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PERFORMANCE MEASUREMENT USING A NOVEL DIRECTIONAL
DISTANCE FUNCTION BASED SUPER EFFICIENCY MODEL AND

NEIGHBOURHOOD THEORY

Subhadip Sarkar*

Abstract. This paper entails a systematic approach for measuring the Super Efficiency Scores of a
set of rival firms. This evaluation process is dependent on the location of the worst Decision-Making
Unit retained by the technology set. Unlike antecedent researches, the worst point is selected from
a predefined neighbourhood with an application of a linear model. Finally, the new Super Efficiency
model measures the Efficiency score while embedding the worst point within the direction vector. This
two-stage model is akin to the standard form of a Directional Distance Function and does not end up
with problems of infeasibility, negative data or zero data. In other words, the method is found robust
to classify the Decision Making Units into the Super-Efficient, Strongly Efficient, Weakly Efficient and
Inefficient groups. Two cases once addressed by Seiford and Zhu [INFORS 37 (1999) 174–187.] and
Byrnes et al. [Manag. Sci. 30 (1984) 671–681.] are illustrated here to explore the functionality of the
model in comparison to a few renowned ones.
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1. Introduction

Measurement of “Super-Efficiency (SE)” for Decision-Making Units (DMUs) in Data Envelopment Analysis
(DEA) is needed to rank the efficient DMUs who achieve unity as an efficiency score ([5]; Cooper et al., 2000). SE
method excludes the DMU under evaluation from the reference set so that efficient DMUs may have efficiency
scores larger than or equal to 1, and inefficient DMUs have identical efficiency scores as those obtained from the
CCR model. Ranking of the best performers was made possible by several methods authored by Andersen and
Petersen [1], Doyle and Green [10, 11], Stewart [29], Tofallis [31], Seiford and Zhu [27], and Zhu [36]. Tone [32]
used a non-radial format to compute a slacks-based measure of efficiency (SBM). In this context, the additive
integer-valued and additive SE integer-valued models of Du et al. [12], partial frontier analysis by Gnewuch and
Wohlrabe [14] or the additive SE model of Yu and Hsu [34] are worth mentioning.

However, the crisis of infeasibility became evident when few special DMUs failed to trace a peer on the
production frontier during their assessments made by the VRS based SE model ([22]; Chen, [6]). Lovell and
Rouse (LR) modified the standard DEA model to overcome the infeasibility problem for computing SE for a few
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Strongly Super-Efficient DMUs [33]. LR approach appropriately scales up the observed input vector (scale down
the output vector) of the relevant super-efficient firm to create its inefficient surrogate. Ray [26] demonstrated
an alternative way to use the directional distance function and the resulting Nerlove-Luenberger (NL) measure
of SE. This measure was shown to be unique and did not depend on any arbitrary choice of a scaling parameter.
The approach of Cook et al. [9] could offer a feasible and optimal solution for the super-efficient DMUs that
can cause infeasibility under the erstwhile SE models.

The two-stage model of Lee et al. [17] showed that the infeasibility could creep into the input-oriented
(output-oriented) model due to the existence of any output surplus (input saving). The SE score was expressed
in combination with both the radial efficiency and output surplus (input saving) attribute. Chen and Liang [8]
further solved the two-stage process using a single-stage linear program. The researches of Lin and Chen [19],
Lin and Chen [20], Lin and Liu [21] etc., later on, claimed to offer remedies to the so-called “Infeasibility, zero
data and negative data” problems using the concepts of Directional Distance Function (DDF).

On the other hand, the zero data problem emerges for those DMUs which contain zeros in their input-output
bunches. For example, Thrall [30] and Zhu [35] earlier detected the infeasibility problem when zero input values
were treated within the CRS SE model. Ray [26] warned about this fallacy within the NL based SE model
owing to its direct impact on the direction vector. Lee and Zhu [18], moreover, pointed out the ineffectiveness
of the models prescribed by Lee et al. (2011) and Chen and Liang [8] even in zero data. The authors showed
the applicability of their model for solving problems under CRS as well as VRS assumptions.

In DEA deriving a solution to a negative-data problem has been a challenge as the initial postulates were
constructed based on the positive data. Several models ([13, 16, 23–25, 28] etc.) were applied to handle them.
Hadi-Vencheh and Esmaeilzadeh [15] modified the Range Directional Model (RDM) [25] to generate SE scores
without incurring the infeasibility problem. The models of Lin and Chen [19], Lin and Chen [20], Lin and Liu
[21] etc., were found reasonably effective for treating the negative data.

However, despite having advantages, these approaches failed to create a standard way of selecting the direction
vector to locate the peer and its impact on the SE score. For example, few models even found negative numbers
to reach the frontier along the direction vector while moving from the SE DMU. Some techniques could not
succeed to resolve the infeasibility issues. In the case of the zero data, some models gave rise to the SE scores
solely dependent on the model parameters [20]. Some renowned models failed to compute the input saving index
and output surplus index values under these circumstances. The extant research aims to develop a more rational
and comprehensive procedure that can eliminate all these issues. In this context, the theme of the worst point
is proposed in this paper to resolve the infeasibility crisis. It also provides a unique way of computing radial
input slack index and output surplus index values which will remain effective for negative or zero data.

In this regard, the subsequent sections are going to highlight the following aspects. Section 2 provides a brief
description of the traditional models to compute the SE scores and the ways to resolve the infeasibility crisis.
Section 3 addresses the solution to remove this issue using a two-stepped approach. This section also depicts the
need of defining and obtaining a Worst Point and its impact on the SE score. Section 4 describes a comparative
study for the sake of appraisal of the new model. Finally, the last section provides the concluding remark about
it.

2. Description of Super Efficiency models

Let there be a technology set 𝑇 with 𝑐 observed DMUs where each produces the same 𝑣 outputs in diverse
amounts using the same 𝑚 inputs in different amounts. Any feasible unit 𝑟(= 1, 2, . . . , 𝑐) which is also a member
of 𝑇 consumes a desirable input 𝑥𝑟 to produce a desirable output 𝑦𝑟. In other words, the production system is
depicted as:

𝑇 =

{︃
(𝑥, 𝑦) : 𝑦 ≥

𝑐∑︁
𝑟=1

𝑥𝑟𝜆𝑟; 𝑦 ≤
𝑐∑︁

𝑟=1

𝑦𝑟𝜆𝑟; 𝜆𝑟 ≥ 0

}︃
where 𝑥𝑟 =

(︀
𝑥1𝑟 𝑥2𝑟 . . . 𝑥𝑚𝑟

)︀
∈ 𝑅+

𝑚, 𝑦𝑟 =
(︀
𝑦1𝑟 𝑦2𝑟 . . . 𝑦𝑣𝑟

)︀
∈ 𝑅+

𝑣 .
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Inputs (outputs) are assumed to be freely disposable and 𝑇 should contain any bunch of input-output (𝑥′, 𝑦′)
satisfying 𝑥′ ≥ 𝑥 and 𝑦′ ≤ 𝑦. In addition to that, for any chosen value of 𝑘 ≥ 0 (𝑘𝑥, 𝑘𝑦) is feasible when the
bunch (𝑥, 𝑦) is feasible. DMU o is called efficient if there exists no unit (𝑥′, 𝑦′) ∈ 𝑇 such that 𝑥𝑜 ≥ 𝑥′ and 𝑦𝑜 ≤ 𝑦′

where (𝑥𝑜, 𝑦𝑜) ̸= (𝑥′, 𝑦′). To support a Constant Returns to Scale (CRS) a Production Possibility Set (PPS) in
this regard, is expressed mathematically as the formulation mentioned in (2.1):

𝑐∑︁
𝑟=1

𝑥𝑖𝑟𝜆𝑟 ≤ 𝑥𝑖𝑜, 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1

𝑦𝑗𝑟𝜆𝑟 ≥ 𝑦𝑗0, 𝑗 = 1, 2, . . . , 𝑣

𝜆 = [𝜆1 𝜆2 · · · 𝜆𝑐]𝑇 , (𝜆𝑟 ≥ 0,∀𝑟) . (2.1)

To involve an assumption of Variable Returns to Scale (VRS) here requires an additional constraint
∑︀𝑐

𝑟=1 𝜆𝑟 = 1,
for 𝑟 = 1, 2, . . . , 𝑐.

