
RAIRO-Oper. Res. 56 (2022) 979–1012 RAIRO Operations Research
https://doi.org/10.1051/ro/2021167 www.rairo-ro.org

ANALYSIS OF A BULK ARRIVAL N-POLICY QUEUE WITH TWO-SERVICE
GENRE, BREAKDOWN, DELAYED REPAIR UNDER BERNOULLI VACATION

AND REPEATED SERVICE POLICY

Anjana Begum* and Gautam Choudhury

Abstract. This article deals with an unreliable bulk arrival single server queue rendering two-
heterogeneous optional repeated service (THORS) with delayed repair, under Bernoulli Vacation Sched-
ule (BVS) and 𝑁 -policy. For this model, the joint distribution of the server’s state and queue length
are derived under both elapsed and remaining times. Further, probability generating function (PGF)
of the queue size distribution along with the mean system size of the model are determined for any
arbitrary time point and service completion epoch, besides various pivotal system characteristics. A
suitable linear cost structure of the underlying model is developed, and with the help of a difference
operator, a locally optimal 𝑁 -policy at a lower cost is obtained. Finally, numerical experiments have
been carried out in support of the theory.
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1. Introduction

Service interruption is a very demanding research topic in queueing systems. It is encountered in many day-
to-day congestion scenarios noticed in the ticket counters, hospitals, banks, production systems, communication
networks etc. The interruption in service due to server breakdown and server absence or vacation are nearly
inescapable and inclusion of which makes a queueing model more resilient.

Most of the classical queueing models are devoted to the study of a reliable server. But in real life, existence
of a perfect reliable server is practically impossible, and servers are often susceptible to unforeseen failures.
White and Christie [47] were the first to study a queueing model with an unreliable server subjecting it to
instantaneous repair. To cite a few papers on an unreliable server with immediate repairability, the authors
refer to the works of Li et al. [25], Madan [29], Wang [46], Krishnamoorthy et al. [20], Abbas and Aissani [1].
But instantaneous repair of a broken server may be delayed due to technical difficulty, unavailability of the
technician, equipment or several other reasons. The notion of delay in repair usually termed as the delayed
repair, was introduced by Madan [28] for an 𝑀/𝑀/1 queue with delay and repair time following general and
exponential distribution, respectively. Kumar and Arumuganathan [21] studied an unreliable 𝑀𝑋/𝐺/1 retrial
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queue with optional service where two different kinds of repair, i.e. repair time of server during patient and
impatient customers, are considered. Peng et al. [35] analyzed an 𝑀/𝐺/1 queue with pre-emptive resume priority
and collisions subject to server’s breakdown and delayed repair under linear retrial policy. Choudhury and Kalita
[7] investigated an 𝑀/𝐺/1 delayed repair queue where both the delay and repair times are assumed to follow
the general distribution. Saggou et al. [36] examined an unreliable 𝑀/𝐺/1 retrial queue with delay in repair
and two kinds of customers (transit and recurrent). Singh et al. [38] discussed an 𝑀𝑋/𝐺/1 queue with delayed
repair where the server undergoes different compulsory phases of repair.

Queueing models with server vacation is a common instance of record perceived in many real-life queueing
phenomena, incorporation of which adds more realisticity and pliability in the system. An extensive survey on
vacation queue can be reported in the works of Doshi [12], Takagi [43], Tian and Zhang [45]. Different queueing
models undergo different server vacations however, the vacation policy studied in this research work follows the
Bernoulli schedule. Pioneering works on Bernoulli schedule can be seen in the study of Keilson and Servi [18].
Madan et al. [31] have studied a single server queue under BVS, where he analyzed the stationary queue size
distribution besides various performance measures. Maraghi et al. [33] investigated a single server queue with
service interruptions under BVS assuming general vacation and exponential repair time distribution and have
derived the PGF of the system size. Khalaf et al. [19] generalized this model by introducing general repair time.
Choudhury and Deka [5] developed an unreliable 𝑀/𝐺/1 queue with two phases of service and BVS, where
they determined the stability queue length distribution at arbitrary and departure epoch. Further, Choudhury
and Deka [6] generalized their earlier model [5] by addendum of multiple vacation policy to it. Li et al. [27]
discussed an 𝑀/𝐺/1 retrial queue where the retrial times follows general distribution and the server undergoes
a working vacation following the Bernoulli schedule.

Control of a queue and a vacation period is one of the most significant areas of research. To cap the queue
and vacation length, various control operating policies can be used. This study opts for stationary 𝑁 -policy
which recieved most attention because it is analytically more easier to deal with than the other policies. Lee and
Srinivasan [23] introduced the concept of 𝑁 -Policy for a batch arrival queue. Later, Lee et al. [24] developed a
suitable linear cost function to determine an optimal threshold using the system size distribution. Choudhury
and Paul [8] analyzed a batch arrival queue under 𝑁 -policy with a second optional service. They discussed the
PGF of the queue size distribution at random and departure epoch and provided a simple procedure to derive the
optimal policy. Choudhury et al. [9] further generalized its previous model by incorporating service interruptions
and delayed repair. Ke et al. [17] explored an 𝑀𝑋/𝐺/1 queue with 𝑁 -policy where the server is allowed to take
at most 𝐽 vacations until the number of customers accumulates to 𝑁 after returning from a vacation. Tadj and
Yoon [41] examined an unreliable 𝑀/𝐺/1/𝑁 -policy queue where they applied binomial schedule with 𝑘 vacations
instead of BVS and developed a cost structure consisting of two decision variables. Kalita and Choudhury [15]
investigated an unreliable 𝑁 -policy queue and analyzed the Laplace Stieltjes Transform (LST) of the system’s
reliability function with the mean time to first failure of the server. Lately, Lan and Tang [22] discussed a
𝐺𝐸𝑂/𝐺/1 queue with 𝑁 -policy and Bernoulli feedback under modified multiple vacations.

In this article, an 𝑀𝑋/

(︂
𝐺1

𝐺2

)︂
/1 re-service queue with service interruption and 𝑁 -policy is considered. Accord-

ing to 𝑁 -policy, the server remains idle till the queue length accumulates to 𝑁 (a threshold value) and resumes
service as soon as it becomes equal to or exceeds the threshold value 𝑁 (≥ 1). Once the queue length is 𝑁 , the
service begins, and the customers are given a choice between two heterogeneous services where they have an
option for re-service. Under the service mechanism THROS, the server provides two different genres of services
to its customers with probabilities, say 𝑞1/𝑞2 associated with each service genre, having an additional advantage
of repeating the same service once with probability 𝑧1/𝑧2 in case of dissatisfaction. After each busy period, the
server either undergoes a vacation of random length with some probability, say 𝑝1, or starts a new service with
its complementary probability, say 𝑝2. While in service, the server is subject to abrupt failures, which then can
be fixed. The efficiency and outcome of the queueing systems are extremely affected by service interruptions.

In recent years several models have evolved with THROS. The notion of THROS was first analyzed by Madan
et al. [30] for bulk arrival queue, where they evaluated the stationary PGF of the queue size and average waiting
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time in the queue/system. Tadj and Ke [40] examined a single server queue delivering two phases of service
where the first phase of service offered a choice of either service to its customers and obtained an optimal control
policy for it. Baruah et al. [3] analyzed a single server vacation queue with THROS, including the concept of
balking. Kalita and Choudhury [16] examined a single server queue under THROS with randomized vacation
policy and obtained important performance characteristics. Investigations so far, have considered only THORS
owing to mathematical convenience, though a larger number of such services is definitely more desired. By
generalizing the results of THORS findings with more than two service genres can be easily developed.

In queueing paradigm, several researchers have discussed individual or a few realistic queueing phenomenons
like two genre of service, re-service, unreliable server, delayed repair, Bernoulli schedule, 𝑁 -policy. But to the
best of author’s knowledge, no queueing literature is found, which analyzes all these features together. Owing
to application of such models in real-life systems where these queueing concepts are common, there is a need for
such research work that combines all these features together. So, to fulfil this research gap, this study proposes
an 𝑀𝑋/𝐺/1 queue under the realistic phenomena of (i) two genre of service, (ii) repeated service, (iii) server
failure, (iv) delay in repair, (v) Bernoulli vacation and (vi) 𝑁 -policy. Also, few unanswered questions elemented
below have been attempted to address:

– Real life application of such model.
– Queue size PGF of an idle period.
– Joint PGF of server’s state and queue length under elapsed time.
– Marginal PGF/PDF of server’s state and queue length.
– Double transform under elapsed and remaining time.
– Steady-state queue size distribution at random/service completion epoch.
– Stationary system state probabilities for various states of the server.
– Steady-state availability and failure frequency of the server.
– Optimal cost policy for the underlying model.

When all the adversities are taken together, it involves functional equations. So, to tackle this difficulty and
obtain the exact solution for the above-mentioned results, the well known supplementary variable technique
under some suitable transformations are applied. These transformations make the calculations of the remaining
time distribution results possible without even setting the Kolmogorov Backward recurrence equations. The
marginal PGF and PDFs follows trivially from the joint distributions without involving much complexities of
integration. However, very few works are available in the literature with this type of transformation. Takagi
[42,44] first used these kind of transformations for a time-dependent 𝑀/𝐺/1 vacation queue.

The proposed model may find a potential application in the Discontinuous Reception (DRX) mechanism with
flexible Transmission Time Interval (TTI) of the fifth-generation (5G) network that allows a User Equipment
(UE) to enter a sleep period, thereby saving power. Here in this framework, the Short Transmission Time
Interval (STTI) or the Long Transmission Time Interval (LTTI) are modelled as THROS, moving to DRX cycle
or continuing transmission is modelled as BVS, and network congestion is modelled as server breakdown. As
UEs are susceptible to abrupt failures and network failure affects their performance immensely, it motivated
the authors to study such a system from the consideration of queueing and reliability. Hence, this research
work investigates an unreliable queueing model with THORS under BVS and 𝑁 -policy. The application of the
underlying model is explained in details in Section 2.

The essential features of this article are: Section 2 gives a real-world justification of the proposed model.
Section 3 describes the underlying stochastic model. Section 4 puts forward the Kolmogorov equations governing
the model under consideration. Section 5 finds the joint distribution of the server’s state and queue length under
elapsed and remaining times. Section 6 obtains the system size distribution at service termination epoch, and
the performance measures of the model are discussed in Section 7. Section 8 develops an optimal operating
policy of the model, and Section 9 illustrates a numerical example supporting the theory. Finally, a concluding
remark is summarized in Section 10.
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2. Real world implementation of the model proposed

In mobile communications and wireless networks, power saving is an important issue of the UE, and there
is a huge literature on it [11, 13]. The Long Term Evolution/Long Term Evolution-Advanced (LTE/LTE-A)
technology uses the DRX mechanism to reduce the energy consumption of UEs by allowing them to turn off
their components whenever there is no arrival of data. The DRX mechanism is such that if there are no packets
in the system seeking service, the system moves to an inactivity timer state (ITS), whereas the arrival of a
packet moves the system to an active state where the service is rendered to the packets. ITS is a state in which
the UE waits before starting DRX. Once all the packets in the buffer are served, the system again moves to
ITS and waits for new arrival for some random amount of time. If there is no packet indication in the buffer
before termination of the inactivity timer (IT), it makes the system move on DRX cycle in sequence with
some probability “𝑝1” (say) for a short period of time up to a fixed number, and after that, a long DRX cycle
begins and so on until a packet arrives. If a packet arrives it gets served with the complementary probability
“𝑝2 = (1− 𝑝1)”. The structure of a DRX mechanism is explained in Figure 1.

Figure 1. Structure of the DRX mechanism.

LTE/LTE-A uses fixed TTI of length 1 ms for transmission, so to deal with the multifarious data traffic
increasing in various UE, it is unsuitable in its current state for 5G communications. The 5G network comprises
of two flexible TTIs, namely the STTI and LTTI, to handle the diversified data traffic with various requirements
of the UEs. Generally, for processing high volume data at a minimal rate, STTI is used, and for cellular network
services, LTTI is used. A comprehensive survey on 5G wireless networks can be observed in the works of Agiwal
et al. [2]. Maheshwari et al. [32] suggested a semi-Markov model to explore the DRX mechanism with flexible
TTI for 5G communications and analyzed the power-saving factor, and proposed an algorithm for the TTI
selection for different service requirements.
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Employing N-policy in the DRX system implies that every packet that arrives in the buffer are not served
immediately. The system becomes operative only when there are 𝑁 or more packets in the buffer in the power-
saving state of the UE. As soon as the number of packets are indicated to be 𝑁 in the buffer, the service starts
immediately; otherwise the short DRX cycles keep on occurring successively, followed by long DRX cycles.
Gautam et al. [14] suggested an 𝑀𝑋/𝐺/1 vacation queueing model with N-policy in the DRX mechanism of
the LTE-A networks.

In this study, the packets that arrive in the buffer are assumed to follow the compound poisson process and
are served only when the number of packets add up to 𝑁 in the buffer. As soon as the number of packets
in the buffer builds up to 𝑁 , the packets can choose any of the TTI with probability 𝑞1/𝑞2 (say) and repeat
its transmission once if needed with probability 𝑧1/𝑧2 (say) indicating THROS. After transmission and re-
transmission, the system moves to a DRX cycle with probability 𝑝1, or continue transmitting with probability
𝑝2, thereby signifying a BVS. While transmission of a packet is in progress, it is very likely that there might be
transmission interruption owing to network failure, congestion etc., implying breakdown of the service station.
The failure of an UE due to network congestion can sometimes be gained by restarting the UE or sometimes by
waiting till the network provider fixes it by themselves. However, fixing of a failed network may not always be
immediate due to unavailability of the technician, scarcity of equipment etc., signifying a delay in repair. Thus,
clubbing N-policy and DRX mechanism can lead to more power saving of 5G networks.

3. Description of the mathematical model

This research study considers a queueing system where the customers arrive in the system in batches of
different sizes conforming to a compound Poisson process with a rate of arrival 𝜆 > 0. Let Ξ be the number
of individual primary units in a batch and Ξ1, Ξ2, . . . be the successively arriving batch sizes which are inde-
pendently and identically distributed (i.i.d) random variables (r.v). The probability mass function (PMF) and
PGF of Ξ are given by 𝑤𝑙 = 𝑃𝑟[Ξ = 𝑙]; 𝑙 = 1, 2, · · · and 𝑃Ξ(𝑠) =

∑︀∞
𝑙=1 𝑤𝑙𝑠

𝑙 (| 𝑠 |≤ 1) respectively with finite
factorial moment 𝜇

(𝑙)
Ξ = 𝐸[Ξ(Ξ − 1) · · · (Ξ − 𝑙 + 1)]. Thus, if 𝑙 is the number of customers in a batch, then the

rate of arrival of 𝑙 units in a batch is 𝑤𝑙𝜆.
The single server here provides two different service genre on a first come first serve basis. The server turns off

its services when the system empties and re-establishes the service immediately upon the system size exceeding
or being equal to 𝑁(≥ 1, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). Before the start of a busy period each customer either selects the first genre
of service (FGS) with probability “𝑞1” or the second genre of service (SGS) with probability “𝑞2” (𝑞1 + 𝑞2 = 1).
The service time provided in the FGS and SGS are i.i.d r.v denoted by 𝐴1 and 𝐴2 respectively follows the general
law of probability (g.l.p) with cumulative distribution function (c.d.f) 𝐹𝐴𝑖(𝑥), LST 𝐹 *𝐴𝑖

(𝜂) =
∫︀∞
0

𝑒−𝜂𝑥 d𝐹𝐴𝑖(𝑥)
and 𝑙th finite moment 𝜇

(𝑙)
𝐴𝑖

(𝑙 = 1, 2, · · · ) ∀ 𝑖 = 1, 2 (𝑖 takes the value 1 for the FGS and 2 for the SGS).
The model considers that as soon as a chosen service of any genre is completed by the server, the customer

may further opt to repeat the same genre of service but only once with probability 𝑧𝑖 or leave the system with
its complementary probability (1 − 𝑧𝑖) for 𝑖 = 1, 2. The re-service time of the server is an i.i.d r.v denoted
by 𝑄𝑖 which follows the g.l.p with c.d.f 𝐹𝑄𝑖(𝑥), LST 𝐹 *𝑄𝑖

(𝜂) =
∫︀∞
0

𝑒−𝜂𝑥d𝐹𝑄𝑖(𝑥) and 𝑙th finite moment 𝜇
(𝑙)
𝑄𝑖

(𝑙 = 1, 2, · · · ) ∀ 𝑖 = 1, 2.
The server after completion of a service along with its repeated service of any genre may enter into a vacation

period of random duration 𝐵 with probability 𝑝1 or continue staying in the system and serve the next unit, if
any, with probability 𝑝2 such that 𝑝1 + 𝑝2 = 1. The duration of vacation period 𝐵 is an i.i.d r.v following the
g.l.p with c.d.f 𝐹𝐵(𝑥), LST 𝐹 *𝐵(𝜂) =

∫︀∞
0

𝑒−𝜂𝑥d𝐹𝐵(𝑥) and 𝑙th finite moment 𝜇
(𝑙)
𝐵 (𝑙 = 1, 2, · · · ).

