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ANALYSIS OF A BULK ARRIVAL N-POLICY QUEUE WITH TWO-SERVICE
GENRE, BREAKDOWN, DELAYED REPAIR UNDER BERNOULLI VACATION
AND REPEATED SERVICE POLICY

ANJANA BEGUM* AND GAUTAM CHOUDHURY

Abstract. This article deals with an unreliable bulk arrival single server queue rendering two-
heterogeneous optional repeated service (THORS) with delayed repair, under Bernoulli Vacation Sched-
ule (BVS) and N-policy. For this model, the joint distribution of the server’s state and queue length
are derived under both elapsed and remaining times. Further, probability generating function (PGF)
of the queue size distribution along with the mean system size of the model are determined for any
arbitrary time point and service completion epoch, besides various pivotal system characteristics. A
suitable linear cost structure of the underlying model is developed, and with the help of a difference
operator, a locally optimal N-policy at a lower cost is obtained. Finally, numerical experiments have
been carried out in support of the theory.
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1. INTRODUCTION

Service interruption is a very demanding research topic in queueing systems. It is encountered in many day-
to-day congestion scenarios noticed in the ticket counters, hospitals, banks, production systems, communication
networks etc. The interruption in service due to server breakdown and server absence or vacation are nearly
inescapable and inclusion of which makes a queueing model more resilient.

Most of the classical queueing models are devoted to the study of a reliable server. But in real life, existence
of a perfect reliable server is practically impossible, and servers are often susceptible to unforeseen failures.
White and Christie [47] were the first to study a queueing model with an unreliable server subjecting it to
instantaneous repair. To cite a few papers on an unreliable server with immediate repairability, the authors
refer to the works of Li et al. [25], Madan [29], Wang [46], Krishnamoorthy et al. [20], Abbas and Aissani [1].
But instantaneous repair of a broken server may be delayed due to technical difficulty, unavailability of the
technician, equipment or several other reasons. The notion of delay in repair usually termed as the delayed
repair, was introduced by Madan [28] for an M/M/1 queue with delay and repair time following general and
exponential distribution, respectively. Kumar and Arumuganathan [21] studied an unreliable MX /G/1 retrial
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queue with optional service where two different kinds of repair, i.e. repair time of server during patient and
impatient customers, are considered. Peng et al. [35] analyzed an M/G/1 queue with pre-emptive resume priority
and collisions subject to server’s breakdown and delayed repair under linear retrial policy. Choudhury and Kalita
[7] investigated an M/G/1 delayed repair queue where both the delay and repair times are assumed to follow
the general distribution. Saggou et al. [36] examined an unreliable M/G/1 retrial queue with delay in repair
and two kinds of customers (transit and recurrent). Singh et al. [38] discussed an M* /G /1 queue with delayed
repair where the server undergoes different compulsory phases of repair.

Queueing models with server vacation is a common instance of record perceived in many real-life queueing
phenomena, incorporation of which adds more realisticity and pliability in the system. An extensive survey on
vacation queue can be reported in the works of Doshi [12], Takagi [43], Tian and Zhang [45]. Different queueing
models undergo different server vacations however, the vacation policy studied in this research work follows the
Bernoulli schedule. Pioneering works on Bernoulli schedule can be seen in the study of Keilson and Servi [18].
Madan et al. [31] have studied a single server queue under BVS, where he analyzed the stationary queue size
distribution besides various performance measures. Maraghi et al. [33] investigated a single server queue with
service interruptions under BVS assuming general vacation and exponential repair time distribution and have
derived the PGF of the system size. Khalaf et al. [19] generalized this model by introducing general repair time.
Choudhury and Deka [5] developed an unreliable M/G/1 queue with two phases of service and BVS, where
they determined the stability queue length distribution at arbitrary and departure epoch. Further, Choudhury
and Deka [6] generalized their earlier model [5] by addendum of multiple vacation policy to it. Li et al. [27]
discussed an M/G/1 retrial queue where the retrial times follows general distribution and the server undergoes
a working vacation following the Bernoulli schedule.

Control of a queue and a vacation period is one of the most significant areas of research. To cap the queue
and vacation length, various control operating policies can be used. This study opts for stationary N-policy
which recieved most attention because it is analytically more easier to deal with than the other policies. Lee and
Srinivasan [23] introduced the concept of N-Policy for a batch arrival queue. Later, Lee et al. [24] developed a
suitable linear cost function to determine an optimal threshold using the system size distribution. Choudhury
and Paul [8] analyzed a batch arrival queue under N-policy with a second optional service. They discussed the
PGF of the queue size distribution at random and departure epoch and provided a simple procedure to derive the
optimal policy. Choudhury et al. [9] further generalized its previous model by incorporating service interruptions
and delayed repair. Ke et al. [17] explored an M~ /G/1 queue with N-policy where the server is allowed to take
at most J vacations until the number of customers accumulates to N after returning from a vacation. Tadj and
Yoon [41] examined an unreliable M /G/1/N -policy queue where they applied binomial schedule with k vacations
instead of BVS and developed a cost structure consisting of two decision variables. Kalita and Choudhury [15]
investigated an unreliable N-policy queue and analyzed the Laplace Stieltjes Transform (LST) of the system’s
reliability function with the mean time to first failure of the server. Lately, Lan and Tang [22] discussed a
GEO/G/1 queue with N-policy and Bernoulli feedback under modified multiple vacations.

In this article, an MX / (gl) /1 re-service queue with service interruption and N-policy is considered. Accord-
2

ing to N-policy, the server remains idle till the queue length accumulates to N (a threshold value) and resumes
service as soon as it becomes equal to or exceeds the threshold value N (> 1). Once the queue length is N, the
service begins, and the customers are given a choice between two heterogeneous services where they have an
option for re-service. Under the service mechanism THROS, the server provides two different genres of services
to its customers with probabilities, say q1 /g2 associated with each service genre, having an additional advantage
of repeating the same service once with probability 21 /25 in case of dissatisfaction. After each busy period, the
server either undergoes a vacation of random length with some probability, say p1, or starts a new service with
its complementary probability, say ps. While in service, the server is subject to abrupt failures, which then can
be fixed. The efficiency and outcome of the queueing systems are extremely affected by service interruptions.
In recent years several models have evolved with THROS. The notion of THROS was first analyzed by Madan
et al. [30] for bulk arrival queue, where they evaluated the stationary PGF of the queue size and average waiting
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time in the queue/system. Tadj and Ke [40] examined a single server queue delivering two phases of service
where the first phase of service offered a choice of either service to its customers and obtained an optimal control
policy for it. Baruah et al. [3] analyzed a single server vacation queue with THROS, including the concept of
balking. Kalita and Choudhury [16] examined a single server queue under THROS with randomized vacation
policy and obtained important performance characteristics. Investigations so far, have considered only THORS
owing to mathematical convenience, though a larger number of such services is definitely more desired. By
generalizing the results of THORS findings with more than two service genres can be easily developed.

In queueing paradigm, several researchers have discussed individual or a few realistic queueing phenomenons
like two genre of service, re-service, unreliable server, delayed repair, Bernoulli schedule, N-policy. But to the
best of author’s knowledge, no queueing literature is found, which analyzes all these features together. Owing
to application of such models in real-life systems where these queueing concepts are common, there is a need for
such research work that combines all these features together. So, to fulfil this research gap, this study proposes
an MX /G /1 queue under the realistic phenomena of (i) two genre of service, (ii) repeated service, (iii) server
failure, (iv) delay in repair, (v) Bernoulli vacation and (vi) N-policy. Also, few unanswered questions elemented
below have been attempted to address:

— Real life application of such model.

— Queue size PGF of an idle period.

— Joint PGF of server’s state and queue length under elapsed time.

— Marginal PGF/PDF of server’s state and queue length.

Double transform under elapsed and remaining time.

Steady-state queue size distribution at random/service completion epoch.
Stationary system state probabilities for various states of the server.

— Steady-state availability and failure frequency of the server.

— Optimal cost policy for the underlying model.

When all the adversities are taken together, it involves functional equations. So, to tackle this difficulty and
obtain the exact solution for the above-mentioned results, the well known supplementary variable technique
under some suitable transformations are applied. These transformations make the calculations of the remaining
time distribution results possible without even setting the Kolmogorov Backward recurrence equations. The
marginal PGF and PDFs follows trivially from the joint distributions without involving much complexities of
integration. However, very few works are available in the literature with this type of transformation. Takagi
[42,44] first used these kind of transformations for a time-dependent M/G/1 vacation queue.

The proposed model may find a potential application in the Discontinuous Reception (DRX) mechanism with
flexible Transmission Time Interval (TTI) of the fifth-generation (5G) network that allows a User Equipment
(UE) to enter a sleep period, thereby saving power. Here in this framework, the Short Transmission Time
Interval (STTI) or the Long Transmission Time Interval (LTTT) are modelled as THROS, moving to DRX cycle
or continuing transmission is modelled as BVS, and network congestion is modelled as server breakdown. As
UEs are susceptible to abrupt failures and network failure affects their performance immensely, it motivated
the authors to study such a system from the consideration of queueing and reliability. Hence, this research
work investigates an unreliable queueing model with THORS under BVS and N-policy. The application of the
underlying model is explained in details in Section 2.

