Their approach only
ensures a feasible solution instead of the global optimal solution. Recently in another study, Chen et al. [12]
pointed out weakness of Chen et al. [9]’s approach and introduced a conic relaxation model that generates
feasible approximations and tighter upper bounds on the overall efficiency. In this paper, we consider a more
general form of the three-stage structure studied by Amirkhan et al. [1] and Despotis et al. [14] based on the
AED and MED in the cooperative game context. Our first aim is to maximize the stages’ efficiencies and the
overall efficiency of such structures. First, we maximize the overall efficiency in both AED and MED models,
then the stages’ efficiencies are derived from the weights that are obtained by AED and MED models. The
second aim of this paper is to achieve a fair and unique efficiency decomposition of the overall efficiency into
the stages’ efficiencies. To this end, we utilize the Nash bargaining game approach. Since the proposed models
cannot be linearized using Charnes—Cooper transformation [7], we present their SOCP relaxations. To sum up,
compared with the previous studies in the multi-stage structure, the proposed approaches in this paper has four
merits. First, we use network structure under variable returns to scale (VRS). Second, to maximize all stages’
efficiencies, we study both AED and MED under cooperative relationship between the three stages of system.
Each stage in the cooperative approach tries to achieve weights to maximize its efficiency, but cannot effect the
weights of the other stages. In other words, each stage’s weights are independent of the other stages’ weights.
Third, there are structures where the stages’ weights may depend on the weights of the other stages. Thus, to
make an equilibrium between stages’ efficiencies, we utilize Nash bargaining game approach. Fourth, to solve
the three nonlinear models, we use SOCP relaxations.

We begin Section 2 with the conventional BCC model on the three-stage structure and continue with the
introduction of models based on cooperative game approach and their SOCP formulations. In Section 3, we
propose the Nash bargaining game model to improve the stages’ efficiencies, and present its SOCP formulation.
In Section 4, we generalize the proposed bargaining model to the multi-stage structure. In Section 5, two
numerical examples are used to compare the proposed models. Finally, the conclusions are given in the last
section. The notations throughout the paper are summarized in Table 1.

2. COOPERATIVE EFFICIENCY EVALUATION IN A THREE-STAGE SYSTEM

Consider the three-stage serial structure as depicted in Figure 1. The conventional BCC model for measuring
the whole system performance under VRS can be expressed as follows [3]:

1.l 422, .24 3. ,3
EBCC_maXu 'yo+u 'yo+u 'yo+u0
° vl el + 02 22 40323

s.t.
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TABLE 1. Notations.

Notation  Description

n Number of DMUs
my Number of exogenous inputs of stage k
Sk Number of exogenous outputs of stage k
lk Number of intermediate products of stage k
zfj tth input of DMUj of stage k
yfj rth output of DMUj of stage k
z§j dth intermediate product of DMU; of stage k
oF Weight assigned to the ith input of stage k
uk Weight assigned to the rth output of stage k
w'j Weight assigned to the dth intermediate product of stage k
a-b Inner product of vectors a and b
% Componentwise division of vectors a and b i.e., Z—j
X The inputs matrix of all DMUs
Z The intermediate products matrix of all DMUs
Y The outputs matrix of all DMUs
o I B
— —
x! Stagel z! Stage 2 22 Stage 3 y3
—| >

FIGURE 1. Three-stage system.

Yt +Y2u? + Y342 + ug
<1
Xl + X202 4 X303 = 7
v o203 ut, u? ud > 05w s free. (2.1)
If we set up = 0, then model (2.1) converts to the CCR model [8]. Indeed, this variable characterizes
the intercept and relaxes the condition that the production function must pass from the orgin [26]. Obviously,
intermediate products produced and consumed within the system are not considered in model (2.1), and system’s
performance is measured from the viewpoint of outside. Since system’s performance depends on the intermediate
products that are not observable from outside and their weak performance may lead to overall inefficiency of
system, thus we measure efficiency from the viewpoint of inside. To evaluate the overall efficiency of DMU under
evaluation (DMU,) according to AED, we consider the weighted sum of stages’ efficiencies as follows:

2.2 2, ,2 3.,3
w* - zg +u” - ys + wo u” - Y, + Vo
wl -zl + 2. 22 w222 +0v3 - a3

1.1 1.1
wl-zb +ul -yl +ug
E?c = max « ¢ T 13/0 + 0
vl -l

s.t.
Zlwl + Yiul + ug
X1pl

S]-u
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22w +Y?%u? + wy
Zlw! + X292 7
Y342 4+ v

Zr g X8 = b

b o2 o3 ut u? ud, wt, w? > 0;5ug, wo, vy are free (2.2)

where 0 < «, 3,7 < 1 are the stages’ weights. The overall efficiency score for DMU,, using the AED network DEA

model (2.2) relies on the predetermined weights which is either provided by the decision-makers or determined by

1
the model. Since cooperative approach considers same priorities for the stages, thus we consider a = =v = =

in model (2.2). Further, since model (2.2) is nonlinear, we present its conic relaxation formulation. The following
lemma play key roles in the conic relaxation formulations.