As the server considered here is unreliable; therefore, the server may breakdown at any instant while providing
service of any genre. The inter-arrival of breakdown time is assumed to follow an exponential distribution with
breakdown rates 𝛼1 for FGS/FGRS and 𝛼2 for SGS/SGRS. Occurrence of a breakdown makes the server
unavailable for an unspecified period of time until it is fixed (repaired). When the server breaks down the one
in service waits for the server to get repaired and after that completes his remaining service. Consequently,
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the service time is cumulative in nature. While fixing the server many of the times it is not always immediate,
rather subject to some delays owing to many reasons. The delay time is an i.i.d r.v 𝐿𝑖 following the g.l.p with
c.d.f 𝐹𝐿𝑖(𝑦), LST 𝐹 *𝐿𝑖

(𝜂) =
∫︀∞
0

𝑒−𝜂𝑦 d𝐹𝐿𝑖(𝑦) and 𝑙th finite moment 𝜇
(𝑙)
𝐿𝑖

(𝑙 = 1, 2, · · · ). Similarly, the repair time

is also an i.i.d r.v 𝑇𝑖 following g.l.p with c.d.f 𝐹𝑇𝑖(𝑦), LST 𝐹 *𝑇𝑖
(𝜂) =

∫︀∞
0

𝑒−𝜂𝑦 d𝐹𝑇𝑖(𝑦) and 𝑙th finite moment 𝜇
(𝑙)
𝑇𝑖

(𝑙 = 1, 2, · · · ) for 𝑖 = 1, 2.
Further, the input process, service time, re-service time, vacation time, server’s lifetime, delay time and repair

time are all assumed to be mutually independent of each other.
In consideration of the above discussion a sample path of the model discussed above is depicted in Figure 2.

Figure 2. Sample path of the proposed model.

The state transition diagram for the same is represented in Figure 3 where a 2-tuple (𝜏, 𝜗) denotes the state
of the system. The variable 𝜏 denotes the number of units in the system at time 𝑡 and 𝜗 denotes the state of
the system at time 𝑡; where 𝜏 ∈ {0, 1, . . .} and 𝜗 ∈ {0, 1, 2, 3, 4, 5, 6}. 0 – idle period, 1 – vacation period, 2 –
busy period with FGS, 3 – busy period with FGRS, 4 – busy period with SGS, 5 – busy period with SGRS, 6
– breakdown period for 𝜗 ∈ {0, 1, 2, 3, 4, 5, 6}.

4. Governing equations

This section frames the equations governing the system states taking into account elapsed service time 𝐴0
𝑖 (𝑡),

elapsed re-service time 𝑄0
𝑖 (𝑡), elapsed delay time 𝐿0

𝑖 (𝑡), elapsed repair time 𝑇 0
𝑖 (𝑡) (𝑖 = 1, 2) and elapsed vacation

time 𝐵0(𝑡) at time 𝑡 as supplementary variables and 𝐴+
𝑖 (𝑡), 𝑄+

𝑖 (𝑡), 𝐿+
𝑖 (𝑡), 𝑇+

𝑖 (𝑡) (𝑖 = 1, 2) and 𝐵+(𝑡) be the
corresponding remaining service, re-service, delay, repair and vacation times respectively at time 𝑡.
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Figure 3. State Transition Diagram of the proposed model.

Let the random variable 𝜍(𝑡) define the various status of the server at time 𝑡. Then for 𝑖 = 1, 2,

𝜍(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, idle
1, rendering the 𝑖th genre of service
2, rendering the 𝑖th genre of re-service
3, waiting for repair during 𝑖th genre of service
4, waiting for repair during 𝑖th genre of re-service
5, under repair during 𝑖th genre of service
6, under repair during 𝑖th genre of re-service
7, vacation.

Let 𝑁(𝑡) be the number of customers present in the system at time 𝑡 and {𝑁(𝑡), 𝜍(𝑡); 𝑡 ≥ 0} be a bivariate
Markov Process, where {𝜍(𝑡), 𝑡 ≥ 0} is an elemental process and {𝑁(𝑡), 𝑡 ≥ 0} is a perceivable process having
{0,1,· · · } as the state space.
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The limiting probabilities for the steady-state analysis, given the elapsed and remaining times as 𝑥, 𝑦 and
𝑟, 𝑣 respectively, can be defined as follows:
For 𝑛 = 0, 1, · · ·𝑁 − 1,

𝐼𝑛 = lim
𝑡→∞

𝑃𝑟{𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 0}.

For 𝑛 = 1, 2, · · · and 𝑖 = 1, 2,

𝑓𝐴𝑖,𝑛
(𝑥) d𝑥 = lim

𝑡→∞
𝑃𝑟

{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 1; 𝑥 < 𝐴0

𝑖 (𝑡) ≤ 𝑥 + d𝑥
}︀

; 𝑥 > 0

𝑓𝐴+
𝑖,𝑛

(𝑟) d𝑟 = lim
𝑡→∞

𝑃𝑟
{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 1; 𝑟 < 𝐴+

𝑖 (𝑡) ≤ 𝑟 + d𝑟
}︀

; 𝑟 > 0

𝑓𝑄𝑖,𝑛
(𝑥) d𝑥 = lim

𝑡→∞
𝑃𝑟

{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 2; 𝑥 < 𝑄0

𝑖 (𝑡) ≤ 𝑥 + d𝑥
}︀

; 𝑥 > 0

𝑓𝑄+
𝑖,𝑛

(𝑟) d𝑟 = lim
𝑡→∞

𝑃𝑟
{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 2; 𝑟 < 𝑄+

𝑖 (𝑡) ≤ 𝑟 + d𝑟
}︀

; 𝑟 > 0

𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦) d𝑦 = lim

𝑡→∞
𝑃𝑟

{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 3; 𝑦 < 𝐿0

𝑖 (𝑡) ≤ 𝑦 + d𝑦|𝐴0
𝑖 (𝑡) = 𝑥

}︀
; 𝑥 > 0; 𝑦 > 0

𝑓𝐴𝑖

𝐿+
𝑖,𝑛

(𝑟, 𝑣) d𝑣 = lim
𝑡→∞

𝑃𝑟
{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 3; 𝑣 < 𝐿+

𝑖 (𝑡) ≤ 𝑣 + d𝑣|𝐴+
𝑖 (𝑡) = 𝑟

}︀
; 𝑟 > 0; 𝑣 > 0

𝑓𝑄𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦) d𝑦 = lim

𝑡→∞
𝑃𝑟

{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 4; 𝑦 < 𝐿0

𝑖 (𝑡) ≤ 𝑦 + d𝑦|𝑄0
𝑖 (𝑡) = 𝑥

}︀
; 𝑥 > 0; 𝑦 > 0

𝑓𝑄𝑖

𝐿+
𝑖,𝑛

(𝑟, 𝑣) d𝑣 = lim
𝑡→∞

𝑃𝑟
{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 4; 𝑣 < 𝐿+

𝑖 (𝑡) ≤ 𝑣 + d𝑣|𝑄+
𝑖 (𝑡) = 𝑟

}︀
; 𝑟 > 0; 𝑣 > 0

𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦) d𝑦 = lim

𝑡→∞
𝑃𝑟

{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 5; 𝑦 < 𝑇 0

𝑖 (𝑡) ≤ 𝑦 + d𝑦|𝐴0
𝑖 (𝑡) = 𝑥

}︀
; 𝑥 > 0; 𝑦 > 0

𝑓𝐴𝑖

𝑇+
𝑖,𝑛

(𝑟, 𝑣) d𝑣 = lim
𝑡→∞

𝑃𝑟
{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 5; 𝑣 < 𝑇+

𝑖 (𝑡) ≤ 𝑣 + d𝑣|𝐴+
𝑖 (𝑡) = 𝑟

}︀
; 𝑟 > 0; 𝑣 > 0

𝑓𝑄𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦) d𝑦 = lim

𝑡→∞
𝑃𝑟

{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 6; 𝑦 < 𝑇 0

𝑖 (𝑡) ≤ 𝑦 + d𝑦|𝐴0
𝑖 (𝑡) = 𝑥

}︀
; 𝑥 > 0; 𝑦 > 0

𝑓𝑄𝑖

𝑇+
𝑖,𝑛

(𝑟, 𝑣) d𝑣 = lim
𝑡→∞

𝑃𝑟
{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 6; 𝑣 < 𝑇+

𝑖 (𝑡) ≤ 𝑣 + d𝑣|𝐴+
𝑖 (𝑡) = 𝑟

}︀
; 𝑟 > 0; 𝑣 > 0.

For 𝑛 = 0, 1, · · · ,

𝑓𝐵𝑛
(𝑥) d𝑥 = lim

𝑡→∞
𝑃𝑟

{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 7; 𝑥 < 𝐵0(𝑡) ≤ 𝑥 + d𝑥

}︀
; 𝑥 > 0

𝑓𝐵+
𝑛

(𝑟) d𝑟 = lim
𝑡→∞

𝑃𝑟
{︀
𝑁(𝑡) = 𝑛, 𝜍(𝑡) = 7; 𝑟 < 𝐵+(𝑡) ≤ 𝑟 + d𝑟

}︀
; 𝑟 > 0.

Further, in the steady-state it is assumed that 𝐹𝐵(0) = 0, 𝐹𝐵(∞) = 1, 𝐹𝐴𝑖
(0) = 0, 𝐹𝐴𝑖

(∞) = 1, 𝐹𝑄𝑖
(0) = 0,

𝐹𝑄𝑖(∞) = 1, 𝐹𝐿𝑖(0) = 0, 𝐹𝐿𝑖(∞) = 1 and 𝐹𝑇𝑖(0) = 0, 𝐹𝑇𝑖(∞) = 1(𝑖 = 1, 2). Also, 𝐹𝐴𝑖(𝑥), 𝐹𝑄𝑖(𝑥) and 𝐹𝐵(𝑥)
being continuous at 𝑥 = 0, with 𝐹𝐿𝑖

(𝑦) and 𝐹𝑇𝑖
(𝑦) being continuous at 𝑦 = 0, such that

𝜅𝑖(𝑥) d𝑥 =
d𝐹𝐴𝑖

(𝑥)

1− 𝐹𝐴𝑖
(𝑥)

, 𝜔𝑖(𝑥) d𝑥 =
d𝐹𝑄𝑖

(𝑥)

1− 𝐹𝑄𝑖
(𝑥)

𝜙(𝑥) d𝑥 =
d𝐹𝐵(𝑥)

1− 𝐹𝐵(𝑥)
, 𝜒𝑖(𝑦) d𝑦 =

d𝐹𝐿𝑖
(𝑦)

1− 𝐹𝐿𝑖
(𝑦)

, 𝜀𝑖(𝑦) d𝑦 =
d𝐹𝑇𝑖

(𝑦)

1− 𝐹𝑇𝑖
(𝑦)

are the first order differential (hazard rate) function of 𝐴𝑖, 𝑄𝑖, 𝐵, 𝐿𝑖 and 𝑇𝑖 respectively for 𝑖 = 1, 2 [24].

4.1. Steady-state equation

Following the arguments of Takagi [43], some suitable transformations used to analyze the limiting behaviour
of this model under the stability condition are stated below:

¯̄𝑓𝐴𝑖,𝑛(𝑥) =
𝑓𝐴𝑖,𝑛

(𝑥)
1− 𝐹𝐴𝑖(𝑥)

; 𝑛 = 1, 2, · · ·

¯̄𝑓𝑄𝑖,𝑛
(𝑥) =

𝑓𝑄𝑖,𝑛
(𝑥)

1− 𝐹𝑄𝑖
(𝑥)

; 𝑛 = 1, 2, · · ·
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¯̄𝑓𝐵𝑛
(𝑥) =

𝑓𝐵𝑛(𝑥)
1− 𝐹𝐵(𝑥)

; 𝑛 = 0, 1, · · ·

¯̄𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦) =

𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦)

(1− 𝐹𝐴𝑖
(𝑥))(1− 𝐹𝐿𝑖

(𝑦))
; 𝑛 = 1, 2, · · ·

¯̄𝑓𝑄𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦) =

𝑓𝑄𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦)

(1− 𝐹𝑄𝑖
(𝑥))(1− 𝐹𝐿𝑖

(𝑦))
; 𝑛 = 1, 2, · · ·

¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦) =

𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦)

(1− 𝐹𝐴𝑖(𝑥))(1− 𝐹𝐿𝑖(𝑦))
; 𝑛 = 1, 2, · · ·

¯̄𝑓𝑄𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦) =

𝑓𝑄𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦)

(1− 𝐹𝑄𝑖
(𝑥))(1− 𝐹𝐿𝑖

(𝑦))
; 𝑛 = 1, 2, · · ·

After applying the transformations stated above the modified Kolmogorov forward equations (Cox [10]) can
be set as,

d
d𝑥

¯̄𝑓𝐴𝑖,𝑛
(𝑥) + [𝜆 + 𝛼𝑖] ¯̄𝑓𝐴𝑖,𝑛

(𝑥) = 𝜆

𝑛∑︁
𝑙=1

𝑤𝑙
¯̄𝑓𝐴𝑖,𝑛−𝑙

(𝑥) +
∫︁ ∞

0

¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦)d𝐹𝑇𝑖

(𝑦), 𝑛 = 1, 2, · · · (4.1)

d
d𝑥

¯̄𝑓𝑄𝑖,𝑛(𝑥) + [𝜆 + 𝛼𝑖] ¯̄𝑓𝑄𝑖,𝑛(𝑥) = 𝜆

𝑛∑︁
𝑙=1

𝑤𝑙
¯̄𝑓𝑄𝑖,𝑛−𝑙

(𝑥) +
∫︁ ∞

0

¯̄𝑓𝑄𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦)d𝐹𝑇𝑖

(𝑦), 𝑛 = 1, 2, · · · (4.2)

d
d𝑥

¯̄𝑓𝐵𝑛
(𝑥) + 𝜆 ¯̄𝑓𝐵𝑛

(𝑥) = 𝜆(1− 𝛿0,𝑛)
𝑛∑︁

𝑙=1

𝑤𝑙
¯̄𝑓𝐵𝑛−𝑙

(𝑥), 𝑛 = 0, 1, · · · (4.3)

d
d𝑦

¯̄𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦) + 𝜆 ¯̄𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦) = 𝜆

𝑛∑︁
𝑙=1

𝑤𝑙
¯̄𝑓𝐴𝑖

𝐿𝑖,𝑛−𝑙
(𝑥, 𝑦), 𝑛 = 1, 2, · · · (4.4)

d
d𝑦

¯̄𝑓𝑄𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦) + 𝜆 ¯̄𝑓𝑄𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦) = 𝜆

𝑛∑︁
𝑙=1

𝑤𝑙
¯̄𝑓𝑄𝑖

𝐿𝑖,𝑛−𝑙
(𝑥, 𝑦), 𝑛 = 1, 2, · · · (4.5)

d
d𝑦

¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦) + 𝜆 ¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦) = 𝜆

𝑛∑︁
𝑙=1

𝑤𝑙
¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛−𝑙
(𝑥, 𝑦), 𝑛 = 1, 2, · · · (4.6)

d
d𝑦

¯̄𝑓𝑄𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦) + 𝜆 ¯̄𝑓𝑄𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦) = 𝜆

𝑛∑︁
𝑙=1

𝑤𝑙
¯̄𝑓𝑄𝑖

𝑇𝑖,𝑛−𝑙
(𝑥, 𝑦), 𝑛 = 1, 2, · · · (4.7)

𝜆𝐼𝑛 = 𝛿0,𝑛

[︃
𝑝2

2∑︁
𝑖=1

{︂
(1− 𝑧𝑖)

∫︁ ∞

0

¯̄𝑓𝐴𝑖,𝑛+1(𝑥) d𝐹𝐴𝑖(𝑥) +
∫︁ ∞

0

¯̄𝑓𝑄𝑖,𝑛+1(𝑥) d𝐹𝑄𝑖(𝑥)
}︂

+
∫︁ ∞

0

¯̄𝑓𝐵𝑛(𝑥) d𝐹𝐵(𝑥)

]︃

+ 𝜆(1− 𝛿0,𝑛)
𝑛∑︁

𝑙=1

𝑤𝑙𝐼𝑛−𝑙, 𝑛 = 0, 1, · · · , 𝑁 − 1 (4.8)

where 𝛿𝑖,𝑗 is the Kronecker’s delta and ¯̄𝑓𝐴𝑖,0(𝑥) = 0, ¯̄𝑓𝑄𝑖,0(𝑥) = 0, ¯̄𝑓𝐿𝑖,0(𝑦) = 0, ¯̄𝑓𝑇𝑖,0(𝑦) = 0, ¯̄𝑓𝐴𝑖

𝐿𝑖,0
(𝑥, 𝑦) = 0,

¯̄𝑓𝑄𝑖

𝐿𝑖,0
(𝑥, 𝑦) = 0, ¯̄𝑓𝐴𝑖

𝑇𝑖,0
(𝑥, 𝑦) = 0, ¯̄𝑓𝑄𝑖

𝑇𝑖,0
(𝑥, 𝑦) = 0 (𝑖 = 1, 2), ¯̄𝑓𝐵0(𝑥) = 0.