The essential features of this article are: Section 2 gives a real-world justification of the proposed model.
Section 3 describes the underlying stochastic model. Section 4 puts forward the Kolmogorov equations governing
the model under consideration. Section 5 finds the joint distribution of the server’s state and queue length under
elapsed and remaining times. Section 6 obtains the system size distribution at service termination epoch, and
the performance measures of the model are discussed in Section 7. Section 8 develops an optimal operating
policy of the model, and Section 9 illustrates a numerical example supporting the theory. Finally, a concluding
remark is summarized in Section 10.
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2. REAL WORLD IMPLEMENTATION OF THE MODEL PROPOSED

In mobile communications and wireless networks, power saving is an important issue of the UE, and there
is a huge literature on it [11,13]. The Long Term Evolution/Long Term Evolution-Advanced (LTE/LTE-A)
technology uses the DRX mechanism to reduce the energy consumption of UEs by allowing them to turn off
their components whenever there is no arrival of data. The DRX mechanism is such that if there are no packets
in the system seeking service, the system moves to an inactivity timer state (ITS), whereas the arrival of a
packet moves the system to an active state where the service is rendered to the packets. ITS is a state in which
the UE waits before starting DRX. Once all the packets in the buffer are served, the system again moves to
ITS and waits for new arrival for some random amount of time. If there is no packet indication in the buffer
before termination of the inactivity timer (IT), it makes the system move on DRX cycle in sequence with
some probability “p;” (say) for a short period of time up to a fixed number, and after that, a long DRX cycle
begins and so on until a packet arrives. If a packet arrives it gets served with the complementary probability
“pa = (1 — p1)”. The structure of a DRX mechanism is explained in Figure 1.

Sleep
period/
power Working Working
saving period/Active Sleep period/power period/Active
Working period/Active state state state saving state state
< > —> < P < > < >
Busy period Busy Busy N Busy period
period period
1 |
ITS ITS ITS ITS
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v v Short | ¥ Short e
Packet Packet DRX [Packet DRX DRX
arrival arrival cycle arrival eycle cycle
v
2nd 21"1'(21 1‘5: P aC‘ket
Shos Short Long arrival
DRX DRX DRX
cycle cycle
cycle y

FIGURE 1. Structure of the DRX mechanism.

LTE/LTE-A uses fixed TTI of length 1ms for transmission, so to deal with the multifarious data traffic
increasing in various UE, it is unsuitable in its current state for 5G communications. The 5G network comprises
of two flexible TTTs, namely the STTI and LTTI, to handle the diversified data traffic with various requirements
of the UEs. Generally, for processing high volume data at a minimal rate, STTT is used, and for cellular network
services, LTTT is used. A comprehensive survey on 5G wireless networks can be observed in the works of Agiwal
et al. [2]. Maheshwari et al. [32] suggested a semi-Markov model to explore the DRX mechanism with flexible
TTI for 5G communications and analyzed the power-saving factor, and proposed an algorithm for the TTI
selection for different service requirements.
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Employing N-policy in the DRX system implies that every packet that arrives in the buffer are not served
immediately. The system becomes operative only when there are N or more packets in the buffer in the power-
saving state of the UE. As soon as the number of packets are indicated to be N in the buffer, the service starts
immediately; otherwise the short DRX cycles keep on occurring successively, followed by long DRX cycles.
Gautam et al. [14] suggested an M*X /G/1 vacation queueing model with N-policy in the DRX mechanism of
the LTE-A networks.

In this study, the packets that arrive in the buffer are assumed to follow the compound poisson process and
are served only when the number of packets add up to N in the buffer. As soon as the number of packets
in the buffer builds up to N, the packets can choose any of the TTI with probability gi /g2 (say) and repeat
its transmission once if needed with probability z;/z2 (say) indicating THROS. After transmission and re-
transmission, the system moves to a DRX cycle with probability p;1, or continue transmitting with probability
P2, thereby signifying a BVS. While transmission of a packet is in progress, it is very likely that there might be
transmission interruption owing to network failure, congestion etc., implying breakdown of the service station.
The failure of an UE due to network congestion can sometimes be gained by restarting the UE or sometimes by
waiting till the network provider fixes it by themselves. However, fixing of a failed network may not always be
immediate due to unavailability of the technician, scarcity of equipment etc., signifying a delay in repair. Thus,
clubbing N-policy and DRX mechanism can lead to more power saving of 5G networks.

3. DESCRIPTION OF THE MATHEMATICAL MODEL

This research study considers a queueing system where the customers arrive in the system in batches of
different sizes conforming to a compound Poisson process with a rate of arrival A > 0. Let = be the number
of individual primary units in a batch and =Z;,Z,,... be the successively arriving batch sizes which are inde-
pendently and identically distributed (i.i.d) random variables (r.v). The probability mass function (PMF) and
PGF of E are given by w; = Pr[E =];] = 1,2,--- and P=(s) = > 2, wis' (| s |< 1) respectively with finite
factorial moment M(El) =FE[E(E-1)---(E—=141)]. Thus, if [ is the number of customers in a batch, then the
rate of arrival of [ units in a batch is w;A.

The single server here provides two different service genre on a first come first serve basis. The server turns off
its services when the system empties and re-establishes the service immediately upon the system size exceeding
or being equal to N (> 1, threshold). Before the start of a busy period each customer either selects the first genre
of service (FGS) with probability “g;” or the second genre of service (SGS) with probability “¢2” (g1 +¢2 = 1).
The service time provided in the FGS and SGS are i.i.d r.v denoted by A; and A, respectively follows the general
law of probability (g.1.p) with cumulative distribution function (c.d.f) Fa,(z), LST F} (n) = [,° e "™ dFy, (z)
and I*" finite moment /JEQ (l=1,2,---)Vi=1,2 (i takes the value 1 for the FGS and 2 for the SGS).

The model considers that as soon as a chosen service of any genre is completed by the server, the customer
may further opt to repeat the same genre of service but only once with probability z; or leave the system with
its complementary probability (1 — z;) for ¢ = 1,2. The re-service time of the server is an i.i.d r.v denoted
by Q; which follows the g.lp with c.d.f Fg,(z), LST Fj, (n) = [;° e ""dFg,(z) and I finite moment p{)
(l=12--)Vi=1,2.

The server after completion of a service along with its repeated service of any genre may enter into a vacation
period of random duration B with probability p; or continue staying in the system and serve the next unit, if
any, with probability ps such that p; + po = 1. The duration of vacation period B is an i.i.d r.v following the
g.l.p with c.d.f Fp(x), LST Fj(n) = [;° e "dFp(z) and I'" finite moment ,ug) (l=1,2,---).

As the server considered here is unreliable; therefore, the server may breakdown at any instant while providing
service of any genre. The inter-arrival of breakdown time is assumed to follow an exponential distribution with
breakdown rates a; for FGS/FGRS and ay for SGS/SGRS. Occurrence of a breakdown makes the server
unavailable for an unspecified period of time until it is fixed (repaired). When the server breaks down the one
in service waits for the server to get repaired and after that completes his remaining service. Consequently,
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the service time is cumulative in nature. While fixing the server many of the times it is not always immediate,
rather subject to some delays owing to many reasons. The delay time is an i.i.d r.v L; following the g.l.p with
c.df Fr,(y), LST F} (n) = JoS em™ dFy, (y) and I*™" finite moment u(Ll) (l=1,2,---). Similarly, the repair time
is also an i.i.d r.v T following g.1.p with c.d.f Frr,(y), LST F7. (n) = JoS e"™ dFr, (y) and ™™ finite moment ,ugf)
(l=1,2,---)fori=1,2.

Further, the input process, service time, re-service time, vacation time, server’s lifetime, delay time and repair
time are all assumed to be mutually independent of each other.

In consideration of the above discussion a sample path of the model discussed above is depicted in Figure 2.
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FIGURE 2. Sample path of the proposed model.

The state transition diagram for the same is represented in Figure 3 where a 2-tuple (7,9) denotes the state
of the system. The variable 7 denotes the number of units in the system at time ¢ and ¢ denotes the state of
the system at time ¢; where 7 € {0,1,...} and ¥ € {0,1,2,3,4,5,6}. 0 — idle period, 1 — vacation period, 2 —
busy period with FGS, 3 — busy period with FGRS, 4 — busy period with SGS, 5 — busy period with SGRS, 6
— breakdown period for ¢ € {0,1,2,3,4,5,6}.

4. GOVERNING EQUATIONS

This section frames the equations governing the system states taking into account elapsed service time A%(t),
elapsed re-service time QY (t), elapsed delay time L?(t), elapsed repair time T (¢) (i = 1,2) and elapsed vacation
time B°(t) at time ¢ as supplementary variables and A (t), Qf (t), L (¢), T;7(t) (i = 1,2) and B*(t) be the
corresponding remaining service, re-service, delay, repair and vacation times respectively at time t.
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FIGURE 3. State Transition Diagram of the proposed model.

Let the random variable () define the various status of the server at time ¢. Then for i = 1,2,

idle
rendering the ith genre of service

rendering the ith genre of re-service

waiting for repair during ith genre of service

waiting for repair during ith genre of re-service
under repair during ith genre of service

under repair during ith genre of re-service

N o U e WO

vacation.

Let N(t) be the number of customers present in the system at time ¢ and {N(¢),s(t);¢ > 0} be a bivariate
Markov Process, where {¢(t),t > 0} is an elemental process and {N(t),t > 0} is a perceivable process having
{0,1,---} as the state space.
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The limiting probabilities for the steady-state analysis, given the elapsed and remaining times as x,y and

r, v respectively, can be defined as follows:
Forn=0,1,---N —1,

Forn=1,2,--- and i = 1,2,

fa,,(x)de = tlilglo Pr{N(t) =n,¢(t) =Lz < A?(t) <z+ dx}; x>0
fAf.n (r)ydr = t1i>1£10 Pr{N(t) =n,s(t) = L;r < Af(t) <r+ dr}; r>0
fo..(x)dx = tlg& Pr{N(t) =n,¢(t) =2z < Q?(t) <z+ dx}; x>0
for (r)dr=lim Pr{N(t) =n,c(t) = 2;r < Q () <7+ dr}; r>0
ff‘;n(x,y) dy = tlggo Pr{N(t) =n,s(t) =3y < LY(t) <y +dy|A(t) = x}; x>0y>0
fé;n(r, v)dv = lim Pr{N(t) = n,¢(t) = 3;v < L (t) v+ dv|Af () =r}; 7> 00> 0
szi;(x7y) dy = tlirgo Pr{N(t) =n,¢(t) =4y < LY(t) <y +dy|Q(t) = x}; x>0y >0
f§+n(7‘, v)dv = 1i>120 Pr{N(t) =n,s(t) =4v < Li(t) <v+dv|Qf (t)=r}; r>00>0
{}m(a:,y) dy = tlim Pr{N(t) =n,s(t) =5y < T2(t) <y +dy|AY(t) = z}; oz >0,y>0
f;tin(r, v)dv = tlirgo Pr{N(t) =n,s(t) =5v < T; (t) <v+dv|Af (t) =r}; r>00>0
gn(%y) dy = tlgglo Pr{N(t) =n,¢(t) =6;y < TP(t) <y +dy|A%t) = x}; x>0y >0
f;?}r (r,v)dv = tligolo Pr{N(t) =n,s(t) =6;v < T; (t) < v+ dv|Af (t) =r}; r>0;0>0.