1

In the sequel, inspired by Chen [12], a conic relaxation of model (2.2) is given. To do so, sup-

pose that (Ul*,v2*,v3*,ul*,uz*,u3*7w1*,w2*,u6,w5,v§) is an optimal solution of model (2.2). Let n =

3 ,Ul* ’U2* 1)3* ul* u2* u3* wl* wZ* ua wg ,U(>)k
xo},then — e Ty Ty, —, —, —

Lemma 2.1 ([4]). w? < uv, v,uz()@‘ <u+o.

max{vl* -931 wl* . 2,1 4 1)2* ~J:2 w2* . Zg 4 1}3* .

o . non o )
v* w*
is still an optimal solution and the overall efficiency remains unchanged. On the other hand, — -z}, 2l 4
,U2* w2* ’US* " "
- 22 and 22+ -3 are now between zero and one. Thus, we add the following constraints
n n n

ngl-zi—i—ul-y},—i—uogl,

Oﬁvl-xigl,

OSw2-,zg—i—u2'y§—f—u)0§17

0<wh 2l 40?22 <1,

0<u® gyl +u <1,

0<w? 22 +0% 23 <1, (2.3)

to model (2.2) without losing its optimal solution. Thus in the sequel, we consider the following model:

2, ,2 2, ,2 3. .3

w” - zg +u” -y, + wo u® - Yo + v
1.,1 2, 2 2. ,2 3.3
2o T V% xg we - z5+ 0T

1,1 1,,1
we -z, +u -y, + U
Efczmaxoz " +
vt X w

S.t.
Zhw + Y ! + ug
Xl -

Z2w% +Y?%u? + wy

Zlwl + X202 —
Y3u3 + v
Z2w2 4+ X3v3 — ’
ngl-z;—kul-yé—&—uogl,
0§v1~m},§1,
0§w2-z§+u2-y§+w0§1,
0 <w'-zl4+0?-22<1,

0<u’ yl+vo <1,




3682 N.T. GOLSEFID AND M. SALAHI

0<w? 22403 22 <1,

ol o2 0% ut u? ud, wt w? > 05 ug, wo, vo are free. (2.4)

Theorem 2.2. Conic relazation of additive model (2.4) is as follows:

min «af + [F605 + 703

s.t.
uis; + U7 —udUY < 6;, i=1,2,3,
t, L) +17s; — 7L <0, 1=1,2,3,
Ml(vl xé) — (wlz; +ul -yi—l—uo) <ty,

1

0’

[ 2
Lol < s+t
sy —vl-al

My(w' - zp + 0% - 22) — (w® - 22 + 0 - y2 +wp) < to,

2

0’

[ 2 1 1 2
<s w -z V7T
_sz—(wl-z;—i—vz-xE)H 2 ot

M(w? - 22 +v° - 23) — (u® - y2 +vo) < ts,
2

_83—(w2~z§+v3-

Zhw' + Yub +up — X1ot <0,

Z%w% + Y?u? + wy — (Z1w1+X21)2) <0,

Y3u3 4+ vy — (Z2w2+X3v3) <0,

ngl-z;+u1-yé+u0§1,

Ogvl-xigl,

O§w2-z3+u2-y§+w0§1,

0 <w'-zl4+0? 22 <1,

0<u’ y)+w <1,

0<w? 2240 23 <1,

2,2 3...3
xg):|HS53+w czg + U T,
o

lzogtlguzo7 i:1>273a
LgSSiSUiO7 i:1>273a
v o2 0wt u? ud wt, w? > 0;5ug, wo, vo are free. (2.5)

Proof. For simplicity, we denote the feasible set of model (2.4) by Q. At first, we solve the following three
optimization problems:

1, ,1 1, ,1
Wz, tu -y, +ug

1. 1
vl x}

M; = max

s.t.
o 0?08 ut u? ud wl, w?, ug, we, vy € Q, (2.6)
w2~zg+u2-y2+w0

wh- 2zl + 0222

My = max

s.t.

1,2,.3 1.2 .3 1 2
v v v un, ut,u, we, we, ug, wo, vo € §2, (2.7)
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and

u? - Y3 4o
My =max o 5 3
we - z5 + 0Ty
s.t.

o o2 0% ut u? ud, wt w?, ug, wo, vy € Q. (2.8)
Now, we convert model (2.4) from a maximization problem to a minimization problem:

min a(Ml(vl.x}))—(wll ~z%-‘ru1 .y;—l—uo)) +I8(M2(w1.z;-l-'UQ.f%)l—(wz~z§+u2.yg+wo)>
vt T, w25 + vt xg

My 22408 ) — (4 4 v0)
7 w? .22 3. 23
o o

s.t.

v o2 08wt u? ud, wt w?, v, wo, vo € Q. (2.9)
Then, let

Ml(vl-x}))—(w1~zé+u1-yi+uo) < ty,
1

vl -zl

Mo(w' -2l + 0% - 22) — (w22 +u® - y2 +wo) < to,
1

wl -2l +02- 22

Mj(w? - 224+ 0° - 23) — (u® - y3 +vo) < ts,
1

w? - 22 40323

Sslv

S 52,

< S3.

In the sequel, to determine intervals containing ¢;,7 = 1,2,3 and s;,7 = 1,2, 3, the following linear program-
ming problems are solved:

max /min M (v'-2)) — (w' -2l +u' -yl + o)

s.t.
o 0?08 ut u?, ud wt, w?, ug, wo, vy € Q, (2.10)
max / min v' -z}
S.t.
o 0?08 ut u? ud wt, w?, ug, wo, vy € Q, (2.11)
max /min M (w' -z} +v? - 22) — (w® - 22+ u® - Y2 + wo)
s.t.
vt o2, 03wt u? ud, wt w?, ug, wo, v € 9, (2.12)

max /min w' -z} +0? - 2?2
s.t.
v o2 03wt u? ud wt w?, ug, wo, v € Q, (2.13)
max /min Mz (w” - 22 + 0 - 23) — (u® - y2 + vo)

s.t.
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o, 0?08 ut u? ud wt, w?, ug, wo, v € Q, (2.14)
and
max / min w? - 22 4+ 03 - 23
s.t.
ol 0?00 ut u? ud wt w?, ug, wo, vy € Q. (2.15)

