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ON 𝑘-RAINBOW DOMINATION IN MIDDLE GRAPHS

Kijung Kim*

Abstract. Let 𝐺 be a finite simple graph with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺). A function
𝑓 : 𝑉 (𝐺) → 𝒫({1, 2, . . . , 𝑘}) is a 𝑘-rainbow dominating function on 𝐺 if for each vertex 𝑣 ∈ 𝑉 (𝐺)
for which 𝑓(𝑣) = ∅, it holds that

⋃︀
𝑢∈𝑁(𝑣) 𝑓(𝑢) = {1, 2, . . . , 𝑘}. The weight of a 𝑘-rainbow dominating

function is the value
∑︀

𝑣∈𝑉 (𝐺) |𝑓(𝑣)|. The 𝑘-rainbow domination number 𝛾𝑟𝑘(𝐺) is the minimum weight
of a 𝑘-rainbow dominating function on 𝐺. In this paper, we initiate the study of 𝑘-rainbow domination
numbers in middle graphs. We define the concept of a middle 𝑘-rainbow dominating function, obtain
some bounds related to it and determine the middle 3-rainbow domination number of some classes of
graphs. We also provide upper and lower bounds for the middle 3-rainbow domination number of trees
in terms of the matching number. In addition, we determine the 3-rainbow domatic number for the
middle graph of paths and cycles.
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1. Introduction

Let 𝐺 = (𝑉,𝐸) be a connected undirected graph with the vertex set 𝑉 = 𝑉 (𝐺) and edge set 𝐸 = 𝐸(𝐺). The
order of 𝐺 is defined as the cardinality of 𝑉 . The open neighborhood of 𝑣 ∈ 𝑉 (𝐺) is the set 𝑁(𝑣) = {𝑢 ∈ 𝑉 (𝐺) |
𝑢𝑣 ∈ 𝐸(𝐺)} and the closed neighborhood of 𝑣 ∈ 𝑉 (𝐺) is the set 𝑁 [𝑣] := 𝑁(𝑣) ∪ {𝑣}. The degree of 𝑣 ∈ 𝑉 (𝐺) is
defined as the cardinality of 𝑁(𝑣), denoted by deg𝐺(𝑣). When no confusion arises, we may delete the subscript
𝐺 in deg𝐺(𝑣). The maximum degree and minimum degree of 𝐺 are denoted by ∆(𝐺) and 𝛿(𝐺), respectively. We
write 𝑃𝑛, 𝐶𝑛 and 𝐾𝑛 for a path, a cycle and a complete graph, respectively.

In [8], Hamada and Yoshimura defined the middle graph of a graph. The middle graph 𝑀(𝐺) of a graph 𝐺 is
the graph obtained by subdividing each edge of 𝐺 exactly once and joining all these newly introduced vertices
of adjacent edges of 𝐺 (see Fig. 1). The precise definition of 𝑀(𝐺) is as follows. The vertex set 𝑉 (𝑀(𝐺)) is
𝑉 (𝐺) ∪ 𝐸(𝐺). Two vertices 𝑣, 𝑤 ∈ 𝑉 (𝑀(𝐺)) are adjacent in 𝑀(𝐺) if (i) 𝑣, 𝑤 ∈ 𝐸(𝐺) and 𝑣, 𝑤 are adjacent in
𝐺 or (ii) 𝑣 ∈ 𝑉 (𝐺), 𝑤 ∈ 𝐸(𝐺) and 𝑣, 𝑤 are incident in 𝐺.

In graph domination theory, a set of vertices is selected as guards such that each vertex not selected has a guard
as a neighbor. As a generalization of the graph domination, Brešar et al. introduced the concept of 𝑘-rainbow
domination in [3]. In 𝑘-rainbow domination theory, 𝑘-different types of guards are required in the neighborhood
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Figure 1. The middle graph 𝑀(𝐺) of 𝐺.

Figure 2. A middle 3-rainbow dominating function on 𝐺 (∅ is omitted).

Figure 3. A 3-rainbow dominating function on 𝑀(𝐺) (∅ is omitted).

of a non-selected vertex. Let [𝑘] be the set of positive integers at most 𝑘. A function 𝑓 : 𝑉 (𝐺) → 𝒫([𝑘])
is a 𝑘-rainbow dominating function on 𝐺 if for each vertex 𝑣 ∈ 𝑉 (𝐺) for which 𝑓(𝑣) = ∅, it holds that⋃︀

𝑢∈𝑁(𝑣) 𝑓(𝑢) = [𝑘]. The weight of a 𝑘-rainbow dominating function is the value
∑︀

𝑣∈𝑉 (𝐺) |𝑓(𝑣)|. The 𝑘-rainbow
domination number 𝛾𝑟𝑘(𝐺) is the minimum weight of a 𝑘-rainbow dominating function on 𝐺. In [4], Chang
et al. proved that the 𝑘-rainbow domination is NP-complete. So, it is worthwhile to determine the 𝑘-rainbow
domination numbers of some classes of graphs. The latest survey on 𝑘-rainbow domination is introduced in [2].
Indeed, there are many papers on the 2-rainbow domination. For 𝑘 ≥ 3, it is more difficult to determine the
𝑘-rainbow domination number of a graph. The following are a few results on the 3-rainbow domination number.
In [10], Shao et al. determined the 3-rainbow domination numbers of paths, cycles and generalized Petersen
graphs 𝑃 (𝑛, 1). In [12], Wang et al. determined the 3-rainbow domination number of 𝑃3�𝑃𝑛. In [7], Gao et al.
determined the 3-rainbow domination numbers of 𝐶3�𝐶𝑚 and 𝐶4�𝐶𝑚. In [5], Cynthia et al. determined the
3-rainbow domination number of circulant graph 𝐺(𝑛;±{1, 2, 3}). In [6], Furuya et al. proved that for every
connected graph 𝐺 of order 𝑛 ≥ 8 with 𝛿(𝐺) ≥ 2, 𝛾𝑟3(𝐺) ≤ 5𝑛

6 .
To study 𝑘-rainbow domination numbers in the class of middle graphs, we define the following concept. For

𝑣 ∈ 𝑉 (𝐺), we denote {𝑒 ∈ 𝐸(𝐺) | 𝑒 is incident with 𝑣} by 𝑁𝑀 (𝑣). For 𝑒 ∈ 𝐸(𝐺), we denote {𝑥 ∈ 𝑉 (𝐺)∪𝐸(𝐺) | 𝑥
is either adjacent or incident with 𝑒} by 𝑁𝑀 (𝑒). We write 𝑁𝑀 [𝑥] = 𝑁𝑀 (𝑥)∪{𝑥}. A middle 𝑘-rainbow dominating
function (MkRDF) on a graph 𝐺 is a function 𝑓 : 𝑉 ∪𝐸 → 𝒫([𝑘]) such that every element 𝑥 ∈ 𝑉 ∪𝐸 for which
𝑓(𝑥) = ∅ satisfies

⋃︀
𝑣∈𝑁𝑀 (𝑥) 𝑓(𝑣) = [𝑘]. A middle 𝑘-rainbow dominating function 𝑓 gives an ordered partition

(𝑉0 ∪ 𝐸0, 𝑉1 ∪ 𝐸1, 𝑉2 ∪ 𝐸2, . . . , 𝑉𝑘 ∪ 𝐸𝑘), where 𝑉𝑖 := {𝑥 ∈ 𝑉 | |𝑓(𝑥)| = 𝑖} and 𝐸𝑖 := {𝑥 ∈ 𝐸 | |𝑓(𝑥)| = 𝑖}.
The weight of a middle 𝑘-rainbow dominating function 𝑓 is 𝜔(𝑓) :=

∑︀
𝑥∈𝑉 ∪𝐸 |𝑓(𝑥)|. The middle 𝑘-rainbow

domination number 𝛾⋆
𝑟𝑘(𝐺) of 𝐺 is the minimum weight of a middle 𝑘-rainbow dominating function of 𝐺. A

𝛾⋆
𝑟𝑘(𝐺)-function is a MkRDF on 𝐺 with weight 𝛾⋆

𝑟𝑘(𝐺). We remark that 𝛾⋆
𝑟𝑘(𝐺) = 𝛾𝑟𝑘(𝑀(𝐺)) for any graph 𝐺.