Forn=0,1,---,
I, (x)dz = tlim Pr{N(t) =n,¢(t) =T <B°(t) <z + dx}; x>0
fpr(r)dr = tlim Pr{N(t)=n,c(t)=T;r <BT(t) <r+dr}; r>0.

Further, in the steady-state it is assumed that Fg(0) = 0, Fg(co) =1, F4,(0) =0, F4,(00) =1, Fg,(0) =0,
Fg,(00) =1, Fr,,(0) =0, Fr,(00) =1 and Fr,(0) =0, Fr,(c0) = 1(i = 1,2). Also, Fu,(x), Fo,(x) and Fg(x)
being continuous at x = 0, with Fr,(y) and Fr,(y) being continuous at y = 0, such that

dFy, (z)

_ dFg,(x)
1—Fa,(z)

dFy, (y)
1-Fg,(x)

_ dFp(x)
(@) dz 1 Fp, @)

_ dFPr(y)
= T’ ei(y) dy

ki(z)dx N m

w;(z)de = xi(y) dy =

are the first order differential (hazard rate) function of A4;, Q;, B, L; and T; respectively for i = 1,2 [24].

4.1. Steady-state equation

Following the arguments of Takagi [43], some suitable transformations used to analyze the limiting behaviour
of this model under the stability condition are stated below:

N e )
fAi,n(x)—m, n=12, -

7  Jau.(@) B
quz,n(fE)*m, n=12---
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i, (2) = {2250 01
e, @) = = FA{%)((??FM =1
= FQ%)((?{)FM(y)); nebEe

A;
i (@) = = FAf(Ti,;)((xlv y)FLi o n= L2
i@y = 5o FQZ?;)((:Z g)FLi R

After applying the transformations stated above the modified Kolmogorov forward equations (Cox [10]) can
be set as,

d - o,
afAi,n( x) + [N+ a4 fAm —AzwlfAm ) )+/0 fj‘i‘if"(a:,y)dFTi(y), n=12--- (4.1)
d - .
(@) + [+ il —Azwlf@n @+ [P, n=12e 42
d = - .
5B (®) + MB,(2) = M1 = bo.n) Zwlan_,(m), n=01,--- (4.3)
=1
d . =4, Lo
d—yféﬁn(x,y) FA (@y) =AY wifi (2,y), n=12- (4.4)
d =, -0, L—
7fLiZn(x?y) +Ale7n(x7y) =A wlfLZ,,Lfl(xay)y n = 1a2a"' (45)
dy s , — )
d -4 = 4. T,
@fé?,L(w7y) +)‘f’1{ifn(may) = )‘Zwlf’éfn,xxay)a n= 1a27"' (46)
=1
7fT1 (.’E y)+)‘le ((E y —)\Z’LUlle ( 7y)a n= ]-727"' (47)
=1

)\In—égn[pQZ{l—zZ / Faso(x)dFy, (x / Fain () dFg, (z )} /000 B, (x) dFp(z)

+A(1 _6O,n)zwll’ﬂ—la ’I’LZO,I,"' aN_l (48)
=1

where 6; ; is the Kronecker’s delta and fAi,o(x) =0, fQO(x) =0, fLO(y) =0, fTi,O (y) =0, ffo(x,y) =0,
FR () =0, fii (,y) =0, f' (2,y) =0 (i = 1,2), fp,(2) = 0.

The equations established above are solved against some boundary condition set below,
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at = 0:

— i 2 i
Fan0) =20 Z{l—zl / Faron @) AEa )+ [ o ) a0, )}
—|—q/ fB x)dFp(x n=12---,N—1; (i=1,2)
f:in(0>: {1_ 7 f 1 41,4 dr f n41,i dF }
A pz_; Z/A (x)dFa,(x /Q )Q()_
N—-1

/ fB, (z) dFp(z) + gAY waidiy m=N,N+1- (i=12)
=0
fo. ., (0) =2z OmfAL,i@)dFA() n=1,2,

f3n<0>=p1[§j{(1—zi> [ i @ara@+ [ anﬂ,i(x)dFQi(x)}]; n=01,

=1

at y = 0 and fixed x:

o (@,0) = aifq, , (2); (i=1,2)

fit @0 = [ e arL ) (=12
@0 = [ @ndrL e (=12

with the normalizing condition

ZI 5

n=1

5

n=1

i=1

X [1 = Fr,(y dxdy}

+Z/ f. (2)[1 — Fp(a)]ds = 1.

4.2. Solution of the model

The PGFs to solve the system of equations from (4.1) to (4.16) for | s |< 1 are defined below:

(x;s) Z f JBAi(OJS) = anfAn,i(O)
n—=1 n=1

{/ fA 2)[1 — Fa,(z dx+/ fQ z)[1 — Fg,(x dx+/ / fL x,y)
i=1

<= Fal - Fu@ldedy+ [ 772 @l - Fo @)L - Fi )] da dyH

{/ / fT (z,y)[1 — Fa,(z )][1_FTi(y)]dxdy+/ooo/Ooo fgn(x,y)[l — Fg,(z)]

(4.10)

(4.11)

(4.12)

(4.15)

(4.16)

(4.17)



ANALYSIS OF A BULK ARRIVAL N-POLICY QUEUE 989
= s"fq,.(x); Po.(0;8) =Y 5" fq,.(0)
n=1 n=1
s) = Z s" fs, (2); Pp(0;5) = Z 5" fs,,(0)

PL T,Y; S anfmey xOs Zs"fL“ (z;0)
n =@ n =Q;
(x,y; 5 Zs Fi @y PLix0s) =S s 7 (230)
n=1
A o0 _ o0
PT7 (xaya s) - anff}l (:c,y); PT (Z,O, S) - anf;‘h (.18,0)
n=1 n=1
n =Q:i = n:Qi
(z,y;s ZS me z,Y); Pr (x,0;5) = s"fr,, (2;0)
n=1

= Z s"I,.
n=0

Solving (4.1)—(4.7) as usual, a set of differential equation is attained as given below,

P, (z;8) = Py, (0;s)exp{—K;i(s)z}; x>0 (4.18)
Pg.(z;8) = Pg,(0;8) exp{—K;(s)z}; x>0 (4.19)
Py(a:s) = Pp(0;s)exp{—C(s)ay;  a>0 (4.20)
Py (@, yss) = Pr (2,058) exp{—C(s)y}: @ > 05y >0 (4.21)
Py (w,yss) = Py (2,058 exp{—C(s)y}: @ > 05y >0 (4.22)
13?; (z,y;5) = 13;; (z,0;s) exp{—((s)y}; =>0;y>0 (4.23)
Py (x,y5) = Py, (2,058) exp{—C(s)y}; @ > 05y >0 (4.24)

where K;(s) = ((s) + ai{l — F},(C(s))F7,(C(s))} , (i = 1,2) and ((s) = A(1 — P=(s)). Equations (4.13) and
(4.14) simplifies to the following, ' '

1521 (x,0;5) = ailgAi (x;8); (i=1,2) (4.25)
P (2,0:5) = a;Po, (x:5); (i =1,2). (4.26)

Po (2,0;5) = Py (2,0,8)Ff (C(5)); (i =1,2) 4.27)
Py (2,0;5) = Py (,0;8)Ff,(C(s); (i =1,2) (4.28)

Py (2,0;5) = aiPa, (w;8)Ff,(C(); (i =1,2) (4.29)
P (2,0:8) = a,Po, (w3 ) Ff, (C(s): (i = 1,2). (4.30)



990 A. BEGUM AND G. CHOUDHURY

Multiplying (4.11) by s™ and taking summation over n = 1,2, -- -, the following equation is derived,
Pau(058) = 2P 4, (0 8)F, (Kils)); (i =1,2). (4.31)
Similarly, equation (4.12) implies,
sPp(0;5) = pu[(1 = 21)Pa, (055)F3, (K (s)) + Po, (05)F, (K (s)|
o [(1 = 22) Py (05 9)F5, (Kals) + Pa (059)F5, (Ka(s)- (432)

Multiplying (4.9) and (4.10) by appropriate powers of s and then summing over n, utilizing (4.8), (4.31),
(4.32) with the result > 7\ s" Zﬁgl Wy I} = Mo — In(s)((s) the following is attained:
[s = {p2 + m1F5(C }{ — &) +2Fg, (K }quA (Ki(5)] Pa, (0 5) + qisC(s)In ()
= [{r2 +p1FB sHHA = zir) + 2 FQ (K:'(5)) a4, (K' ()] P a, (05 5) (4.33)

where i = 1,2 and ¢' = 2, 1.
Solving (4.33) yields the following,

SQiC( )IN( )

Py, (0;5) = (i=1,2). (4.34)
(P2 + PFR(CENH (L = 20) + 21, (Ka(s) bar P, (K (s)
{(1722)+22FQ KQ }qZFAg Kg( ))} $:|
Putting (4.34) in (4.31) gives,
Py, (0;5) = gzl s) o) Fi, (Ki(s)) (i=1,2). (4.35)