2.1. Standard SE-BCC models

The Input Oriented Super-Efficiency score of the DMU o (which is a member of the PPS 𝑇 defined above)
is computed from the following VRS super-efficiency model:

Min 𝛽
𝑐∑︁

𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≤ 𝛽𝑥𝑖𝑜, 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 ≥ 𝑦0, 𝑗 = 1, 2, . . . , 𝑣

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝜆𝑟 = 1, 𝜆𝑟 ≥ 0, for 𝑟 = 1, 2 . . . , 𝑐, 𝑟 ̸= 𝑜. (2.2)

Here, the DMU o under evaluation is excluded from the reference set. When DMU o is efficient and model (2.2)
is feasible, then 𝛽 > 1 is indicative of the way the DMU o has to increase its input vector to reach the frontier
formed by the rest of the DMUs. Similarly, the output-oriented VRS super-efficiency model can be expressed
as follows:

Max 𝛽
𝑐∑︁

𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≤ 𝑥𝑖𝑜, 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 ≥ 𝛽𝑦𝑗𝑜, 𝑗 = 1, 2, . . . , 𝑣

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝜆𝑟 = 1; 𝜆𝑟 ≥ 0 for 𝑟 = 1, 2, . . . , 𝑐 and 𝑟 ̸= 𝑜 (2.3)

when DMU o is efficient and model (2.3) is feasible, 𝛽 < 1, indicating that DMU o’s outputs are decreased to
reach the frontier formed by the convex combination of the rest of DMUs. But, equations (2.2) and (2.3) was
found infeasible when analysing a special type of VRS efficient DMU.
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2.1.1. The problem of infeasibility in the SE-BCC model

Referring to the propositions of Xue and Harker [33] the crisis of infeasibilities are seen in the following cases:

If DMU-O is strongly super-efficient in the input-oriented VRS super-efficiency DEA model, the primal
model for DMU-O is infeasible. In the primal (the corresponding dual problem) input-oriented VRS super-
efficiency DEA model for a DMU-O is infeasible (unbounded) if and only if DMU-O is super-efficient in
the input-oriented VRS super-efficiency DEA model.

These exceptional individuals are those which can outperform others based on the usage of inputs or gener-
ation of outputs. In case of the first (second) type at least one input (output) will concluded that the root of
this problem remains with the strongly super-efficient DMUs. A strongly super-efficient DMU is defined as “a
DMU-O that strictly exceeds any other DMU in at least one dimension of the output (input) vector in model
(2.2) ((2.3))”.

2.2. Standard Directional Distance Function to compute SE score

To detect the inefficiency of a DMU, Directional Distance Function was conceived by Chambers et al. [4].
It was derived based on Luenberger’s benefit function to obtain a measure of technical efficiency reflecting the
potential for increasing outputs while reducing inputs simultaneously. To measure the Super Efficiency Score of
a DMU an extended form of the DDF model is also found relevant (shown in (2.4)). Equation (2.4) utilises a
reference input-output bundle (𝑔𝑋 , 𝑔𝑌 ) to reach a production frontier from some input-output bundle (𝑥𝑜, 𝑦𝑜).
Concerned with the PPS, 𝑇 , the directional distance function is defined as:

𝐷 (𝑥𝑜, 𝑦𝑜, 𝑔𝑋 , 𝑔𝑌 ) = max 𝛽 : {(𝑥𝑜 + 𝛽𝑔𝑋 , 𝑦𝑜 − 𝛽𝑔𝑌 ) ∈ 𝑇} ∀𝛽 ∈ 𝑅±

when 𝑇 =
{︂

(𝑥, 𝑦) : 𝑥 ≥
∑︀𝑐

𝑟=1
𝑟 ̸=𝑜

𝑥𝑟𝜆𝑟, 𝑦 ≤
∑︀𝑐

𝑟=1
𝑟 ̸=𝑜

𝑦𝑟𝜆𝑟,
∑︀𝑐

𝑟=1
𝑟 ̸=𝑜

𝜆𝑟 = 1
}︂

.

These direction vectors must fulfil certain properties [4].

Min 𝛽
𝑐∑︁

𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 − 𝛽𝑔𝑖𝑋 ≤ 𝑥𝑖𝑜, 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 + 𝛽𝑔𝑗𝑌 ≥ 𝑦𝑗𝑜, 𝑗 = 1, 2, . . . , 𝑣, 𝛽 ∈ 𝑅±

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝜆𝑟 = 1, 𝜆𝑟 ≥ 0 for 𝑟 = 1, 2, . . . , 𝑐, 𝑟 ̸= 𝑜. (2.4)

An optimal solution 𝛽 > 0 is indicative of the presence of a super-efficient (Nerlove-Luenberger (NL)) DMU O.
Barring this, it would suggest to scale down (up) the output (input) bundle of DMU O to get an attainable
input-output bundle in the modified PPS. A firm achieves a superior rank between two firms on basis of the
higher value of 𝛽.

RDM [25] has also its limitation to resolve the infeasibility issue. Example 1 is added here to (using Tab. 1
and Fig. 1a) show that during the measurement of SE score of 𝐸 the line (𝐼𝐸) connecting it with the Best
Point (𝐼) chosen by RDM fails to intersect the production frontier ABCDEEEXT. The corrections offered by
Hadi-Vencheh and Esmaeilzadeh [15] indeed created the way of applying RDM to determine the Super Efficiency
Scores while selecting a reference point from the set 𝑇/ (𝑥0, 𝑦0). However, the solution was not free from glitches
(Fig. 1b).
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Table 1. Data set.

DMU Input Output

A 6 1
B 7 3
C 9 5
D 10 6
E 13 7
F 14 6

The model of Cook et al. [9] features another form of a directional distance function (shown below in (2.5)
(input-oriented form)) for measuring SE score under VRS where needed improvements on the input and output
vectors are sought unequally (as 𝛽 and 𝛼 are used separately). DMUs having problems with their output
constraints in Input Oriented VRS SE model succeeded to attain a Super Efficiency Score.

Min 𝛽 + 𝑀𝛼
𝑐∑︁

𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≤ (1 + 𝛽) 𝑥𝑖𝑜, 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 ≥ (1− 𝛼) 𝑦𝑗𝑜 𝑗 = 1, 2, . . . , 𝑣; 𝛽 ∈ 𝑅±

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝜆𝑟 = 1, 𝜆𝑟 ≥ 0 for 𝑟 = 1, 2, . . . , 𝑐; 𝑟 ̸= 𝑜. (2.5)

The expression mentioned below was introduced to compute the input-oriented SE score:

SE𝑜 = (1 + 𝛽) +
1

(1− 𝛼)
·

Lin and Chen [19] (LC) criticised the model proposed by Chen et al. [7] for its lack of strength to remove the
infeasibility crisis completely and employed a direction vector given as:[︂{︂(︂

max
𝑟 ̸=𝑜

𝑥𝑖𝑟 + 𝑥𝑖𝑜

)︂
, 𝑦𝑗𝑜

}︂
,∀𝑖, 𝑗

]︂
.

The model of Lin and Chen [20] (shown below) revealed the inabilities of the NL and LC:

Max 𝛽
𝑐∑︁

𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≤ (1− 𝛽) 𝑥𝑖𝑜 − 𝛽𝑎𝑖, 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 ≥ (1 + 𝛽) 𝑦𝑗𝑜 − 𝛽𝑏𝑗 𝑗 = 1, 2, . . . , 𝑣; 𝛽 ∈ 𝑅±

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝜆𝑟 = 1, 𝜆𝑟 ≥ 0 for 𝑟 = 1, 2 . . . , 𝑐; 𝑟 ̸= 𝑜
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(a)

(b)

Figure 1. (a) Failure of RDM. (b) Failure of the alternative model of Hadi.