As an example, we give Figures 2 and 3.
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In [9], only 2-rainbow domination numbers of the middle graphs were considered. In this paper, we initiate
the study of the middle 𝑘-rainbow domination in graphs. In particular, we determine the exact value of middle
3-rainbow domination numbers of some classes of graphs. A matching in a graph 𝐺 is a set of pairwise non-
adjacent edges. The maximum number of edges in a matching of a graph 𝐺 is called the matching number of
𝐺 and denoted by 𝛼′(𝐺). We provide upper and lower bounds for the middle 3-rainbow domination number of
trees in terms of the matching number. A set {𝑓1, . . . , 𝑓𝑑} of 𝑘-rainbow dominating functions of 𝐺 is called a
𝑘-rainbow dominating family on 𝐺 if

∑︀𝑑
𝑖=1 |𝑓𝑖(𝑣)| ≤ 𝑘 for each 𝑣 ∈ 𝑉 (𝐺). The maximum number of functions

in a 𝑘-rainbow dominating family on 𝐺 is the 𝑘-rainbow domatic number of 𝐺, denoted by 𝑑𝑟𝑘(𝐺). It is known
that 𝑘-rainbow domatic number is well-defined and 𝑑𝑟𝑘(𝐺) ≥ 𝑘 for every graph 𝐺 (see [11]). We determine the
3-rainbow domatic number for the middle graph of paths and cycles.

In the rest of this section, we present some necessary terminology and notation. For terminology and notation
on graph theory not given here, the reader is referred to [1]. Let 𝑇 be a (rooted) tree. A leaf of 𝑇 is a vertex of
degree one. A pendant edge is an edge incident with a leaf. A support vertex is a vertex adjacent to a leaf. For
a vertex 𝑣, 𝐶(𝑣) denote the set of the children of 𝑣. 𝐷[𝑣] denote the set of the descendants and 𝑣. The subtree
induced by 𝐷[𝑣] is denoted by 𝑇𝑣. We write 𝐾1,𝑛−1 for the star of order 𝑛 ≥ 3. The double star DS𝑝,𝑞, where
𝑝, 𝑞 ≥ 1, is the graph obtained by joining the centers of two stars 𝐾1,𝑝 and 𝐾1,𝑞. A healthy spider 𝑆𝑡,𝑡 is the
graph from a star 𝐾1,𝑡 by subdividing each edges of 𝐾1,𝑡. A wounded spider 𝑆𝑡,𝑟 is the graph from a star 𝐾1,𝑡

by subdividing 𝑟 edges of 𝐾1,𝑡, where 𝑟 ≤ 𝑡− 1. Note that a star 𝐾1,𝑡 is a wounded spider 𝑆𝑡,0. For a graph 𝐺
and its subset 𝑆, 𝐺 − 𝑆 denotes the subgraph of 𝐺 induced by 𝑉 (𝐺) ∖ 𝑉 (𝑆). A diametral path of 𝐺 is a path
with the length which equals the diameter of 𝐺. The complement of 𝐺 = (𝑉,𝐸) is the graph (𝑉,𝐸), which is
denoted by 𝐺, where 𝑢𝑣 ∈ 𝐸 if and only if 𝑢𝑣 ̸∈ 𝐸.

2. General bounds of the middle 𝑘-rainbow domination number

In this section, we obtain general bounds of the middle 𝑘-rainbow domination number. First, we begin by
giving a simple lower bound on the middle 𝑘-rainbow domination number.

Observation 2.1. If 𝐺 is a graph with |𝑉 (𝐺)|+ |𝐸(𝐺)| ≥ 𝑘, then 𝛾⋆
𝑟𝑘(𝐺) ≥ 𝑘.

Proof. Let 𝑓 be a 𝛾⋆
𝑟𝑘(𝐺)-function. If 𝑓(𝑥) = ∅ for some 𝑥 ∈ 𝑉 (𝐺) ∪ 𝐸(𝐺), then clearly

⋃︀
𝑦∈𝑁𝑀 (𝑥) 𝑓(𝑦) =

{1, . . . , 𝑘}. If 𝑓(𝑥) ̸= ∅ for all 𝑥 ∈ 𝑉 (𝐺)∪𝐸(𝐺), then it follows from |𝑉 (𝐺)|+ |𝐸(𝐺)| ≥ 𝑘 that 𝛾⋆
𝑟𝑘(𝐺) ≥ 𝑘. �

Proposition 2.2. Let 𝐺 be a graph of order 𝑛 ≥ 2. Then 𝛾⋆
𝑟3(𝐺) = 3 if and only if 𝐺 ∈ {𝐾3, 𝑃2}.

Proof. If 𝐺 ∈ {𝐾3, 𝑃2}, then clearly 𝛾⋆
𝑟3(𝐺) = 3. Conversely, assume that 𝛾⋆

𝑟3(𝐺) = 3 and let 𝑓 be a 𝛾⋆
𝑟3(𝐺)-

function. If there exists 𝑥 ∈ 𝑉 (𝐺)∪𝐸(𝐺) such that 𝑓(𝑥) = [3], then 𝑥 ∈ 𝐸(𝐺) for otherwise 𝑥 can not dominate
the other vertices. Thus, 𝐺 = 𝑃2.

Now assume that there is no element with weight 3. If 𝑓(𝑣) = ∅ for some 𝑣 ∈ 𝑉 (𝐺), then there exist at least
two edges 𝑒1, 𝑒2 incident to 𝑣 such that 𝑓(𝑒1) and 𝑓(𝑒2) are not empty. But, end vertices of 𝑒1, 𝑒2 except for 𝑣
are not dominated, a contradiction. Thus, every vertex in 𝑉 (𝐺) has non-zero weight so that there are at most
three vertices in the graph 𝐺. One can easily check that 𝐺 = 𝐾3 or 𝑃2. �

Theorem 2.3. If 𝐺 is a graph and 𝑣 ∈ 𝑉 (𝐺), then 𝛾⋆
𝑟𝑘(𝐺)−min{∆(𝐺) + 1, 𝑘} ≤ 𝛾⋆

𝑟𝑘(𝐺− 𝑣) ≤ 𝛾⋆
𝑟𝑘(𝐺).

Proof. First, we claim that 𝛾⋆
𝑟𝑘(𝐺) − min{∆(𝐺) + 1, 𝑘} ≤ 𝛾⋆

𝑟𝑘(𝐺 − 𝑣). Let 𝑓 be a 𝛾⋆
𝑟𝑘(𝐺 − 𝑣)-function. If

𝑘 ≤ ∆(𝐺) + 1, then define 𝑔 : 𝑉 (𝐺) ∪ 𝐸(𝐺) → 𝒫([𝑘]) by 𝑔(𝑣) = [𝑘], 𝑔(𝑥) = ∅ for 𝑥 ∈ 𝑁𝑀 (𝑣) and 𝑔(𝑥) = 𝑓(𝑥)
otherwise. If 𝑘 > ∆(𝐺) + 1, then define 𝑔 : 𝑉 (𝐺) ∪ 𝐸(𝐺) → 𝒫([𝑘]) by 𝑔(𝑥) = {1} for each 𝑥 ∈ 𝑁𝑀 [𝑣] and
𝑔(𝑥) = 𝑓(𝑥) otherwise. Clearly, 𝑔 is a MkRDF of 𝐺 with weight at most 𝛾⋆

𝑟𝑘(𝐺− 𝑣) + min{∆(𝐺) + 1, 𝑘}. Thus,
𝛾⋆

𝑟𝑘(𝐺)−min{∆(𝐺) + 1, 𝑘} ≤ 𝛾⋆
𝑟𝑘(𝐺− 𝑣).