{02+ pFBCONH {1 = 20) + 21 Fg, (K1 ()} F, (K (5)
+{ 1 — 22 +2’2FQ2 Kg }QQFA2 KQ( ))} S:|
Substituting (4.34) and (4.35) in (4.32), results in the following,

P1G(s)In(s)
: {0 =20 + 2P, (0 Jan i, (K (5) + { (1 = 22) + 22F5, (Ka(s)) o P, (Ka(5))|

Pgp(0;s) = - (4.36)
(P2 + PR {1 = 20) + 21 Fg, (K () }an P, (K ()
+{(1 = 22) + 2P, (Ka(s >>}q2FA2<Kz<s>>} ~s|
Utilizing (4.18), (4.25) and (4.34), provides the following,
Py (x,0;5) = 500 ()T (s) exp{—Ki(s)e} (i=1,2). (4.37)
{p2 + mFCEH {1 = 20) + 21 Fp, (Ka () }ar P, (K (s)
+{ 1-— ZQ + ZQFQ2 K2 }QQFA2 KQ( ))} S:|
Similarly, equations (4.19), (4.26) and (4.35) gives,
P, 0:8) = 503¢i2iG(s)In (s) exp{—Ki(s)x} F; (Ki(s)) (i=192) (4.38)

{02+ PPN H {1 = 20) + 21 Fg, (K () bar F, (Ka(s)
+{(1 = 22) + 2B, (Ka(5)) a2 P, (Ka(s)) | — 5]
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Equations (4.27) and (4.37) gives,

= A 50igiC(s)In (s) exp{—Ki(s)x} Ff (C(s))

Pr/(x,0;5) = (1=1,2). (4.39)
{p2 + PRGN {1 = 21) + 215, (K3 () }ar F, (K3 (5))
—‘r{ 1 — 22 + ZQFQ2 K2 }QQFA2 Kg( ))} S}
Equations (4.28) and (4.38) gives,
P (2,08 = 50iqizi((s)In (s) exp{—Ki(s)a} F}3, (Ki(s)) F1, (C(s)) (i=12). (4.40)

[{p2 + RN H (L = 22) + 20, (K0 (9) }an P, (Ka(5))
+ { (1 —29)+ zzFQ (Ka(s }qQFA (Ks (s))} - s}
Letting s — 1 in (4.34) gives,
)\Qiﬂ(sl) (Zggol In)
(1= pu)
(1)

where p, = qi(va, + ZlW’Ql)(l + o <M(L) + M(l))) + q2(7a, + 227Q.) (1 + s (M(le) + pp, )) + p17w 18 the sys-

tem’s server utilization factor with v4, = )\u(— ),u(Al), vQ; = )\u(l) (13 (1=1,2) and v, = )\u(—l),ug).
Subsequently, the following outcomes are derived as,

sl (£ 1)

Pa,(0;1) =

(4.41)

P, (1) = T (i=1,2) (4.42)

_ Agizipg’ (Zf;ol In) _

_ Apipd) (Zf;ol In)

Pp(x;1) = T (4.44)
_ _ AO@%‘M(EI) (Zf:r:_ol In) '
PL; ('Tvyv ) P (.f Y; 1) - (1 —p ) ; (Z = 17 2) (445)
— 0, — 0, Aaiqizmg) (Eﬁf;ol In) .
PL;('ray;l) :PTil(x,y;l) = (lfp ) 5 (7’: 1’2)' (446)

Equations (4.42)—(4.46) represents the server’s stationary availability in the system’s idle state.

5. JOINT DISTRIBUTION OF THE STATE OF THE SERVER AND QUEUE LENGTH UNDER
ELAPSED AND REMAINING TIME

This section calculates joint and marginal PGFs of the state of the server and queue length in the form of
Theorems stated below:

Theorem 5.1. Under the stationary condition p, < 1, the PGF of the queue size distribution during the idle
period is given by,
In(s) (1_[)“)[25 o Wn} (5.1)
N(S) = . .
ZnN:_()l Tn
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Proof. The queue length PGF during an idle period can be written as,

In(s) = I,s" (5.2)

where I, =Tom, (n=0,1,--- ,N—1) (¥)

T, being the probability that a batch of “n” units arrive in the system in an idle period and I'g being the
normalizing constant.

The value of the normalizing constant 'y is obtained on simplification of the normalizing condition (4.17) as

(1 — pu)
FO = W. (5.3)
Zn:O Tn,
Substituting (*) and (5.3) in (5.2) gives the required PGF. O

Note that (5.3) implies p,, < 1, the stability condition for the continuation of a solution at the equilibrium of
the underlying system.

Theorem 5.2. Under the stability condition p, < 1, the joint PGF of server’s state and queue size under
elapsed time are given by,

_ qi¢(s)(1 — pu) exp{—K;(s )w}(zif 1 gt n)

P (z;s) = (i=1,2) (5.4)
! (25;01 Wn) [{Pz +pFi(C }{{ (1—21) + 21F5, (Ki(s) }qn Fa, (K1 (s))
+{(1 = 22) + 225, (Ka(5)) }aa i, (Ka(s)) | — o]
) 052:C(5) (1 = pu)Fi, (K (s)) exp{ = Ki(s)a} (S0 5™ ) ,
Po;(z;s) = (i=1,2) (5.5)
(050 7o) [{p2 + mr P (N H{{(L = 21) + 21 F, (K () bar Fi, (Ka(s))
=+ { 1 — 252) +22FQ2 Kz(s) }qQFA2 KQ S))} ]
Pi()(1 = pu) exp{—C(s )x}(zf - s"wn)
Po(as) = A= 20 + by, (Fa() o, (Ka(s) + {(1 = 22) + 225, (Ka(5)) }ao P, (Ha(5))] (5.6)
(205 ) [ip2 +p1FB<c< DHAW = 20) + 2P, (K1 (s) }quAl (K (s))
-I—{ 1—Z2 +Z2FQ K2 }qQFA K2( ))}—S}
g 1— pu)ex K;(s)z}ex Nl"Hn
B i) = 0:¢(5)(1 = pu) exp{—Ki(s)z} exp{—C(s)y} (0 ) i) -

(25;01 Wn) [{m +pF5(C }{{ (1= 21) + 21FG, (Ki(s)) a1 Fi, (Ki(s))
—l—{ 1 —22) + 22F5, (Ka(s }ngA2 K(s ))} —s]

. €qiziC(5)(1 = pu) i, (Ki(s) exp{—Ki ()} exp{~C(s)y} (TN 574 imn)
Pri(z,y;8) = (i=1,2) (5.8)
(Zfz\:ol 7T”) [{p2 +pF5(C }{{ (1 —2z1)+21F§, (K1(s }(]1FA1 1(s))
=+ { 1 — 22) —+ ZQFQ2 K2 }QQFA2 K2 } :|
B oy = N = o) G expl—Kita)r} exp{—C(e)y H(ES s )
7 (T,958) = 77—
(32050 7o) [{p2 + P (DL = 20) + 21 F, (K () bar Fi, (Ka(s))
+{ 1 - 22) +22FQ2 Kz }q2FA2 Kz( ))} S]

(5.9)
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., g i€ () (1 = pu) Fi, (Ki(9)) 7, ((5) exp{—Ki(s)2} exp{—¢()y} (02, 5"
(N2 ) [{p2 + PP NI {(1 = 20) + 21 P, (K () bas Fi, (K (5)

Pr,(z,y;8) = (i=1,2). (5.10)
+{(1 = 22) + 22, (Ka(9)) }aa P, (K2 (5)) | = 5]

Proof. Applying (4.34)—(4.40) in (4.18)—(4.24) gives the required PGF's defined above. O

Theorem 5.3. Under the stationary environment p, < 1, the double transform under elapsed time are given
by,

0:C(8)(1 = pu) (Lo 8" ) {1 = Fi, (0 + K (9))}
(n+ Ku(s) (205 ) [{p2 + 2 Fp CH{( = 20) + 2P, (K () b Fi, (K (9))
+{ 1 — 292 +2’2FQ2 K2 }quA2 KQ( ))} — S]

Fa,(n;s) = (1=1,2)

(5.11)
. 0:2:C(5)(1 = pu) (050 8™ ) Fi, (K () {1 = F, (0 + Ki(9))} |
F, (n;5) = — (i=1,2)
(n+ Ku(s) (05 ) [{p2 + 2 FE {0 = 21) + 21 F3, (K ()} Fi, (K (9))
+{ 1722)+22FQ2 K2 }ngA2 KQ( ))} S]
(5.12)
()1 = pu) (S0 s"m){l — Fj(n+ <<s>>}
Fi ) = [{(1—Z1)+;11TQ1(K1 VparFi, (Ka(s) + {(1— 22) + 22 F, (Ka(s)) a2 5, (Ka(s))] (513)
(n+ <) (020 ) [{p2 + 21PN H (= 20) +leQ1 (K (s }quAl (K (s))
+ { (1—22)+ zzF }qQFA2 Kg(s))} — s]

€iaiC(5)(1 = pu) (05 5™ ) {1 = Fi, (0 + K }{1 — FE(0+ ()}
(14 Ki()(0 + () (S50 ) [ 2+ 2 FB(C(s }{{ (L= =) + 21 E, (K1 ()}
@ Fj, (Ki(s)) + {(1 = 22) + 22Fg, (Ka(s)) a2 Fi, (Ka(s)) } — 5]
0igi2iC(5)(1 = pu) (S0 5™ ) Fi, (K {1—FQ (n+ Ko() H1 = F£,(0+ ()}
(n+ Ki(s)(0 + () (20 vrn) [{m + o {1 = 20) + 21 F5, (Ka(9))
@1 F5, (K1 () + {(1 = 22) + 20 F5, (Ka(s)) } g Fi, (Ka(s } ]

F (n,6;5) = (i=1,2) (5.14)

FPi(n,65) = (i=1,2)
(5.15)
0iaiC(3)(1 = pu) (S50 ™1 ) i, (Cs){1 = Fi, (0 + Ki(s) {1 = Fi, 0.+ ()}
(n+ Ki()(0+ ¢() (20 ma) [{p2+p1FB DH{ = 20) + 21 Fg, (Ka(s))}
@ Fj, (Ki(s)) + {(1 = 22) + 22Fg, (Ka(s)) a2 Fi, (Ka(s)) } — 5]
csqizC(s)(1 = pu) (S0 " ) i, () FE, (C(s){L = o, (n+ Ku(s) H{1 = F, (04 ()}
(n+ Ki(5)(0 + () (20 m) [{p2 + P P3N {1 = 20) + 21 F5, (Ka(9)})

quAl (Kl —|—{ 1— 22) +22FQ2 K2 }QQFA2 KQ( ))} — S]
(i=1,2). (5.17)

(i=1,2) (5.16)

A*
FT; (77’ 9; 8) =

Fgi(n,6;s) =
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Proof. The double transform in (5.11) is obtained as,
> e8]
Fj,(n;8) = Z s”/ e " fa,., (x)dz
n=1 0
=3 [T e, @ - Fa @)
n=1 0

= / e‘"rlgAi‘n(as; $)[1 — Fy,(x)]d.
0
Putting (5.4) in the above equation produces (5.11) on calculation.