The equations established above are solved against some boundary condition set below,
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at 𝑥 = 0:

¯̄𝑓𝐴𝑖,𝑛
(0) = 𝑝2

[︃
𝑞𝑖

2∑︁
𝑖=1

{︂
(1− 𝑧𝑖)

∫︁ ∞

0

¯̄𝑓𝐴𝑛+1,𝑖
(𝑥) d𝐹𝐴𝑖

(𝑥) +
∫︁ ∞

0

¯̄𝑓𝑄𝑛+1,𝑖
(𝑥) d𝐹𝑄𝑖

(𝑥)
}︂]︃

+ 𝑞𝑖

∫︁ ∞

0

¯̄𝑓𝐵𝑛
(𝑥) d𝐹𝐵(𝑥); 𝑛 = 1, 2, · · · , 𝑁 − 1; (𝑖 = 1, 2) (4.9)

¯̄𝑓𝐴𝑖,𝑛
(0) = 𝑝2

[︃
𝑞𝑖

2∑︁
𝑖=1

{︂
(1− 𝑧𝑖)

∫︁ ∞

0

¯̄𝑓𝐴𝑛+1,𝑖
(𝑥) d𝐹𝐴𝑖

(𝑥) +
∫︁ ∞

0

¯̄𝑓𝑄𝑛+1,𝑖
(𝑥) d𝐹𝑄𝑖

(𝑥)
}︂]︃

+ 𝑞𝑖

∫︁ ∞

0

¯̄𝑓𝐵𝑛
(𝑥) d𝐹𝐵(𝑥) + 𝑞𝑖𝜆

𝑁−1∑︁
𝑙=0

𝑤𝑛−𝑙𝐼𝑙; 𝑛 = 𝑁, 𝑁 + 1, · · · (𝑖 = 1, 2) (4.10)

¯̄𝑓𝑄𝑛,𝑖
(0) = 𝑧𝑖

∫︁ ∞

0

¯̄𝑓𝐴𝑛,𝑖
(𝑥) d𝐹𝐴𝑖

(𝑥); 𝑛 = 1, 2, · · · (4.11)

¯̄𝑓𝐵𝑛
(0) = 𝑝1

[︃
2∑︁

𝑖=1

{︂
(1− 𝑧𝑖)

∫︁ ∞

0

¯̄𝑓𝐴𝑛+1,𝑖
(𝑥) d𝐹𝐴𝑖

(𝑥) +
∫︁ ∞

0

¯̄𝑓𝑄𝑛+1,𝑖
(𝑥) d𝐹𝑄𝑖

(𝑥)
}︂]︃

; 𝑛 = 0, 1, · · · (4.12)

at 𝑦 = 0 and fixed 𝑥:

¯̄𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 0) = 𝛼𝑖

¯̄𝑓𝐴𝑖,𝑛
(𝑥); (𝑖 = 1, 2) (4.13)

¯̄𝑓𝑄𝑖

𝐿𝑖,𝑛
(𝑥, 0) = 𝛼𝑖

¯̄𝑓𝑄𝑖,𝑛(𝑥); (𝑖 = 1, 2) (4.14)

¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥; 0) =

∫︁ ∞

0

¯̄𝑓𝐴𝑖

𝐿𝑖
(𝑥, 𝑦) d𝐹𝐿𝑖(𝑦); (𝑖 = 1, 2) (4.15)

¯̄𝑓𝑄𝑖

𝑇𝑖,𝑛
(𝑥; 0) =

∫︁ ∞

0

¯̄𝑓𝑄𝑖

𝐿𝑖
(𝑥, 𝑦) d𝐹𝐿𝑖

(𝑦); (𝑖 = 1, 2) (4.16)

with the normalizing condition

𝑁−1∑︁
𝑛=0

𝐼𝑛 +
∞∑︁

𝑛=1

[︃
2∑︁

𝑖=1

{︂∫︁ ∞

0

¯̄𝑓𝐴𝑖,𝑛(𝑥)[1− 𝐹𝐴𝑖(𝑥)] d𝑥 +
∫︁ ∞

0

¯̄𝑓𝑄𝑖,𝑛(𝑥)[1− 𝐹𝑄𝑖(𝑥)] d𝑥 +
∫︁ ∞

0

∫︁ ∞

0

¯̄𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦)

× [1− 𝐹𝐴𝑖(𝑥)][1− 𝐹𝐿𝑖(𝑦)] d𝑥 d𝑦 +
∫︁ ∞

0

∫︁ ∞

0

¯̄𝑓𝑄𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦)[1− 𝐹𝑄𝑖(𝑥)][1− 𝐹𝐿𝑖(𝑦)] d𝑥 d𝑦

}︂]︂
+

∞∑︁
𝑛=1

[︃
2∑︁

𝑖=1

{︂∫︁ ∞

0

∫︁ ∞

0

¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦)[1− 𝐹𝐴𝑖

(𝑥)][1− 𝐹𝑇𝑖
(𝑦)] d𝑥 d𝑦 +

∫︁ ∞

0

∫︁ ∞

0

¯̄𝑓𝑄𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦)[1− 𝐹𝑄𝑖

(𝑥)]

× [1− 𝐹𝑇𝑖(𝑦)] d𝑥 d𝑦

}︂]︃
+

∞∑︁
𝑛=0

∫︁ ∞

0

𝑓𝐵𝑛(𝑥)[1− 𝐹𝐵(𝑥)]d𝑥 = 1. (4.17)

4.2. Solution of the model

The PGFs to solve the system of equations from (4.1) to (4.16) for | 𝑠 |< 1 are defined below:

¯̄𝑃𝐴𝑖(𝑥; 𝑠) =
∞∑︁

𝑛=1

𝑠𝑛 ¯̄𝑓𝐴𝑛,𝑖(𝑥); ¯̄𝑃𝐴𝑖(0; 𝑠) =
∞∑︁

𝑛=1

𝑠𝑛 ¯̄𝑓𝐴𝑛,𝑖(0)
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¯̄𝑃𝑄𝑖
(𝑥; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛 ¯̄𝑓𝑄𝑛,𝑖
(𝑥); ¯̄𝑃𝑄𝑖

(0; 𝑠) =
∞∑︁

𝑛=1

𝑠𝑛 ¯̄𝑓𝑄𝑛,𝑖
(0)

¯̄𝑃𝐵(𝑥; 𝑠) =
∞∑︁

𝑛=0

𝑠𝑛 ¯̄𝑓𝐵𝑛(𝑥); ¯̄𝑃𝐵(0; 𝑠) =
∞∑︁

𝑛=0

𝑠𝑛 ¯̄𝑓𝐵𝑛(0)

¯̄𝑃
𝐴𝑖

𝐿𝑖
(𝑥, 𝑦; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛 ¯̄𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦); ¯̄𝑃

𝐴𝑖

𝐿𝑖
(𝑥, 0; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛 ¯̄𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥; 0)

¯̄𝑃
𝑄𝑖

𝐿𝑖
(𝑥, 𝑦; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛 ¯̄𝑓
𝑄𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦); ¯̄𝑃

𝑄𝑖

𝐿𝑖
(𝑥, 0; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛 ¯̄𝑓
𝑄𝑖

𝐿𝑖,𝑛
(𝑥; 0)

¯̄𝑃
𝐴𝑖

𝑇𝑖
(𝑥, 𝑦; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛 ¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦); ¯̄𝑃

𝐴𝑖

𝑇𝑖
(𝑥, 0; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛 ¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥; 0)

¯̄𝑃
𝑄𝑖

𝑇𝑖
(𝑥, 𝑦; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛 ¯̄𝑓
𝑄𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦); ¯̄𝑃

𝑄𝑖

𝑇𝑖
(𝑥, 0; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛 ¯̄𝑓
𝑄𝑖

𝑇𝑖,𝑛
(𝑥; 0)

𝐼𝑁 (𝑠) =
𝑁−1∑︁
𝑛=0

𝑠𝑛𝐼𝑛.

Solving (4.1)–(4.7) as usual, a set of differential equation is attained as given below,

¯̄𝑃𝐴𝑖
(𝑥; 𝑠) = ¯̄𝑃𝐴𝑖

(0; 𝑠) exp{−𝐾𝑖(𝑠)𝑥}; 𝑥 > 0 (4.18)
¯̄𝑃𝑄𝑖

(𝑥; 𝑠) = ¯̄𝑃𝑄𝑖
(0; 𝑠) exp{−𝐾𝑖(𝑠)𝑥}; 𝑥 > 0 (4.19)

¯̄𝑃𝐵(𝑥; 𝑠) = ¯̄𝑃𝐵(0; 𝑠) exp{−𝜁(𝑠)𝑥}; 𝑥 > 0 (4.20)

¯̄𝑃
𝐴𝑖

𝐿𝑖
(𝑥, 𝑦; 𝑠) = ¯̄𝑃

𝐴𝑖

𝐿𝑖
(𝑥, 0; 𝑠) exp{−𝜁(𝑠)𝑦}; 𝑥 > 0; 𝑦 > 0 (4.21)

¯̄𝑃
𝑄𝑖

𝐿𝑖
(𝑥, 𝑦; 𝑠) = ¯̄𝑃

𝑄𝑖

𝐿𝑖
(𝑥, 0; 𝑠) exp{−𝜁(𝑠)𝑦}; 𝑥 > 0; 𝑦 > 0 (4.22)

¯̄𝑃
𝐴𝑖

𝑇𝑖
(𝑥, 𝑦; 𝑠) = ¯̄𝑃

𝐴𝑖

𝑇𝑖
(𝑥, 0; 𝑠) exp{−𝜁(𝑠)𝑦}; 𝑥 > 0; 𝑦 > 0 (4.23)

¯̄𝑃
𝑄𝑖

𝑇𝑖
(𝑥, 𝑦; 𝑠) = ¯̄𝑃

𝑄𝑖

𝑇𝑖
(𝑥, 0; 𝑠) exp{−𝜁(𝑠)𝑦}; 𝑥 > 0; 𝑦 > 0 (4.24)

where 𝐾𝑖(𝑠) = 𝜁(𝑠) + 𝛼𝑖{1 − 𝐹 *𝐿𝑖
(𝜁(𝑠))𝐹 *𝑇𝑖

(𝜁(𝑠))} , (𝑖 = 1, 2) and 𝜁(𝑠) = 𝜆(1 − 𝑃Ξ(𝑠)). Equations (4.13) and
(4.14) simplifies to the following,

¯̄𝑃
𝐴𝑖

𝐿𝑖
(𝑥, 0; 𝑠) = 𝛼𝑖

¯̄𝑃𝐴𝑖
(𝑥; 𝑠); (𝑖 = 1, 2) (4.25)

¯̄𝑃
𝑄𝑖

𝐿𝑖
(𝑥, 0; 𝑠) = 𝛼𝑖

¯̄𝑃𝑄𝑖(𝑥; 𝑠); (𝑖 = 1, 2). (4.26)

Solving (4.15) and (4.16) and using (4.21) and (4.22) respectively gives the following,

¯̄𝑃
𝐴𝑖

𝑇𝑖
(𝑥, 0; 𝑠) = ¯̄𝑃

𝐴𝑖

𝐿𝑖
(𝑥, 0; 𝑠)𝐹 *𝐿𝑖

(𝜁(𝑠)); (𝑖 = 1, 2) (4.27)

¯̄𝑃
𝑄𝑖

𝑇𝑖
(𝑥, 0; 𝑠) = ¯̄𝑃

𝑄𝑖

𝐿𝑖
(𝑥, 0; 𝑠)𝐹 *𝐿𝑖

(𝜁(𝑠)); (𝑖 = 1, 2). (4.28)

Finally, using (4.25) and (4.26) in (4.27) and (4.28) gives,

¯̄𝑃
𝐴𝑖

𝑇𝑖
(𝑥, 0; 𝑠) = 𝛼𝑖

¯̄𝑃𝐴𝑖
(𝑥; 𝑠)𝐹 *𝐿𝑖

(𝜁(𝑠)); (𝑖 = 1, 2) (4.29)

¯̄𝑃
𝑄𝑖

𝑇𝑖
(𝑥, 0; 𝑠) = 𝛼𝑖

¯̄𝑃𝑄𝑖
(𝑥; 𝑠)𝐹 *𝐿𝑖

(𝜁(𝑠)); (𝑖 = 1, 2). (4.30)
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Multiplying (4.11) by 𝑠𝑛 and taking summation over 𝑛 = 1, 2, · · · , the following equation is derived,

¯̄𝑃𝑄𝑖(0; 𝑠) = 𝑧𝑖
¯̄𝑃𝐴𝑖(0; 𝑠)𝐹 *𝐴𝑖

(𝐾𝑖(𝑠)); (𝑖 = 1, 2). (4.31)

Similarly, equation (4.12) implies,

𝑠 ¯̄𝑃𝐵(0; 𝑠) = 𝑝1

[︁
(1− 𝑧1) ¯̄𝑃𝐴1(0; 𝑠)𝐹 *𝐴1

(𝐾1(𝑠)) + ¯̄𝑃𝑄1(0; 𝑠)𝐹 *𝑄1
(𝐾1(𝑠))

]︁
+ 𝑝1

[︁
(1− 𝑧2) ¯̄𝑃𝐴2(0; 𝑠)𝐹 *𝐴2

(𝐾2(𝑠)) + ¯̄𝑃𝑄2(0; 𝑠)𝐹 *𝑄2
(𝐾2(𝑠))

]︁
. (4.32)

Multiplying (4.9) and (4.10) by appropriate powers of 𝑠 and then summing over 𝑛, utilizing (4.8), (4.31),
(4.32) with the result

∑︀∞
𝑛=𝑁 𝑠𝑛

∑︀𝑁−1
𝑙=0 𝑤𝑛−𝑙𝐼𝑙 = 𝜆𝐼0 − 𝐼𝑁 (𝑠)𝜁(𝑠) the following is attained:[︀

𝑠− {𝑝2 + 𝑝1𝐹
*
𝐵(𝜁(𝑠))}

{︀
(1− 𝑧𝑖) + 𝑧𝑖𝐹

*
𝑄𝑖

(𝐾𝑖(𝑠))
}︀
𝑞𝑖𝐹

*
𝐴𝑖

(𝐾𝑖(𝑠))
]︀ ¯̄𝑃𝐴𝑖

(0; 𝑠) + 𝑞𝑖𝑠𝜁(𝑠)𝐼𝑁 (𝑠)

=
[︀
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︀
(1− 𝑧𝑖fl) + 𝑧𝑖fl𝐹

*
𝑄𝑖fl(𝐾𝑖fl(𝑠))

}︀
𝑞𝑖𝐹

*
𝐴𝑖fl(𝐾𝑖fl(𝑠))

]︀ ¯̄𝑃𝐴𝑖fl(0; 𝑠) (4.33)

where 𝑖 = 1, 2 and 𝑖fl = 2, 1.
Solving (4.33) yields the following,

¯̄𝑃𝐴𝑖
(0; 𝑠) =

𝑠𝑞𝑖𝜁(𝑠)𝐼𝑁 (𝑠)[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2). (4.34)

Putting (4.34) in (4.31) gives,

¯̄𝑃𝑄𝑖
(0; 𝑠) =

𝑠𝑞𝑖𝑧𝑖𝜁(𝑠)𝐼𝑁 (𝑠)𝐹 *𝐴𝑖
(𝐾𝑖(𝑠))[︁

{𝑝2 + 𝑝1𝐹
*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2). (4.35)