Next, we claim that 𝛾⋆
𝑟𝑘(𝐺−𝑣) ≤ 𝛾⋆

𝑟𝑘(𝐺). Let 𝑓 be a 𝛾⋆
𝑟𝑘(𝐺)-function. Define ℎ : 𝑉 (𝐺−𝑣)∪𝐸(𝐺−𝑣) → 𝒫([𝑘])

by ℎ(𝑢) = 𝑓(𝑢) ∪ 𝑓(𝑢𝑣) for 𝑢 ∈ 𝑁(𝑣) and ℎ(𝑥) = 𝑓(𝑥) otherwise. Then clearly ℎ is a MkRDF of 𝐺 − 𝑣 with
weight 𝛾⋆

𝑟𝑘(𝐺). �
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Theorem 2.4. Let 𝐺 be a graph. Then

(1) 𝛾⋆
𝑟𝑘(𝐺)− 𝑘 ≤ 𝛾⋆

𝑟𝑘(𝐺 + 𝑒) ≤ 𝛾⋆
𝑟𝑘(𝐺) + 1 for 𝑒 ∈ 𝐸(𝐺),

(2) 𝛾⋆
𝑟𝑘(𝐺)− 1 ≤ 𝛾⋆

𝑟𝑘(𝐺− 𝑒) ≤ 𝛾⋆
𝑟𝑘(𝐺) + 𝑘 for 𝑒 ∈ 𝐸(𝐺).

Proof. (i) First, we show that 𝛾⋆
𝑟𝑘(𝐺 + 𝑒) ≤ 𝛾⋆

𝑟𝑘(𝐺) + 1. Let 𝑓 be 𝛾⋆
𝑟𝑘(𝐺)-function. Clearly, we can extend 𝑓 to

a MkRDF of 𝐺 + 𝑒 by assigning {1} to 𝑓(𝑒).
Next, we claim that 𝛾⋆

𝑟𝑘(𝐺) − 𝑘 ≤ 𝛾⋆
𝑟𝑘(𝐺 + 𝑒). Let 𝑓 be 𝛾⋆

𝑟𝑘(𝐺 + 𝑒)-function and let 𝑒 = 𝑢𝑣. If 𝑓(𝑒) = ∅,
then clearly the function 𝑓 |𝑉 (𝐺)∪𝐸(𝐺) is a MkRDF of 𝐺. This implies 𝛾⋆

𝑟𝑘(𝐺)− 𝑘 < 𝛾⋆
𝑟𝑘(𝐺) ≤ 𝛾⋆

𝑟𝑘(𝐺 + 𝑒).
Now assume that 𝑓(𝑒) ̸= ∅. Then define 𝑔 : 𝑉 (𝐺)∪𝐸(𝐺) → 𝒫([𝑘]) by 𝑔(𝑢) = 𝑓(𝑢)∪𝑓(𝑒), 𝑔(𝑣) = 𝑓(𝑣)∪𝑓(𝑒)
and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Clearly, 𝑔 ia a MkRDF of 𝐺 with weight 𝛾⋆

𝑟𝑘(𝐺+𝑒)+ |𝑓(𝑒)|. Thus, 𝛾⋆
𝑟𝑘(𝐺)−𝑘 ≤

𝛾⋆
𝑟𝑘(𝐺)− |𝑓(𝑒)| ≤ 𝛾⋆

𝑟𝑘(𝐺 + 𝑒).
(ii) By (i), 𝛾⋆

𝑟𝑘(𝐺− 𝑒)− 𝑘 ≤ 𝛾⋆
𝑟𝑘((𝐺− 𝑒) + 𝑒) ≤ 𝛾⋆

𝑟𝑘(𝐺− 𝑒) + 1. This implies (ii). �

Theorem 2.5. Let 𝑇 be a tree of order 𝑛 ≥ 3. Then 𝛾⋆
𝑟3(𝑇 ) ≤ 3𝑛−1

2 with equality if and only if 𝑇 ∼= 𝑃3.

Proof. We proceed by induction on the order 𝑛 of 𝑇 . Obviously, the statement is true for a path 𝑃3.
Let 𝑇 be a tree of order 𝑛 ≥ 4. Suppose that every tree 𝑇 ′ of order 𝑛′(< 𝑛) satisfies 𝛾⋆

𝑟3(𝑇 ′) ≤ 3𝑛′−1
2 . Let

𝑓 be a 𝛾⋆
𝑟3(𝑇 ′)-function. If 𝑇 is a star 𝐾1,𝑛−1, then 𝛾⋆

𝑟3(𝑇 ) = 𝑛 + 1 < 3𝑛−1
2 . Assume that 𝑇 is a double star

DS𝑝,𝑞 with 𝑝 ≥ 𝑞 ≥ 1. Then 𝑝 + 𝑞 + 3 = 𝑛 + 1 = 𝛾⋆
𝑟3(𝑇 ) < 3𝑛−1

2 . Now we assume that 𝑇 is neither a star or a
double star. Then it is easy to see that 𝑇 has diameter at least four. Among all of diametrical paths in 𝑇 , we
choose 𝑥0𝑥1, . . . , 𝑥𝑑 so that it maximizes the degree of 𝑥𝑑−1. Root 𝑇 at 𝑥0. We divide our consideration into
three cases.

Case 1. deg𝑇 (𝑥𝑑−1) = 𝑡 ≥ 3.
Now 𝑇𝑥𝑑−1

∼= 𝐾1,𝑡−1. Let 𝑇 ′ = 𝑇 − 𝑇𝑥𝑑−1 . Applying the induction hypothesis to 𝑇 ′, we have 𝛾⋆
𝑟3(𝑇 ′) ≤

3(𝑛−𝑡)−1
2 . Define 𝑔 : 𝑉 (𝑇 ) ∪ 𝐸(𝑇 ) → 𝒫([3]) by 𝑔(𝑥𝑑−1) = 𝑔(𝑥𝑑−2𝑥𝑑−1) = 𝑔(𝑥𝑑) = ∅, 𝑔(𝑥𝑑−1𝑥𝑑) = [3],

𝑔(𝑥𝑑−1𝑥) = ∅ and 𝑔(𝑥) = {1} for 𝑥 ∈ 𝐶(𝑥𝑑−1)∖{𝑥𝑑} and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Then clearly 𝑔 is a M3RDF
of 𝑇 and so

𝛾⋆
𝑟3(𝑇 ) ≤ 𝜔(𝑔) = 𝛾⋆

𝑟3(𝑇 ′) + 𝑡 + 1 ≤ 3(𝑛− 𝑡)− 1
2

+ 𝑡 + 1 =
3𝑛− 𝑡 + 1

2
<

3𝑛− 1
2

·

Case 2. deg𝑇 (𝑥𝑑−1) = 2 and deg𝑇 (𝑥𝑑−2) = 𝑡 ≥ 3.
Now 𝑇𝑥𝑑−2

∼= 𝑆𝑡−1,𝑟, where 1 ≤ 𝑟 ≤ 𝑡 − 1. Let 𝑇 ′ = 𝑇 − 𝑇𝑥𝑑−2 . Applying the induction hypothesis to 𝑇 ′,
we have 𝛾⋆