On a similar note, equations (5.12) and (5.13) can be achieved by using (5.5) and (5.6), respectively.
Next, equation (5.14) is derived as,

FZ? (n,0;5) = Z s”/ / e_me_gyffzn(x,y) dx dy
n=1 0 0
=Y s / / e e A (2, y)[L - Fa, (2)][L - F, (y)] dar dy
n=1 0 0

— /Ooo /Ooo " ﬁg‘;n (z,y;8)[1 — Fa,(z)][1 — Fp,(y)] dz dy.

Putting (5.7) in the above expression simplifies it to (5.14).
Similarly, equation (5.15) is obtained by using (5.8).
Again, equation (5.16) is obtained as,

Féz (n,0;5) = Z s" / / efnmefeyfﬁfn (z,y)dxdy
n=1 0 0
=S [T [T et - Fa @ - Fr )y
n=1 0 0

= [ [ e By st - Fa@)ll - Fr )] ded.
o Jo "
Substituting (5.9) in the above expression produces (5.16) on simplification.
Likewise, equation (5.17) is derived by using (5.10). O

Theorem 5.4. Under the stationary condition p, < 1, the double transform under remaining time are given
as,

0:(8)(1 = pu) (050 5™ ) {4, (Ki(s)) — Fi, (m)}

Fie(:5) = (i=1,2)
- Ku) (225 70 [tre + e Fa(C N H{ (= 20) + 2153, (Ka(9) bar P, ()
+{(1 - 22) + 2 F, (Kz(S))}QQFzz(K2(5))} - 5}
(5.18)
. 0i2:€()(1 = pu) (05 8" ) P (K () {F, (Ki(s) — Fi,(n)})
For(ms) = (i=1,2)

(11— Ki(s)) (Zi\fz—ol m) [{pQ +p1F§(g(s))}{{(1 —21) + 21F5, (Ki(s)) ya1 Fia, (K1(s))
+{(1 = 22) + 22 F}, (Kz(s))}lI2Fzz(K2(5))} - 5}
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p¢()(1 - p) (200 s"m){FB< (s)) = F(n)}
{1 —21) + 21Fy (Ki(s)) }ar Fix (K1 () + {(1 — 22) + 22 F, (Ka(s)) }q2 Fa, (Ka2(s))]

P (:s) = (5:20)
T @) (T ) [+ piFa {0 - = +Z1FQ1 (K () s P, (5 (5)
+ { (1—22)+ 22 Iy, }ngA2 Kg(s))} - s]
ciaiC()(1 = pu) (SN " ) {5, (s }{FL — FL.(0)}

F(0,0;5) = (i=1,2) (521)

(n— Ki()(0 = () (2050 7 )[{pz+p1FB }{{ (1= 21) + 215, (Ki(s))}
G F5, (K1 () + {(1 = 2) + 22Fg, (Ka(s }quA2 (Ka(s ))} fs}
QiqiC(5) (1 = pu) (050 " ) FA, (Ku(s) {5, (K (M} F7,(C(5)) - FL,(0)}
(n— Ki(s))(0 — () (S0 ma) [{p2+p1FB }{{ 1—zl>+leQ1<K1< )}
@1 F5, (Ka(s)) + {(1 = 22) + 22Fg, (Ka(s)) a2 Fi, (Ka(s)) } — 5]

FE (n,055) = (=12

(5.22)
. 01) — Qiai(s) (1 = pu) (NS ™ ) Fi, ()P, (K () = Fi, () H{F7, (¢(5)) = Fi,(6)} =12 (5.23)
g (n = Ki())(0 = () (05 7 ) [{p2 + 21 F5 (N H {1 = 20) + 21 Fg, (Ka(s)}
G F5, (K1 () + {(1 = 22) + 22Fg, (Ka(s }qQFAz (Ka(5)) } fs]
QigiziC(s)(1 = pu) (S0 " )FA (Ki()) F7, (C(s){ Fo, (I () H{F7,(C(s)) = F7,(0)}
(n = Ki())(0 = ¢()) (05 7o ) [{p2 + 1P (¢(s }{{ 1fz1>+z1FQ1<K1<s>>}
@ Fi (Ki(s) + {(1 = 22) + 22F5, (Ka(s)) Yaa Fi, ( Kg(s))} fs}
(i=1,2). (5.24)

Q7 _
FT.+ (775 0; 3) -

Proof. The double transform defined in (5.18) is derived as follows,

5) = Z s" / e_mfATn (r)dr
n=1 0 Y

Since service time random variable A; has previously passed the time z, therefore the remaining service time
distribution is given by,

Prir < Af(t) <r+ dr|4; > 2] = m
Thus,
* = n * > —nr FAi(JZ—FT)
FA?(WS)ZZS 0 fAi’"<x)dx/0 ‘ mdr
_oon < = _ T Ooe_nrmr
_;s | s @[ -F @)d /0 - F, @]

= / PAi (z;8) dx/ e "F, (x+7)dr.
0 0 '

Putting the value of ]3,41, (z; s) from (5.4) in the above equation gives (5.18) on calculation.
Similarly, equations (5.19) and (5.20) are obtained utilizing (5.5) and (5.6) respectively.
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Also,

n

L+ 7779 s) Z / / ‘%f Lt (r,v) dr dw.

The remaining delay time distribution provided the service and delay time random variables A; and L; has

already outstripped the time x and y respectively is given by,

F, (z+ r)FLi (y +v)drdv
[1-F, (@)][1-F, )

i

Pr((r<Af(t) <r+drld; >2)N (v < L (t) <v+dv|L; > y)] =

Therefore,

: _ = n Y A; [ T —0v FA1
FLj(n,G, )—;s /0 /0 fii (z,y)dedy . e e = F, @][-F, ()] drdv
=S [T TR = - ) sy

oo poo 77”670’” FA ({L‘—FT)F (y+v) do
b R R

/ / PA (z,y;s dxdy/ / efGUFAi(:17+T)FLi(y+v)drdv.

Utilizing (5.7) in the above equation yields (5.21) on simplification.
On a similar note, equation (5.22) is derived using (5.8).

Again,
A* s 0o )
Foi(n,0;s) = > 5"/ / e_me_evf;‘i (r,v) dr dv.
¢ n=1 0 0 in

The remaining repair time distribution provided the service and repair time random variables A; and T; has
previously passed the time x and y respectively is given by,

F, (z+ r)FTi (y +v)drdv

P’I’[(T’<Aj_(t)§7"+ d7’|A¢>x)ﬂ(v<Ti+(t)§v+dv|ﬂ>y)]: [l—F (x)] [1—F (y)] .

Therefore,
- Y e F, (x+7)F, (y+v)
77,9 s) = s”/ / fA’ (z,y dxdy/ / e e _9” ! 2 drdv
i g o Jo T [1-F, @)][1 - F,, ()]

e B
/ / 1-F, ()][1—F (y)]dd

/ / PA (x,y;s dwdy/ / e e E, Sz +7)F (y+v)drdo.

Using (5.9) in the above equation gives (5.23) on calculation.
Likewise (5.24) is derived using (5.10). O
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Theorem 5.5. Under the steady-state condition p, < 1, the marginal PGFs of the server’s state and queue
length are given by,

_ ai¢(s)(1 = pu) (SN 8 ) {1 = F (KG(s))

Pa,(s) = (i=1,2) (5.25)
B K (S ) [ + e F {0~ 20) 21 B, (0 () B, (K (5)
+{ 1 —2:2 +22FQ2 KQ }(DFAZ Kg( ))} S:|
_ 2iC(s) (1= pu) (02 sm i, ) F 1—Fp (K;
Po,(s) = 5 f( =) (Zi o) PRSI~ B () (i=1,2) (5.26)
Ki(s) (2050 ) [{p2 + mFB (N {01 = 21) + 2B, (Ka () }an P, (K (s))
+{ 1—22 +22FQ2 K2 }QQFA KQ( ))} S:|
Pl = pu) (05 8 ma ) {1 = F3(C(s)}
_ {0 =20 + 2P, (K1 (9) bar P, (B () + { (1= 22) + 22, (Ka(s) P, (Ka(9))|
Pg(s) = (5.27)

(32050 ) [{p2 + 2 F N H{(1 = 21) 4+ 215, (Ka ()} i, (Ko (9)
+ {(1—zQ>+zQF (K (s >>}qu <K2<s>>} =

A i1 — pu) (TZy s ) {1 = Fi (Ku(s) H1 - F7, (C(9))}

Pyl (s) = (i=1,2) (5.28)
K (S0 ) [+ pFRC)H {0 )+ 2 FS, (K (s }quA (K1(s))
+ {(1 — 22 + ZQFQ2 KQ }ngA KQ(S)) — Si|
;2 (1 — py N=Lgndip ) px R — Fr ({(s
PYi(s) = ! (Ji ! )(Z - ) AL~ P (D} L = 2 (09} (i=1,2) (5.29)
Ki(s) (05 ma ) [{m2 + 21 F (4(3))}{{<1 — ) + 25, (K ()} F, (K (s))

+ {1 = 2) + 22 Fp, (Kols }quA2 (Ka(s)) } - 3]
o a—p) (D05 s ) F ()L - FA () L - F (G(s)
) (S5 ) [+ pi PN H {1 - ) + 20F, (s }‘JIFAl(Kl(S))
+{(1 = 22) + 2, (Ka(s }qQFA Kz(s))} 3}
B aiqz‘zz‘(l—Pu)<25701 S"H?Tn)FA-(Ki(S))FL sI{L — Fp, (Ki(s) }{1 = F7,(C(5)) }
Ki(s) (2020 ) [{p2 + mFR(CNH{ {1 = 21) + 21, (Ka (s }quAl (K, < )
{0 2) + 22F, (Ko (5) Yo i, (Kn(s)) ) — 5]

(i=1,2).