Let the minimum and maximum of models (2.10), (2.12) and (2.14) be I?,i = 1,2,3 and u?,i = 1,2, 3, respec-
tively. Likewise, the reciprocal of the maximum and minimum of models (2.11), (2.13) and (2.15) be L?,i =1,2,3
and U?,i = 1,2, 3, respectively. Then, we have [{ < t; < uf,i =1,2,3 and LY < s, < U?,i = 1,2,3. Thus,
model (2.9) is equivalent to

min a(t1s1) + B(tas2) + y(tss3)
s.t.

plogl =77

o
My(w' - zg +v* - 22) — (w22 +u” -yl +wp) < to,
1
wl -zl +02- 22
Ms(w? - 22 +0° - 2d) — (u® - 42 + vo) < ts,
1

< sg,

°<t; <ul, i=1,2,3,
L0< s <U?, i=1,2,3,
o o2 o3 ut u? ud, wh w?, ug, wo, v € Q. (2.16)

Further, let 0;,7 = 1,2, 3 be such that
tisi S 01'7 1= 1,2,3.
Thus, model (2.16) is equivalent to

min «afy + B0 + 03

S.t.

tisi < 0, 1=1,2,3,
Mi(v'-2)) — (wh-2h +u' -y +uo) <t

1< 31(1}1 m},),
My(w' - zg +0v* - 22) — (w” - 25 +u” -y, +wp) < ta,
1< sy(w'-z) +0° - 22),
My(w? - 22+ 0 - ad) — (u® - y2 4+ vo) < ts,
1 <sg(w®- 22 +0° - a2d),

lfgtigu?7 i:172735
LZOSS'LSUzoa 7;:172735



EFFICIENCY DECOMPOSITION IN A THREE-STAGE NETWORK STRUCTURE 3685

o2 00wt u? ud wl, w?, ug, wo, ve € Q. (2.17)
Since
(uf — t;)(U? — s;) = ufU? —uis; — ;U7 +t;8, > 0, 1=1,2,3
(t; = 1) (si — LY) =t;s; —t; L7 — 198, + {17 > 0, 1=1,2,3.
Then

tis; > ufsi—l—tiU{’—ufo, 1=1,2,3
t;8; > tiL? + lzosl — lfL?, 1=1,2,3.

Using these inequalities, the first set of constraints are relaxed. Further, using Lemma 2.1, the third, fifth and
seventh constraints can be presented as conic forms. Thus the relaxed form of (2.17) becomes:

min «f + B60> + 703

s.t.
max{ufs; + t; U —udU? t; L) +1§s; — 7L} < 6, 1=1,2,3,
My (vt z)) — (w' - zp +ub -y +uo) < ty,

< s ot

[ 2
_sl—ul-x},
Mz(wl-z;+v2-x2) - (w2-23+u2-y3+w0) < ta,

o

'§52+w1~z;+v2~x§,

[ 2
|52 — (w1 z; + V2 wg)}

M(w? - 22+ 0% - 23) — (u® - y3 +vo) < ts,

2 2. 2., .3 3
< . .
_83—(w2~z3+v3-x§)m—S3+w Zo + U7 - T,
l?StiSU?, i=1,2,3,
Ly < s < U7, i=1,2,3,

1,2 .3 1,2 3 1 2
v, ve vl un, ut u”, w, we, ug, we, vg € L.

Thus, we get model (2.5). O

The MED is the other approach for decomposing the overall efficiency in the network structures that has
been used in [1,42] for different multi-stage structures. The MED model for the overall efficiency of the structure

as given in Figure 1 is as follows:

1,1 1,1 2,2 2,2 3.3
w2, U Y, + Ug xw “Zo Uy, 4+ wo u” Y, + Vo
1.1 1. ,1 2. 42 2., ,2 3.3
v X, w2z, 7T w* - z5 + v T

EE/IC = max

s.t.
Zlw' + Yl + ug
X1yl

Z2w? 4+ Y?u? + wy
Ztw! + X202
Y3u3 + v <1

Z2w2 + X33 — 7

ol o2 03wt u? ud, wt, w? > 0;ug, wo, vo are free. (2.18)

<1,

<1,
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Model (2.18) is also a fractional nonlinear programming problem that cannot be linearized using Charnes—
Cooper tansformation. In the following theorem, like Theorem 2.2, a conic relaxation of model (2.18) is given.
First, consider (2.18) with extra constraints (2.3) as follows:

min

s.t.

1,1

1,1 2, .2
° we -z, vz

2,2 3. .3
w* - zg +v° Ty

X
wh-zl+ul -yl +ug ™ w?-22+u2-y2+wp
Zlw! + Yl + ug
X1l

Z2w? 4+ Y?u? + wy
Zlw! + X202
YS 3

u” + g <1,
Z2w? 4+ X303
0§w1~zg+u1-yi+u0§1,
0<ob-axl <1,
0§w2~zg+u2-y§+w0§1,
0 <w'-zl40?-22<1,
0<u® yl+vy <1,
0§w2~z§+v3~xi§1,

oo o3 et u? el wt w

L,

<1

2

Theorem 2.3. Conic relazation of model (2.19) is as follows:

EMC

= min [

S.t.
01 +60;+0;5—2<0,
uis; +t; U7 —uw)U? < 6;,
LY +19s; — 17 L7 <0,

vl a) <,

_ 5 )
<s .

_81—(w1.z;+u1-yé—|—uo)”‘_ Ltw

wloz;+v2~x§§t2,

_ 9 )
< .