𝑟3(𝑇 ′) ≤ 3(𝑛−𝑡−𝑟)−1
2 . Define 𝑔 : 𝑉 (𝑇 ) ∪ 𝐸(𝑇 ) → 𝒫([3]) by 𝑔(𝑥𝑑−3𝑥𝑑−2) = 𝑔(𝑥𝑑−2) = 𝑔(𝑥𝑑−1) =

𝑔(𝑥𝑑−1𝑥𝑑) = ∅, 𝑔(𝑥𝑑−2𝑥𝑑−1) = [3], 𝑔(𝑥𝑑) = {1}, 𝑔(𝑥𝑑−2𝑥) = ∅ for 𝑥 ∈ 𝐶(𝑥𝑑−2) ∖ {𝑥𝑑−1}, 𝑔(𝑥) = {1} if
𝑥 ∈ 𝐶(𝑥𝑑−2) ∖ {𝑥𝑑−1} is a leaf, 𝑔(𝑥) = ∅, 𝑔(𝑥𝑦) = [3] and 𝑔(𝑦) = ∅ if 𝑥 ∈ 𝐶(𝑥𝑑−2) ∖ {𝑥𝑑−1} is a support
vertex, where 𝑦 ∈ 𝐶(𝑥), and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Then clearly 𝑔 is a M3RDF of 𝑇 and so

𝛾⋆
𝑟3(𝑇 ) ≤ 𝜔(𝑔) = 𝛾⋆

𝑟3(𝑇 ′) + 𝑡 + 2𝑟 ≤ 3(𝑛− 𝑡− 𝑟)− 1
2

+ 𝑡 + 2𝑟 =
3𝑛− 𝑡 + 𝑟 − 1

2
<

3𝑛− 1
2

·

Case 3. deg𝑇 (𝑥𝑑−1) = 2 and deg𝑇 (𝑥𝑑−2) = 2.
Now 𝑇𝑥𝑑−2

∼= 𝑃3. Let 𝑇 ′ = 𝑇 −𝑇𝑥𝑑−2 . Applying the induction hypothesis to 𝑇 ′, we have 𝛾⋆
𝑟3(𝑇 ′) ≤ 3(𝑛−3)−1

2 .
Define 𝑔 : 𝑉 (𝑇 )∪𝐸(𝑇 ) → 𝒫([3]) by 𝑔(𝑥𝑑−3𝑥𝑑−2) = 𝑔(𝑥𝑑−2) = 𝑔(𝑥𝑑−1) = 𝑔(𝑥𝑑−1𝑥𝑑) = ∅, 𝑔(𝑥𝑑−2𝑥𝑑−1) = [3],
𝑔(𝑥𝑑) = {1} and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Then clearly 𝑔 is a M3RDF of 𝑇 and so

𝛾⋆
𝑟3(𝑇 ) ≤ 𝜔(𝑔) = 𝛾⋆

𝑟3(𝑇 ′) + 4 ≤ 3(𝑛− 3)− 1
2

+ 4 =
3𝑛− 2

2
<

3𝑛− 1
2

·

�
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3. The middle 3-rainbow domination number of paths, cycles and complete
graphs

In this section, we determine the middle 3-rainbow domination number of paths, cycles and complete graphs.

Proposition 3.1. For 𝑛 ≥ 2,

𝛾⋆
𝑟3(𝑃𝑛) =

⎧⎪⎨⎪⎩
4𝑛−1

3 for 𝑛 ≡ 1 (mod 3);
4𝑛+1

3 for 𝑛 ≡ 2 (mod 3);
4𝑛
3 for 𝑛 ≡ 0 (mod 3).

Proof. One can check that 𝛾⋆
𝑟3(𝑃2) = 3, 𝛾⋆

𝑟3(𝑃3) = 4, 𝛾⋆
𝑟3(𝑃4) = 5, 𝛾⋆

𝑟3(𝑃5) = 7 and 𝛾⋆
𝑟3(𝑃6) = 8. We proceed

by induction on 𝑛. Assume that 𝑃𝑛 = 𝑣1𝑣2, . . . , 𝑣𝑛 and let 𝑥2𝑖−1 = 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and 𝑥2𝑖 = 𝑣𝑖𝑣𝑖+1 for
1 ≤ 𝑖 ≤ 𝑛− 1. Let 𝑉 (𝑃𝑛) ∪𝐸(𝑃𝑛) = {𝑥1, . . . , 𝑥2𝑛−1} and 𝑓 be a 𝛾⋆

𝑟3(𝑃𝑛)-function. We divide our consideration
into three cases.

Case 1. 𝑛 ≡ 1 (mod 3).
First, we claim that 𝛾⋆

𝑟3(𝑃𝑛) ≥ 4𝑛−1
3 . Assume that 𝑛 ≥ 7. It is easy to see that

∑︀5
𝑖=1 |𝑓(𝑥𝑖)| ≥ 3. If∑︀5

𝑖=1 |𝑓(𝑥𝑖)| = 3 and |𝑓(𝑥4)| + |𝑓(𝑥5)| = 0, then, to dominate 𝑥5, it must be 𝑓(𝑥6) = {1, 2, 3}. Thus, it
is easy to see that

∑︀7
𝑖=1 |𝑓(𝑥𝑖)| ≥ 6. Define ℎ : 𝑉 (𝑃𝑛 − {𝑣1, . . . , 𝑣4}) ∪ 𝐸(𝑃𝑛 − {𝑣1, . . . , 𝑣4}) → 𝒫([3]) by

ℎ(𝑥9) = 𝑓(𝑥8) ∪ 𝑓(𝑥9) and ℎ(𝑥𝑖) = 𝑓(𝑥𝑖) for 10 ≤ 𝑖 ≤ 2𝑛 − 1. Clearly, ℎ is a M3KDF of 𝑃𝑛−4 with weight
at most 𝜔(𝑓)− 6. By the induction hypothesis, we have

𝛾⋆
𝑟3(𝑃𝑛) ≥ 𝜔(ℎ) + 6 ≥ 𝛾⋆

𝑟3(𝑃𝑛−4) + 6 =
4(𝑛− 4)

3
+ 6 =

4𝑛 + 2
3

·

If
∑︀5

𝑖=1 |𝑓(𝑥𝑖)| = 3 and |𝑓(𝑥4)|+ |𝑓(𝑥5)| ≠ 0, then there is one possibility, namely |𝑓(𝑥1)| = 1, |𝑓(𝑥2)| = 0,
|𝑓(𝑥3)| = 1, |𝑓(𝑥4)| = 1 and |𝑓(𝑥5)| = 0. To dominate 𝑥5, it must be |𝑓(𝑥6)| = 2. Thus, it is easy to see that∑︀7

𝑖=1 |𝑓(𝑥𝑖)| ≥ 5. Define ℎ : 𝑉 (𝑃𝑛 − {𝑣1, . . . , 𝑣4})∪𝐸(𝑃𝑛 − {𝑣1, . . . , 𝑣4}) → 𝒫([3]) by ℎ(𝑥9) = 𝑓(𝑥8)∪ 𝑓(𝑥9)
and ℎ(𝑥𝑖) = 𝑓(𝑥𝑖) for 10 ≤ 𝑖 ≤ 2𝑛 − 1. Clearly, ℎ is a M3KDF of 𝑃𝑛−4 with weight at most 𝜔(𝑓) − 5. By
the induction hypothesis, we have

𝛾⋆
𝑟3(𝑃𝑛) ≥ 𝜔(ℎ) + 6 ≥ 𝛾⋆

𝑟3(𝑃𝑛−4) + 5 =
4(𝑛− 4)