(5.31)

Proof. The marginal PGF's defined above can be procured by considering the double transform under the elapsed
time or remaining time, i.e. by setting n — 0 and 6 — 0 either in (5.11)—(5.17) or (5.18)—(5.24). O

Theorem 5.6. Under the stability environment p, < 1, the LST of the marginal Probability Density Function
(PDF)s of the server’s state, and queue length are given by,

(1)
i 1) = Y=L TL ) (=1, (532
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Mgz {1 = F5,(n)}

Fg,(n;1) = ; (1=1,2) (5.33)

Pty = ML= Fi(0) (5:3)

Fi(n,0:1) = g oigi{1 - Fj:;é")}{l “FLON g (5.35)

FO (1,6:1) = g agiz {1 - ng(n)}{l “FLO) oy (5.36)

Fp (n,0;1) = g {1 - F:;;Q(n)}{l “PRO) o) (5.37)

FY (3, 0:1) = i gz {1 - Fse ({1 - Fz,(0)} (=12, (5.38)

Proof. The LST of the joint PDFs defined above follows by considering the double transform under the elapsed
time or remaining time, i.e. either by letting s — 1 in (5.11)—(5.17) or (5.18)—(5.24). O

6. DISTRIBUTION OF SERVER’S STATE AND QUEUE LENGTH AT RANDOM AND SERVICE
COMPLETION EPOCH

This section finds the PGF of the queue length distribution at random and departure epoch along with the
mean system size of the underlying system.
Theorem 6.1. Under the stationary condition p, < 1, the PGF of server’s state and queue length
(i) at random epoch Py (s) is given by,
(L= pu)(I = 5)[p2 + PLF5E(C(5))]
SN s”m] {1 —21) + 21 Fg (K1(9) Jar Fi, (K () + {(1 = 22) + 22Fp (Ko (s)) fa2 Fi, (Ka(s))]
N—-1
S [tp2 + p PR { {0 721) + 21FG, (K () Y Fi (Ka(s))
{1~ 22) + 25, (Ka(s)) b iy (Ka(s)) ) — 5]

PN(S) = |:

(6.1)
(ii) at service completion epoch Py (s) is given by,

(1= pu)(1 = P=(s))[p2 +p1F§(C(8))]
SN s"ﬂn] {1 —2z1) + 21 Fy, (Ki(s }Q1FZ (K1(5)) + {(1 = z2) + 22F, (Ka(s)) } a2 Fx, (K2(s))] '

P\I;(S) = |:

Sl T i [{pz + prF5 (N H {1 - z1) + 21 F, (K (s) b P, (Ko (s)
+{ 1*22)+22FQ2 KQ }QQFA2 KQ( ))}78]
(6.2)
Proof. (i) Since 7, is defined as the probability of arrival of a batch of “n” units in the system during an idle

period, it satisfies the recursive relation elemented below:
T =Y pqWin_y (n=1,2,--- /N —1) and 7 = 1.
Let, ¢, (n = 0,1,--- ;N — 1) be the probability that a batch of n units are already there in the system

during an idle period. This results in conditioning the number of arrivals in (I,, = Tom,) and as such the

following is achieved,
L, Tn

= —l =" =01, (N1 6.3
S Y w=b 03
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where Z 0 m, represents the mean number of batch arrivals in an idle period.
Thus,
N—-1 ZN& e
bu(5) =Y s"dp = =20 [using (6.3)]. (6.4)
n=0 Zn:O Tn

Equating (6.4) in (5.1) gives

I (S) = ¢y (S)(l - pu)' (65)
The PGF at random epoch follows directly by equating (6.5) and (5.25)—(5.31) in the formula (**) (given
below).

Px(s) = In(s) +sPa(s) + 3 [Pa.(s) + Pau(s) + P1l(s) + PLL() + Pl (9) + P (9)]. ()

(ii) Following the argument of PASTA [48], an unit just after a departure witnesses “m” units in the queue iff
there were “m + 1”7 units either in FGS(FGRS)/SGS(SGRS) or vacation just before departing.
If ¥, is the probability of “m” units being present in the queue at service completion epoch, then,

me[pzz{l,a ([ Fa@ama@) + ([ o @amw) )

/fB )dFp(z >}m—0,1,~~ (6.6)

where € is a normalizing constant.
Multiplying (6.6) by s™ and taking summation overall values of (m = 0,1,---), and after that using (4.18),
(4.19) and (4.20) results in the following:

€C(s) |00 5" | b2 + P15 (C(5))
{0 =20+ 2P, () JanFi, (K () + {1 = 20) + 22F5, (Ka(®) a3, (Kals))]
P\I;(S) = N_1 . (67)
(32020 | ({22 + 2 F5 ({0 = 20) + 2P, (K () ban P (K (s)
+{(1—2)+ 2y, (Ka(s) ) a2 F i ( Kg(s))} - 5}

Letting s — 1 in (6.7) and using the L’Hospital’s rule gives the value of the normalizing constant as,

(1 - Pu) .
)\N(l)

€ =

Thus, replacing € by (1 ﬁﬁ) in (6.7) gives the departure epoch PGF defined in (6.2). O

Corollary 6.2. If Uy stands for the probability of no unit waiting in the system at departure epoch. Then setting
s=0in (6.2),

Vo = Py(0) = (1()1{271 Wn]

Utilizing (5.3) in the above equation establishes a relation expressed below,
T, = us) ¥

which implies that a random observer is more likely to find the system empty than a departing customer leaving
the system.
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Remark 6.3. (i) Pn(s) is the decomposed PGF of two independent random variables:
— PGF of the steady-state queue size distribution at random epoch of an M~X/ (gl) /1 queue with re-
2

service approach subject to service interruption and delayed repair.
— Queue length PGF owing to N-policy.
(ii) Py(s) is the convolution of two independent r.v as given below,

Py (s) = Po(s) x Pn(s) (6.8)

where, Po(s) = %E()) is the PGF of the number of units placed before a random test unit in a batch, in
which the test unit arrives. This is the backward recurrence time of the discrete-time renewal process where

renewal points are generated by the arrival size r.v owing to the randomness of the arriving batch size.
and Pp(s) is the random epoch PGF.
Equation (6.8) entails the decomposition property, which holds for different vacation models, also holds for
the model under consideration.

Theorem 6.4. Let 2 be the system size either at a departure epoch or at the termination epoch of an idle
period. Then under the stability condition p, < 1, its PGF Pq(s) is given by,

(1= pu) (Z020 5™ ) [{p2 + 215 (CNH{(1 = 20) + 21 F, (K () bar F, (Ka(s)

Pals) = +{ 1—29) —|—,22FQ2 (Ka(s }QQFAQ (Ks(s ))} —SPE(S)} . (69)
T (e ) (S ) [ mi R {0 - ) 4 By, (KD, (Ka(s)

+ {(1 — 2 +2’2FQ2 Ks(s }qQFA2 Ky (s ))} _8}

Proof. The result follows straight from the decomposition property of an M*X / (g;) /1(UR)/G(BS)/Vs/N —
Policy. Thus,

Po(s) = ¢y (s)Pay(s) (6.10)
where Pq,(s) is the stationary PGF of the queue size distribution at departure epoch of a customer or at
termination epoch of an idle period for an MX/( )/1(UR)/G(BS)/VS It is easily obtainable by following
the well established result of Gross and Harris [37] stated below,

Pe(s) — sPs
r[Pe(s) ~ sP=(s) o)
[Pe(s) — 5]

where 7 is the normalizing constant to be determined and P (s) is the PGF of a batch of customers arrived
during the actual service time A. Therefore,

Pe(s) = {p2 + 1 Fp(C(s))H{ (1 = 21) + 21 Fp, (K (s)) fr Fi, (K1 (s))
+ {1 - 2) +22FQ2(K () }ae Fi, (Ka(s))} (6.12)

Utilizing (6.12) in (6.11) yields,

b2+ BN H (L = 2) + 2155, (K () b Fi, (K (5))
) +{(1—z2>+zQFQz<K2<s>>}q2FA2<K2<s>>}—sPﬂs)}_ 619
" [{pszg(c(s»}{{(l —2) 2, (Ka () han P, (K (s) |

+{(1 = 20) + 22F, (Ka(s)) Yo (Ko (s ))} s]

PQO(S) =
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Since, Pq, (1) = 1, therefore,

1- u
= # (6.14)
(L+pz" — pu)
Hence, the PGF (6.9) follows by substituting (6.13), (6.14) and (6.4) in (6.10). O

Theorem 6.5. Under the steady-state condition p, < 1, the mean number of customers present in the system
18 given by,

(i) at random epoch

(M(”) [ (u«Al +21MQ1){1 T (u(ﬁf +u<T11))}2+q (u«Az +Zzu8)){1 oz (u(ﬁﬁ +M(le))} +p M”]