_52(w2'2’3+u2~y2+w0):|H82+w

w2~23+v?’~m§§t3,

32 3 §83+u3-y§’+vo,
_83_(u 'yo"_vo)

Z1w1+Y1u1+u0—X1v1 <0,

22w + Y22 + wo — (lel + X2v2) <0,
Y3u3+vo — (ZQw2+X3v3) <0,
ngl-z’i—l—u1~y$—&—u0§17
Ogvlur})g 1,

> 05 ug, wg, vo are free.

u? - y3 + v

(2.19)

i=1,2,3,
i=1,2,3,

1 1 1
zb+ut oyl + o,

2 2 2
Zo+u 'yo—’_wO?
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0§w2-23+u2~y§+w0§1,

0 gwl-zi+v2~x3§1,
3 .3

OSU 'y0+00§1,

0<w? 22403 22 <1,

Z?Stiguioa i:17273a

LfSSiSUiO7 i:17273a
2 .3 1

vl 0?03 ut u? ud wt w? > 05 ug, wo, vo are free. (2.20)

Proof. For simplicity, we denote the feasible set of model (2.19) by W. Let

vl oxl <y,
1
wh -2l +ub -yl +ug
wl-zi—FvQ-xiStQ,
1
w? - 22 +u? - y2 + wo
w2~zz+v3-x§§t3,
1
u? - y3 + vo

S S1,

S 52,

< s3. (2.21)

In the sequel, to determine intervals containing ¢;,7 = 1,2,3 and s;,7 = 1,2, 3, the following linear program-
ming problems are solved:

max /min v -z
S.t.
vt o2 0wt u? ud wt w?, ug, wo, vo € 0, (2.22)
max /min w' -z} +u' -yl +ug
S.t.
v v? 03wt u? ud, wt w?, ug, wo, vo € W, (2.23)
max / min w' - 2! +0? - 22
s.t.
v o2 03wt u?, ud wt, w?, ug, wo, vo € W, (2.24)
max / min w? - 22 4+ u? - y2 + w
s.t.
v o2 o3 et u? ud, wt, w?, ug, wo, v € U, (2.25)

3

max / min w? - 22 4+ 03 - 23

s.t.

o 0?0 ut u? ud wt w?, ug, wo, vg € 0, (2.26)
and

max /min u® - y2 + vg

s.t.

v v? 03wt u? ud wt w?, ug, we, vg € W (2.27)
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Let the minimum and maximum of models (2.22), (2.24) and (2.26) be [?,i =1,2,3 and u?,i = 1,2, 3, respec-
tively. Likewise, the reciprocal of the maximum and minimum of models (2.23), (2.25) and (2.27) be L?,i =1,2,3
and U?,i = 1,2, 3, respectively. Then, we have I{ < t; < wuf,7 =1,2,3 and L} < s; < U?,i = 1,2,3. Thus,
model (2.19) is equivalent to

min (tlsl) X (t252) X (t383)

s.t.

vhal <ty
1 <
w2zl +ul -yl +ug —
w ~z;+v2~x§§t2,
1
w? 22+ u?-y2 +wo
w -z§+v3~x§§t3,
1
u? Y3+ o
I7 <t <uyg,
LY < s < U7,

1,2 1,2 1,2
v,v,vg,u,u,ug,w,w,uo,wo,voelll.

S1,

S 52,

S 53,

Now, let 6;,7 = 1,2,3 and 3 be such that

tisi < 0;, 1=1,2,3,

Thus, model (2.28) is equivalent to

010203 < 3.
min [
s.t.
010203 < 3,
tis; < 0;,i=1,2.3,
ozl <ty

1gsl(wlwi—i—ul~y;—i—u0)7
w' -z + 0% ad <t

1< so(w? 22 +u - y2 +wo),
w2~z(2,+v3-x§§t37

1< s3(u® -y + o),

7 <t <uyg,

Ly <s; <UY,

o 0?00 ut u? ud wt w?, ug, wo, vy € WL

Further, we know that

01+ 02 + 03 — 2 < 6010505

i=1,2,3,

i=1,2,3,
i=1,23,
i=1,23,

(2.28)

(2.29)
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Similar to the AED case
(uf =) (U7 — 8:) = wUY —uis; — ;U + 18, >0,  i=1,2,3
(ti — lf)(sl — Lf) = tisl- - tlLf - l?Si + llOLf Z O, 1= 1,2,3,
then
t;8; zufsi—ktiUf—ufo, 1=1,2,3
tiSi Z tiL? + lfsl — liOLf, 1= 1, 2, 3.

Using these inequalities, the first and second set of constraints are relaxed. Furthur, using Lemma 2.1, the
fourth, sixth and eighth constraints can be presented as conic forms. Thus, the relaxed form of (2.29) becomes:

min S
s.t.
01+ 02405 —2 <,
max{ufs;, +t;Uf —ulU?, ;L + 19s; — 1L} < 0, i=1,2,3,
vlxl <y,
[ 2

< 1,1 1,1

81—(’LU
w -zé—l—vZ-xith,
2

< 2, .2 2 2
_52_(w2.zg+u2.y3+w0):|H_52+’LU Zo+u y0+w07

w2~zs+v3~x2§t3,
[ 2 3,3
. < s3+u”- + vg,
PRSI | B
19 <t <wj, 1=1,2,3,
1=1,2,3,

LfSSzSU;))

1,2 1,2 1,2
V,U ,v3,u , U ,u3,w , W, ug, wo, Vg € V.

Thus, we get model (2.20).