𝑎𝑖 = 𝑘
(︁

max
𝑟

𝑥𝑖𝑟

)︁
, 𝑘 ≥ 3, ∀𝑖, 𝑟,

𝑏𝑗 =
(︁

min
𝑟

𝑦𝑗𝑟

)︁
, ∀𝑗, 𝑟. (2.6a)

Hence, the entire research is hovering around the choice of selecting the reference point and the pair of direction
vectors which could be relevant tool to treat positive as well as negative data. In this direction the new research
is going to put few important inquisitions about the way of selecting the value of k. What is the implication of
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selecting a higher or lower value of it? For example, the input and output constraints of (2.6a) can be rearranged
in the following manner:

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≤ 𝑥𝑖𝑜 − 𝛽 (𝑎𝑖 + 𝑥𝑖𝑜) , 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 ≥ 𝑦𝑗𝑜 + 𝛽 (𝑦𝑗𝑜 − 𝑏𝑗) 𝑗 = 1, 2, . . . , 𝑣; 𝛽 ∈ 𝑅±. (2.6b)

Selection of two different values are set for 𝑘 can have an impact on the efficiency scores on the SE score of the
DMU. So, is it a robust way of choosing a direction vector?

In this regard, the concept of a Worst Point is approved so that a direction be proposed which will be
consistent with the positive as well as negative data. Apart from that the impact of such a selection on the SE
score is needed to be explored.

3. Proposed solution to the infeasibility problem

One reason for having a crisis of infeasibility is due to the selection of an inappropriate direction vector which
ultimately fails to find a suitable point on the frontier. To place a curb on this matter a new vector is proposed
which will be emanating from a technologically feasible Worst Point and ending at the DMU which is under
consideration. In this context, there can be two possibilities that will help in deciding the location of the peer on
the frontier. In the first case, if the DMU is Strongly Efficient then it will be away from the legitimate boundary
of the convex set 𝑇 . Hence, the peer will certainly create an internal division on the line joining the worst point
and the stated DMU. The subsequent theorems are added in favour of this case:

Theorem 3.1. The line segment connecting two points that remain at the interior and exterior to a Production
Possibility Set 𝑇 will find an element located on the closure of 𝑇 .

Proof. Let there be two points 𝐴0 and 𝐴𝑤 which are external and internal to the production possibility set 𝑇 .
Then according to the definitions of the exterior and interior points there must a few positive numbers 𝜙0 and
𝜙𝑤 such that the following conditions can prevail:

‖𝐴0 − 𝑏0‖ < 𝜙0 and ‖𝐴𝑤 − 𝑏𝑤‖ < 𝜙𝑤

𝑁𝜙0 (𝐴0) ⊂ 𝑇 𝑐 and 𝑁𝜙𝑤 (𝐴𝑤) ⊂ 𝑇. (3.1)

Here, 𝑁𝜙0 (𝐴0) denotes the neighbourhood of 𝐴0. Let there be another point 𝐴𝑝 which is situated on the
boundary of 𝑇 such that due to a variable 𝜗 ∈ (0, 1) the following linear relationship is fulfilled:

𝐴𝑝 = 𝜗𝐴0 + (1− 𝜗) 𝐴𝑤. (3.2)

In addition to this, for any point 𝑐𝑝 a couple of relationships can be conceived:

‖𝐴𝑝 − 𝑐𝑝‖ < 𝜙𝑝 where 𝜙0 < 𝜙𝑝 and 𝜙𝑤 < 𝜙𝑝

𝑁𝜙𝑝
(𝐴𝑝)∩𝑇 𝑐 ̸= ∅ and 𝑁𝜙𝑝

(𝐴𝑝)∩𝑇 ̸= ∅. (3.3)

In this case 𝑐𝑝 can either be within 𝑇 or 𝑇 𝑐. Now, if it is subsumed that there exists a variable 𝜗 such that
another point 𝑏𝑝 is obtained using a linear combination of 𝑏0 and 𝑏𝑤:

𝑏𝑝 = 𝜗𝑏0 + (1− 𝜗) 𝑏𝑤. (3.4)

Now, ‖𝐴𝑝 − 𝑏𝑝‖ = ‖𝜗𝐴0 + (1− 𝜗) 𝐴𝑤 − 𝜗𝑏0 − (1− 𝜗) 𝑏𝑤‖ (from (3.2))

‖𝜗 (𝐴0 − 𝑏0) + (1− 𝜗) (𝐴𝑤 − 𝑏𝑤) ‖ < 𝜗‖𝐴0 − 𝑏0‖+ (1− 𝜗) ‖𝐴𝑤 − 𝑏𝑤‖ = 𝜗𝜙0 + (1− 𝜗) 𝜙𝑤 < 𝜙𝑝. (3.5)

But, equation (3.5) implies that 𝑏𝑝 exists in the neighbourhood of 𝐴𝑝. Thus, the theorem is proved. �
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The second theorem is referred below in connection to an Inefficient DMU.

Theorem 3.2. The line segment connecting two points that remain at the interior to a Production Possibility
Set 𝑇 will find a peer on the boundary of 𝑇 .

Proof. For any convex set 𝑆 (⊂ 𝑅𝑛) with a nonempty interior if there exist two elements 𝐴1 and 𝐴2 such that
𝐴1 ∈ cl (𝑆) and 𝐴2 ∈ int (𝑆), then, the convex combination of these points will remain within the interior of
S. In other words, 𝐴 = 𝜆𝐴1 + (1− 𝜆) 𝐴2 ∈ int (𝑆) for 1 ≥ 𝜆 > 0 (the proof is mentioned in the book of [2]).
This proposition also confirms that if two points 𝐴 ∈ int (𝑆) and 𝐴2 ∈ int (𝑆) are connected with a line then
the extension of the line will find a point on the boundary of 𝑆. In this case, the point seems to be situated on
the boundary due to an appropriate selection of 𝜆∀𝐴1 = 1

𝜆 [𝐴− (1− 𝜆) 𝐴2] . Hence, this is the only matter that
has to be shown to prove the theorem.

Let there be a convex set 𝑆 and there are two points 𝐵 and 𝐴1 such that 𝐵 ∈ ext (𝑆) and 𝐴1 ∈ int (𝑆). It is
then possible to locate another point 𝐴 ∈ cl (𝑆) which will have a minimum distance from 𝑦. An inequality is
strictly held in this case is

(︀
𝐵 −𝐴

)︀𝑇 (︀
𝐴1 −𝐴

)︀
≤ 0. Now, if there exists another point 𝐴2 ∈ int (𝑆) so that for

a positive value of 𝜌 the ratio (𝐴1−𝐴)
(𝐴2−𝐴) = 𝜌 is held. In other words, 𝐴2

(︁
= 1

𝜌

[︀
𝐴− (1− 𝜌) 𝐴2

]︀)︁
will be situated

on the same line joining two points 𝐴1 and 𝐴. A positive value of 𝜌 is an indicator of an external division of
the line created by 𝐴1 and 𝐴2. This equivalence will end up with the inequality

(︀
𝐵 −𝐴

)︀𝑇 (︀
𝐴2 −𝐴

)︀
≤ 0. This

condition affirms that even if another point was chosen from the line joining 𝐴1 and 𝐴 then also 𝐵 and 𝐴 shall
have the minimum distance. Hence, the proof of the Theorem 3.2 is complete. �

3.1. Example 2 to show the way to measure SE

The assessment of SE score is illustrated here with Example 2. Let there be a Production Possibility Set
containing three DMUs say 𝐴 (Efficient), 𝐵 (Inefficient) and 𝑅 (Worst Point) having their input-output vectors
of (4, 6), (6, 5) and (8, 4), respectively. Then to compute the SE score of 𝐴, it has to be kept outside the convex
zone defined by 𝐵 and 𝑅. The current peer 𝐵 will be located at the boundary of the zone to create an internal
division (with a ratio of (1− 𝜏 : 𝜏)∀1 ≥ 𝜏 > 0) of the line segment 𝐴𝑅. 𝜏 is computed from the following ratio:

𝜏 =
𝐵𝑅

𝐴𝑅
=

8− 6
8− 4

=
6− 5
6− 4

=
1
2
·

But, the SE score of 𝐴 is given by: SE𝐴 = 𝐴𝑅
𝐵𝑅 = 2. Similarly, the SE score of 𝐵 is obtained from the

SE𝐵 = 𝐵𝑅
𝐴𝑅 = 1

2 . However, in this case, point 𝐴 has to create an external division to the line segment 𝐵𝑅 (with
a ratio of (𝜏 − 1 : 𝜏)∀1 < 𝜏). The value of 𝜏 is computed from the ratio 𝜏 = 𝐴𝑅

𝐵𝑅 = 2.
This small example narrates the fact that 𝜏 will certainly possess a positive score even though the DMU is

located within the convex zone or not. The SE score will be 1
𝜏 irrespective of the score possessed by 𝜏 . Moreover,

𝜏 has the greatest lower bound which is solely dependent on the location of 𝑅. The more it moves towards 𝐵
the more will be the SE score of 𝐴 and the less will be the SE score of 𝐵. To incorporate this concept into a
real-life problem four major steps are adopted to measure SE for a DMU (subsequent sections will sequentially
illustrate them):

– To define the neighbourhood within which the Worst Point is to be located.
– To select a Worst Point within the span of the neighbourhood using a Linear Model-1.
– To apply the Linear Model-2 on a DMU to determine the model parameter.
– To find SE of a DMU using the optimal value of the model parameter.