Substituting (4.34) and (4.35) in (4.32), results in the following,

¯̄𝑃𝐵(0; 𝑠) =

𝑝1𝜁(𝑠)𝐼𝑁 (𝑠)[︁{︁
(1− 𝑧1) + 𝑧1𝐹 *𝑄1

(𝐾1(𝑠))
}︁

𝑞1𝐹 *𝐴1
(𝐾1(𝑠)) +

{︁
(1− 𝑧2) + 𝑧2𝐹 *𝑄2

(𝐾2(𝑠))
}︁

𝑞2𝐹 *𝐴2
(𝐾2(𝑠))

]︁
[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︁

(1− 𝑧2) + 𝑧2𝐹 *𝑄2
(𝐾2(𝑠))

}︁
𝑞2𝐹 *𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁
· (4.36)

Utilizing (4.18), (4.25) and (4.34), provides the following,

¯̄𝑃
𝐴𝑖

𝐿𝑖
(𝑥, 0; 𝑠) =

𝑠𝛼𝑖𝑞𝑖𝜁(𝑠)𝐼𝑁 (𝑠) exp{−𝐾𝑖(𝑠)𝑥}[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2). (4.37)

Similarly, equations (4.19), (4.26) and (4.35) gives,

¯̄𝑃
𝑄𝑖

𝐿𝑖
(𝑥, 0; 𝑠) =

𝑠𝛼𝑖𝑞𝑖𝑧𝑖𝜁(𝑠)𝐼𝑁 (𝑠) exp{−𝐾𝑖(𝑠)𝑥}𝐹 *𝐴𝑖
(𝐾𝑖(𝑠))[︁

{𝑝2 + 𝑝1𝐹
*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2). (4.38)
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Equations (4.27) and (4.37) gives,

¯̄𝑃
𝐴𝑖

𝑇𝑖
(𝑥, 0; 𝑠) =

𝑠𝛼𝑖𝑞𝑖𝜁(𝑠)𝐼𝑁 (𝑠) exp{−𝐾𝑖(𝑠)𝑥}𝐹 *𝐿𝑖
(𝜁(𝑠))[︁

{𝑝2 + 𝑝1𝐹
*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2). (4.39)

Equations (4.28) and (4.38) gives,

¯̄𝑃
𝑄𝑖

𝑇𝑖
(𝑥, 0; 𝑠) =

𝑠𝛼𝑖𝑞𝑖𝑧𝑖𝜁(𝑠)𝐼𝑁 (𝑠) exp{−𝐾𝑖(𝑠)𝑥}𝐹 *𝐴𝑖
(𝐾𝑖(𝑠))𝐹 *𝐿𝑖

(𝜁(𝑠))[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2). (4.40)

Letting 𝑠 → 1 in (4.34) gives,

¯̄𝑃𝐴𝑖(0; 1) =
𝜆𝑞𝑖𝜇

(1)
Ξ

(︁∑︀𝑁−1
𝑛=0 𝐼𝑛

)︁
(1− 𝜌𝑢)

(4.41)

where 𝜌𝑢 = 𝑞1(𝛾𝐴1 + 𝑧1𝛾𝑄1)
(︁

1 + 𝛼1

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁)︁
+ 𝑞2(𝛾𝐴2 + 𝑧2𝛾𝑄2)

(︁
1 + 𝛼2

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁)︁
+ 𝑝1𝛾𝑣 is the sys-

tem’s server utilization factor with 𝛾𝐴𝑖
= 𝜆𝜇

(1)
Ξ 𝜇

(1)
𝐴𝑖

, 𝛾𝑄𝑖
= 𝜆𝜇

(1)
Ξ 𝜇

(1)
𝑄𝑖

(𝑖 = 1, 2) and 𝛾𝑣 = 𝜆𝜇
(1)
Ξ 𝜇

(1)
𝐵 .

Subsequently, the following outcomes are derived as,

¯̄𝑃𝐴𝑖(𝑥; 1) =
𝜆𝑞𝑖𝜇

(1)
Ξ

(︁∑︀𝑁−1
𝑛=0 𝐼𝑛

)︁
(1− 𝜌𝑢)

; (𝑖 = 1, 2) (4.42)

¯̄𝑃𝑄𝑖
(𝑥; 1) =

𝜆𝑞𝑖𝑧𝑖𝜇
(1)
Ξ

(︁∑︀𝑁−1
𝑛=0 𝐼𝑛

)︁
(1− 𝜌𝑢)

; (𝑖 = 1, 2) (4.43)

¯̄𝑃𝐵(𝑥; 1) =
𝜆𝑝1𝜇

(1)
Ξ

(︁∑︀𝑁−1
𝑛=0 𝐼𝑛

)︁
(1− 𝜌𝑢)

(4.44)

¯̄𝑃𝐴𝑖

𝐿𝑖
(𝑥, 𝑦; 1) = ¯̄𝑃𝐴𝑖

𝑇𝑖
(𝑥, 𝑦; 1) =

𝜆𝛼𝑖𝑞𝑖𝜇
(1)
Ξ

(︁∑︀𝑁−1
𝑛=0 𝐼𝑛

)︁
(1− 𝜌𝑢)

; (𝑖 = 1, 2) (4.45)

¯̄𝑃𝑄𝑖

𝐿𝑖
(𝑥, 𝑦; 1) = ¯̄𝑃𝑄𝑖

𝑇𝑖
(𝑥, 𝑦; 1) =

𝜆𝛼𝑖𝑞𝑖𝑧𝑖𝜇
(1)
Ξ

(︁∑︀𝑁−1
𝑛=0 𝐼𝑛

)︁
(1− 𝜌𝑢)

; (𝑖 = 1, 2). (4.46)

Equations (4.42)–(4.46) represents the server’s stationary availability in the system’s idle state.

5. Joint distribution of the state of the server and queue length under
elapsed and remaining time

This section calculates joint and marginal PGFs of the state of the server and queue length in the form of
𝑇ℎ𝑒𝑜𝑟𝑒𝑚𝑠 stated below:

Theorem 5.1. Under the stationary condition 𝜌𝑢 < 1, the PGF of the queue size distribution during the idle
period is given by,

𝐼𝑁 (𝑠) =
(1− 𝜌𝑢)

[︁∑︀𝑁−1
𝑛=0 𝑠𝑛𝜋𝑛

]︁
∑︀𝑁−1

𝑛=0 𝜋𝑛

· (5.1)
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Proof. The queue length PGF during an idle period can be written as,

𝐼𝑁 (𝑠) =
𝑁−1∑︁
𝑛=0

𝐼𝑛𝑠𝑛 (5.2)

where 𝐼𝑛 = Γ0𝜋𝑛 (𝑛 = 0, 1, · · · , 𝑁 − 1) (*)
𝜋𝑛 being the probability that a batch of “𝑛” units arrive in the system in an idle period and Γ0 being the

normalizing constant.
The value of the normalizing constant Γ0 is obtained on simplification of the normalizing condition (4.17) as,

Γ𝑜 =
(1− 𝜌𝑢)∑︀𝑁−1

𝑛=0 𝜋𝑛

· (5.3)

Substituting (*) and (5.3) in (5.2) gives the required PGF. �

Note that (5.3) implies 𝜌𝑢 < 1, the stability condition for the continuation of a solution at the equilibrium of
the underlying system.

Theorem 5.2. Under the stability condition 𝜌𝑢 < 1, the joint PGF of server’s state and queue size under
elapsed time are given by,

¯̄𝑃𝐴𝑖(𝑥; 𝑠) =
𝑞𝑖𝜁(𝑠)(1− 𝜌𝑢) exp{−𝐾𝑖(𝑠)𝑥}

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁

(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2) (5.4)

¯̄𝑃𝑄𝑖(𝑥; 𝑠) =
𝑞𝑖𝑧𝑖𝜁(𝑠)(1− 𝜌𝑢)𝐹 *

𝐴𝑖
(𝐾𝑖(𝑠)) exp{−𝐾𝑖(𝑠)𝑥}

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁

(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2) (5.5)

¯̄𝑃 𝐵(𝑥; 𝑠) =

𝑝1𝜁(𝑠)(1− 𝜌𝑢) exp{−𝜁(𝑠)𝑥}
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛𝜋𝑛

)︁

[︀{︀
(1− 𝑧1) + 𝑧1𝐹 *

𝑄1
(𝐾1(𝑠))

}︀
𝑞1𝐹 *

𝐴1
(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹 *

𝑄2
(𝐾2(𝑠))

}︀
𝑞2𝐹 *

𝐴2
(𝐾2(𝑠))

]︀
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹 *

𝑄2
(𝐾2(𝑠))

}︀
𝑞2𝐹 *

𝐴2
(𝐾2(𝑠))

}︁
− 𝑠
]︁

(5.6)

¯̄𝑃
𝐴𝑖

𝐿𝑖
(𝑥, 𝑦; 𝑠) =

𝛼𝑖𝑞𝑖𝜁(𝑠)(1− 𝜌𝑢) exp{−𝐾𝑖(𝑠)𝑥} exp{−𝜁(𝑠)𝑦}
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁

(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2) (5.7)

¯̄𝑃
𝑄𝑖

𝐿𝑖
(𝑥, 𝑦; 𝑠) =

𝛼𝑖𝑞𝑖𝑧𝑖𝜁(𝑠)(1− 𝜌𝑢)𝐹 *
𝐴𝑖

(𝐾𝑖(𝑠)) exp{−𝐾𝑖(𝑠)𝑥} exp{−𝜁(𝑠)𝑦}
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁

(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2) (5.8)

¯̄𝑃
𝐴𝑖

𝑇𝑖
(𝑥, 𝑦; 𝑠) =

𝛼𝑖𝑞𝑖𝜁(𝑠)(1− 𝜌𝑢)𝐹 *
𝐿𝑖

(𝜁(𝑠)) exp{−𝐾𝑖(𝑠)𝑥} exp{−𝜁(𝑠)𝑦}
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁

(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2) (5.9)
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¯̄𝑃
𝑄𝑖

𝑇𝑖
(𝑥, 𝑦; 𝑠) =

𝛼𝑖𝑞𝑖𝑧𝑖𝜁(𝑠)(1− 𝜌𝑢)𝐹 *
𝐴𝑖

(𝐾𝑖(𝑠))𝐹
*
𝐿𝑖

(𝜁(𝑠)) exp{−𝐾𝑖(𝑠)𝑥} exp{−𝜁(𝑠)𝑦}
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁

(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2). (5.10)

Proof. Applying (4.34)–(4.40) in (4.18)–(4.24) gives the required PGFs defined above. �

Theorem 5.3. Under the stationary environment 𝜌𝑢 < 1, the double transform under elapsed time are given
by,

𝐹 *
𝐴𝑖

(𝜂; 𝑠) =
𝑞𝑖𝜁(𝑠)(1− 𝜌𝑢)

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁{︀
1− 𝐹 *

𝐴𝑖
(𝜂 + 𝐾𝑖(𝑠))

}︀

(𝜂 + 𝐾𝑖(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠]

(𝑖 = 1, 2)

(5.11)

𝐹 *
𝑄𝑖

(𝜂; 𝑠) =
𝑞𝑖𝑧𝑖𝜁(𝑠)(1− 𝜌𝑢)

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *

𝐴𝑖
(𝐾𝑖(𝑠))

{︀
1− 𝐹 *

𝑄𝑖
(𝜂 + 𝐾𝑖(𝑠))

}︀

(𝜂 + 𝐾𝑖(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2)

(5.12)

𝐹 *
𝐵(𝜂; 𝑠) =

𝑝1𝜁(𝑠)(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛𝜋𝑛

)︁
{1− 𝐹 *

𝐵(𝜂 + 𝜁(𝑠))}
[︀{︀

(1− 𝑧1) + 𝑧1𝐹 *
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹 *

𝐴1
(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹 *

𝑄2
(𝐾2(𝑠))

}︀
𝑞2𝐹 *

𝐴2
(𝐾2(𝑠))

]︀

(𝜂 + 𝜁(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹 *

𝑄2
(𝐾2(𝑠))

}︀
𝑞2𝐹 *

𝐴2
(𝐾2(𝑠))

}︁
− 𝑠
]︁

(5.13)

𝐹
𝐴*𝑖
𝐿𝑖

(𝜂, 𝜃; 𝑠) =
𝛼𝑖𝑞𝑖𝜁(𝑠)(1− 𝜌𝑢)

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁{︀
1− 𝐹 *

𝐴𝑖
(𝜂 + 𝐾𝑖(𝑠))

}︀{︀
1− 𝐹 *

𝐿𝑖
(𝜃 + 𝜁(𝑠))

}︀

(𝜂 + 𝐾𝑖(𝑠))(𝜃 + 𝜁(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀

𝑞1𝐹
*
𝐴1(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2) (5.14)

𝐹
𝑄*

𝑖
𝐿𝑖

(𝜂, 𝜃; 𝑠) =
𝛼𝑖𝑞𝑖𝑧𝑖𝜁(𝑠)(1− 𝜌𝑢)

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *

𝐴𝑖
(𝐾𝑖(𝑠))

{︀
1− 𝐹 *

𝑄𝑖
(𝜂 + 𝐾𝑖(𝑠))

}︀{︀
1− 𝐹 *

𝐿𝑖
(𝜃 + 𝜁(𝑠))

}︀

(𝜂 + 𝐾𝑖(𝑠))(𝜃 + 𝜁(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀

𝑞1𝐹
*
𝐴1(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2)

(5.15)

𝐹
𝐴*𝑖
𝑇𝑖

(𝜂, 𝜃; 𝑠) =
𝛼𝑖𝑞𝑖𝜁(𝑠)(1− 𝜌𝑢)

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *

𝐿𝑖
(𝜁(𝑠))

{︀
1− 𝐹 *

𝐴𝑖
(𝜂 + 𝐾𝑖(𝑠))

}︀{︀
1− 𝐹 *

𝑇𝑖
(𝜃 + 𝜁(𝑠))

}︀

(𝜂 + 𝐾𝑖(𝑠))(𝜃 + 𝜁(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀

𝑞1𝐹
*
𝐴1(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2) (5.16)

𝐹
𝑄*

𝑖
𝑇𝑖

(𝜂, 𝜃; 𝑠) =
𝛼𝑖𝑞𝑖𝑧𝑖𝜁(𝑠)(1− 𝜌𝑢)

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *

𝐴𝑖
(𝐾𝑖(𝑠))𝐹

*
𝐿𝑖

(𝜁(𝑠))
{︀
1− 𝐹 *

𝑄𝑖
(𝜂 + 𝐾𝑖(𝑠))

}︀{︀
1− 𝐹 *

𝑇𝑖
(𝜃 + 𝜁(𝑠))

}︀

(𝜂 + 𝐾𝑖(𝑠))(𝜃 + 𝜁(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀

𝑞1𝐹
*
𝐴1(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2). (5.17)
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Proof. The double transform in (5.11) is obtained as,

𝐹 *𝐴𝑖
(𝜂; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛

∫︁ ∞

0

𝑒−𝜂𝑥𝑓𝐴𝑖,𝑛
(𝑥)d𝑥

=
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

𝑒−𝜂𝑥 ¯̄𝑓𝐴𝑖,𝑛(𝑥)[1− 𝐹𝐴𝑖(𝑥)]d𝑥

=
∫︁ ∞

0

𝑒−𝜂𝑥 ¯̄𝑃𝐴𝑖,𝑛
(𝑥; 𝑠)[1− 𝐹𝐴𝑖

(𝑥)]d𝑥.

Putting (5.4) in the above equation produces (5.11) on calculation.
On a similar note, equations (5.12) and (5.13) can be achieved by using (5.5) and (5.6), respectively.
Next, equation (5.14) is derived as,

𝐹
𝐴*

𝑖

𝐿𝑖
(𝜂, 𝜃; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛

∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑥𝑒−𝜃𝑦𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦) d𝑥 d𝑦

=
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑥𝑒−𝜃𝑦 ¯̄𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦)[1− 𝐹𝐴𝑖(𝑥)][1− 𝐹𝐿𝑖(𝑦)] d𝑥 d𝑦

=
∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑥𝑒−𝜃𝑦 ¯̄𝑃𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦; 𝑠)[1− 𝐹𝐴𝑖

(𝑥)][1− 𝐹𝐿𝑖
(𝑦)] d𝑥 d𝑦.

Putting (5.7) in the above expression simplifies it to (5.14).
Similarly, equation (5.15) is obtained by using (5.8).
Again, equation (5.16) is obtained as,

𝐹
𝐴*

𝑖

𝑇𝑖
(𝜂, 𝜃; 𝑠) =

∞∑︁
𝑛=1

𝑠𝑛

∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑥𝑒−𝜃𝑦𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦) d𝑥 d𝑦

=
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑥𝑒−𝜃𝑦 ¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦)[1− 𝐹𝐴𝑖

(𝑥)][1− 𝐹𝑇𝑖
(𝑦)] d𝑥 d𝑦

=
∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑥𝑒−𝜃𝑦 ¯̄𝑃𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦; 𝑠)[1− 𝐹𝐴𝑖

(𝑥)][1− 𝐹𝑇𝑖
(𝑦)] d𝑥 d𝑦.