3
+ 5 =

4𝑛− 1
3

·

Now assume that
∑︀5

𝑖=1 |𝑓(𝑥𝑖)| ≥ 4. Define 𝑔 : 𝑉 (𝑃𝑛 − {𝑣1, 𝑣2, 𝑣3}) ∪ 𝐸(𝑃𝑛 − {𝑣1, 𝑣2, 𝑣3}) → 𝒫([3]) by
𝑔(𝑥7) = 𝑓(𝑥6) ∪ 𝑓(𝑥7) and 𝑔(𝑥𝑖) = 𝑓(𝑥𝑖) for 8 ≤ 𝑖 ≤ 2𝑛− 1. Clearly, 𝑔 is a M3KDF of 𝑃𝑛−3 with weight at
most 𝜔(𝑓)− 4. By the induction hypothesis, we have

𝛾⋆
𝑟3(𝑃𝑛) ≥ 𝜔(𝑔) + 4 ≥ 𝛾⋆

𝑟3(𝑃𝑛−3) + 4 =
4(𝑛− 3)− 1

3
+ 4 =

4𝑛− 1
3

·

Next, we claim that 𝛾⋆
𝑟3(𝑃𝑛) ≤ 4𝑛−1

3 . Define ℎ : 𝑉 (𝑃𝑛)∪𝐸(𝑃𝑛) → 𝒫([3]) by ℎ(𝑣1+3𝑖) = {1} for 0 ≤ 𝑖 ≤ 𝑛−1
3 ,

ℎ(𝑥4+6𝑖) = [3] for 0 ≤ 𝑖 ≤ 𝑛−4
3 and ℎ(𝑥) = ∅ otherwise. It is easy to see that ℎ is a M3RDF of 𝑃𝑛 with

weight 4𝑛−1
3 . Thus, we have 𝛾⋆

𝑟3(𝑃𝑛) = 4𝑛−1
3 .

Case 2. 𝑛 ≡ 2 (mod 3).
By the same argument as in Case 1, we can show that 𝛾⋆

𝑟3(𝑃𝑛) ≥ 4𝑛+1
3 . Define 𝑔 : 𝑉 (𝑃𝑛) ∪ 𝐸(𝑃𝑛) → 𝒫([3])

by 𝑔(𝑣1+3𝑖) = {1} for 0 ≤ 𝑖 ≤ 𝑛−2
3 , 𝑔(𝑥4+6𝑖) = [3] for 0 ≤ 𝑖 ≤ 𝑛−5

3 , 𝑔(𝑣𝑛) = {2, 3} and 𝑔(𝑥) = ∅ otherwise.
It is easy to see that 𝑔 is a M3RDF of 𝑃𝑛 with weight 4𝑛+1

3 . Thus, we have 𝛾⋆
𝑟3(𝑃𝑛) = 4𝑛+1

3 .
Case 3. 𝑛 ≡ 0 (mod 3).

By the same argument as in Case 1, we can show that 𝛾⋆
𝑟3(𝑃𝑛) ≥ 4𝑛

3 . Define ℎ : 𝑉 (𝑃𝑛) ∪ 𝐸(𝑃𝑛) → 𝒫([3])
by ℎ(𝑣1+3𝑖) = {1} for 0 ≤ 𝑖 ≤ 𝑛−3

3 , ℎ(𝑥4+6𝑖) = [3] for 0 ≤ 𝑖 ≤ 𝑛−3
3 and ℎ(𝑥) = ∅ otherwise. It is easy to see

that ℎ is a M3RDF of 𝑃𝑛 with weight 4𝑛
3 . Thus, we have 𝛾⋆

𝑟3(𝑃𝑛) = 4𝑛
3 . �
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Proposition 3.2. For 𝑛 ≥ 3,

𝛾⋆
𝑟3(𝐶𝑛) =

⎧⎨⎩
4𝑛+2

3 for 𝑛 ≡ 1 (mod 3);
4𝑛+1

3 for 𝑛 ≡ 2 (mod 3);
4𝑛
3 for 𝑛 ≡ 0 (mod 3).

Proof. Assume that 𝐶𝑛 = 𝑣1𝑣2, . . . , 𝑣𝑛𝑣1, where the subscript 𝑘 of 𝑣𝑘 is read by modulo 𝑛. Let 𝑓 be a 𝛾⋆
𝑟3(𝐶𝑛)-

function such that the size of 𝑁 := {𝑣𝑖 | 𝑓(𝑣𝑖) ̸= ∅} is as small as possible. We divide our consideration into
three cases.

Case 1. 𝑛 ≡ 1 (mod 3).
If there exists some 𝑘 such that |𝑓(𝑣𝑘)|+ |𝑓(𝑣𝑘𝑣𝑘+1)|+ |𝑓(𝑣𝑘+1)| ≥ 3, then define 𝑔 : 𝑉 (𝐶𝑛 − {𝑣𝑘, 𝑣𝑘+1}) ∪
𝐸(𝐶𝑛 − {𝑣𝑘, 𝑣𝑘+1}) → 𝒫([3]) by 𝑔(𝑣𝑘−1) = 𝑓(𝑣𝑘−1) ∪ 𝑓(𝑣𝑘−1𝑣𝑘), 𝑔(𝑣𝑘+2) = 𝑓(𝑣𝑘+1𝑣𝑘+2) ∪ 𝑓(𝑣𝑘+2) and
𝑔(𝑥) = 𝑓(𝑥) otherwise. It is easy to see that 𝑔 is a M3RDF of 𝑃𝑛−2 with weight at most 𝛾⋆

𝑟3(𝐶𝑛) − 3. By
Proposition 3.1, we have

𝛾⋆
𝑟3(𝐶𝑛) ≥ 𝜔(𝑔) + 3 ≥ 𝛾⋆

𝑟3(𝑃𝑛−2) + 3 =
4(𝑛− 2) + 1

3
+ 3 =

4𝑛 + 2
3

·

Assume that
|𝑓(𝑣𝑘)|+ |𝑓(𝑣𝑘𝑣𝑘+1)|+ |𝑓(𝑣𝑘+1)| ≤ 2 (3.1)

for each 𝑘 ∈ [𝑛].
If there exists some 𝑘 ∈ [𝑛] such that |𝑓(𝑣𝑘)| ≥ 2, then define 𝑔 : 𝑉 (𝐶𝑛 − 𝑣𝑘) ∪ 𝐸(𝐶𝑛 − 𝑣𝑘) → 𝒫([3]) by
𝑔(𝑣𝑘−1) = 𝑓(𝑣𝑘−1) ∪ 𝑓(𝑣𝑘−1𝑣𝑘), 𝑔(𝑣𝑘+1) = 𝑓(𝑣𝑘+1) ∪ 𝑓(𝑣𝑘𝑣𝑘+1) and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Clearly, 𝑔 is a
M3RDF of 𝑃𝑛−1 with weight at most 𝛾⋆

𝑟3(𝐶𝑛)− 2. By Proposition 3.1, we have

𝛾⋆
𝑟3(𝐶𝑛) ≥ 𝜔(𝑔) + 2 ≥ 𝛾⋆

𝑟3(𝑃𝑛−1) + 2 ≥ 4(𝑛− 1)
3

+ 2 =
4𝑛 + 2

3
·

Assume that |𝑓(𝑣𝑘)| ≤ 1 for each 𝑘 ∈ [𝑛]. If |𝑓(𝑣𝑘)| = 0 for each 𝑘 ∈ [𝑛], then to dominate 𝑣𝑘, we must have
𝑓(𝑣𝑘−1𝑣𝑘) ∪ 𝑓(𝑣𝑘𝑣𝑘+1) = [3]. Thus, it follows from 𝑛 ≥ 4 that