3.2. Definition of Worst Point

The vector (𝑥𝐼 , 𝑦𝐼) is designated as the “Worst Point” to exemplify a firm that consumes the highest amount
of inputs to deliver the lowest possible outputs (in comparison to the current set of DMUs).

𝑥𝐼 =
[︀
𝑥1𝐼 𝑥2𝐼 . . . 𝑥𝑚𝐼

]︀
, 𝑦𝐼 =

[︀
𝑦1𝐼 𝑦2𝐼 . . . 𝑦𝑣𝐼

]︀
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where, 𝑥𝑖𝐼 > 𝑥𝑖𝑜,∀𝑖 as 𝑥𝑖𝐼 = (max𝑟𝑥𝑖𝑟 + 𝛿) > max𝑟𝑥𝑖𝑟 ≥ 𝑥𝑖𝑜, for ∀𝑖, 𝛿 > 0, 𝑦𝑗𝑜 > 𝑦𝑗𝐼 ,∀𝑗 as 𝑦𝑗𝐼 =
(min𝑟𝑦𝑗𝑟 − 𝛿) < min𝑟𝑦𝑗𝑟 ≤ 𝑦𝑗𝑜, for ∀𝑗, 𝛿 > 0.

The worst member is obtained for any positive value of 𝛿. The inception of 𝛿 will eliminate the chance of
having a DMU to become the worst member of the Production Possibility Set. Hence, for a least upper bound
2𝛿′ of 𝛿∀𝛿 ≤ 2𝛿′ there will be a set of worst points each of which can emerge as a candidate for becoming a
perfect reference point.

Definition. For a given Production Possibility Set 𝑇 a 𝛿-worst member is the one which will be the element
of the set defined by 𝑁𝛿′ (𝑥𝐼 , 𝑦𝐼).

Now the following proofs are instrumental to display that the worst point situated inside a convex set will
trace a peer on the frontier (or on the extended frontier) when connected with a DMU (located inside or outside
the zone) with the aid of a straight line.

Theorem 3.3. During the Measurement of SE of a VRS efficient DMU a peer will always be obtained on
the frontier or extended frontier if it (the VRS efficient DMU) is connected with a Worst Point which is
Technologically Feasible.

Proof. Let there be a hypothetical DMU which consumes 𝑥𝑖𝐼 = (max𝑟𝑥𝑖𝑟 + 𝛿)∀𝑖, 𝛿 > 0 to generate output
𝑦𝑗𝐼 = (min𝑟𝑦𝑗𝑟 − 𝛿)∀𝑗, 𝛿 > 0. With this designed DMU each of these two constraints will be ascertained.

𝑥𝑖𝐼 > 𝑥𝑖𝑜,∀𝑖 as 𝑥𝑖𝐼 =
(︁

max
𝑟

𝑥𝑖𝑟 + 𝛿
)︁

> max
𝑟

𝑥𝑖𝑟 ≥ 𝑥𝑖𝑜, for ∀𝑖, 𝛿 > 0

𝑦𝑗𝑜 > 𝑦𝑗𝐼 ,∀𝑗 as 𝑦𝑗𝐼 =
(︁

min
𝑟

𝑦𝑗𝑟 − 𝛿
)︁

< min
𝑟

𝑦𝑗𝑟 ≤ 𝑦𝑗𝑜, for ∀𝑗, 𝛿 > 0.

The point (𝑥𝐼 , 𝑦𝐼) will be feasible in 𝑇 due to the rules stated in (2.1) and can be counted as an interior point
as a neighbourhood 𝑁𝛿 (𝑥𝐼 , 𝑦𝐼) is clearly defined for it so that 𝑁𝛿 (𝑥𝐼 , 𝑦𝐼) ⊂ 𝑇 . Hence, this interior point can be
effectively termed as the Worst Point within 𝑇 and is suitable for the appraisal of measuring SE of the DMUs.
Moreover, employing the Theorem 3.2 it can be stated that any vector connecting the SE DMU with the Worst
Point will definitely produce an intersecting point on the boundary or extended boundary of the production
frontier. Hence, there will be no infeasibility problem. But, unlike choosing an arbitrary reference point [20] a
point is selected after solving a linear problem. �

3.2.1. Selection of a Worst Point within the neighbourhood using a Linear Model-1

The value of 𝛿(>0) is derived from the linear model described below:

Max 𝛿
𝑐∑︁

𝑟=1

𝑥𝑖𝑟𝜆𝑟 ≤ 𝜏𝑥𝑖 max + (1− 𝜏) (𝑥𝑖 max + 𝛿) , 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1

𝑦𝑗𝑟𝜆𝑟 ≥ 𝜏𝑦𝑗 min + (1− 𝜏) (𝑦𝑗 min − 𝛿) , 𝑗 = 1, 2, . . . , 𝑣

𝑥̄𝑖𝑜 = 𝑥𝑖 max + 𝛿, where 𝑥𝑖 max = max
𝑟

𝑥𝑖𝑟

𝑦𝑗𝑜 = 𝑦𝑗 min − 𝛿, where 𝑦𝑗 min = min
𝑟

𝑦𝑗𝑟

𝜏 = 10
𝑐∑︁

𝑟=1

𝜆𝑟 = 1, 𝜆𝑟 ≥ 0, ∀𝑟, (3.6a)
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Figure 2. Example 3.

Table 2. Example 3 – For finding a reference point.

DMU 𝑋 𝑌

A 1 2
B 2 −2
C 3 −1
D 4 −2
R 4.333 −2.333

Example 3 is incorporated here to illustrate the way of selecting the optimal value of 𝛿. Figure 2 is added here
to illustrate a technology involving a single-input and single-output (mentioned Tab. 2). A small value of 𝛿
establishes the equivalence 𝑥̄𝑖𝑜 = 𝑥𝑖 max∀𝑖 and 𝑦𝑗𝑜 = 𝑦𝑗 min∀𝑗.

Following the data of Table 2 it is found that DMU 𝐴 (among other three DMUs (say 𝐵, 𝐶 and 𝐷)) is
located on the VRS frontier 𝐴′𝐴𝐴′′ (shown in red dotted lines). The fundamental aim of using this model is to
compute 𝛿 while creating a peer (𝐴 in this case) on the frontier from an external combination (by setting 𝜏 > 1)
of two points 𝐷 (𝑥max, 𝑦min) and 𝑅 (𝑥𝐼 , 𝑦𝐼). The ratio of the external division is kept constant by assigning 𝜏
a fixed quantity. Execution of the model on the data presented in Table 1 results in an optimal reference point
𝑅, owing to the premeditated value of 𝜏 = 10. As a consequence of this selection, the ratio between |𝐴𝐷| / |𝐴𝑅|
remains around 91%. Hence, the reference point is located at the stated feasible zone.