Substituting (5.9) in the above expression produces (5.16) on simplification.
Likewise, equation (5.17) is derived by using (5.10). �

Theorem 5.4. Under the stationary condition 𝜌𝑢 < 1, the double transform under remaining time are given
as,

𝐹 *
𝐴+

𝑖
(𝜂; 𝑠) =

𝑞𝑖𝜁(𝑠)(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
{𝐹 *

𝐴𝑖
(𝐾𝑖(𝑠))− 𝐹 *

𝐴𝑖
(𝜂)}

(𝜂 −𝐾𝑖(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2)

(5.18)

𝐹 *
𝑄+

𝑖
(𝜂; 𝑠) =

𝑞𝑖𝑧𝑖𝜁(𝑠)(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *

𝐴𝑖
(𝐾𝑖(𝑠))

{︀
𝐹 *

𝑄𝑖
(𝐾𝑖(𝑠))− 𝐹 *

𝑄𝑖
(𝜂)
}︀

(𝜂 −𝐾𝑖(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2)

(5.19)
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𝐹 *
𝐵+(𝜂; 𝑠) =

𝑝1𝜁(𝑠)(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛𝜋𝑛

)︁
{𝐹 *

𝐵(𝜁(𝑠))− 𝐹 *
𝐵(𝜂)}

[︀{︀
(1− 𝑧1) + 𝑧1𝐹 *

𝑄1
(𝐾1(𝑠))

}︀
𝑞1𝐹 *

𝐴1
(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹 *

𝑄2
(𝐾2(𝑠))

}︀
𝑞2𝐹 *

𝐴2
(𝐾2(𝑠))

]︀

(𝜂 − 𝜁(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹 *

𝑄2
(𝐾2(𝑠))

}︀
𝑞2𝐹 *

𝐴2
(𝐾2(𝑠))

}︁
− 𝑠
]︁

(5.20)

𝐹
𝐴*𝑖
𝐿+

𝑖

(𝜂, 𝜃; 𝑠) =
𝛼𝑖𝑞𝑖𝜁(𝑠)(1− 𝜌𝑢)

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁{︀
𝐹 *

𝐴𝑖
(𝐾𝑖(𝑠))− 𝐹 *

𝐴𝑖
(𝜂)
}︀{︀

𝐹 *
𝐿𝑖

(𝜁(𝑠))− 𝐹 *
𝐿𝑖

(𝜃)
}︀

(𝜂 −𝐾𝑖(𝑠))(𝜃 − 𝜁(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀

𝑞1𝐹
*
𝐴1(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2) (5.21)

𝐹
𝑄*

𝑖

𝐿+
𝑖

(𝜂, 𝜃; 𝑠) =
𝛼𝑖𝑞𝑖𝑧𝑖𝜁(𝑠)(1− 𝜌𝑢)

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *

𝐴𝑖
(𝐾𝑖(𝑠))

{︀
𝐹 *

𝑄𝑖
(𝐾𝑖(𝑠))− 𝐹 *

𝑄𝑖
(𝜂)
}︀{︀

𝐹 *
𝐿𝑖

(𝜁(𝑠))− 𝐹 *
𝐿𝑖

(𝜃)
}︀

(𝜂 −𝐾𝑖(𝑠))(𝜃 − 𝜁(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀

𝑞1𝐹
*
𝐴1(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2)

(5.22)

𝐹
𝐴*𝑖
𝑇+

𝑖

(𝜂, 𝜃; 𝑠) =
𝛼𝑖𝑞𝑖𝜁(𝑠)(1− 𝜌𝑢)

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *

𝐿𝑖
(𝜁(𝑠))

{︀
𝐹 *

𝐴𝑖
(𝐾𝑖(𝑠))− 𝐹 *

𝐴𝑖
(𝜂)
}︀{︀

𝐹 *
𝑇𝑖

(𝜁(𝑠))− 𝐹 *
𝑇𝑖

(𝜃)
}︀

(𝜂 −𝐾𝑖(𝑠))(𝜃 − 𝜁(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀

𝑞1𝐹
*
𝐴1(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2) (5.23)

𝐹
𝑄*

𝑖

𝑇+
𝑖

(𝜂, 𝜃; 𝑠) =
𝛼𝑖𝑞𝑖𝑧𝑖𝜁(𝑠)(1− 𝜌𝑢)

(︁∑︀𝑁−1
𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *

𝐴𝑖
(𝐾𝑖(𝑠))𝐹

*
𝐿𝑖

(𝜁(𝑠))
{︀
𝐹 *

𝑄𝑖
(𝐾𝑖(𝑠))− 𝐹 *

𝑄𝑖
(𝜂)
}︀{︀

𝐹 *
𝑇𝑖

(𝜁(𝑠))− 𝐹 *
𝑇𝑖

(𝜃)
}︀

(𝜂 −𝐾𝑖(𝑠))(𝜃 − 𝜁(𝑠))
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀

𝑞1𝐹
*
𝐴1(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(𝑖 = 1, 2). (5.24)

Proof. The double transform defined in (5.18) is derived as follows,

𝐹 *
𝐴+

𝑖

(𝜂; 𝑠) =
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

𝑒−𝜂𝑟𝑓𝐴+
𝑖,𝑛

(𝑟) d𝑟.

Since service time random variable 𝐴𝑖 has previously passed the time 𝑥, therefore the remaining service time
distribution is given by,

𝑃𝑟[𝑟 < 𝐴+
𝑖 (𝑡) ≤ 𝑟 + d𝑟|𝐴𝑖 > 𝑥] =

𝐹
𝐴𝑖

(𝑥 + 𝑟) d𝑟[︀
1− 𝐹

𝐴𝑖
(𝑥)

]︀ ·
Thus,

𝐹 *
𝐴+

𝑖

(𝜂; 𝑠) =
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

𝑓𝐴𝑖,𝑛
(𝑥) d𝑥

∫︁ ∞

0

𝑒−𝜂𝑟
𝐹

𝐴𝑖
(𝑥 + 𝑟)[︀

1− 𝐹
𝐴𝑖

(𝑥)
]︀ d𝑟

=
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

¯̄𝑓𝐴𝑖,𝑛
(𝑥)

[︀
1− 𝐹

𝐴𝑖
(𝑥)

]︀
d𝑥

∫︁ ∞

0

𝑒−𝜂𝑟
𝐹

𝐴𝑖
(𝑥 + 𝑟)[︀

1− 𝐹
𝐴𝑖

(𝑥)
]︀ d𝑟

=
∫︁ ∞

0

¯̄𝑃𝐴𝑖
(𝑥; 𝑠) d𝑥

∫︁ ∞

0

𝑒−𝜂𝑟𝐹
𝐴𝑖

(𝑥 + 𝑟) d𝑟.

Putting the value of ¯̄𝑃𝐴𝑖(𝑥; 𝑠) from (5.4) in the above equation gives (5.18) on calculation.
Similarly, equations (5.19) and (5.20) are obtained utilizing (5.5) and (5.6) respectively.
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Also,

𝐹
𝐴*

𝑖

𝐿+
𝑖

(𝜂, 𝜃; 𝑠) =
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑟𝑒−𝜃𝑣𝑓𝐴𝑖

𝐿+
𝑖,𝑛

(𝑟, 𝑣) d𝑟 d𝑣.

The remaining delay time distribution provided the service and delay time random variables 𝐴𝑖 and 𝐿𝑖 has
already outstripped the time 𝑥 and 𝑦 respectively is given by,

𝑃𝑟
[︀
(𝑟 < 𝐴+

𝑖 (𝑡) ≤ 𝑟 + d𝑟|𝐴𝑖 > 𝑥) ∩
(︀
𝑣 < 𝐿+

𝑖 (𝑡) ≤ 𝑣 + d𝑣|𝐿𝑖 > 𝑦
)︀]︀

=
𝐹

𝐴𝑖
(𝑥 + 𝑟)𝐹

𝐿𝑖
(𝑦 + 𝑣) d𝑟 d𝑣[︀

1− 𝐹
𝐴𝑖

(𝑥)
]︀[︀

1− 𝐹
𝐿𝑖

(𝑦)
]︀ ·

Therefore,

𝐹
𝐴*

𝑖

𝐿+
𝑖

(𝜂, 𝜃; 𝑠) =
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

∫︁ ∞

0

𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦) d𝑥 d𝑦

∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑟𝑒−𝜃𝑣
𝐹

𝐴𝑖
(𝑥 + 𝑟)𝐹

𝐿𝑖
(𝑦 + 𝑣)[︀

1− 𝐹
𝐴𝑖

(𝑥)
]︀[︀

1− 𝐹
𝐿𝑖

(𝑦)
]︀ d𝑟 d𝑣

=
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

∫︁ ∞

0

¯̄𝑓𝐴𝑖

𝐿𝑖,𝑛
(𝑥, 𝑦)

[︀
1− 𝐹

𝐴𝑖
(𝑥)

]︀[︀
1− 𝐹

𝐿𝑖
(𝑦)

]︀
d𝑥 d𝑦

×
∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑟𝑒−𝜃𝑣
𝐹

𝐴𝑖
(𝑥 + 𝑟)𝐹

𝐿𝑖
(𝑦 + 𝑣)[︀

1− 𝐹
𝐴𝑖

(𝑥)
]︀[︀

1− 𝐹
𝐿𝑖

(𝑦)
]︀ d𝑟 d𝑣

=
∫︁ ∞

0

∫︁ ∞

0

¯̄𝑃𝐴𝑖

𝐿𝑖
(𝑥, 𝑦; 𝑠) d𝑥 d𝑦

∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑟𝑒−𝜃𝑣𝐹
𝐴𝑖

(𝑥 + 𝑟)𝐹
𝐿𝑖

(𝑦 + 𝑣) d𝑟 d𝑣.

Utilizing (5.7) in the above equation yields (5.21) on simplification.
On a similar note, equation (5.22) is derived using (5.8).
Again,

𝐹
𝐴*

𝑖

𝑇+
𝑖

(𝜂, 𝜃; 𝑠) =
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑟𝑒−𝜃𝑣𝑓𝐴𝑖

𝑇+
𝑖,𝑛

(𝑟, 𝑣) d𝑟 d𝑣.

The remaining repair time distribution provided the service and repair time random variables 𝐴𝑖 and 𝑇𝑖 has
previously passed the time 𝑥 and 𝑦 respectively is given by,

𝑃𝑟
[︀(︀

𝑟 < 𝐴+
𝑖 (𝑡) ≤ 𝑟 + d𝑟|𝐴𝑖 > 𝑥

)︀
∩

(︀
𝑣 < 𝑇+

𝑖 (𝑡) ≤ 𝑣 + d𝑣|𝑇𝑖 > 𝑦
)︀]︀

=
𝐹

𝐴𝑖
(𝑥 + 𝑟)𝐹

𝑇𝑖
(𝑦 + 𝑣) d𝑟 d𝑣[︀

1− 𝐹
𝐴𝑖

(𝑥)
]︀[︀

1− 𝐹
𝑇𝑖

(𝑦)
]︀ ·

Therefore,

𝐹
𝐴*

𝑖

𝑇+
𝑖

(𝜂, 𝜃; 𝑠) =
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

∫︁ ∞

0

𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦) d𝑥 d𝑦

∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑟𝑒−𝜃𝑣
𝐹

𝐴𝑖
(𝑥 + 𝑟)𝐹

𝑇𝑖
(𝑦 + 𝑣)[︀

1− 𝐹
𝐴𝑖

(𝑥)
]︀[︀

1− 𝐹
𝑇𝑖

(𝑦)
]︀ d𝑟 d𝑣

=
∞∑︁

𝑛=1

𝑠𝑛

∫︁ ∞

0

∫︁ ∞

0

¯̄𝑓𝐴𝑖

𝑇𝑖,𝑛
(𝑥, 𝑦)

[︀
1− 𝐹

𝐴𝑖
(𝑥)

]︀[︀
1− 𝐹

𝑇𝑖
(𝑦)

]︀
d𝑥 d𝑦

×
∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑟𝑒−𝜃𝑣
𝐹

𝐴𝑖
(𝑥 + 𝑟)𝐹

𝑇𝑖
(𝑦 + 𝑣)[︀

1− 𝐹
𝐴𝑖

(𝑥)
]︀[︀

1− 𝐹
𝑇𝑖

(𝑦)
]︀ d𝑟 d𝑣

=
∫︁ ∞

0

∫︁ ∞

0

¯̄𝑃𝐴𝑖

𝑇𝑖
(𝑥, 𝑦; 𝑠) d𝑥 d𝑦

∫︁ ∞

0

∫︁ ∞

0

𝑒−𝜂𝑟𝑒−𝜃𝑣𝐹
𝐴𝑖

(𝑥 + 𝑟)𝐹
𝑇𝑖

(𝑦 + 𝑣) d𝑟 d𝑣.

Using (5.9) in the above equation gives (5.23) on calculation.
Likewise (5.24) is derived using (5.10). �



ANALYSIS OF A BULK ARRIVAL N-POLICY QUEUE 997

Theorem 5.5. Under the steady-state condition 𝜌𝑢 < 1, the marginal PGFs of the server’s state and queue
length are given by,

¯̄𝑃𝐴𝑖
(𝑠) =

𝑞𝑖𝜁(𝑠)(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁{︀
1− 𝐹 *𝐴𝑖

(𝐾𝑖(𝑠))
}︀

𝐾𝑖(𝑠)
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2) (5.25)

¯̄𝑃𝑄𝑖
(𝑠) =

𝑞𝑖𝑧𝑖𝜁(𝑠)(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *𝐴𝑖

(𝐾𝑖(𝑠))
{︀

1− 𝐹 *𝑄𝑖
(𝐾𝑖(𝑠))

}︀
𝐾𝑖(𝑠)

(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2) (5.26)

¯̄𝑃𝐵(𝑠) =

𝑝1(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛𝜋𝑛

)︁
{1− 𝐹 *𝐵(𝜁(𝑠))}[︁{︁

(1− 𝑧1) + 𝑧1𝐹 *𝑄1
(𝐾1(𝑠))

}︁
𝑞1𝐹 *𝐴1

(𝐾1(𝑠)) +
{︁

(1− 𝑧2) + 𝑧2𝐹 *𝑄2
(𝐾2(𝑠))

}︁
𝑞2𝐹 *𝐴2

(𝐾2(𝑠))
]︁

(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︁

(1− 𝑧2) + 𝑧2𝐹 *𝑄2
(𝐾2(𝑠))

}︁
𝑞2𝐹 *𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁
(5.27)

¯̄𝑃
𝐴𝑖

𝐿𝑖
(𝑠) =

𝛼𝑖𝑞𝑖(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁{︀
1− 𝐹 *𝐴𝑖

(𝐾𝑖(𝑠))
}︀{︀

1− 𝐹 *𝐿𝑖
(𝜁(𝑠))

}︀
𝐾𝑖(𝑠)

(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2) (5.28)

¯̄𝑃
𝑄𝑖

𝐿𝑖
(𝑠) =

𝛼𝑖𝑞𝑖𝑧𝑖(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *𝐴𝑖

(𝐾𝑖(𝑠))
{︀

1− 𝐹 *𝑄𝑖
(𝐾𝑖(𝑠))

}︀{︀
1− 𝐹 *𝐿𝑖

(𝜁(𝑠))
}︀

𝐾𝑖(𝑠)
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2) (5.29)

¯̄𝑃
𝐴𝑖

𝑇𝑖
(𝑠) =

𝛼𝑖𝑞𝑖(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *𝐿𝑖

(𝜁(𝑠))
{︀

1− 𝐹 *𝐴𝑖
(𝐾𝑖(𝑠))

}︀{︀
1− 𝐹 *𝑇𝑖

(𝜁(𝑠))
}︀

𝐾𝑖(𝑠)
(︁∑︀𝑁−1

𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2) (5.30)

¯̄𝑃
𝑄𝑖

𝑇𝑖
(𝑠) =

𝛼𝑖𝑞𝑖𝑧𝑖(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛+1𝜋𝑛

)︁
𝐹 *𝐴𝑖

(𝐾𝑖(𝑠))𝐹 *𝐿𝑖
(𝜁(𝑠))

{︀
1− 𝐹 *𝑄𝑖

(𝐾𝑖(𝑠))
}︀{︀

1− 𝐹 *𝑇𝑖
(𝜁(𝑠))

}︀
𝐾𝑖(𝑠)

(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ (𝑖 = 1, 2).