𝛾⋆
𝑟3(𝐶𝑛) =

1
2

∑︁
1≤𝑘≤𝑛

∑︁
𝑥∈𝑁𝑀 (𝑣𝑘)

|𝑓(𝑥)| =
3𝑛

2
≥ 4𝑛 + 2

3
·

Now assume that 𝑁 is not empty. For a fixed 𝑣𝑖 ∈ 𝑁 , if |𝑓(𝑣𝑖)|+|𝑓(𝑣𝑖𝑣𝑖+1)|+|𝑓(𝑣𝑖+1)| = 1, then 𝑣𝑖+1𝑣𝑖+2 must
dominate 𝑣𝑖+1 so that 𝑓(𝑣𝑖+1𝑣𝑖+2) = [3], a contradiction to (3.1). Thus, |𝑓(𝑣𝑖)| + |𝑓(𝑣𝑖𝑣𝑖+1)| + |𝑓(𝑣𝑖+1)| =
2. By the same argument, we have |𝑓(𝑣𝑖)| + |𝑓(𝑣𝑖−1𝑣𝑖)| + |𝑓(𝑣𝑖−1)| = 2. Suppose that 𝑓(𝑣𝑖−1) ̸= ∅ and
𝑓(𝑣𝑖+1) ̸= ∅. Without loss of generality, assume that 𝑓(𝑣𝑖) = {1}, 𝑓(𝑣𝑖−1) = {3} and 𝑓(𝑣𝑖+1) = {2}. Then
to dominate 𝑣𝑖−1𝑣𝑖 and 𝑣𝑖𝑣𝑖+1, we must have 𝑓(𝑣𝑖−2𝑣𝑖−1) = {2} and 𝑓(𝑣𝑖+1𝑣𝑖+2) = {3}. It follows from
(3.1) that 𝑓(𝑣𝑖−2) = 𝑓(𝑣𝑖+2) = ∅. To dominate 𝑣𝑖−2 and 𝑣𝑖+2, we must have 𝑓(𝑣𝑖−3𝑣𝑖−2) = {1, 3} and
𝑓(𝑣𝑖+2𝑣𝑖+3) = {1, 2}. It follows from (3.1) that 𝑓(𝑣𝑖−3) = 𝑓(𝑣𝑖+3) = ∅. To dominate 𝑣𝑖−3 and 𝑣𝑖+3, we must
have {2} ⊆ 𝑓(𝑣𝑖−4𝑣𝑖−3) and {3} ⊆ 𝑓(𝑣𝑖+3𝑣𝑖+4). Define 𝑔 : 𝑉 (𝐶𝑛) ∪ 𝐸(𝐶𝑛) → 𝒫([3]) by 𝑔(𝑣𝑖−3) = 𝑔(𝑣𝑖+3) =
{1}, 𝑔(𝑣𝑖−2𝑣𝑖−1) = 𝑔(𝑣𝑖+1𝑣𝑖+2) = [3], 𝑔(𝑣𝑖−3𝑣𝑖−2) = 𝑔(𝑣𝑖−2) = 𝑔(𝑣𝑖−1) = 𝑔(𝑣𝑖−1𝑣𝑖) = 𝑔(𝑣𝑖𝑣𝑖+1) = 𝑔(𝑣𝑖+1) =
𝑔(𝑣𝑖+2) = 𝑔(𝑣𝑖+2𝑣𝑖+3) = ∅ and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Then 𝑔 is a M3RDF of 𝐶𝑛 with weight 𝜔(𝑓). As
above, this implies that 𝛾⋆

𝑟3(𝐶𝑛) ≥ 4𝑛+2
3 .

Now assume that for each 𝑣𝑖 ∈ 𝑁 , |𝑓(𝑣𝑖−1𝑣𝑖)| = 1 or |𝑓(𝑣𝑖𝑣𝑖+1)| = 1. Since
∑︀

𝑥∈𝑁𝑀 [𝑣𝑖]
|𝑓(𝑥)| ≥ 2 for 𝑣𝑖 ∈ 𝑁

and
∑︀

𝑥∈𝑁𝑀 [𝑣𝑖]
|𝑓(𝑥)| = 3 for 𝑣𝑖 ∈ 𝑉 (𝐶𝑛) ∖𝑁 , we have

𝛾⋆
𝑟3(𝐶𝑛) ≥ 3(𝑛− 𝑡)

2
+

(︂
𝑡 +

𝑡

2

)︂
=

3𝑛

2
≥ 4𝑛 + 2

3
,

where 𝑡 = |𝑁 |.
By Theorem 2.4, 𝛾⋆

𝑟3(𝐶𝑛) ≤ 𝛾⋆
𝑟3(𝑃𝑛) + 1. Thus, we have 𝛾⋆

𝑟3(𝐶𝑛) = 4𝑛+2
3 .
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Case 2. 𝑛 ≡ 2 (mod 3).
If there exists some 𝑘 such that |𝑓(𝑣𝑘)|+ |𝑓(𝑣𝑘𝑣𝑘+1)|+ |𝑓(𝑣𝑘+1)| ≥ 3, then define 𝑔 : 𝑉 (𝐶𝑛 − {𝑣𝑘, 𝑣𝑘+1}) ∪
𝐸(𝐶𝑛 − {𝑣𝑘, 𝑣𝑘+1}) → 𝒫([3]) by 𝑔(𝑣𝑘−1) = 𝑓(𝑣𝑘−1) ∪ 𝑓(𝑣𝑘−1𝑣𝑘), 𝑔(𝑣𝑘+2) = 𝑓(𝑣𝑘+1𝑣𝑘+2) ∪ 𝑓(𝑣𝑘+2) and
𝑔(𝑥) = 𝑓(𝑥) otherwise. It is easy to see that 𝑔 is a M3RDF of 𝑃𝑛−2 with weight at most 𝛾⋆

𝑟3(𝐶𝑛) − 3. By
Proposition 3.1, we have

𝛾⋆
𝑟3(𝐶𝑛) ≥ 𝜔(𝑔) + 3 ≥ 𝛾⋆

𝑟3(𝑃𝑛−2) + 3 =
4(𝑛− 2)

3
+ 3 =

4𝑛 + 1
3

·

Now suppose that
|𝑓(𝑣𝑘)|+ |𝑓(𝑣𝑘𝑣𝑘+1)|+ |𝑓(𝑣𝑘+1)| ≤ 2

for each 𝑘 ∈ [𝑛].
If there exists some 𝑘 ∈ [𝑛] such that |𝑓(𝑣𝑘)| ≥ 2, then define 𝑔 : 𝑉 (𝐶𝑛 − 𝑣𝑘) ∪ 𝐸(𝐶𝑛 − 𝑣𝑘) → 𝒫([3]) by
𝑔(𝑣𝑘−1) = 𝑓(𝑣𝑘−1) ∪ 𝑓(𝑣𝑘−1𝑣𝑘), 𝑔(𝑣𝑘+1) = 𝑓(𝑣𝑘+1) ∪ 𝑓(𝑣𝑘𝑣𝑘+1) and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Clearly, 𝑔 is a
M3RDF of 𝑃𝑛−1 with weight at most 𝛾⋆

𝑟3(𝐶𝑛)− 2. By Proposition 3.1, we have

𝛾⋆
𝑟3(𝐶𝑛) ≥ 𝜔(𝑔) + 2 ≥ 𝛾⋆

𝑟3(𝑃𝑛−1) + 2 ≥ 4(𝑛− 1)− 1
3

+ 2 =
4𝑛 + 1

3
·

Assume that |𝑓(𝑣𝑘)| ≤ 1 for each 𝑘 ∈ [𝑛]. By the same argument as Case 1, we have 𝛾⋆
𝑟3(𝐶𝑛) ≥ 4𝑛+1

3 .
Define ℎ : 𝑉 (𝐶𝑛) ∪𝐸(𝐶𝑛) → 𝒫([3]) by ℎ(𝑣1+3𝑖) = {1} for 0 ≤ 𝑖 ≤ 𝑛−6

3 , ℎ(𝑣2+3𝑖𝑣3+3𝑖) = [3] for 0 ≤ 𝑖 ≤ 𝑛−6
3 ,

ℎ(𝑣𝑛−1𝑣𝑛) = [3] and ℎ(𝑥) = ∅ otherwise. It is easy to see that ℎ is a M3RDF of 𝐶𝑛 with weight 4𝑛+1
3 . Thus,

we have 𝛾⋆
𝑟3(𝐶𝑛) = 4𝑛+1

3 .
Case 3. 𝑛 ≡ 0 (mod 3).