3.3. The proposed model

For a proportion of division, 𝜏 , and an external point (𝑥𝑜, 𝑦𝑜) (the above-mentioned set) the peer is likely to
be located on the production frontier for a circumstance shown below:

𝛽𝑜 = min (1− 𝜏) : (𝜏𝑥𝑜 + (1− 𝜏) 𝑥𝐼 , 𝜏𝑦0 + (1− 𝜏) 𝑦𝐼) ∈ 𝑇/ (𝑥𝑜, 𝑦𝑜) .

The model depicted in (3.6b) is suggested for deriving the optimal value of 𝛽𝑜.
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Max 𝜏
𝑐∑︁

𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≤ 𝜏𝑥𝑖𝑜 + (1− 𝜏) (𝑥𝑖 max + 𝛿′) , 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 ≥ 𝜏𝑦𝑗𝑜 + (1− 𝜏) (𝑦𝑗 min − 𝛿′) , 𝜏 ∈ 𝑅±, 𝑗 = 1, 2, . . . , 𝑣

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝜆𝑟 = 1, 𝜆𝑟 ≥ 0, for 𝑟 = 1, 2 . . . , 𝑐, 𝑟 ̸= 𝑜 (3.6b)

𝛿′ is optimal value obtained from the model (3.6a) where 𝜏 is set as an unrestricted variable. It can be negative
as well for those points which remains within the convex zone of 𝑇/ (𝑥𝑜, 𝑦𝑜). The alternative expression of this
model (3.6b) leads to another form of a DDF.

𝛽𝑜 = Min (1− 𝜏)
𝑐∑︁

𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≤ 𝑥𝑖𝑜 + (1− 𝜏) (𝑥𝑖 max + 𝛿′ − 𝑥𝑖𝑜) , 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 ≥ 𝑦𝑗𝑜 − (1− 𝜏) (𝑦𝑗𝑜 − 𝑦𝑗 min + 𝛿′) , 𝜏 ∈ 𝑅±, 𝑗 = 1, 2, . . . , 𝑣

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝜆𝑟 = 1, for 𝑟 = 1, 2 . . . , 𝑐, 𝑟 ̸= 𝑜. (3.6c)

Equation (3.6c) has an analogy with the standard form of DDF. The elements (𝑔𝑖𝑋 , 𝑔𝑗𝑌 ) of the Direction
Vector are found to be positive (as 𝑔𝑖𝑋 = (𝑥𝑖 max + 𝛿′ − 𝑥𝑖𝑜) and 𝑔𝑗𝑌 = (𝑦𝑗0 − 𝑦𝑗 min + 𝛿′) have to stay positive).
The input saving index (𝐼𝑠) and output surplus index (𝑂𝑠) can be computed from (3.6c) using the following
expressions for SE DMUs:

𝐼𝑠𝑜 = 1 +
1
𝑚

𝑚∑︁
𝑖=1

[︂∑︀𝑐
𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 − 𝑥𝑖𝑜

]︂
[︂
(𝑥𝑖 max + 𝛿′)−

∑︀𝑐
𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟

]︂ ≤ 1
𝜏

𝑂𝑠𝑜 = 1 +
1
𝑣

𝑣∑︁
𝑗=1

[︂
𝑦𝑗𝑜 −

∑︀𝑐
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟

]︂
[︂∑︀𝑐

𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 − 𝑦𝑗 min + 𝛿′
]︂ ≥ 1

𝜏
· (3.6d)

The expressions within (3.6d) always remain unaffected due to the zero data. However, the central issue is
hovering around the justification of conceiving 𝛽𝑜 as a measure of an SE score.

3.3.1. Interpretation of 𝛽𝑜 using Example 1

Figures 3a–3d (drawn from Tab. 1) are instrumental to distinguish between efficient, weakly efficient, strongly
efficient and inefficient DMUs under VRS. As per the data provided, five DMUs (𝐴, 𝐵, 𝐶, 𝐷, and 𝐸) are found
strongly efficient.

According to definitions provided by Xue and Harker [33], 𝐵 and 𝐷 are categorised as Strongly Efficient
DMUs whereas 𝐶 is marked as an efficient DMU. The location of 𝐸 (𝐴) makes it special as under the output
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(a)

(b)

Figure 3. (a) 𝛽 > 0 for 𝐷 (Strongly Efficient). (b) 𝛽 = 0 for 𝐶 (Efficient). (c) 𝛽 > 0 for 𝐸
(Super Strongly Efficient). (d) 𝛽 < 0 for 𝐹 (Inefficient).

(input) oriented super-efficient BCC model it will certainly remain infeasible (hence is classified under Super
Strongly Efficient DMU). 𝑊 is the worst DMU among the available set of firms which is meant for creating a
reference (shown in Figs. 3a–3d).

Model (3.6b) is designed to measure the Super Efficiency Score of (say, for 𝐷) along the direction vector
initiated from 𝑊 (say

−−→
𝑊𝐷). The model is built in a manner such that the optimal value of 𝛽𝑜 becomes positive

when the vector needs a reduction to stay within the convex zone. In other words, following the concept of
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(c)

(d)

Figure 3. (Continued.)

(3.6b), it can be stated that such a peer will always remain in between the Worst Reference Point 𝑊 and the
DMU which is under consideration. It certainly results in a positive value for 𝛽𝑜. On the contrary, it will score a
negative value once it requires an extension towards the boundary defined by the production frontier. In addition
to it, these figures can effectively state that an Efficient or Strongly Efficient DMU can never possess any type
of slack or surplus due to inputs of outputs. In such cases, the peer appears to be constructed by the convex
combination of the other efficient DMUs. However, the Super Strongly Efficient DMUs can possess slack or
surplus values in their optimal solutions as the peer seems to be located on the extended portion of the frontier.
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The ways of detecting weakly efficient, strongly efficient DMUs are shown while using the following optimal
values for the variables mentioned above in (3.6b) (corresponding theorems are referred in the Appendix A):

Proposition 3.4. An efficient DMU will score 𝛽 = 0 and have all slacks equal to 0.

Proposition 3.5. A weakly efficient DMU will score 𝛽 = 0 with at least one non-zero slack.

Proposition 3.6. A strongly efficient DMU will score 𝛽 > 0 and each slack is zero.

Proposition 3.7. A strongly Super-efficient DMU will score 𝛽 > 0 and have at least one non-zero slack. An
output (input) oriented super strong member will certainly have at least one non-zero input (output) slack.

Proposition 3.8. An inefficient DMU will score 𝛽 < 0 and may or may not have a non-zero slack.

These figures consolidate the fact that exists a one-to-one relationship between the sign of 𝛽 and the vector
joining the DMU under the scanner. 𝛽 attains a positive (negative) value as the arrowhead crosses (stays within)
the convex zone defined by the remaining rivals. In other words, it cannot be the right terminology to express
an SE score.

3.3.2. Measurement of SE score

It is to be noted that the ranking of DMUs can be done according to the descending order of the 𝛽(>0)
values. But, 𝛽 can never be a true measure of the SE score as it will turn into a negative quantity in case of an
inefficient DMU. So, it has to be computed from (3.7):

SE𝑜 =
(︂

1
𝜏

)︂
=

(︂
1

1− 𝛽

)︂
· (3.7)

This expression of SE𝑜 is akin to the one described in (3.6d) and it always remains positive owing to the strictly
positive trait of 𝜏 . It rightly indicates that the radial measure of the input savings index and output surplus
index are equivalent to the SE score. Moreover, the present model does not possess any problem with the
zero data points. The problem of zero data point appears when 𝑥𝑖𝑜 = 𝑦𝑗𝑜 = 0∀𝑖, 𝑗. In such cases, the total
𝜏𝑥𝑖𝑜 + (1− 𝜏) 𝑥𝑖𝐼 or 𝜏𝑦𝑗𝑜 + (1− 𝜏) 𝑦𝑗𝐼 claim non-zero values due to the second components.

3.3.3. Elaboration with the Example 2

This example is cited to investigate the effect of choosing the greatest lower bound of 𝜏 as 0 and keeping the
worst point as (𝑥max, 𝑦min) or (14, 1) to compare it with the proposed model. The outputs of (11B) are attached
within Table 3. The optimal value of 𝛽 can therefore is derived as (1− 𝛽).