(5.31)

Proof. The marginal PGFs defined above can be procured by considering the double transform under the elapsed
time or remaining time, i.e. by setting 𝜂 → 0 and 𝜃 → 0 either in (5.11)–(5.17) or (5.18)–(5.24). �

Theorem 5.6. Under the stability environment 𝜌𝑢 < 1, the LST of the marginal Probability Density Function
(PDF)s of the server’s state, and queue length are given by,

𝐹 *𝐴𝑖
(𝜂; 1) =

𝜆𝜇
(1)
Ξ 𝑞𝑖

{︀
1− 𝐹 *𝐴𝑖

(𝜂)
}︀

𝜂
(𝑖 = 1, 2) (5.32)
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𝐹 *𝑄𝑖
(𝜂; 1) =

𝜆𝜇
(1)
Ξ 𝑞𝑖𝑧𝑖

{︀
1− 𝐹 *𝑄𝑖

(𝜂)
}︀

𝜂
(𝑖 = 1, 2) (5.33)

𝐹 *𝐵(𝜂; 1) =
𝜆𝜇

(1)
Ξ 𝑝1{1− 𝐹 *𝐵(𝜂)}

𝜂
(5.34)

𝐹
𝐴*

𝑖

𝐿𝑖
(𝜂, 𝜃; 1) =

𝜆𝜇
(1)
Ξ 𝛼𝑖𝑞𝑖

{︀
1− 𝐹 *𝐴𝑖

(𝜂)
}︀{︀

1− 𝐹 *𝐿𝑖
(𝜃)

}︀
𝜂𝜃

(𝑖 = 1, 2) (5.35)

𝐹
𝑄*

𝑖

𝐿𝑖
(𝜂, 𝜃; 1) =

𝜆𝜇
(1)
Ξ 𝛼𝑖𝑞𝑖𝑧𝑖

{︀
1− 𝐹 *𝑄𝑖

(𝜂)
}︀{︀

1− 𝐹 *𝐿𝑖
(𝜃)

}︀
𝜂𝜃

(𝑖 = 1, 2) (5.36)

𝐹
𝐴*

𝑖

𝑇𝑖
(𝜂, 𝜃; 1) =

𝜆𝜇
(1)
Ξ 𝛼𝑖𝑞𝑖

{︀
1− 𝐹 *𝐴𝑖

(𝜂)
}︀{︀

1− 𝐹 *𝑇𝑖
(𝜃)

}︀
𝜂𝜃

(𝑖 = 1, 2) (5.37)

𝐹
𝑄*

𝑖

𝑇𝑖
(𝜂, 𝜃; 1) =

𝜆𝜇
(1)
Ξ 𝛼𝑖𝑞𝑖𝑧𝑖

{︀
1− 𝐹 *𝑄𝑖

(𝜂)
}︀{︀

1− 𝐹 *𝑇𝑖
(𝜃)

}︀
𝜂𝜃

(𝑖 = 1, 2). (5.38)

Proof. The LST of the joint PDFs defined above follows by considering the double transform under the elapsed
time or remaining time, i.e. either by letting 𝑠 → 1 in (5.11)–(5.17) or (5.18)–(5.24). �

6. Distribution of server’s state and queue length at random and service
completion epoch

This section finds the PGF of the queue length distribution at random and departure epoch along with the
mean system size of the underlying system.

Theorem 6.1. Under the stationary condition 𝜌𝑢 < 1, the PGF of server’s state and queue length

(i) at random epoch 𝑃𝑁 (𝑠) is given by,

𝑃𝑁 (𝑠) =

[︃∑︀𝑁−1
𝑛=0 𝑠𝑛𝜋𝑛∑︀𝑁−1

𝑛=0 𝜋𝑛

]︃ (1− 𝜌𝑢)(1− 𝑠)[𝑝2 + 𝑝1𝐹
*
𝐵(𝜁(𝑠))][︀{︀

(1− 𝑧1) + 𝑧1𝐹 *
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹 *

𝐴1
(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹 *

𝑄2
(𝐾2(𝑠))

}︀
𝑞2𝐹 *

𝐴2
(𝐾2(𝑠))

]︀
[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

(6.1)
(ii) at service completion epoch 𝑃Ψ(𝑠) is given by,

𝑃Ψ(𝑠) =

[︃∑︀𝑁−1
𝑛=0 𝑠𝑛𝜋𝑛∑︀𝑁−1

𝑛=0 𝜋𝑛

]︃ (1− 𝜌𝑢)(1− 𝑃Ξ(𝑠))[𝑝2 + 𝑝1𝐹
*
𝐵(𝜁(𝑠))][︀{︀

(1− 𝑧1) + 𝑧1𝐹 *
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹 *

𝐴1
(𝐾1(𝑠)) +

{︀
(1− 𝑧2) + 𝑧2𝐹 *

𝑄2
(𝐾2(𝑠))

}︀
𝑞2𝐹 *

𝐴2
(𝐾2(𝑠))

]︀

𝜇
(1)
Ξ

[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1(𝐾1(𝑠))

}︀
𝑞1𝐹

*
𝐴1(𝐾1(𝑠))

+
{︀
(1− 𝑧2) + 𝑧2𝐹

*
𝑄2(𝐾2(𝑠))

}︀
𝑞2𝐹

*
𝐴2(𝐾2(𝑠))

}︁
− 𝑠
]︁

·

(6.2)

Proof. (i) Since 𝜋𝑛 is defined as the probability of arrival of a batch of “𝑛” units in the system during an idle
period, it satisfies the recursive relation elemented below:
𝜋𝑛 =

∑︀𝑛
𝑙=1 𝑤𝑙𝜋𝑛−𝑙 (𝑛 = 1, 2, · · · , 𝑁 − 1) and 𝜋0 = 1.

Let, 𝜑𝑛 (𝑛 = 0, 1, · · · , 𝑁 − 1) be the probability that a batch of 𝑛 units are already there in the system
during an idle period. This results in conditioning the number of arrivals in (𝐼𝑛 = Γ0𝜋𝑛) and as such the
following is achieved,

𝜑𝑛 =
𝐼𝑛∑︀𝑁−1

𝑛=0 𝐼𝑛

=
𝜋𝑛∑︀𝑁−1

𝑛=0 𝜋𝑛

; 𝑛 = 0, 1, · · · , (𝑁 − 1) (6.3)
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where
∑︀𝑁−1

𝑛=0 𝜋𝑛 represents the mean number of batch arrivals in an idle period.
Thus,

𝜑
𝑁

(𝑠) =
𝑁−1∑︁
𝑛=0

𝑠𝑛𝜑𝑛 =
∑︀𝑁−1

𝑛=0 𝑠𝑛𝜋𝑛∑︀𝑁−1
𝑛=0 𝜋𝑛

[using (6.3)]. (6.4)

Equating (6.4) in (5.1) gives
𝐼

𝑁
(𝑠) = 𝜑

𝑁
(𝑠)(1− 𝜌𝑢). (6.5)

The PGF at random epoch follows directly by equating (6.5) and (5.25)–(5.31) in the formula (**) (given
below).

𝑃𝑁 (𝑠) = 𝐼𝑁 (𝑠) + 𝑠 ¯̄𝑃𝐵(𝑠) +
2∑︁

𝑖=1

[︁
¯̄𝑃𝐴𝑖

(𝑠) + ¯̄𝑃𝑄𝑖
(𝑠) + ¯̄𝑃

𝐴𝑖

𝐿𝑖
(𝑠) + ¯̄𝑃

𝑄𝑖

𝐿𝑖
(𝑠) + ¯̄𝑃

𝐴𝑖

𝑇𝑖
(𝑠) + ¯̄𝑃

𝑄𝑖

𝑇𝑖
(𝑠)

]︁
. (**)

(ii) Following the argument of PASTA [48], an unit just after a departure witnesses “𝑚” units in the queue iff
there were “𝑚 + 1” units either in FGS(FGRS)/SGS(SGRS) or vacation just before departing.
If Ψ𝑚 is the probability of “𝑚” units being present in the queue at service completion epoch, then,

Ψ𝑚 = 𝜖

[︃
𝑝2

2∑︁
𝑖=1

{︂
(1− 𝑧𝑖)

(︂∫︁ ∞

0

¯̄𝑓𝐴𝑚+1,𝑖
(𝑥) d𝐹𝐴𝑖(𝑥)

)︂
+

(︂∫︁ ∞

0

¯̄𝑓𝑄𝑚+1,𝑖
(𝑥) d𝐹𝑄𝑖(𝑥)

)︂}︂
+

∫︁ ∞

0

¯̄𝑓𝐵𝑚
(𝑥) d𝐹𝐵(𝑥)

]︂
𝑚 = 0, 1, · · · (6.6)

where 𝜖 is a normalizing constant.
Multiplying (6.6) by 𝑠𝑚 and taking summation overall values of (𝑚 = 0, 1, · · · ), and after that using (4.18),

(4.19) and (4.20) results in the following:

𝑃Ψ(𝑠) =

𝜖𝜁(𝑠)
[︁∑︀𝑁−1

𝑛=0 𝑠𝑛𝜋𝑛

]︁
[𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))][︁{︁

(1− 𝑧1) + 𝑧1𝐹 *𝑄1
(𝐾1(𝑠))

}︁
𝑞1𝐹 *𝐴1

(𝐾1(𝑠)) +
{︁

(1− 𝑧2) + 𝑧2𝐹 *𝑄2
(𝐾2(𝑠))

}︁
𝑞2𝐹 *𝐴2

(𝐾2(𝑠))
]︁

[︁∑︀𝑁−1
𝑛=0 𝜋𝑛

]︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ · (6.7)

Letting 𝑠 → 1 in (6.7) and using the L’Hospital’s rule gives the value of the normalizing constant as,

𝜖 =
(1− 𝜌𝑢)

𝜆𝜇
(1)
Ξ

·

Thus, replacing 𝜖 by (1−𝜌𝑢)

𝜆𝜇
(1)
Ξ

in (6.7) gives the departure epoch PGF defined in (6.2). �

Corollary 6.2. If Ψ0 stands for the probability of no unit waiting in the system at departure epoch. Then setting
𝑠 = 0 in (6.2),

Ψ0 = 𝑃Ψ(0) =
(1− 𝜌𝑢)𝜋0

𝜇
(1)
Ξ

[︁∑︀𝑁−1
𝑛=0 𝜋𝑛

]︁ ·
Utilizing (5.3) in the above equation establishes a relation expressed below,

Γ𝑜 = 𝜇
(1)
Ξ Ψ0

which implies that a random observer is more likely to find the system empty than a departing customer leaving
the system.
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Remark 6.3. (i) 𝑃𝑁 (𝑠) is the decomposed PGF of two independent random variables:

– PGF of the steady-state queue size distribution at random epoch of an 𝑀𝑋/

(︂
𝐺1

𝐺2

)︂
/1 queue with re-

service approach subject to service interruption and delayed repair.
– Queue length PGF owing to 𝑁 -policy.

(ii) 𝑃Ψ(𝑠) is the convolution of two independent r.v as given below,

𝑃Ψ(𝑠) = 𝑃𝐶(𝑠)× 𝑃𝑁 (𝑠) (6.8)

where, 𝑃𝐶(𝑠) = 1−𝑃Ξ(𝑠)

𝜇
(1)
Ξ (1−𝑠)

, is the PGF of the number of units placed before a random test unit in a batch, in

which the test unit arrives. This is the backward recurrence time of the discrete-time renewal process where
renewal points are generated by the arrival size r.v owing to the randomness of the arriving batch size.
and 𝑃𝑁 (𝑠) is the random epoch PGF.

Equation (6.8) entails the decomposition property, which holds for different vacation models, also holds for
the model under consideration.

Theorem 6.4. Let Ω be the system size either at a departure epoch or at the termination epoch of an idle
period. Then under the stability condition 𝜌𝑢 < 1, its PGF 𝑃Ω(𝑠) is given by,

𝑃Ω(𝑠) =

(1− 𝜌𝑢)
(︁∑︀𝑁−1

𝑛=0 𝑠𝑛𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠𝑃Ξ(𝑠)

]︁
(︁

1 + 𝜇
(1)
Ξ − 𝜌𝑢

)︁(︁∑︀𝑁−1
𝑛=0 𝜋𝑛

)︁[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ · (6.9)

Proof. The result follows straight from the decomposition property of an 𝑀𝑋/

(︂
𝐺1

𝐺2

)︂
/1(𝑈𝑅)/𝐺(𝐵𝑆)/𝑉 𝑠/𝑁 −

𝑃𝑜𝑙𝑖𝑐𝑦. Thus,
𝑃Ω(𝑠) = 𝜑

𝑁
(𝑠)𝑃Ω0(𝑠) (6.10)

where 𝑃Ω0(𝑠) is the stationary PGF of the queue size distribution at departure epoch of a customer or at

termination epoch of an idle period for an 𝑀𝑋/

(︂
𝐺1

𝐺2

)︂
/1(𝑈𝑅)/𝐺(𝐵𝑆)/𝑉 𝑠. It is easily obtainable by following

the well established result of Gross and Harris [37] stated below,

𝑃Ω0(𝑠) =
𝜏 [𝑃𝜉(𝑠)− 𝑠𝑃Ξ(𝑠)]

[𝑃𝜉(𝑠)− 𝑠]
(6.11)

where 𝜏 is the normalizing constant to be determined and 𝑃𝜉(𝑠) is the PGF of a batch of customers arrived
during the actual service time 𝐴. Therefore,

𝑃𝜉(𝑠) = {𝑝2 + 𝑝1𝐹
*
𝐵(𝜁(𝑠))}

{︀{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︀
. (6.12)

Utilizing (6.12) in (6.11) yields,

𝑃Ω0(𝑠) =

𝜏
[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠𝑃Ξ(𝑠)

]︁
[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁ · (6.13)
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Since, 𝑃Ω0(1) = 1, therefore,

𝜏 =
(1− 𝜌𝑢)

(1 + 𝜇
(1)
Ξ − 𝜌𝑢)

· (6.14)

Hence, the PGF (6.9) follows by substituting (6.13), (6.14) and (6.4) in (6.10). �

Theorem 6.5. Under the steady-state condition 𝜌𝑢 < 1, the mean number of customers present in the system
is given by,

(i) at random epoch

𝜇𝑁 = 𝜌𝑢 +

(︁
𝜆𝜇

(1)
Ξ

)︁2
[︂
𝑞1

(︁
𝜇

(2)
𝐴1

+ 𝑧1𝜇
(2)
𝑄1

)︁{︁
1 + 𝛼1

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁}︁2

+ 𝑞2

(︁
𝜇

(2)
𝐴2

+ 𝑧2𝜇
(2)
𝑄2

)︁{︁
1 + 𝛼2

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁}︁2

+ 𝑝1𝜇
(2)
𝐵

]︂

2(1− 𝜌𝑢)

+

(︁
𝜆𝜇

(1)
Ξ

)︁2[︁
𝛼1𝑞1

(︁
𝜇

(1)
𝐴1

+ 𝑧1𝜇
[1]
𝑄1

)︁(︁
𝜇

(2)
𝐿1

+ 𝜇
(2)
𝑇1

+ 2𝜇
(1)
𝐿1

𝜇
(1)
𝑇1

)︁
+ 𝛼2𝑞2

(︁
𝜇

(1)
𝐴2

+ 𝑧2𝜇
(1)
𝑄2

)︁(︁
𝜇

(2)
𝐿2

+ 𝜇
(2)
𝑇2

+ 2𝜇
(1)
𝐿2

𝜇
(1)
𝑇2

)︁]︁

2(1− 𝜌𝑢)

+

(︁
𝜆𝜇

(1)
Ξ

)︁2
[︂
𝑝1𝜇

(1)
𝐵

{︂
𝑞1𝑧1𝜇

(1)
𝐴1

𝜇
(1)
𝑄1

{︁
1 + 𝛼1

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁}︁2

+ 𝑞2𝑧2𝜇
(1)
𝐴2

𝜇
(1)
𝑄2

{︁
1 + 𝛼2

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁}︁2
}︂]︂

(1− 𝜌𝑢)

+
𝜌𝑢𝜇

(2)
Ξ

2𝜇
(1)
Ξ (1− 𝜌𝑢)

+

∑︀𝑁−1
𝑛=0 𝑛𝜋𝑛∑︀𝑁−1
𝑛=0 𝜋𝑛

(6.15)

(ii) at departure epoch

𝜇
𝐷

= 𝜇
𝑁

+
𝜇

(2)
Ξ

2𝜇
(1)
Ξ

· (6.16)

Proof. Equations (6.15) and (6.16) are attained by differentiating (6.1) and (6.2), i.e. the random and departure
epoch PGF respectively with respect to 𝑠 and then setting 𝑠 → 1.