If there exists some 𝑘 ∈ [𝑛] such that |𝑓(𝑣𝑘)| ≥ 1, then define 𝑔 : 𝑉 (𝐶𝑛 − 𝑣𝑘) ∪ 𝐸(𝐶𝑛 − 𝑣𝑘) → 𝒫([3]) by
𝑔(𝑣𝑘−1) = 𝑓(𝑣𝑘−1) ∪ 𝑓(𝑣𝑘−1𝑣𝑘), 𝑔(𝑣𝑘+1) = 𝑓(𝑣𝑘+1) ∪ 𝑓(𝑣𝑘𝑣𝑘+1) and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Clearly, 𝑔 is a
M3RDF of 𝑃𝑛−1 with weight at most 𝛾⋆

𝑟3(𝐶𝑛)− 1. By Proposition 3.1, we have

𝛾⋆
𝑟3(𝐶𝑛) ≥ 𝜔(𝑔) + 1 ≥ 𝛾⋆

𝑟3(𝑃𝑛−1) + 1 ≥ 4(𝑛− 1) + 1
3

+ 1 =
4𝑛

3
·

Assume that |𝑓(𝑣𝑖)| = 0 for each 𝑖 ∈ [𝑛]. If there exists some 𝑘 ∈ [𝑛] such that |𝑓(𝑣𝑘𝑣𝑘+1)| = 3, then
define 𝑔 : 𝑉 (𝐶𝑛 − {𝑣𝑘, 𝑣𝑘+1}) ∪ 𝐸(𝐶𝑛 − {𝑣𝑘, 𝑣𝑘+1}) → 𝒫([3]) by 𝑔(𝑣𝑘−1) = 𝑓(𝑣𝑘−1) ∪ 𝑓(𝑣𝑘−1𝑣𝑘), 𝑔(𝑣𝑘+2) =
𝑓(𝑣𝑘+2) ∪ 𝑓(𝑣𝑘+1𝑣𝑘+2) and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Clearly, 𝑔 is a M3RDF of 𝑃𝑛−2 with weight at most
𝛾⋆

𝑟3(𝐶𝑛)− 3. By Proposition 3.1, we have

𝛾⋆
𝑟3(𝐶𝑛) ≥ 𝜔(𝑔) + 3 ≥ 𝛾⋆

𝑟3(𝑃𝑛−2) + 3 ≥ 4(𝑛− 2)− 1
3

+ 3 =
4𝑛

3
·

Now assume that |𝑓(𝑣𝑖𝑣𝑖+1)| ≤ 2 for each 𝑖 ∈ [𝑛]. Then the assignment of edges under 𝑓 should start one
of the following: (i) {1}, {2, 3}, {1}, {2, 3} . . . , (ii) {2}, {1, 3}, {2}, {1, 3} . . . , (iii) {3}, {1, 2}, {3}, {1, 2} . . . .
Thus, one can check that

𝛾⋆
𝑟3(𝐶𝑛) ≥

⌈︁𝑛

2

⌉︁
+ 2

⌊︁𝑛

2

⌋︁
≥ 4𝑛

3
·

Therefore, we have 𝛾⋆
𝑟3(𝐶𝑛) ≥ 4𝑛

3 .
Define ℎ : 𝑉 (𝐶𝑛) ∪ 𝐸(𝐶𝑛) → 𝒫([3]) by ℎ(𝑣1+3𝑖) = {1} for 0 ≤ 𝑖 ≤ 𝑛−3

3 , ℎ(𝑣2+3𝑖𝑣3+3𝑖) = [3] for 0 ≤ 𝑖 ≤ 𝑛−3
3

and ℎ(𝑥) = ∅ otherwise. It is easy to see that ℎ is a M3RDF of 𝐶𝑛 with weight 4𝑛
3 . Thus, we have 𝛾⋆

𝑟3(𝐶𝑛) =
4𝑛
3 . �

Proposition 3.3. For 𝑛 ≥ 2,

𝛾⋆
𝑟3(𝐾𝑛) =

{︂
3𝑛
2 if 𝑛 is even;
3𝑛−1

2 if 𝑛 is odd.
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Proof. Let 𝑉 (𝐾𝑛) = {𝑣1, . . . , 𝑣𝑛}. If 𝑛 is odd, then define 𝑔 : 𝑉 (𝐾𝑛) ∪ 𝐸(𝐾𝑛) → 𝒫([3]) by 𝑔(𝑣1) = {1},
𝑔(𝑣2𝑖𝑣2𝑖+1) = [3] for 1 ≤ 𝑖 ≤ 𝑛−1

2 and 𝑔(𝑥) = ∅ otherwise. It is easy to see that 𝑔 is a M3RDF of 𝐾𝑛 with weight
3𝑛−1

2 . If 𝑛 is even, then define ℎ : 𝑉 (𝐾𝑛) ∪ 𝐸(𝐾𝑛) → 𝒫([3]) by ℎ(𝑣2𝑖−1𝑣2𝑖) = [3] for 1 ≤ 𝑖 ≤ 𝑛
2 and ℎ(𝑥) = ∅

otherwise. It is easy to see that ℎ is a M3RDF of 𝐾𝑛 with weight 3𝑛
2 .

Now we claim that 𝛾⋆
𝑟3(𝐾𝑛) ≥ 3𝑛

2 if 𝑛 is even and 𝛾⋆
𝑟3(𝐾𝑛) ≥ 3𝑛−1

2 if 𝑛 is odd. One can easily check that
𝛾⋆

𝑟3(𝐾2) = 3, 𝛾⋆
𝑟3(𝐾3) = 4, and 𝛾⋆

𝑟3(𝐾4) = 6. We proceed by induction on 𝑛. Assume that 𝑛 ≥ 5.

Case 1. 𝑛 is odd.
Let 𝑓 be a 𝛾⋆

𝑟3(𝐾𝑛)-function. If
∑︀𝑛

𝑖=1 |𝑓(𝑣𝑖)| = 0, then to dominate each 𝑣𝑖 we must have [3] ⊆ ∪𝑒∈𝑁𝑀 (𝑣𝑖)𝑓(𝑒)
for each 𝑣𝑖 ∈ 𝑉 (𝐾𝑛). This implies that

2𝛾⋆
𝑟3(𝐾𝑛) =

𝑛∑︁
𝑖=1

∑︁
𝑒∈𝑁𝑀 (𝑣𝑖)

|𝑓(𝑒)| ≥ 3𝑛.