O

Now DMU,’s efficiencies of stage 1, stage 2 and stage 3 using an optimal weight
(vl*,vg*,ul*,uQ*,wl*,wz*,ug,wéwé‘) of model (2.5) (model (2.20)), are calculated as following,

respectively:

1x 1 1% 1 *
w 'Zo+u 'yo+u0

E! =
o 1% . 1 )
v z
2% 2 2% 2 *
EQ_w s Zg Futt -y + wg
- )

o 1% ., »1 2% | p2
wr ez + v xg
3x 3 *
Ao WYt
O w22 o8

Thus, the overall efficiency score of the three-stage process in additive model (2.5) becomes E2¢ =
1
E(E(} + E2? + E3) and in multiplicative model (2.20) becomes EMC = E! x E2 x E3. On the other hand,

existence of multiple optimal weights in the cooperative models (2.5) and (2.20) may lead to non-unique effi-
ciency decomposition which is the subject of the next section.
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3. EFFICIENCY DECOMPOSITION BASED ON BARGAINING GAME

Although cooperative models determine stages’ efficiencies and the overall efficiency with common weights
and their aim is to maximize the efficiency of system, the overall efficiency derived from these models may not
be unique, and thus the stages’ efficiencies may also be non-unique [29]. On the other hand, each stage in the
cooperative approach tries to achieve weights to maximize its efficiency but cannot effect the weights of the
other stages. In other words, each stage’s weights are independent of the weights of the other stages, while there
exist structures where stages’ weights may depend on the weights of other stages [20]. To overcome this issue,
we utilize Nash bargaining game approach that has been used in several network DEA models [31,39,45]. First,
let us briefly discuss this approach. The set of three persons in the bargaining are shown by N = {1, 2,3}, and
a payoff vector is an element of the payoff space R3, which is the three-dimensional Euclidean space. A feasible
set S and a breakdown point b are a subset of the payoff space and an element of the payoff space, respectively.
Then a bargaining problem is the triple (N S, ?) consisting of persons, feasible set, and breakdown point.

Nash approach requires the convexity and compactness of the feasible set, furher it should contain some payoff
vector such that each person’s payoff is at least as large as the person’s breakdown payoff. Also, Nash [33,34]
argued that a solution should satisfy the following four properties: Pareto efficiency, invariance with respect to
affine transformation, independence of irrelevant alternatives, and symmetry. After all, he showed that there
always exists a unique solution, called the Nash solution, which satisfies the abovementioned four properties
and can be obtaind by solving the following problem:

N
max H(ul —b;)
>

wES, i—1

where % is the payment vector for the persons, and u; and b; are the ith elements of w and ?, respectively. In the
proposed structure, we consider the stages, the efficiency of each stage and the minimum achievable efficiencies
for the stages respectively, as players, the payoff function and the breakdown points. To begin bargaining between
stages, we obtain a breakdown point for each stage. In the process, one would not bargain with the other stage if
its efficiency is less than the minimum efficiency, else the efficiency of the whole system would decrease. In fact,
the benefit is distributed between the players based on their competition and bargaining power. To estimate
the breakdown points, we apply the approach of Du et al. [16] that the minimum achievable efficiency for each
stage can be obtained by adding a virtual DMU such that z"® = max;{z;;} and y™* = min;{y,;} for each
stage. Since each DMU uses maximum amount of inputs to produce the minimum amount of outputs, efficiency
min

scores calculated by DEA for (a:?’ax, Yr ) represents the least achievable efficiency for each stage. Thus, we can

formulate the following Nash bargaining game model for measuring efficincy decomposition:

2.2 2,2
w* - z5 +ut - ys + wo 2
i X 1 1 2 2 7Emin
w2z, +v° T

1 1
ENC = max <w CZ5 Ut -y, 4 ug
NC

s.t.
1. .1 1,1
w” -z, tu -y, + U 1
>F . 3.1
’Ul 'LL'}) — “min> ( )
2 .2 2,2
we - zg+ut - ys + wo Joc
wl.zé+v2 72 = “min>
ud - y3 + v S 3
w2 - 22 4 3. g3 T T min
Zlwl + V! +u
+ + up <1,
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Z2w% +Y?%u? + wy
Zlwt + X292 T 7
Y342 4+ v

7t Xon = b

v o2 vd et u? e, wt w? > 0;u, wo, v are free

E2

min

where F!

min’

and E3, are the minimum efficiencies of stages.
Lemma 3.1. The feasible set of model (3.1) is compact and conver.
Proof. The proof is similar to the proof of Lemma 3.1 in [1].

In the sequel, we give a conic relaxation of the bargaining model (3.1).

Theorem 3.2. Conic relazation of model (3.1) with extra constraints (2.3) is as follows:

E(l)\IC = min

s.t.
0+ 02+ 05 -2 <3,
uis; + ;U —udUY < 6;, i=1,2,3,
tL0 + 195 — 1900 < 03, i=1,2,3,
ol <ty
2 <s1+ M
|51 — M| ’
wl-zg+v2~xz < tog,
2 < 82+ My
|52 — M>| ’
w2~z§+v3~:z:g < 'ts,
2| < s+ M
|53 — M3 '
10 <t; <ul, i=1,2,3,
L? <s; <U?, 1=1,2,3,

1,2 1,2 1,2
v o2 03wt u? ud wt w?, ug, we, vy € Q

where
1,1 1,1 1 1,1
My =w" -z, +u ~y0+uofEmin(’u oxo),

2.,2 .2 .2 2 2.2 1,1
My =w"-z5+u 'yoero*Emin(U Sxn +w ~zo),

Mz =u?y2+ v — Er‘ilin(v3 cad +w? zf)
Proof. The proof is similar to the proof of Theorem 2.3.
Now the stages’ efficiency scores that are unique can be computed as the follows:

1x 1 1= 1 *
w 'Zo+u 'yo+u0

El
1= 1
vz,

o

)

2% 2 2% 2 *
w -zl +utT - ys + wy
1x , 51 2% | 2
w z;+v x5

2 _
E? = :

3691
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] 2| [v zt| v |

21 | Stagel 21 Stage 2 _22’2,,71’ Stage q _zt' """"" r o1 Stagep | y?
— A — U —]

FIGURE 2. General multi-stage series structure.