The location of A is special as it can be classified as a super-strong efficient DMU in terms of output analysis.
The optimal solution (obtained from 11B) specifies its peer as B. Moreover, the super-efficiency score is found
to be 1.143 (as 𝜏 = 0.875). Most importantly, A does have slack in terms of output (2 units). Similar attributes
can be observed for E as well (which is an input based super strong efficient DMU). It has not only attained a
nonnegative value of 𝛽 0.167 or (1− 0.833) but also possesses an input based slack (3.17 units).

B and D are Strongly-Super-Efficient as these DMUs score non-negative optimal values of 𝛽. C shows its
location on the frontier (as 𝛽 = 0) therefore it is classified under an Efficient list. On the other hand, F,
apart from having an input slack, on the contrary, possesses a 𝛽 value of −0.2 or (1 − 1.2). Hence, as per the
propositions stated before it has to be classified as an inefficient DMU with an SE score of

(︀
1

1.2

)︀
or 0.833.

The first step identifies the optimal location of the worst point at (14.9, 0.1) (as 𝛿𝜏=10 is found equivalent to
0.9). The second stage whereas results in deciphers the optimal scores of 𝜏 while incorporating this information
(shown in Tab. 4).

The SE scores of 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are computed as 1.127, 1.052, 1, 1.064, 1.169 and 0.855, respectively
(as compared to the earlier scores 1.143, 1.063, 1, 1.076, 1.200, 0.833 which were obtained from the choice of
𝛿 = 𝜏 = 0). It can therefore be inferred that the SE scores of the Super-Efficient DMUs will deteriorate when
a Worst Point is chosen as a basis of the reference. On the contrary, the opposite trend is observed for the
Inefficient DMU.
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Table 3. Optimal solution at 𝛿 = 𝜏 = 0.

A B C D E F

Variable Value Reduced Value Reduced Value Reduced Value Reduced Value Reduced Value Reduced

cost cost cost cost cost cost

𝜏 0.875 0.000 0.941 0.000 1.000 0.000 0.929 0.000 0.833 0.000 1.200 0.000

𝜆1 0.000 0.000 0.529 0.000 0.000 0.111 0.000 0.357 0.000 0.833 0.000 1.200

𝜆2 1.000 0.000 0.000 0.000 0.333 0.000 0.000 0.143 0.000 0.500 0.000 0.800

𝜆3 0.000 0.250 0.471 0.000 0.000 0.000 0.679 0.000 0.000 0.167 0.000 0.400

𝜆4 0.000 0.375 0.000 0.029 0.667 0.000 0.000 0.000 1.000 0.000 0.000 0.200

𝜆5 0.000 0.750 0.000 0.294 0.000 0.222 0.321 0.000 0.000 0.000 1.000 0.000

𝜆6 0.000 0.875 0.000 0.500 0.000 0.444 0.000 0.214 0.000 0.000 0.000 0.000

Row Slack or Dual Slack or Dual Slack or Dual Slack or Dual Slack or Dual Slack or Dual

surplus price surplus price surplus price surplus price surplus price surplus price

1.000 0.875 1.000 0.941 1.000 1.000 1.000 0.929 1.000 0.833 1.000 1.200 1.000

2.000 0.000 0.125 0.000 0.118 0.000 0.111 0.000 0.071 3.167 0.000 1.000 0.000

3.000 2.000 0.000 0.000 −0.088 0.000 −0.111 0.000 −0.143 0.000 −0.167 0.000 −0.200

4.000 0.000 −0.875 0.000 −0.618 0.000 −0.444 0.000 0.071 0.000 1.000 0.000 1.400

5.000 0.000 0.125 0.000 0.059 0.000 0.000 0.000 0.071 0.000 0.167 0.000 −0.200

Table 4. Optimal solution at 𝛿 = 0.9.

A B C D E F

Variable Value Reduced Value Reduced Value Reduced Value Reduced Value Reduced Value Reduced

cost cost cost cost cost cost

𝜏 0.888 0.000 0.950 0.000 1.000 0.000 0.940 0.000 0.855 0.000 1.169 0.000

𝜆1 0.000 0.000 0.536 0.000 0.000 0.093 0.000 0.299 0.000 0.725 0.000 1.017

𝜆2 1.000 0.000 0.000 0.000 0.333 0.000 0.000 0.120 0.000 0.435 0.000 0.678

𝜆3 0.000 0.225 0.464 0.000 0.000 0.000 0.677 0.000 0.000 0.145 0.000 0.339

𝜆4 0.000 0.337 0.000 0.025 0.667 0.000 0.000 0.000 1.000 0.000 0.000 0.169

𝜆5 0.000 0.674 0.000 0.248 0.000 0.185 0.323 0.000 0.000 0.000 1.000 0.000

𝜆6 0.000 0.787 0.000 0.422 0.000 0.370 0.000 0.180 0.000 0.000 0.000 0.000

Row Slack or Dual Slack or Dual Slack or Dual Slack or Dual Slack or Dual Slack or Dual

surplus price surplus price surplus price surplus price surplus price surplus price

1.000 0.888 1.000 0.950 1.000 1.000 1.000 0.940 1.000 0.855 1.000 1.169 1.000

2.000 0.000 0.112 0.000 0.099 0.000 0.093 0.000 0.060 3.275 0.000 0.847 0.000

3.000 2.101 0.000 0.000 −0.074 0.000 −0.093 0.000 −0.120 0.000 −0.145 0.000 −0.169

4.000 0.000 −0.787 0.000 −0.521 0.000 −0.370 0.000 0.060 0.000 0.870 0.000 1.186

5.000 0.000 0.112 0.000 0.050 0.000 0.000 0.000 0.060 0.000 0.145 0.000 −0.169

4. Case studies

Case 1. To verify the performance vis-à-vis other models the data set (Tab. 5) of the 15 US cities having three
inputs, namely, high-end housing price (1000 US$), lower-end housing monthly rental (US$), and number of
violent crimes, and three outputs, namely, median household income (US$), number of bachelor’s degrees
(million) held by persons in the population, and number of doctors (thousand) from Seiford and Zhu [27]
are analysed.
The modified version of the Input and Output oriented models prescribed by Cook et al. [9] could explain
the level of super-efficiency scores of those DMUs which had infeasibility problems while employing the
input-oriented and output-oriented SE BCC models (the columns showing Models 1 and 2 in Tab. 6).
Philadelphia, Raleigh, St-Louis were able to achieve high scores due to the provisions of output reduction or
input augmentation. One question will always be raised after this observing these outputs that is whether
the model will be strong enough to handle negative data. For example, in presence of any negative input or
output the direction vector may lose its power to select the peer on the production frontier.
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Table 5. 15 of Fortune’s top US cities in 1996 (from [9]).

City House Rental Violent Income B. Doctor
price Degree

Seattle 586 581 1193.06 46 928 0.6534 9.878
Denver 475 558 1131.64 42 879 0.5529 5.301
Philadelphia 201 600 3468 43 576 1.135 18.2
Minneapolis 299 609 1340.55 45 673 0.729 7.209
Raleigh 318 613 634.7 40 990 0.319 4.94
StLouis 265 558 657.5 39 079 0.515 8.5
Cincinnati 467 580 882.4 38 455 0.3184 4.48
Washington 583 625 3286.7 54 291 1.7158 15.41
Pittsburgh 347 535 917.04 34 534 0.4512 8.784
Dallas 296 650 3714.3 41 984 1.2195 8.82
Atlanta 600 740 2963.1 43 249 0.9205 7.805
Baltimore 575 775 3240.75 43 291 0.5825 10.05
Boston 351 888 2197.12 46 444 1.04 18.208
Milwaukee 283 727 778.35 41 841 0.321 4.665
Nashville 431 695 1245.75 40 221 0.2365 3.575

Table 6. Comparison of Super Efficiency Scores.