= put+
fix =P T o)
2
(M) aran () + 28] ) (1) + 02+ 2002 + o () + 2205) ) (1) + 02 + 2] Y]
+
2(1 = pu)
()\,u(El)) |:p1l-t( ){Q1Z1Mf4)u£9) {1 + Oz1( M4 M(l)) } + QQZQ,UJA)/,L(Q;{l + a2 (M<1) + /.L(T12))} }:|
+
(1= pu)
) N-1
s 4+ LZinzg P (6.15)
2us"(L=pu) 2o Tn
(ii) at departure epoch
e
Hp = Hy + 9 71) (6.16)

Proof. Equations (6.15) and (6.16) are attained by differentiating (6.1) and (6.2), i.e. the random and departure
epoch PGF respectively with respect to s and then setting s — 1.
Special cases:

(1) M*/ (gl) J/1(UR)/Re — service/G(BS)/V; queue i.e., if there is no threshold in the system. In that case
2
N =1 and consequently (6.1) reduces to the following,

(1= pu)(1 = 8)[p2 + p1F5(((5))]
[{(1 — 1) + 21 FY, (K1 () Yar Fy, (K (s {(1 — 2) + 22Fp, (Kg(s))}QQFZQ(Kg(S))}

Pn(s) =
[{PQ +P1FB(C(3))}{{(1 —21) + ZlFQ1 (K1(s }quAl (K1(s))
{0 = =) + 2, (Ka(o) a2 F, (Ka(s)) } =
where the server utilization factor is = % o
pu = q(ya, +21v) (1 +ar(py] + pp +

q2(74, + 227Q,) (1 + o (M(L; + b,

Begum and Choudhury [4] (Wlthout re-service).

(1) ) + p17,. The result thus obtained coincides with the result of
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(2) MX/ (g;) /1/Re — service queue when there is no operating policy, vacation and breakdown i.e., N =1,
p1 =0 and «; = 0(¢ = 1,2) then (6.1) reduces to,
(1= pu)(1 =)
{(0=20) + 20F8, () par i, (C(0) + { (1= 22) + 22 F5, (C(5)) faaFy, (C(5))|
{0 =20 + 210 F5, ()} P, (<))
{1 = 22) + 2F5,(C(9)} P2, ()} — 5]

with the server utilization factor as p, = q1(va, + 2179,) + ¢2(74, + 227q,) which is persistent with the
existing literature obtained by Madan et al. [30].

(3) MX/ (g;) /L({UR)/G(BS)/Vy if the re-service is not allowed and there is no threshold in the system, i.e.
if N=1and z; =0 (i = 1,2) then (6.1) can be written as,

(1= pu) (1 = 8)p2 + p1F(C(3))] [a1 74, (K1 (5)) + g2 F4, (Ka(s))]
{02+ p1 P (CDH @ Fi, (K (9) 42 F3, (Ka(9) } — 5]

PN(S) =

PN(S) =

where p, = q1774, (1 + ay (,u(Lll) + u(Tll))) + @274, (1 + o (,u(Ll; + u(le))) + P17, and the result tallies with
the findings of Begum and Choudhury [4].
(4) MX/ (g;) /1/G(BS)/Vy queue with no operating policy, re-service queue and service interruption i.e.
N=1,z=0and a; =0 (i = 1,2), then (6.1) is equal to the following,
pots) = (Lm0 = 9+ pu P3G 11, () + 2P, (€Lo)
[{p2 + PFRCNH 0 F5, () +a:Fa, (C(5) | 5|

where p, = q17,, + ¢27,, + P17 and the results matches up to the findings of Madan et al. [31].

(5) MX/ (g;) /1 queue if the threshold policy, option for repeated service, service interruption and vacation
are omitted i.e., N=1,2,=0,a; =0 (i =1,2) and p; = 0 then the expression (6.1) becomes,

(1= pu)(1 = s)[a1 F5,(¢(3)) + @25, (C(s))]
HarF3, (C(9) + a2 FA, (C())} — ]

with p, = ¢171 + ¢g2y2 which represents the stationary PGF at random epoch for classical M/G/1 queue
with two service types [34].

(6) MX/G/1 when the number of services is reduced to one from two i.e., ¢t = 0 and ¢ = 1 or ¢; = 1 and
g2 = 0 and there is no operating policy (N = 1), no repeated service (z; = 0), no breakdown («; = 0), no
vacation (p; = 0) then (6.1) results in the following,

(1=p)A=9)[F5 €N (1= pu)(1=9)[F5, (¢()]
REEE [F5,(¢() = 5]

where the server utilization is p, = )\ui‘ll) or )\,ui‘l; and it is the classical Pollaczek Khinchin formula for an

M¥X/G/1 queue [34].

Thus, the results achieved in this study can be witnessed as a classical generalization of the Pollaczek-Khinchin
formula for an unreliable M* /G/1 queue providing two-heterogeneous services with optional re-service under
Bernoulli vacation system and N-policy. (]

PN(S) =

PN(S) =
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7. PERFORMANCE MEASURES

This subsection derives the system state probabilities along with the availability and failure frequency (FF)
of the server under the steady-state regime.

Theorem 7.1. Under the steady-state condition p,, < 1, the system state probabilities are defined as,

(i) Probability that the server is busy with the ith genre of service:
PAi = QWAiEi = 172
(ii) Probability that the server is busy with the ith genre of re-service:
Pg, = qizivg,;t = 1,2.
(iii) Probability that the server is on vacation:
Pp = p17e.
(iv) Probability that the server is waiting for repair during the FGS/SGS:
(v) Probability that the server is waiting for repair during the FGRS/SGRS:
PP = aigizgunl) i = 1,2
(vi) Probability that the server is under repair during the FGS/SGS:
PR = agqiya ) ;i =1,2.
(vii) Probability that the server is under repair during the FGRS/SGRS:
PR = cigizivoly) i =1,2.
(viil) Probability that the system is idle:

Pr=1—q(ya, + zlml){l + al(u(ﬁf + M(Tll))} — q2(74, + zz'yQZ){l + as (uf,j - u%))} — P17

Proof. (1)—(vii) are attained by letting n — 0 and 6 — 0 in (5.32)—(5.38). And (viii) is procured by algebraic
calculation of the expression Pr =1 — E?:I{PAi + Po, + PLA; + PI?; + P:,’%_i + sz} — Pgp. O

Theorem 7.2. Under the stationary condition p, < 1, the steady-state availability of the server is given by,

Sa=1—|qa1(ya, + mczl)(u(ﬁf + M(Tll)) + q202(74; + 227Q,) (M(Ll) + u%)) +p1%] (7.1)
Proof. Equation (7.1) is obtained by applying (5.25) and (5.26) in (***) (given below):
N-1 _ _
Sa=> Intlm> [PAi(s) n PQi(s)] (45

n=0 =2
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Theorem 7.3. Under the steady-state environment p, < 1, the stationary failure frequency of the server
denoted by Sy is given by,
Sf = qlal(’yAl + Zl’YQl) + qQa2(7A2 + 227Q2)' (72)

Proof. Following the argument of Li et al. [26], FF of a server is given by:

5y = Za [ Paei - Fa@ldo+ [ Po it - Fo, )], (%)

Since,
/000[1 — Fi(x)]dz = /000 xdF;(z) = pp, (notations implying their usual meaning) ()
a standard renewal theory result. (I

Therefore, utilizing (4.42), (4.43), and (*****)/ in the above expression (****) FF of the server is accom-
plished.

8. OPTIMAL COST STRUCTURE

This section formulates an analogous long term average cost function per unit time for the system under
study (refer, [23,24,39]), which can be extensively used by the system engineers for evaluating the optimal value
of N that minimizes the average cost of operation per unit time. The different expenses incurred for operating
the system are as follows,

Ch: holding cost for each customer that arrives in the system/ unit time.
C,: operating cost for keeping the server on and in operation/ unit time.
Cs: start-up cost/ busy cycle.

Let the average cost per unit time, AC(N), be defined as,

Cs
AC(N) = Copu + Chjiy + —; (8.1)

be

where p,, 1, are already defined in Sections 4, 6, respectively, and f,_ is the mean length of a busy cycle of
the model under consideration. To derive p,, the following relation is considered,

Iye = iy + Hyys (8.2)

where p, and p,, are the mean length of an idle and busy period of the system, respectively. The mean length

N-—-1
of an idle period is obtained as p,, = @, dividing the average number of batches during an idle period by

(1

the rate of arrival. The average number of arrivals during an idle period is Ap,, pi= ), Hence, the average length

Pullyy

of a busy period equals to u,, = T

. Finally, using (8.2), u,, is obtained as,
4 = Znco
AL = pu)
Thus, AC(N) can be rewritten as,
AC(N)
= (Co +Ch) [pyyv +q1(va, +217q1) (1 + o (M(Llf + M(TII))) + @2(v4, + 2270,) (1 + oo (M(ng + M(le)))]
Cn Yon g nn + CSA[l —p1ve — qi(ya, + szl)(l +a (M(Llf + u(;l))) — ga(ya, + Zﬂ%)(l T as (uf; n M(;;))]

+ N-1
Zn:O Tn
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2 2
(/\MS)) [q (uAl + Zlqu) {1 +o (M(Llf + M(Tlf)} + (MAZ + Zzugi) {1 + (M(Ll; + M(le))} +p M”]

+Ch 21— pa)

1 1 2 2 1 1 1 2 1 1
(W) [osan () + 2003)) 2 + 42 + 20 00)) + cama (W) + 220i3)) (w52 + 2 + 262002

" 20— )
(Au“)) {pluggl) {qm/mlu@){l +on (uLl + M(Tll)) P+ qeeapy) ) {1 + az (u(” - u(l)) } }]
J’_
(1= pu)
P /L(2> :| ( )
2ul (1 - pu)
For notational convenience, let R(j) = ﬁl 0Tns S(j) = Zi:o nm, and the optimal value of N be denoted

by N*. Then to determine N* the cost function AC(NN) needs to be shown as a convex function, but the non-
linearity and complexity of AC(N) make it a tough job. However, an alternative procedure is presented here in
the form of a Theorem stated below that makes the calculation of N* possible.