3% 3 *
3o Y YT
w22 4B g3

I 2% , 3% 1% 2% .3 1 2%

where (v B R TR VA Vel T A T R ] ,uS,wS,vS) are the optimal weights of model (3.2).
4. GENERAL MULTI-STAGE STRUCTURE

In this section, we consider a general multi-stage series peocess, as depicted in Figure 2 [14]. The overall
efficiency based on Nash bargaining game approach is obtained by the following model:

1 1 p—1
ESNCmax<wl'Z"+u 'yieré,El >H<wq.zg+uq.yg+w8Eq )

min —1 min
S A
D
wegp sl
p—1 p—1 D P min
w 2o  +UP-x0
s.t.
Wb
1. .1 > Emin’
vl -z
w2l +ul -yl +wg o,
— —Emin7 q:2a"~7p_17
-1 .91 q
wi=t -z T+ VY25
el
1 = in’
wP=1. 257 +or . 2 i
1,1 1,1 1
Zw + Y u 4wy <1
X1yl =5
ZMw + Y + wd 1 5 )
Z‘I—lwq—1+X‘1vq = 4 CI— 7"'7p )
YPuP + wj
Zp=lypr=1 4 Xpyr — 7’
v ud, w? >0, g=1,....p; wi are free.

(4.1)

Theorem 4.1. Let p be number of stages. Then the conic relazation of model (4.1) with extra constraints (2.3)
s as follows:

min
s.t.
P

Y 0, (p-1) <5,
q=1

ugsq +tU; —ugUy < 0y, q=1,2,...,p,
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teLg +1gsq — gLy < 04, q=1,2,...,p,
vt xy <t

2 ] <s1+M
_Sl_Ml_ = 5 15
wq*1~zg*1+vqowg§tq, q=2,...,p—1,
P
5q — M, < sq+ My, g=2,...,p—1,
WP 2T P gk <t
2 s im
[Sp — M, =% ps

Zlw! + V! —|—wé — X'l < 0,
ZWw? + Y%+ wi — (Zq_lwq_1 + Xqvq) <0, g=2,....,p—1
YPuP +wl — (ZP7 TPt 4+ XPoP) <0,

MqZO;ngla qzla"'ap7
0<o! x}) <1,
-1 _q—1
0<wi -z 0722 <1, g=2,...,p—1,
0<wP™l. 2271 poP.gP <1,
lggtq§u37 q:1a27"'ap7
LgSSqSUqu q:1727"'7p7
v ul, w? >0, g=1,....,p; wd are free (4.2)
where
My =w' -z +u' - y) +wy — Bl (v - 73),
My=w' 28 +u? yd+wl— Bl (w?h 287" + 07 28), g=2,...,p—1,
My =P - yp +wf — Efy, (WP 2070+ 0P ),
Proof. The proof is similar to the proof of Theorem 3.2. (]
Subsequently, the stages’ efficiencies F4, (¢ = 1,...,p) are obtained as follows:
Bl w2l u oyl gt
o pl* .l ’
o
w?* .« 29 4+ 2% . g4 + wi*
Eg: ° —1 yO 07 q:27"'ap_17
wq_l* . Zg + pa* . Jjg
EP — ul” - yb + wg
O wp—lx BTy g g
where (v, u?, w?*, wl"),q = 1,...,p are the optimal weights derived from model (4.2). Unlike the existing
studies [1,14] that could not maintain the relationship between the stages’ efficiencies and the overall efficiencies
in the multi-stage structure, obviously, here for DMU,, we have ESNC = 221 E?. Notice that, this relationship

also holds for models based on AED and MED in the cooperative context.

5. NUMERICAL EXAMPLES

In this section, we consider two numerical examples to illustrate the advantages of the proposed approaches.
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TABLE 2. Overall efficiency evaluation with different models.

Model (2.1) Efficiency of model (2.5) Efficiency of model (2.20) Efficiency of model (3.2)

DMUs EBCC EAC EMC ENC
1 0.7594 0.5631 0.2260 0.2537
2 1 0.9117 0.5150 0.6958
3 1 0.8747 0.6167 0.6203
4 1 0.5096 0.1099 0.1167
5 1 0.6667 0.1332 0.1425
6 1 0.9687 0.3640 0.8669
7 1 0.9121 0.6319 0.6615
8 1 0.9787 0.8901 0.9083
9 1 0.8347 0.4285 0.5054
10 1 0.8841 0.6438 0.6478
11 1 1 0.8545 0.7612
12 1 0.8743 0.6782 0.7028
13 1 1 0.8092 0.8651
14 1 0.8333 0.4326 0.5861
15 1 0.6960 0.2553 0.2656
16 1 0.6301 0.2885 0.2958
17 1 0.8354 0.4929 0.4839
18 1 0.9662 0.7730 0.7963
19 1 0.8914 0.3682 0.5375
20 1 0.8120 0.3829 0.4108
21 1 0.7843 0.3152 0.3153
22 1 1 0.5764 1
23 1 0.9473 0.7997 0.8484
24 1 0.9971 0.3104 0.8506
25 1 0.8348 0.5939 0.6045
26 1 0.6292 0.3495 0.3427
27 0.8492 0.6887 0.2921 0.3042
28 1 0.5542 0.2138 0.2285
29 1 0.6351 0.3467 0.3526
30 1 0.6887 0.2039 0.2739

— Example 1.