DMU City Model 1 Model 2 Proposed SE Rank of
model Prop-model

DMU1 Seattle 1.44335 1.0934 0.11897 1.14 6
DMU2 Denver 1.01593 1.0527 0.02468 1.03 10
DMU3 Philadelphia Infeasible Infeasible 0.34116 1.52 2
DMU4 Minneapolis 1.22752 1.086 0.12986 1.15 5
DMU5 Raleigh 1.16766 Infeasible 0.03635 1.04 8
DMU6 StLouis 1.51628 Infeasible 0.13835 1.16 4
DMU7 Cincinnati 0.94968 0.897 −0.075 0.93 12
DMU8 Washington Infeasible 1.5344 0.45381 1.83 1
DMU9 Pittsburgh 1.04529 Infeasible 0.06516 1.07 7
DMU10 Dallas 0.92652 0.9532 −0.0415 0.96 11
DMU11 Atlanta 0.77243 0.8137 −0.6304 0.61 14
DMU12 Baltimore 0.73827 0.8009 −0.8664 0.54 15
DMU13 Boston Infeasible 1.3181 0.22675 1.29 3
DMU14 Milwaukee 1.06559 1.0276 0.02651 1.03 9
DMU15 Nashville 0.80117 0.873 −0.2275 0.81 13

On the contrary, it is observed that none of these cities is posing any infeasibility problem during the
application of the proposed model (PM column of Tab. 6). Whether it remains inside or outside the proposed
model will offer an appropriate solution.
In addition to that, the discrimination of the superefficient members from the inefficient members (as men-
tioned in [9]) is accomplished while noticing the signs of 𝛽. Moreover, consolidated SE scores are obtained
without having any glitches (of finding very high SE scores).

Case 2. The data set (Tab. 7) of Byrnes et al. [3] is taken into account here to analyse the benefits of the
proposed model vis-a-vis the methods of Ray [26], Lee and Zhu [18] and Lin and Chen [20]. The results
found in Table 8 revealed the weakness of Ray [26] to eliminate the infeasibility problem. But, in this
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Table 7. Data for Case 2.

DMU Labor 𝐾1 𝐾2 𝐾3 𝑇1 1/𝐷1 𝑇2 1/𝐷2 Out

1 98.5 142 245 0 6 0.016 4.3 0.012 3264
2 96.5 30 215 0 6 0.016 0 0 3065
3 57.6 18 105 0 5.6 0.026 4.2 0.016 2275
4 59.2 160 0 0 5.9 0.025 3.7 0.011 1978
5 57.6 200 0 0 8 0.022 3.5 0.011 1833
6 49.9 27 85 0 4.5 0.019 0 0 1218
7 53.5 143 65 0 6 0.01 0 0 928
8 34 70 65 12 6 0.02 5 0.01 919
9 39.6 67.5 40 0 6.5 0.013 0 0 777
10 51.3 0 145 0 3.2 0.019 0 0 745
11 74.2 110 65 0 2.1 0.014 0 0 742
12 24 25 65 0 4.4 0.012 0 0 488
13 26.5 58 0 0 3 0.014 0 0 407
14 43.1 70 0 0 6.5 0.012 0 0 402
15 20.7 236 0 0 5.7 0.01 0 0 396

Table 8. Comparison of optimal scores from various models.

DMUs SE score
from
BCC

Tau
value
from
(3.6b)

SE score
from
(3.6c)

SE
scores
[18]

Beta value
from Ray

Beta value
from Lin

DM1 Infeasible 0.931 1.075 2.0649 −0.061 −0.069
DM2 Infeasible 0.634 1.577 3.7039 −0.603 −0.188
DM3 1.5473 0.836 1.196 1.5473 −0.270 −0.041
DM4 Infeasible 0.845 1.183 2.4350 −0.203 −0.041
DM5 1.7038 0.959 1.043 1.0738 −0.041 −0.009
DM6 1.1598 0.968 1.033 1.1598 −0.102 −0.009
DM7 1.1468 0.907 1.102 1.1468 −0.130 −0.017
DM8 0.9375 1.027 0.973 0.9374 0.043 0.006
DM9 1.0014 0.999 1.001 1.0014 −0.001 0.000
DM10 Infeasible 0.843 1.186 2.5329 Infeasible −0.041
DM11 1.5543 0.811 1.233 1.5543 −0.433 −0.044
DM12 1.4788 0.859 1.165 1.4782 −0.479 −0.031
DM13 Infeasible 0.799 1.252 3.1680 −1.085 −0.052
DM14 1.1275 0.939 1.065 1.1274 −0.127 −0.012
DM15 1.3761 0.863 1.159 1.3760 −0.376 −0.031

context, the method of Lin and Chen [20] remained successful after incorporating the Big-M approach. Both
models, however, fail to produce positive values of 𝜏 and thus require further steps to determine SE scores.
On the contrary, the prescribed model stresses on selecting a worst point located very close to the vector[︀
𝑥1 max 𝑥2 max . . . 𝑥𝑚 max , 𝑦1 min 𝑦2 min . . . 𝑦𝑣 min

]︀
. None of the DMUs could pose any infeasibility problem

during the application of (3.6b) even after feeding the optimal value of 𝛿 = 0.0002 derived from solving (3.6a)
(for 𝜏 = 99). The optimal values of 𝜏 always remained positive and never offered any hurdle for computing
SE scores. Apart from that these scores have a rank correlation of 88% with those ones obtained from the
model of Lee and Zhu [18] (shown in the 5th column of Tab. 8).
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5. Discussion and conclusion

The major strength of this model is ability to detect a superefficient firm from the sign of 𝜏 . The SE score
always remains positive during the evaluation of an efficient or inefficient DMU. Barring this, the impact of
selecting a worst point from the 𝛿-neighbourhood on the efficiency scores can be explained. In this context, the
initial value of 𝜏 is instrumental.

The proposed model is unit invariant. The constraint
∑︀𝑐

𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≤ 𝑥𝑖𝑜+(1− 𝜏) (𝑥̄𝑜 − 𝑥𝑖𝑜) remains unchanged

when 𝑥𝑖𝑟, 𝑥̄𝑜 and 𝑥𝑖𝑜 are replaced by 𝑄𝑥𝑖𝑟, 𝑄𝑥̄𝑜 and 𝑄𝑥𝑖𝑜 and never makes any impact on the efficiency score.

Under VRS
(︂∑︀𝑐

𝑟=1
𝑟 ̸=𝑜

𝜆𝑟 = 1, 𝜆𝑟 ≥ 0
)︂

assumption the model also becomes translation invariant. Thus, any change

made in any 𝑖th input to an amount of 𝜂 is not going to produce a new constraint. Incorporating these changes
into the 𝑖th input constraint of the proposed model the following one is created:

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

(𝑥𝑖𝑟 + 𝜂) 𝜆𝑟 ≤ (𝑥𝑖𝑜 + 𝜂) + (1− 𝜏) (𝑥̄𝑜 + 𝜂 − 𝑥𝑖𝑜 − 𝜂) .

But, due to the VRS assumption this constraint remains similar to the original one cited in (3.4):
∑︀𝑐

𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≤
𝑥𝑖𝑜 + (1− 𝜏) (𝑥̄𝑜 − 𝑥𝑖𝑜). Hence, the model can handle the negative data. Lastly, the extant paper finds an
expression of SE which symbolises the radial savings of all inputs and radial surplus of all outputs simultaneously.

Acknowledgements. Prof. Emrouznezad Ali has been my inspiration to unravel new aspects. apart from that, i must
appreciate the referees and the eminent editors for giving me ample scope for making changes to improve the paper.

Appendix A.

Theorem A.1. A Super-efficient DMUs (Excluding the Strongly Super-efficient members) are those which
offers an optimal output 𝛽 ≥ 0 with all zero slacks in the model depicted in (3.6a).

Proof. A Super-efficient DMU is the one which remains feasible and does not carry any slack when it is treated
under an Input or output oriented BCC DEA model. In other words, non-existence of slack is observed as the
peer appears from the optimal solution is located on the frontier. In this context, the following assumptions are
necessary for the Super-efficient DMU under consideration when VRS technology is seen:

𝑥𝑖 min < 𝑥𝑖𝑜 < 𝑥𝑖 max, 𝑖 = 1, 2, . . . ,𝑚.