Special cases:

(1) 𝑀𝑋/

(︂
𝐺1

𝐺2

)︂
/1(𝑈𝑅)/𝑅𝑒− 𝑠𝑒𝑟𝑣𝑖𝑐𝑒/𝐺(𝐵𝑆)/𝑉𝑠 queue i.e., if there is no threshold in the system. In that case

𝑁 = 1 and consequently (6.1) reduces to the following,

𝑃𝑁 (𝑠) =

(1− 𝜌𝑢)(1− 𝑠)[𝑝2 + 𝑝1𝐹
*
𝐵(𝜁(𝑠))][︁{︁

(1− 𝑧1) + 𝑧1𝐹 *𝑄1
(𝐾1(𝑠))

}︁
𝑞1𝐹 *𝐴1

(𝐾1(𝑠)) +
{︁

(1− 𝑧2) + 𝑧2𝐹 *𝑄2
(𝐾2(𝑠))

}︁
𝑞2𝐹 *𝐴2

(𝐾2(𝑠))
]︁

[︁
{𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))}

{︁{︀
(1− 𝑧1) + 𝑧1𝐹

*
𝑄1

(𝐾1(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝐾2(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁
where the server utilization factor is 𝜌𝑢 = 𝑞1(𝛾𝐴1 + 𝑧1𝛾𝑄1)

(︁
1 + 𝛼1

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁)︁
+

𝑞2(𝛾𝐴2 + 𝑧2𝛾𝑄2)
(︁

1 + 𝛼2

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁)︁
+ 𝑝1𝛾𝑣. The result thus obtained coincides with the result of

Begum and Choudhury [4] (without re-service).
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(2) 𝑀𝑋/

(︂
𝐺1

𝐺2

)︂
/1/𝑅𝑒− 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 queue when there is no operating policy, vacation and breakdown i.e., 𝑁 = 1,

𝑝1 = 0 and 𝛼𝑖 = 0(𝑖 = 1, 2) then (6.1) reduces to,

𝑃𝑁 (𝑠) =

(1− 𝜌𝑢)(1− 𝑠)[︁{︁
(1− 𝑧1) + 𝑧1𝐹 *𝑄1

(𝜁(𝑠))
}︁

𝑞1𝐹 *𝐴1
(𝜁(𝑠)) +

{︁
(1− 𝑧2) + 𝑧2𝐹 *𝑄2

(𝜁(𝑠))
}︁

𝑞2𝐹 *𝐴2
(𝜁(𝑠))

]︁
[︁{︁{︀

(1− 𝑧1) + 𝑧1𝐹
*
𝑄1

(𝜁(𝑠))
}︀
𝑞1𝐹

*
𝐴1

(𝜁(𝑠))

+
{︀

(1− 𝑧2) + 𝑧2𝐹
*
𝑄2

(𝜁(𝑠))
}︀
𝑞2𝐹

*
𝐴2

(𝜁(𝑠))} − 𝑠
]︁

with the server utilization factor as 𝜌𝑢 = 𝑞1(𝛾𝐴1 + 𝑧1𝛾𝑄1) + 𝑞2(𝛾𝐴2 + 𝑧2𝛾𝑄2) which is persistent with the
existing literature obtained by Madan et al. [30].

(3) 𝑀𝑋/

(︂
𝐺1

𝐺2

)︂
/1(𝑈𝑅)/𝐺(𝐵𝑆)/𝑉𝑠 if the re-service is not allowed and there is no threshold in the system, i.e.

if 𝑁 = 1 and 𝑧𝑖 = 0 (𝑖 = 1, 2) then (6.1) can be written as,

𝑃𝑁 (𝑠) =
(1− 𝜌𝑢)(1− 𝑠)[𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))]

[︀
𝑞1𝐹

*
𝐴1

(𝐾1(𝑠)) + 𝑞2𝐹
*
𝐴2

(𝐾2(𝑠))
]︀[︁

{𝑝2 + 𝑝1𝐹 *𝐵(𝜁(𝑠))}
{︁

𝑞1𝐹 *𝐴1
(𝐾1(𝑠))+𝑞2𝐹 *𝐴2

(𝐾2(𝑠))
}︁
− 𝑠

]︁
where 𝜌𝑢 = 𝑞1𝛾𝐴1

(︁
1 + 𝛼1

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁)︁
+ 𝑞2𝛾𝐴2

(︁
1 + 𝛼2

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁)︁
+ 𝑝1𝛾𝑣, and the result tallies with

the findings of Begum and Choudhury [4].

(4) 𝑀𝑋/

(︂
𝐺1

𝐺2

)︂
/1/𝐺(𝐵𝑆)/𝑉𝑠 queue with no operating policy, re-service queue and service interruption i.e.

𝑁 = 1, 𝑧𝑖 = 0 and 𝛼𝑖 = 0 (𝑖 = 1, 2), then (6.1) is equal to the following,

𝑃𝑁 (𝑠) =
(1− 𝜌𝑢)(1− 𝑠)[𝑝2 + 𝑝1𝐹

*
𝐵(𝜁(𝑠))]

[︀
𝑞1𝐹

*
𝐴1

(𝜁(𝑠)) + 𝑞2𝐹
*
𝐴2

(𝜁(𝑠))
]︀[︁

{𝑝2 + 𝑝1𝐹 *𝐵(𝜁(𝑠))}
{︁

𝑞1𝐹 *𝐴1
(𝜁(𝑠))+𝑞2𝐹 *𝐴2

(𝜁(𝑠))
}︁
− 𝑠

]︁
where 𝜌𝑢 = 𝑞1𝛾𝐴1

+ 𝑞2𝛾𝐴2
+ 𝑝1𝛾𝑣 and the results matches up to the findings of Madan et al. [31].

(5) 𝑀𝑋/

(︂
𝐺1

𝐺2

)︂
/1 queue if the threshold policy, option for repeated service, service interruption and vacation

are omitted i.e., 𝑁 = 1, 𝑧𝑖 = 0, 𝛼𝑖 = 0 (𝑖 = 1, 2) and 𝑝1 = 0 then the expression (6.1) becomes,

𝑃𝑁 (𝑠) =
(1− 𝜌𝑢)(1− 𝑠)

[︀
𝑞1𝐹

*
𝐴1

(𝜁(𝑠)) + 𝑞2𝐹
*
𝐴2

(𝜁(𝑠))
]︀[︀

{𝑞1𝐹 *𝐴1
(𝜁(𝑠)) + 𝑞2𝐹 *𝐴2

(𝜁(𝑠))} − 𝑠
]︀

with 𝜌𝑢 = 𝑞1𝛾1 + 𝑞2𝛾2 which represents the stationary PGF at random epoch for classical M/G/1 queue
with two service types [34].

(6) 𝑀𝑋/𝐺/1 when the number of services is reduced to one from two i.e., 𝑞1 = 0 and 𝑞2 = 1 or 𝑞1 = 1 and
𝑞2 = 0 and there is no operating policy (𝑁 = 1), no repeated service (𝑧𝑖 = 0), no breakdown (𝛼𝑖 = 0), no
vacation (𝑝1 = 0) then (6.1) results in the following,

𝑃𝑁 (𝑠) =
(1− 𝜌𝑢)(1− 𝑠)

[︀
𝐹 *𝐴1

(𝜁(𝑠))
]︀[︀

𝐹 *𝐴1
(𝜁(𝑠))− 𝑠

]︀ or
(1− 𝜌𝑢)(1− 𝑠)

[︀
𝐹 *𝐴2

(𝜁(𝑠))
]︀[︀

𝐹 *𝐴2
(𝜁(𝑠))− 𝑠

]︀
where the server utilization is 𝜌𝑢 = 𝜆𝜇

(1)
𝐴1

or 𝜆𝜇
(1)
𝐴2

and it is the classical Pollaczek Khinchin formula for an
𝑀𝑋/𝐺/1 queue [34].

Thus, the results achieved in this study can be witnessed as a classical generalization of the Pollaczek-Khinchin
formula for an unreliable 𝑀𝑋/𝐺/1 queue providing two-heterogeneous services with optional re-service under
Bernoulli vacation system and 𝑁 -policy. �
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7. Performance measures

This subsection derives the system state probabilities along with the availability and failure frequency (FF)
of the server under the steady-state regime.

Theorem 7.1. Under the steady-state condition 𝜌𝑢 < 1, the system state probabilities are defined as,

(i) Probability that the server is busy with the 𝑖th genre of service:

𝑃𝐴𝑖
= 𝑞𝑖𝛾𝐴𝑖

; 𝑖 = 1, 2.

(ii) Probability that the server is busy with the 𝑖th genre of re-service:

𝑃𝑄𝑖
= 𝑞𝑖𝑧𝑖𝛾𝑄𝑖

; 𝑖 = 1, 2.

(iii) Probability that the server is on vacation:

𝑃𝐵 = 𝑝1𝛾𝑣.

(iv) Probability that the server is waiting for repair during the FGS/SGS:

𝑃𝐴𝑖

𝐿𝑖
= 𝛼𝑖𝑞𝑖𝛾𝐴𝑖

𝜇
(1)
𝐿𝑖

; 𝑖 = 1, 2.

(v) Probability that the server is waiting for repair during the FGRS/SGRS:

𝑃𝑄𝑖

𝐿𝑖
= 𝛼𝑖𝑞𝑖𝑧𝑖𝛾𝑄𝑖

𝜇
(1)
𝐿𝑖

; 𝑖 = 1, 2.

(vi) Probability that the server is under repair during the FGS/SGS:

𝑃𝐴𝑖

𝑇𝑖
= 𝛼𝑖𝑞𝑖𝛾𝐴𝑖

𝜇
(1)
𝑇𝑖

; 𝑖 = 1, 2.

(vii) Probability that the server is under repair during the FGRS/SGRS:

𝑃𝑄𝑖

𝑇𝑖
= 𝛼𝑖𝑞𝑖𝑧𝑖𝛾𝑄𝑖

𝜇
(1)
𝑇𝑖

; 𝑖 = 1, 2.

(viii) Probability that the system is idle:

𝑃𝐼 = 1− 𝑞1(𝛾𝐴1 + 𝑧1𝛾𝑄1)
{︁

1 + 𝛼1

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁}︁
− 𝑞2(𝛾𝐴2 + 𝑧2𝛾𝑄2)

{︁
1 + 𝛼2

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁}︁
− 𝑝1𝛾𝑣.

Proof. (i)–(vii) are attained by letting 𝜂 → 0 and 𝜃 → 0 in (5.32)–(5.38). And (viii) is procured by algebraic
calculation of the expression 𝑃𝐼 = 1−

∑︀2
𝑖=1

{︁
𝑃𝐴𝑖 + 𝑃𝑄𝑖 + 𝑃𝐴𝑖

𝐿𝑖
+ 𝑃𝑄𝑖

𝐿𝑖
+ 𝑃𝐴𝑖

𝑇𝑖
+ 𝑃𝑄𝑖

𝑇𝑖

}︁
− 𝑃𝐵 . �

Theorem 7.2. Under the stationary condition 𝜌𝑢 < 1, the steady-state availability of the server is given by,

𝑆𝑎 = 1−
[︁
𝑞1𝛼1(𝛾𝐴1 + 𝑧1𝛾𝑄1)

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁
+ 𝑞2𝛼2(𝛾𝐴2 + 𝑧2𝛾𝑄2)

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁
+ 𝑝1𝛾𝑣

]︁
. (7.1)

Proof. Equation (7.1) is obtained by applying (5.25) and (5.26) in (***) (given below):

𝑆𝑎 =
𝑁−1∑︁
𝑛=0

𝐼𝑛 + lim
𝑠→1

∑︁
𝑖=2

[︁
¯̄𝑃𝐴𝑖

(𝑠) + ¯̄𝑃𝑄𝑖
(𝑠)

]︁
. (***)

�
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Theorem 7.3. Under the steady-state environment 𝜌𝑢 < 1, the stationary failure frequency of the server
denoted by 𝑆𝑓 is given by,

𝑆𝑓 = 𝑞1𝛼1(𝛾𝐴1 + 𝑧1𝛾𝑄1) + 𝑞2𝛼2(𝛾𝐴2 + 𝑧2𝛾𝑄2). (7.2)

Proof. Following the argument of Li et al. [26], FF of a server is given by:

𝑆𝑓 =
2∑︁

𝑖=1

𝛼𝑖

[︂∫︁ ∞

0

¯̄𝑃𝐴𝑖(𝑥; 1)[1− 𝐹𝐴𝑖(𝑥)]d𝑥 +
∫︁ ∞

0

¯̄𝑃𝑄𝑖(𝑥; 1)[1− 𝐹𝑄𝑖(𝑥)]d𝑥

]︂
. (****)

Since, ∫︁ ∞

0

[1− 𝐹𝑖(𝑥)]d𝑥 =
∫︁ ∞

0

𝑥 d𝐹𝑖(𝑥) = 𝜇𝐹𝑖 (notations implying their usual meaning) (*****)

a standard renewal theory result. �

Therefore, utilizing (4.42), (4.43), and (*****), in the above expression (****), FF of the server is accom-
plished.

8. Optimal cost structure

This section formulates an analogous long term average cost function per unit time for the system under
study (refer, [23,24,39]), which can be extensively used by the system engineers for evaluating the optimal value
of 𝑁 that minimizes the average cost of operation per unit time. The different expenses incurred for operating
the system are as follows,

𝐶ℎ: holding cost for each customer that arrives in the system/ unit time.
𝐶𝑜: operating cost for keeping the server on and in operation/ unit time.
𝐶𝑠: start-up cost/ busy cycle.

Let the average cost per unit time, AC(𝑁), be defined as,

AC(𝑁) = 𝐶𝑜𝜌𝑢 + 𝐶ℎ𝜇
𝑁

+
𝐶𝑠

𝜇𝑏𝑐
; (8.1)

where 𝜌𝑢, 𝜇
𝑁

are already defined in Sections 4, 6, respectively, and 𝜇
𝑏𝑐

is the mean length of a busy cycle of
the model under consideration. To derive 𝜇

𝑏𝑐
the following relation is considered,

𝜇
𝑏𝑐

= 𝜇
𝑖𝑝

+ 𝜇
𝑏𝑝

, (8.2)

where 𝜇
𝑖𝑝

and 𝜇
𝑏𝑝

are the mean length of an idle and busy period of the system, respectively. The mean length

of an idle period is obtained as 𝜇
𝑖𝑝

=
∑︀𝑁−1

𝑛=0 𝜋𝑛

𝜆 , dividing the average number of batches during an idle period by
the rate of arrival. The average number of arrivals during an idle period is 𝜆𝜇

𝑖𝑝
𝜇

(1)
Ξ . Hence, the average length

of a busy period equals to 𝜇
𝑏𝑝

=
𝜌𝑢𝜇

𝑖𝑝

(1−𝜌𝑢) . Finally, using (8.2), 𝜇
𝑏𝑐

is obtained as,

𝜇
𝑏𝑐

=
∑︀𝑁−1

𝑛=0 𝜋𝑛

𝜆(1− 𝜌𝑢)
·

Thus, AC(𝑁) can be rewritten as,

AC(𝑁)

= (𝐶𝑜 + 𝐶ℎ)
[︁
𝑝1𝛾𝑣 + 𝑞1(𝛾𝐴1 + 𝑧1𝛾𝑄1)

(︁
1 + 𝛼1

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁)︁
+ 𝑞2(𝛾𝐴2 + 𝑧2𝛾𝑄2)

(︁
1 + 𝛼2

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁)︁]︁

+
𝐶ℎ

∑︀𝑁−1
𝑛=0 𝑛𝜋𝑛 + 𝐶𝑠𝜆

[︁
1− 𝑝1𝛾𝑣 − 𝑞1(𝛾𝐴1 + 𝑧1𝛾𝑄1)

(︁
1 + 𝛼1

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁)︁
− 𝑞2(𝛾𝐴2 + 𝑧2𝛾𝑄2)

(︁
1 + 𝛼2

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁)︁]︁

∑︀𝑁−1
𝑛=0 𝜋𝑛
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+ 𝐶ℎ

⎡

⎢⎢⎣

(︁
𝜆𝜇

(1)
Ξ

)︁2
[︂
𝑞1

(︁
𝜇

(2)
𝐴1

+ 𝑧1𝜇
(2)
𝑄1

)︁{︁
1 + 𝛼1

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁}︁2

+ 𝑞2

(︁
𝜇

(2)
𝐴2

+ 𝑧2𝜇
(2)
𝑄2

)︁{︁
1 + 𝛼2

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁}︁2

+ 𝑝1𝜇
(2)
𝐵

]︂

2(1− 𝜌𝑢)

+

(︁
𝜆𝜇

(1)
Ξ

)︁2[︁
𝛼1𝑞1

(︁
𝜇

(1)
𝐴1

+ 𝑧1𝜇
(1)
𝑄1

)︁
(𝜇

(2)
𝐿1

+ 𝜇
(2)
𝑇1

+ 2𝜇
(1)
𝐿1

𝜇
(1)
𝑇1

) + 𝛼2𝑞2

(︁
𝜇

(1)
𝐴2

+ 𝑧2𝜇
(1)
𝑄2

)︁(︁
𝜇

(2)
𝐿2

+ 𝜇
(2)
𝑇2

+ 2𝜇
(1)
𝐿2

𝜇
(1)
𝑇2

)︁]︁

2(1− 𝜌𝑢)

+

(︁
𝜆𝜇

(1)
Ξ

)︁2
[︂
𝑝1𝜇

(1)
𝐵

{︂
𝑞1𝑧1𝜇

(1)
𝐴1

𝜇
(1)
𝑄1
{1 + 𝛼1

(︁
𝜇

(1)
𝐿1

+ 𝜇
(1)
𝑇1

)︁
}2 + 𝑞2𝑧2𝜇

(1)
𝐴2

𝜇
(1)
𝑄2

{︁
1 + 𝛼2

(︁
𝜇

(1)
𝐿2

+ 𝜇
(1)
𝑇2

)︁}︁2
}︂]︂

(1− 𝜌𝑢)

+
𝜌𝑢𝜇

(2)
Ξ

2𝜇
(1)
Ξ (1− 𝜌𝑢)

]︃

· (8.3)

For notational convenience, let 𝑅(𝑗) =
∑︀𝑗

𝑛=0 𝜋𝑛, 𝑆(𝑗) =
∑︀𝑗

𝑛=0 𝑛𝜋𝑛 and the optimal value of 𝑁 be denoted
by 𝑁*. Then to determine 𝑁* the cost function AC(𝑁) needs to be shown as a convex function, but the non-
linearity and complexity of AC(𝑁) make it a tough job. However, an alternative procedure is presented here in
the form of a 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 stated below that makes the calculation of 𝑁* possible.