The data for this example is taken from Despotis et al. [14] consists of 30 DMUs with a three-stage struc-
ture, as depicted in Figure 1. The breakdown points of each stage are obtained as (EL,,, E2;,, E3. ) =
(0.2698, 0.3853,0.4149) by Du et al. [16] method. Table 2 shows the overall efficiency of four different mod-
els. The second column indicates the efficiency scores of BCC model (2.1), where the internal structure is
neglected. In the third and forth columns, we can see the overall efficiency derived from AED model (2.5)
and MED model (2.20), respectively. The last column of Table 2 also shows the overall efficiency scores
derived from model (3.2). The BCC model shows the efficiency scores of 28 DMUs equal to one, while by
considering the internal performance of system in cooperative model (2.5), only three DMUs (11, 13 and
22) and in model (3.2), only DMU22 are efficient. Also, DMUS is the most efficient DMU in cooperative
model (2.20). Further, we can see in Table 2 that DMU1 has the lowest efficiency score in model (2.1), in
contrast to the cooperative models (2.5) and (2.20) and bargaining model (3.2) indicate DMU4 as the most
inefficient DMU. Figure 3 also shows the overall efficiency distribution of four models.
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Overall efficiency

1234567 89101112131415161718192021222324252627282930
DMUs

Model (2.20) Model (3.2)

Model (2.1)

Model (2.5)

F1cURE 3. Change trend of the overall efficiency in different models.

The results of the stages’ efficiencies are reported in Table 3. Columns 2-4 and columns 5-7 show the stages’
efficiencies derived from the weights of AED and MED models in the coopeartive context, respectively. The
results show that AED and MED scores are almost consistent.

Also, the stages’ efficiency scores arising from the weights of bargaining model (3.2) are given in the last
three columns of Table 3. Although the results of model (3.2) show a significant decrease in the number of
efficient units, it has led to equilibrium between stages’ efficiency. For instance, the number of efficient DM Us
of stage 2 has been decreased from 14 DMUs in the cooperative model (2.5) to 7 units in the bargaining
model (3.2). While we can see the efficiency scores of stage 3 are improved. Unlike both cooperative models,
the bargaining model (3.2) makes an equilibrium between the stages. In general, depending on the managers’
targets, whether to maximize efficiency or to achieve an equilibrium, each of these two approaches may be
useful.

Example 2.

The data set for this example is taken from Tone and Tsutsui [38] consists of 10 vertically integrated power
companies in the US with three stages: Generation, Transmission and Distribution. The number of employees
(x!) is stage 1’s input to genetate electric power (2'), which is output from Generation stage and input to
Transmission stage. Also, the number of employees (z2) as another input of stage 2 produces electric power
sold to large customers (y?). In addition, electric power sent (22) as output from the Transmission stage
is inputted to stage 3 and alongside the number of employees (z3) generate electric power sold to small
customers (y?). Note that this three-stage process is a special case of the one given in Figure 1 by removing
y'. The breakdown points of each stage are obtained as (EL; ., E2: , E3. ) = (0.1722,0.5432,0.2134) by Du
et al. [16] method. Also, the overall efficiency of different models are summarized in Table 4. The second
column of this table shows the results of classical BCC model where the internal structure and intermediate
product are neglected. The overall efficiencies based on the network models (2.5), (2.20) and (3.2) are reported
in columns 3-5 of Table 4, respectively. We see 8 DMUs (No. 1, 3, 4, 5, 7, 8, 9 and 10) in model (2.1) that
are efficient, while the results of models (2.5), (2.20) and (3.2) show that none of the DMUs are efficient.
Table 5 also reports the stages’ efficiency scores of three different models in the presence of intermediate
products. Columns 2—4 show the stages’ efficiencies of the AED model (2.5). Also, we can see the stages’
efficiency results derived from model (2.20) in columns 5-7. The last three columns of this table also shows
the efficiency scores of model (3.2). For example, for DMUs 2, 6, 7 and 9, we can see that E? of (3.2) is
higher than E? of both cooperative models.

Moreover, we see that compared with two cooperative models (2.5) and (2.20), in spite of the efficiency
decrease of some DMUs, the second stages’ efficiencies mean are increased in the bargaining model (3.2).
Indeed, using the bargaining game approach leads to increase transmission in the power companies. As the
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TABLE 3. Stages’ efficiencies evaluation with different models.

Efficiency of model (2.5)  Efficiency of model (2.20)  Efficiency of model (3.2)

DMUs E! E? E3 E? E? E3 E? E? E®

1 0.5384 0.6367 0.5141 0.6395 0.5469 0.6463 0.5101 0.6081 0.8177
2 0.7381 1 1 0.5859 0.8943 0.9830 0.6958 1 1
3 1 1 0.6242 1 1 0.6167 0.9999 1 0.6204
4 0.3392 0.4596 0.7299 0.3094 0.5028 0.7063  0.3293 0.5029 0.7047
5 0.0001 1 1 0.2691 0.4948 1 0.3000 0.4748 1
6 1 1 0.9060 0.5940 0.9649 0.6350 0.9638 1 0.8995
7 0.7364 1 1 0.6797 0.9297 1 0.6938 0.9535 1
8 0.9361 1 1 0.9652 1 0.9318  0.9689 1 0.9375
9 1 1 0.5041 0.8941 0.8476 0.5655 0.8888 1 0.5686
10 1 1 0.6524 1 1 0.6438 1 1 0.6478
11 1 1 1 1 0.9182 0.9306 0.9752 0.8881 0.8789
12 0.8724 0.9496 0.8009 0.8186 0.8287 0.9997 0.8291 0.8477 1