Here, 𝑥𝑖 min = min𝑟 ̸=𝑂𝑥𝑖𝑟, 𝑥𝑖 max = max𝑟 ̸=𝑂𝑥𝑖𝑟

𝑦𝑗 min < 𝑦𝑗𝑜 < 𝑦𝑗 max 𝑗 = 1, 2, . . . , 𝑣

𝑦𝑗 min = min
𝑟 ̸=𝑂

𝑦𝑗𝑟, 𝑦𝑗 max = max
𝑟 ̸=𝑂

𝑦𝑗𝑟

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≥ 𝑥𝑖𝑜,

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 ≤ 𝑦𝑗𝑜,

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝜆𝑟 = 1, for 𝑟 = 1, 2 . . . , 𝑐, 𝑟 ̸= 𝑜. (A.1)
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Now due to convexity rules the subsequent inequalities gets established:

𝑥𝑖 max + 𝛿 > 𝑥𝑖 max >

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 ≥ 𝑥𝑖𝑜, ∀𝑖, 𝑟

𝑦𝑗 min − 𝛿 < 𝑦𝑗 min <

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 ≤ 𝑦𝑗𝑜, ∀𝑗, 𝑟. (A.2)

Now, according to the Theorem 3.3 the DMU has to remain away from the PPS and hence, the line drawn from
it to connect the worst point has to intersect the production frontier. Since any point on the frontier can be
specified by the convex sum of all weighed input and output so for a value of 𝜆𝑟 = 𝜆*𝑟 the following equality can
be possible:

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆
*
𝑟 = 𝜏𝑥𝑖𝑜 + (1− 𝜏) (𝑥𝑖 max + 𝛿′) , ∀𝑖, 𝑟

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆
*
𝑟 = 𝜏𝑦𝑗𝑜 + (1− 𝜏) (𝑦𝑗 min − 𝛿′) ∀𝑗, 𝑟. (A.3)

At 𝜏 = 0 (𝜏 = 1) the right hand-side has a greatest (lowest) total of (𝑥𝑖 max + 𝛿′) [(𝑥𝑖𝑜)]. Hence, the peer can
be traced in between the maximum and the minimum value due to 𝜏 having a restricted within 1 > 𝜏 > 0. In
other words, 𝜏 has to be strictly positive. �

Theorem A.2. Any DMU will be termed as Inefficient if it gives rise to an optimal output 𝛽 < 0 when treated
with the model (3.6a).

Proof. An inefficient DMU is retained within the zone owing to the propositions described to create the PPS.
Observing the property within PPS, an Inefficient DMU has to allow the subsequent input and output con-
straints:

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆𝑟 = 𝑥𝑖𝑜 − 𝑆𝑖, 𝑖 = 1, 2, . . . ,𝑚

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆𝑟 = 𝑦𝑗𝑜 + 𝑆𝑗 , 𝑗 = 1, 2, . . . , 𝑣

𝑆𝑖 ≥ 0 and 𝑆𝑗 ≥ 0, ∀𝑖, 𝑗. (A.4)

Now, considering the optimal value 𝜏 ′ from the proposed model (3.6a) it can be stated that

− (1− 𝜏 ′) (𝑥𝑖 max + 𝛿′ − 𝑥𝑖𝑜) ≥ 𝑆𝑖 ≥ 0
− (1− 𝜏 ′) (𝑦𝑗𝑜 − 𝑦𝑗 min + 𝛿′) ≥ 𝑆𝑗 ≥ 0. (A.5)

The left hand side in these inequalities can only remain positive if and only if (1− 𝜏 ′) becomes negative (or
𝛽𝑜 = (1− 𝜏 ′) < 0). �

Theorem A.3. Any DMU will be termed as a strongly Super-efficient if it gives rise to an optimal output 𝛽 > 0
when treated with the model (3.6a).
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Proof. A strongly Super-efficient DMU is the one which ends up with an infeasibility crisis when it is treated
under an Input or output oriented BCC DEA model. Such a unit needs to have at least one extraordinary
output (input) which is larger (smaller) than the peer obtained from the analysis. In other words, for any DMU
which satisfies the following inequality conditions strictly for at least one value of 𝑖 and (or) 𝑗 will be called as
a strongly Super-efficient DMU.

𝑥𝑖 min < 𝑥𝑖𝑜 < 𝑥𝑖 max, 𝑖 = 1, 2, . . . ,𝑚, 𝑖 ̸= 𝑡

𝑥𝑖𝑜 < 𝑥𝑖 min < 𝑥𝑖 max, 𝑖 = 𝑡.

Here, 𝑥𝑖 min = min𝑟 ̸=𝑂𝑥𝑖𝑟, 𝑥𝑖 max = max𝑟 ̸=𝑂𝑥𝑖𝑟

𝑦𝑗 min < 𝑦𝑗𝑜 < 𝑦𝑗 max 𝑗 = 1, 2, . . . , 𝑣, 𝑗 ̸= 𝑓

𝑦𝑗 min < 𝑦𝑗 max < 𝑦𝑗𝑜 𝑗 = 𝑓

𝑦𝑗 min = min
𝑟 ̸=𝑂

𝑦𝑗𝑟, 𝑦𝑗 max = max
𝑟 ̸=𝑂

𝑦𝑗𝑟. (A.6)

Let there exists an optimal value 𝜏 = 𝜏 ′ such that for the optimal value of the intensity variable 𝜆𝑟 = 𝜆*𝑟 the
following equality can be possible when ∀𝑖 ̸= 𝑡, 𝑟 ̸= 𝑓 :

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆
*
𝑟 = 𝜏 ′𝑥𝑖𝑜 + (1− 𝜏 ′) (𝑥𝑖 max + 𝛿′) , ∀𝑖, 𝑟

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆
*
𝑟 = 𝜏 ′𝑦𝑗𝑜 + (1− 𝜏 ′) (𝑦𝑗 min − 𝛿′) , ∀𝑗, 𝑟. (A.7)

Strongly super-efficient DMU has to have all properties possessed by a super-efficient DMU. Hence, the condition
of (1− 𝜏 ′) > 0 has to be fulfilled. However, such equalities cannot be maintained at the time of 𝑖 = 𝑡, 𝑟 = 𝑓 due
to following reason. Such extraordinary cases are seen for only Super-efficient DMUs:

𝑥𝑖𝑜 < 𝑥𝑖 min < 𝑥𝑖 max, 𝑖 = 𝑡

𝑦𝑗 min < 𝑦𝑗 max < 𝑦𝑗𝑜, 𝑗 = 𝑓. (A.8)

Now, owing to the optimal solution 𝜏 = 𝜏 ′ and 𝜆𝑟 = 𝜆*𝑟 along with the convexity assumptions the corresponding
the following inequalities are obtained:

𝑥𝑖𝑜 < 𝑥𝑖 min ≤
𝑐∑︁

𝑟=1
𝑟 ̸=𝑜

𝑥𝑖𝑟𝜆
*
𝑟 = 𝜏 ′𝑥𝑖𝑜 + (1− 𝜏 ′) (𝑥𝑖 max + 𝛿′) ≤ 𝑥𝑖 max, 𝑖 = 𝑡

𝑦𝑗 min ≤
𝑐∑︁

𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆
*
𝑟 = 𝜏 ′𝑦𝑗𝑜 + (1− 𝜏 ′) (𝑦𝑗 min − 𝛿′) ≤ 𝑦𝑗 max < 𝑦𝑗𝑜, 𝑗 = 𝑓. (A.9)

In other words, non-zero slacks are seen in these two cases:

𝑥𝑡𝑜 + 𝑆𝑡 =
𝑐∑︁

𝑟=1
𝑟 ̸=𝑜

𝑥𝑡𝑟𝜆
*
𝑟 , 𝑖 = 𝑡

𝑐∑︁
𝑟=1
𝑟 ̸=𝑜

𝑦𝑗𝑟𝜆
*
𝑟 + 𝑆𝑓 = 𝑦𝑗𝑜 𝑗 = 𝑓
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𝑆𝑓 , 𝑆𝑓 > 0. (A.10)

Hence, it is proved that any strongly Super-efficient DMU has to offer (1− 𝜏 ′) > 0 and at least one non-zero
input or output slack. �

Acknowledgements. Prof. Emrouznezad Ali has been my inspiration to unravel new aspects. Apart from that, I appreciate
the referees and the eminent editors for giving me ample scope for making changes to improve the paper.
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