Theorem 8.1. Under the long term average cost structure, the optimal threshold for an

𝑀𝑋/

(︂
𝐺1

𝐺2

)︂
/1(𝑈𝑅)/𝑅𝑒− 𝑠𝑒𝑟𝑣𝑖𝑐𝑒/𝐺(𝐵𝑆)/𝑉𝑠/𝑁 − 𝑃𝑜𝑙𝑖𝑐𝑦 queue is given by,

𝑁* = min

[︃
𝑗 ≥ 1 |

𝑗−1∑︁
𝑛=0

(𝑗 − 𝑛)𝜋𝑛 >
𝜆(1− 𝜌𝑢)𝐶𝑠

𝐶ℎ

]︃
· (8.4)

Proof. Let,

AC(𝑗 + 1)−AC(𝑗) = 𝐶ℎ

[︂
𝑆(𝑗)
𝑅(𝑗)

− 𝑆(𝑗 − 1)
𝑅(𝑗 − 1)

]︂
+ 𝜆(1− 𝜌𝑢)𝐶𝑠

[︂
1

𝑅(𝑗)
− 1

𝑅(𝑗 − 1)

]︂
=

𝜋𝑗

𝑅(𝑗)𝑅(𝑗 − 1)
[𝐶ℎ{𝑗𝑅(𝑗)− 𝑆(𝑗)} − 𝜆𝐶𝑠(1− 𝜌𝑢)].

Since 𝐶ℎ{𝑗𝑅(𝑗) − 𝑆(𝑗)} > 0 and 𝜋𝑗

𝑅(𝑗)𝑅(𝑗−1) > 0, the function ℎ(𝑗) = 𝐶ℎ{𝑗𝑅(𝑗) − 𝑆(𝑗)} − 𝜆𝐶𝑠(1− 𝜌𝑢) rules
whether AC(𝑁) increases or decreases.

Let “𝑘” be the first “𝑗” such that ℎ(𝑗) > 0. Then

ℎ(𝑘 + 1) = 𝐶ℎ[(𝑘 + 1)𝑅(𝑘 + 1)− 𝑆(𝑘 + 1)]− 𝜆𝐶𝑠(1− 𝜌𝑢)
= 𝐶ℎ[(𝑘 + 1)𝑅(𝑘)− 𝑆(𝑘)]− 𝜆𝐶𝑠(1− 𝜌𝑢)
= ℎ(𝑘) + 𝐶ℎ𝑅(𝑘) (8.5)

=⇒ ℎ(𝑘 + 1) > ℎ(𝑘).

Thus, it is observed that AC(𝑛) > AC(𝑘) for some 𝑛 > 𝑘. Hence,

𝑁* = first 𝑗 such that ℎ(𝑗) > 0

= min

[︃
𝑗 ≥ 1 |

𝑗−1∑︁
𝑛=0

(𝑗 − 𝑛)𝜋𝑛 >
𝜆(1− 𝜌𝑢)𝐶𝑠

𝐶ℎ

]︃
· (8.6)

�

Remark 8.2. It is to be noted here that if 𝐶ℎ

𝐶𝑠
> 𝜆(1−𝜌𝑢)∑︀𝑗−1

𝑛=0(𝑗−𝑛)𝜋𝑛
, the optimal threshold value of 𝑁* is always

equal to 1, which implies that it is not beneficial to have a control policy if the holding cost/unit time is greater
than the start-up cost/ unit time.



1006 A. BEGUM AND G. CHOUDHURY

9. Numerical experiment

This section performs a quantitative analysis of the system’s survivability attributes instead of exact model
parameterizations. As the exact values of the system parameters for the underlying model are not known at
this time point so assumed parametric values are taken into consideration.

For illustrative purpose, the service, re-service, vacation, delay and repair time r.v are all assumed to be
exponentially distributed with parameters 𝜎𝑖 𝜏𝑖, 𝜗, 𝑑𝑖 and 𝑟𝑖 (𝑖 = 1, 2) respectively. The corresponding PDFs
are 𝑓𝐴𝑖(𝑥) = 𝜎𝑖𝑒

−𝜎𝑖𝑥(𝑥 > 0), 𝑓𝑄𝑖(𝑥) = 𝜏𝑖𝑒
−𝜏𝑖𝑥(𝑥 > 0), 𝑓𝐵(𝑥) = 𝜗𝑒−𝜗𝑥(𝑥 > 0), 𝑓𝐿𝑖(𝑦) = 𝑑𝑖𝑒

−𝑑𝑖𝑦(𝑦 > 0) and
𝑓𝑇𝑖

(𝑦) = 𝑟𝑖𝑒
−𝑟𝑖𝑦(𝑦 > 0) respectively; LST 𝐹 *𝐴𝑖

(𝜂) = 𝜎𝑖

𝜎𝑖+𝜂 , 𝐹 *𝑄𝑖
(𝜂) = 𝜏𝑖

𝜏𝑖+𝜂 , 𝐹 *𝐵(𝜂) = 𝜗
𝜗+𝜂 , 𝐹 *𝐿𝑖

(𝜂) = 𝑑𝑖

𝑑𝑖+𝜂 and

𝐹 *𝑇𝑖
(𝜂) = 𝑟𝑖

𝑟𝑖+𝜂 respectively; mean 𝜇
(1)
𝐴𝑖

= 1
𝜎𝑖

, 𝜇
(1)
𝑄𝑖

= 1
𝜏𝑖

, 𝜇
(1)
𝐵 = 1

𝜗 , 𝜇
(1)
𝐿𝑖

= 1
𝑑𝑖

and 𝜇
(1)
𝑇𝑖

= 1
𝑟𝑖

respectively; second

moment 𝜇
(2)
𝐴𝑖

= 2
𝜎2

𝑖
, 𝜇

(2)
𝑄𝑖

= 2
𝜏2

𝑖
, 𝜇

(2)
𝐵 = 2

𝜗2 , 𝜇
(2)
𝐿𝑖

= 2
𝑑2

𝑖
and 𝜇

(2)
𝑇𝑖

= 2
𝑟2

𝑖
respectively.

The arrival batch size is presumed to follow geometric distribution with parameter 𝑤 (0 < 𝑤 < 1). The
corresponding PMF is 𝑃 (Ξ = 𝑙) = 𝑤(1− 𝑤)(𝑙−1) (𝑙 = 1, 2, · · · ; 0 < 𝑤 < 1), mean 𝜇

(1)
Ξ = 1

𝑤 and second moment
𝜇

(2)
Ξ = 2−𝑤

𝑤2 respectively.
For the sake of computational convenience, the assumed non-monetary and monetary values of the system

parameters are summarized in Tables 1 and 2, respectively.

Table 1. Parametric non-monetary values of the model.

Processes Parameters Parametric values

Arrival 𝜆 0.3
𝑤 0.2

FGS/FGRS 𝑞1 0.5
𝑧1 0.1
𝜎1 4
𝜏1 3
𝛼1 0.022
𝑑1 30
𝑟1 20

SGS/SGRS 𝑞2 0.5
𝑧2 0.15
𝜎2 5
𝜏2 4
𝛼2 0.025
𝑑2 35
𝑟2 25

Vacation 𝑝1 0.4
𝜗 11

Table 2. Parametric monetary values of the model.

Parameters Parametric values (in Rs.)

Costs 𝐶ℎ 240
𝐶𝑜 500
𝐶𝑠 2000

5000
9000
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9.1. Influence of the reliability factors 𝛼1 and 𝛼2

The effect of breakdown rates 𝛼𝑖(𝑖 = 1, 2) on the important reliability measure of the system viz, system
state availability and failure frequency of the server are presented in Table 3 with the help of the given data in
Table 1.

Table 3. Impact of breakdown rates on server availability and failure frequency.

𝛼1 𝛼2 S𝑎 S𝑓

0 0 0.95 1

0 0.025 0.94569 0.00445
0.02 0.025 0.94534 0.00870
0.04 0.025 0.94498 0.01294
0.06 0.025 0.94463 0.01719
0.08 0.025 0.94428 0.02143

0.022 0 0.945612 0.00467
0.022 0.02 0.945367 0.00823
0.022 0.04 0.945121 0.01179
0.022 0.06 0.944875 0.01536
0.022 0.08 0.944629 0.01892
0.08 0.08 0.943607 0.03123

Table 3 clearly shows that a higher value of 𝛼𝑖(𝑖 = 1, 2), i.e. breakdown rate results in lower server availability,
i.e. 𝑆𝑎, and higher failure frequency, i.e. 𝑆𝑓 . The server’s stationary system availability is found as 95% with
failure frequency less than 1% for the model under study.

9.2. Optimal policy

This subsection describes how the decision regarding the optimal threshold of 𝑁 to minimize the average
cost is made with the help of the cost structure defined in (8.3) based on the data given in Tables 1 and 2.

To determine the optimal value of 𝑁 , the recursive relationship 𝜋𝑛 =
∑︀𝑛

𝜄=1 𝑤𝜄𝜋𝑛−𝜄 and 𝜋0 = 1 is ulitized to
calculate

∑︀𝑗−1
𝑛=0 (𝑗 − 𝑛) 𝜋𝑛 and is shown in Table 4.

Table 4. Different values of
∑︀𝑗−1

𝑛=0 (𝑗 − 𝑛) 𝜋𝑛.

𝑛 𝜋𝑛

∑︀𝑗−1
𝑛=0 (𝑗 − 𝑛) 𝜋𝑛

1 0.8 1
2 0.8 2.8
3 0.8 5.4
4 0.8 8.8
5 0.8 13
6 0.8 18
7 0.8 23.8
8 0.8 30.4
9 0.8 37.8
10 0.8 46

Further, keeping 𝐶ℎ = 240 as fixed and varying the probability of 𝑝1 from 0 to 1 such that the utilization
factor 𝜌𝑢 < 1 always satisfies, Table 5 represents some numerical results of the cost ratio 𝜆(1−𝜌𝑢)𝐶𝑠

𝐶ℎ
for three

different values of 𝐶𝑠 considered in Table 2.
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Table 5. Different values of 𝜆(1−𝜌𝑢)𝐶𝑠

𝐶ℎ
.

𝜆(1−𝜌𝑢)𝐶𝑠

𝐶ℎ

𝑝1 𝜌𝑢 𝐶𝑠 = 2000 𝐶𝑠 = 5000 𝐶𝑠 = 9000

0 0.39107 1.46143 3.65358 6.57645
0.1 0.40457 1.42903 3.57258 6.430651
0.2 0.41807 1.39663 3.49158 6.28485
0.3 0.43157 1.36423 3.41058 6.13905
0.4 0.44507 1.33183 3.32958 5.99325
0.5 0.45857 1.29943 3.24858 5.84745
0.6 0.47207 1.26703 3.16758 5.70165
0.7 0.48557 1.23463 3.08658 5.55585
0.8 0.49907 1.20223 3.00558 5.41005
0.9 0.51257 1.16983 2.92458 5.26425
1 0.52607 1.13743 2.84358 5.11845

Table 6. Optimal values of 𝑁* for different 𝐶𝑠.

𝐶𝑠 Optimal threshold of 𝑁

2000 𝑁* = 2; 0≤ 𝑝1 ≤ 1
5000 𝑁* = 3; 0 ≤ 𝑝1 ≤ 1
9000 𝑁* = 4; 0 ≤ 𝑝1 ≤ 0.8

𝑁* = 3; 0.9 ≤ 𝑝1 ≤ 1

Finally, based on the result achieved in Theorem 8.1 to determine the optimal value of 𝑁 , the values of∑︀𝑗−1
𝑛=0 (𝑗 − 𝑛) 𝜋𝑛 and 𝜆(1−𝜌𝑢)𝐶𝑠

𝐶ℎ
are compared from Tables 4 and 5 respectively, and the optimal 𝑁* is procured

and presented in Table 6.
The effect of the system parameter 𝑝1 on the mean queue length 𝜇𝑁 of the underlying model is computed

for 𝑁 = 2, 3 and 4 obtained in Table 6 and is presented in Table 7, followed by a graphical representation for
the same in Figure 4.

Table 7. Mean queue size for optimal thresholds of 𝑁 and different values of 𝑝1.

𝜇𝑁

𝑝1 𝑁 = 2 𝑁 = 3 𝑁 = 4

0 5.96368 6.19583 6.48749
0.1 6.28727 6.51941 6.81108
0.2 6.62524 6.85738 7.14905
0.3 6.97862 7.21077 7.50243
0.4 7.34855 7.58069 7.87236
0.5 7.73624 7.96839 8.26005
0.6 8.14308 8.37522 8.66689
0.7 8.57055 8.8027 9.09436
0.8 9.02034 9.25249 9.54415
0.9 9.4943 9.72645 10.0181
1 9.99449 10.2266 10.5183

From both Table 7 and Figure 4, it is clear that as 𝑝1 increases, the mean queue size increases for different
values of 𝑁 and the same law follows for any higher value of 𝑁 .
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Figure 4. Mean system size vs. threshold level of N.

Based on the parameter setting of Table 1 and 2, the average cost per unit of time for different values of 𝐶𝑠

and 𝑁 is presented graphically in Figure 5.

Figure 5. Average cost vs. different Cs and threshold level of N.

Figure 5 is a convex plot depicting the impact of threshold levels on the average cost per unit time for all
the three different start-up costs considered in this study. The minimum average cost per unit is achieved as
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AC(𝑁*) = 2297.5, AC(𝑁*) = 2637.95 and AC(𝑁*) = 3023.02 against 𝑁* = 2 for 𝐶𝑠 = 2000, 𝑁* = 3 for
𝐶𝑠 = 5000 and 𝑁* = 4 for 𝐶𝑠 = 9000 respectively. This upholds the conclusion of Theorem 8.1 and Table 6.

10. Conclusion

In this manuscript, a non-Markovian model under 𝑁 -policy is developed to study the joint distribution of
server’s state and queue size in both elapsed and remaining times, assuming general distribution of the service,
re-service, vacation, repair and delay times for a bulk arrival queueing model. The underlying queueing system
takes into consideration the supplementary variable technique under some suitable transformations to deliver
the stationary queue size distribution at arbitrary and service completion epoch and mean system size besides
various pivotal performance measures. An optimal operating policy under a linear cost structure has been put
forward in the form of a theorem. Finally, with the help of some numerical experiments, the applicability of
this theorem is shown, and the optimal thresholds of the model under consideration are obtained for three
different start-up costs. These will furnish information to the system designers and system engineers about
the efficiency of the model and help them use the proposed model while designing different digital systems,
production systems, and inventory systems.

It would be interesting to explore a similar model with more than two heterogeneous services, set-up time,
multi servers, customers impatience, modified vacation policy etc., making it a more resilient queueing model
with more general results.
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