13 1 1 1 0.9921 0.8490 0.9607 0.9929 0.8916 0.9772
14 1 0.8819 0.6181 0.9828 0.7303 0.6028 1 0.7850 0.7466
15 0.6142 0.6519 0.8220 0.5026 0.6127 0.8292 0.5049 0.6306 0.8341
16 0.5243 0.5551 0.8107 0.5814 0.6193 0.8013 0.5932 0.6231 0.8000
17 0.7713 0.7839 0.9511 0.6971 0.7414 0.9537 0.6584 0.8493 0.8653
18 1 0.8985 1 0.9999 0.7732 0.9999 1 0.7963 1
19 0.6742 1 1 0.5347 0.7172 0.9603 0.6368 0.8441 1
20 0.4361 1 1 0.3834 0.9988 0.9998  0.4108 1 1
21 0.3528 1 1 0.3204 1 0.9837  0.3401 0.9875 0.9389
22 1 1 1 0.7120 0.9711 0.8337 1 1 1
23 0.9992 0.9962 0.8465 0.9970 0.9669 0.8295 0.9999 0.9996 0.8488
24 0.9981 0.9961 0.9970 0.8786 0.6272 0.5633  0.9809 0.9538 0.9092
25 1 0.7443 0.7600 1 0.7099 0.8366 1 0.7182 0.8417
26 0.7264 0.7477 0.4136 0.7080 0.8367 0.5899  0.7206 0.7106 0.6693
27 0.5720 0.7627 0.7313 0.5323 0.7445 0.7371  0.5451 0.7581 0.7361
28 0.0807 0.5818 1 0.3454 0.6192 1 0.3715 0.6152 1
29 0.1458 0.7596 1 0.4320 0.8024 1 0.4414 0.7988 1
30 0.4581 0.6079 1 0.3886 0.5331 0.9842 0.4356 0.6287 1

TABLE 4. Change trend of overall efficiency in different models.

Model (2.1)  Additive model (2.5) Multiplicative model (2.20) Bargaining model (3.2)

DMUs EBCC FAC EMC ENC

1 1 0.7750 0.3278 0.4501
2 0.6301 0.6353 0.0612 0.1318
3 1 0.9997 0.7915 0.9457
4 1 0.7656 0.2354 0.2525
5 1 0.7180 0.1916 0.1922
6 0.7693 0.8337 0.5227 0.6425
7 1 0.8343 0.5584 0.5620
8 1 0.8815 0.6656 0.6500
9 1 0.8911 0.9075 0.9878
10 1 0.6349 0.1706 0.1752
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TABLE 5. Change trend of stages’ efficiencies in different models.

Additive model (2.5) Multiplicative model (2.20)  Bargaining model (3.2)
DMUs E' E? E? E! E? E® E' E? E®

1 0.6328 0.7590 0.9332 0.4878 0.6915 0.9719 0.6324 0.7326 0.9714
2 0.2540 0.7771 0.8752 0.2596 0.3301 0.7145 0.2352 0.8883 0.6305
3 1 1 0.9990 0.9999 0.9878 0.8014 0.9992  0.9986 0.9478
4 0.2967 1 1 0.2555 0.9212  0.9999 0.2967 0.8512  0.9999
5 0.2002 1 0.9537 0.2010 0.9993 0.9539 0.2014 0.9997 0.9544
6 1 0.6865 0.8147 0.9914 0.5631 0.9365 0.9994 0.7082 0.9078
7 0.7091 0.8599 0.9339 0.6257 0.9742 0.9160 0.6061 1 0.9272
8 0.7847 0.8599 1 0.7280 0.9145 0.9999 0.7106  0.9151  0.9996
9 1 0.6881 0.9850 0.9991 0.9177 0.9898 0.9994 0.9996 0.9888
10 0.2616 0.7333 0.9099 0.2426 0.8531 0.8243 0.2488 0.8540 0.8246

results show, the second stage efficiency mean in models (2.5), (2.20) and (3.2) are 0.8364, 0.8152 and 0.8947,
respectively. Each stage in the cooperative approach tries to achieve the weights to maximise its efficiency,
but cannot affect the weights of other stages. In other words, each stage’s weights are independent of the
weights of the other stages. While in model based on the bargaining approach, each stage’s weights may
depend on the weights of the other stages.

6. CONCLUSIONS

Conventional DEA models ignore the internal structure of DMUs and treat them as black box. In this paper,
to identify the internal performance of system, we studied a three-stage network structure containing exogenous
inputs and outputs. First, for the overall efficiency decomposition into stages’ efficiency, we proposed cooper-
ative AED and MED based models. Since the proposed models are nonlinear and the use of Charnes—Cooper
transformation lead to parametric linear models, we used conic relaxation approach to solve them. On the other
hand, in order to make an equilibrium based on the negotiation between the stages in the production process,
we applied Nash bargaining game approach on the cooperative model that besides maintaining advantages of
the cooperative model, provides a unique and fair decomposition of the overall efficiency. For the proposed
nonlinear bargaining model a conic relaxation is presented instead of a parametric approach used in [1] for a
special structure. The results of both multiplicative cooperative and bargaining models on two numerical exam-
ples show that the overall efficiency is equal to the product of the stages’ efficiencies. Also, the overall efficiency
of additive cooperative model is equal to arithmetic mean of stages’ efficiencies. In general, depending on the
managers’ targets in an organization, whether to maximize the stages’ efficiencies or to made equilibrium and
fair allocation, each of these two approaches can be applied.
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