Theorem 8.1. Under the long term average cost structure, the optimal threshold for an

MX/<g;>/1(UR)/R€ — service/G(BS)/Vy/N — Policy queue is given by,

N*:minj21|Z(j—n)7rn>>\(l_07iu)CS : (8.4)
Proof. Let, -
ACU 1) = 800) = 6 565 = ] #3006 5~ 7]

Uy . . .
=——7 —[CL{jR(j) — S(H)} = ACs(1 — pu)]-
R CMRG) = S()) = AC(1 = )
Since Cr{jR(j) — S(j)} > 0 and W > 0, the function h(j) = CrL{jR(j) — S(j)} — A\Cs(1 — p,) rules
whether AC(N) increases or decreases.
Let “k” be the first “5” such that h(j) > 0. Then
h(k+1) = Cu[(k + DR(k + 1) = S(k +1)] = ACs(1 — pu)
= C[(k + 1)R(k) = S(k)] = ACs(1 = pu)
= h(k) + ChR(k) (8.5)
= h(k+1) > h(k).
Thus, it is observed that AC(n) > AC(k) for some n > k. Hence,

N* = first j such that h(j) >0

j—1
=min|j > 1| ;::0(] —n)mp > — (8.6)
|
Remark 8.2. It is to be noted here that if %Z” > % the optimal threshold value of N* is always

equal to 1, which implies that it is not beneficial to have a control policy if the holding cost/unit time is greater
than the start-up cost/ unit time.
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9. NUMERICAL EXPERIMENT

This section performs a quantitative analysis of the system’s survivability attributes instead of exact model
parameterizations. As the exact values of the system parameters for the underlying model are not known at
this time point so assumed parametric values are taken into consideration.

For illustrative purpose, the service, re-service, vacation, delay and repair time r.v are all assumed to be
exponentially distributed with parameters o; 7;, ¥, d; and r; (i = 1 ,2) respectively. The corresponding PDFs
are fa,(x) = aie="(z > 0), fo,(x) = rie (o > 0), fule) = 9 (o > 0). fi,(y) = die "y > 0) and
fr.(y) = rie™"¥(y > 0) respectively; LST F} (n) = Fp, d;

ST Fo () = 55, Fp(n) = 5%, Fi(n) = 3% and

Ff.(n) = 7"_; respectively; mean ,uilli) = U%, ,u83 = T%, ,ug) = %, ,u(Li) = d% and u(Tli) = r% respectively; second
moment f ( ) 22, ,ug) = T%’ ,ug) = %, F‘(L%-) = d% and ﬂ%) % respectively.

The arrlval bz;tch size isipresumed to follow gleometric dlstrlbutlon with parameter w (0 < w < 1). The
corresponding PMF is P(E =1) = w(l —w)~Y (1=1,2,---; 0 < w < 1), mean ,u(El) = 1 and second moment
,LL(EQ ) = 21;—2“’ respectively.

For the sake of computational convenience, the assumed non-monetary and monetary values of the system
parameters are summarized in Tables 1 and 2, respectively.

TABLE 1. Parametric non-monetary values of the model.

Processes Parameters Parametric values
Arrival A 0.3

w 0.2
FGS/FGRS ¢ 0.5

z1 0.1

g1 4

1 3

[e%1 0.022

dy 30

T1 20
SGS/SGRS ¢ 0.5

29 0.15

o9 5

T2 4

o) 0.025

da 35

T2 25
Vacation p1 0.4

¥ 11

TABLE 2. Parametric monetary values of the model.

Parameters Parametric values (in Rs.)

Costs Chr 240

Co 500
Cs 2000
5000

9000
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9.1. Influence of the reliability factors a; and aa

The effect of breakdown rates «;(i = 1,2) on the important reliability measure of the system wviz, system
state availability and failure frequency of the server are presented in Table 3 with the help of the given data in
Table 1.

TABLE 3. Impact of breakdown rates on server availability and failure frequency.

(6751 a2 Sa Sf
0 0 0.95 1
0 0.025 0.94569 0.00445

0.02 0.025 0.94534 0.00870
0.04 0.025  0.94498 0.01294
0.06 0.025 0.94463 0.01719
0.08 0.025 0.94428 0.02143
0.022 0 0.945612  0.00467
0.022  0.02 0.945367  0.00823
0.022 0.04 0.945121  0.01179
0.022 0.06 0.944875  0.01536
0.022  0.08 0.944629  0.01892
0.08 0.08 0.943607  0.03123

Table 3 clearly shows that a higher value of «;(i = 1, 2), i.e. breakdown rate results in lower server availability,
i.e. Sq, and higher failure frequency, i.e. Sy. The server’s stationary system availability is found as 95% with
failure frequency less than 1% for the model under study.

9.2. Optimal policy

This subsection describes how the decision regarding the optimal threshold of N to minimize the average
cost is made with the help of the cost structure defined in (8.3) based on the data given in Tables 1 and 2.

To determine the optimal value of IV, the recursive relationship m,, = ZZ’:I w,T,—, and mg = 1 is ulitized to
calculate YY1 (j — n) m, and is shown in Table 4.

n=0

TABLE 4. Different values of 71 (j — n) .

n=0

noom Sy (j—n)m
1 0.8 1

2 0.8 2.8
3 0.8 54
4 0.8 8.8
5 0.8 13
6 0.8 18
7 0.8 238
8 0.8 304
9 0.8 378
10 0.8 46

Further, keeping C}, = 240 as fixed and varying the probability of p; from 0 to 1 such that the utilization
factor p, < 1 always satisfies, Table 5 represents some numerical results of the cost ratio A(l%j")cé' for three
different values of Cy considered in Table 2.
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TABLE 5. Different values of %
A(1=pu)Cs
Ch
p1 Pu Cs =2000 Cs=5000 Cs=9000

0 0.39107  1.46143 3.65358 6.57645
0.1 0.40457  1.42903 3.57258 6.430651
0.2 0.41807 1.39663 3.49158 6.28485
0.3 0.43157 1.36423 3.41058 6.13905
0.4 0.44507 1.33183 3.32958 5.99325
0.5 0.45857 1.29943 3.24858 5.84745
0.6 0.47207 1.26703 3.16758 5.70165
0.7 0.48557 1.23463 3.08658 5.55585
0.8 0.49907 1.20223 3.00558 5.41005
0.9 0.51257 1.16983 2.92458 5.26425
1 0.52607  1.13743 2.84358 5.11845

TABLE 6. Optimal values of N* for different Cj.

C Optimal threshold of N

2000 N*=2;0<p; <1

5000 N*=3;0<p <1

9000 N*=4;0<p; <0.8
N*=3;09<p <1

Finally, based on the result achieved in Theorem 8.1 to determine the optimal value of IV, the values of
Zfl;t (j — n)m, and % are compared from Tables 4 and 5 respectively, and the optimal N* is procured
and presented in Table 6.

The effect of the system parameter p; on the mean queue length ppy of the underlying model is computed
for N = 2,3 and 4 obtained in Table 6 and is presented in Table 7, followed by a graphical representation for

the same in Figure 4.

TABLE 7. Mean queue size for optimal thresholds of N and different values of p;.

LN
pp N=2 N=3 N=4

0 5.96368 6.19583  6.48749
0.1 6.28727 6.51941 6.81108
0.2 6.62524 6.85738 7.14905
0.3 6.97862 7.21077 7.50243
0.4 7.34855 7.58069 7.87236
0.5 7.73624 7.96839 8.26005
0.6 8.14308 8.37522 8.66689
0.7 8.57055 8.8027 9.09436
0.8 9.02034 9.25249 9.54415
0.9 9.4943 9.72645 10.0181
1 9.99449 10.2266 10.5183

From both Table 7 and Figure 4, it is clear that as p; increases, the mean queue size increases for different
values of N and the same law follows for any higher value of N.
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FIGURE 4. Mean system size vs. threshold level of N.

Based on the parameter setting of Table 1 and 2, the average cost per unit of time for different values of C
and N is presented graphically in Figure 5.

4000 -

Cs=2000 Cs=5000

3500

Cs=9000

AC(N)

3000

2500

N

FIGURE 5. Average cost vs. different Cs and threshold level of N.

Figure 5 is a convex plot depicting the impact of threshold levels on the average cost per unit time for all
the three different start-up costs considered in this study. The minimum average cost per unit is achieved as
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AC(N*) = 2297.5, AC(N*) = 2637.95 and AC(N*) = 3023.02 against N* = 2 for C5; = 2000, N* = 3 for
Cs = 5000 and N* = 4 for Cy = 9000 respectively. This upholds the conclusion of Theorem 8.1 and Table 6.

10. CONCLUSION

In this manuscript, a non-Markovian model under N-policy is developed to study the joint distribution of
server’s state and queue size in both elapsed and remaining times, assuming general distribution of the service,
re-service, vacation, repair and delay times for a bulk arrival queueing model. The underlying queueing system
takes into consideration the supplementary variable technique under some suitable transformations to deliver
the stationary queue size distribution at arbitrary and service completion epoch and mean system size besides
various pivotal performance measures. An optimal operating policy under a linear cost structure has been put
forward in the form of a theorem. Finally, with the help of some numerical experiments, the applicability of
this theorem is shown, and the optimal thresholds of the model under consideration are obtained for three
different start-up costs. These will furnish information to the system designers and system engineers about
the efficiency of the model and help them use the proposed model while designing different digital systems,
production systems, and inventory systems.

It would be interesting to explore a similar model with more than two heterogeneous services, set-up time,
multi servers, customers impatience, modified vacation policy etc., making it a more resilient queueing model
with more general results.
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