Thus, 𝛾⋆
𝑟3(𝐾𝑛) > 3𝑛−1

2 .
Assume that

∑︀𝑛
𝑖=1 |𝑓(𝑣𝑖)| ≠ 0. Without loss of generality, assume that 𝑓(𝑣1) ̸= ∅. Define 𝑔 : 𝑉 (𝐾𝑛 − 𝑣1) ∪

𝐸(𝐾𝑛 − 𝑣1) → 𝒫([3]) by 𝑔(𝑣𝑖) = 𝑓(𝑣𝑖) ∪ 𝑓(𝑣1𝑣𝑖) for 2 ≤ 𝑖 ≤ 𝑛 and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Then 𝑔 is a
M3RDF with weight at most 𝛾⋆

𝑟3(𝐾𝑛)− 1. By the induction hypothesis, we have

𝛾⋆
𝑟3(𝐾𝑛) ≥ 𝜔(𝑔) + 1 ≥ 𝛾⋆

𝑟3(𝐾𝑛−1) + 1 =
3(𝑛− 1)

2
+ 1 =

3𝑛− 1
2

·

Case 2. 𝑛 is even.
We choose a 𝛾⋆

𝑟3(𝐾𝑛)-function 𝑓 so that the size of {𝑣𝑖 ∈ 𝑉 (𝐾𝑛) | 𝑓(𝑣𝑖) ̸= ∅} is as small as possible.
For an edge 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐾𝑛), if |𝑓(𝑣𝑖)| + |𝑓(𝑣𝑗)| + |𝑓(𝑣𝑖𝑣𝑗)| = 3, then define ℎ : 𝑉 (𝐾𝑛 − {𝑣𝑖, 𝑣𝑗}) ∪ 𝐸(𝐾𝑛 −
{𝑣𝑖, 𝑣𝑗}) → 𝒫([3]) by ℎ(𝑣𝑘) = 𝑓(𝑣𝑘)∪ 𝑓(𝑣𝑘𝑣𝑖)∪ 𝑓(𝑣𝑘𝑣𝑗) for 𝑣𝑘 ∈ 𝑉 (𝐾𝑛) ∖ {𝑣𝑖, 𝑣𝑗} and ℎ(𝑥) = 𝑓(𝑥) otherwise.
Clearly ℎ is a M3RDF with weight 𝛾⋆

𝑟3(𝐾𝑛)− 3. By the induction hypothesis, we have

𝛾⋆
𝑟3(𝐾𝑛) ≥ 𝜔(ℎ) + 3 ≥ 𝛾⋆

𝑟3(𝐾𝑛−2) + 3 =
3(𝑛− 2)

2
+ 3 =

3𝑛

2
·

Assume that |𝑓(𝑣𝑖)|+ |𝑓(𝑣𝑗)|+ |𝑓(𝑣𝑖𝑣𝑗)| ≤ 2 for any 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 (𝐾𝑛).
For a vertex 𝑣𝑖 ∈ 𝑉 (𝐾𝑛), if |𝑓(𝑣𝑖)| = 2, then define 𝑔 : 𝑉 (𝐾𝑛 − 𝑣𝑖) ∪ 𝐸(𝐾𝑛 − 𝑣𝑖) → 𝒫([3]) by 𝑔(𝑣𝑘) =
𝑓(𝑣𝑘) ∪ 𝑓(𝑣𝑘𝑣𝑖) for 𝑣𝑘 ∈ 𝑉 (𝐾𝑛) ∖ {𝑣𝑖} and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Clearly 𝑔 is a M3RDF with weight
𝛾⋆

𝑟3(𝐾𝑛)− 2. By the induction hypothesis, we have

𝛾⋆
𝑟3(𝐾𝑛) ≥ 𝜔(𝑔) + 2 ≥ 𝛾⋆

𝑟3(𝐾𝑛−1) + 2 =
3(𝑛− 1)− 1

2
+ 2 =

3𝑛

2
·

Assume that |𝑓(𝑣𝑖)| ≤ 1 for each 𝑣𝑖 ∈ 𝑉 (𝐾𝑛).
Let 𝑁 := {𝑣𝑖 ∈ 𝑉 (𝐾𝑛) | 𝑓(𝑣𝑖) ̸= ∅}. For a fixed 𝑣𝑖 ∈ 𝑁 , suppose that there exists no 𝑣𝑗 ∈ 𝑉 (𝐾𝑛) such
that 𝑓(𝑣𝑖𝑣𝑗) ̸= ∅. Without loss of generality, we may assume that 𝑓(𝑣𝑖) = {1}. To dominate elements in
{𝑣𝑖𝑣𝑘 | 𝑣𝑘 ∈ 𝑉 (𝐾𝑛)∖{𝑣𝑖}},

⋃︀
𝑥∈𝑁𝑀 [𝑣𝑘] 𝑓(𝑥) should contain 2 and 3 for each 𝑣𝑘 ∈ 𝑉 (𝐾𝑛)∖{𝑣𝑖}. Thus, we have

𝑠2, 𝑠3 ≥ 𝑛
2 , where 𝑠𝑗 := |{𝑥 ∈ 𝑉 (𝐾𝑛 − 𝑣𝑖) ∪𝐸(𝐾𝑛 − 𝑣𝑖) | 𝑗 ∈ 𝑓(𝑥)}|. If 𝑓(𝑥) ̸= ∅ for all 𝑥 ∈ 𝑁𝑀 [𝑣𝑘] ∖ {𝑣𝑖𝑣𝑘},

then
∑︀

𝑥∈𝑁𝑀 [𝑣𝑘] |𝑓(𝑥)| ≥ 𝑛. This implies 𝛾⋆
𝑟3(𝐾𝑛) ≥ 3𝑛

2 . Assume that for 𝑣𝑘 ∈ 𝑉 (𝐾𝑛) ∖ {𝑣𝑖} there exists
𝑥 ∈ 𝑁𝑀 [𝑣𝑘]∖{𝑣𝑖𝑣𝑘} such that 𝑓(𝑥) = ∅. Then to dominate such an element 𝑥,

⋃︀
𝑦∈𝑁𝑀 (𝑥) 𝑓(𝑦) should contain

1. Thus, we have 𝑠1 ≥ 𝑛
2 so that 𝜔(𝑓) ≥ |𝑓(𝑣𝑖)|+ 𝑠2 + 𝑠3 + 𝑠1 = 1 + 3𝑛

2 .
Assume that for each 𝑣𝑖 ∈ 𝑁 there exists a vertex 𝑣𝑗 ∈ 𝑉 (𝐾𝑛) such that 𝑓(𝑣𝑖𝑣𝑗) ̸= ∅. Let 𝑡 be the size of
set 𝑁 . For 𝑣𝑗 ∈ 𝑉 (𝐾𝑛) ∖𝑁 ,

⋃︀
𝑥∈𝑁𝑀 [𝑣𝑗 ]

𝑓(𝑥) should contain [3]. For 𝑣𝑖 ∈ 𝑁 ,
⋃︀

𝑥∈𝑁𝑀 (𝑣𝑖)
𝑓(𝑥) contains at least

one element. Thus, we have 𝛾⋆
𝑟3(𝐾𝑛) ≥ 3(𝑛−𝑡)

2 + (𝑡 + 𝑡
2 ) = 3𝑛

2 . This completes the proof. �
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4. Lower and upper bounds for trees

In this section, we provide lower and upper bounds for the middle 3-rainbow domination number of trees in
terms of the matching number.

Theorem 4.1. For every tree 𝑇 of order 𝑛, 𝛾⋆
𝑟3(𝑇 ) ≤ 𝑛 + 𝛼′(𝑇 ).

Proof. Take a maximum matching 𝑀 in 𝑇 . Let 𝑈 be the set of vertices which are not saturated by 𝑀 . Define
a function by 𝑓(𝑒) = [3] for 𝑒 ∈ 𝑀 , 𝑓(𝑢) = {1} for 𝑢 ∈ 𝑈 and 𝑓(𝑥) = ∅ otherwise. Clearly, 𝑓 is a M3RDF of 𝑇 .
Thus, 𝛾⋆

𝑟3(𝑇 ) ≤ |𝑈 |+ 3|𝑀 | = (𝑛− 2𝛼′(𝑇 )) + 3𝛼′(𝑇 ) = 𝑛 + 𝛼′(𝑇 ). �

Lemma 4.2. Let 𝑇 be a tree and 𝑃3 = 𝑢𝑣𝑤 a path in 𝑇 with deg𝑇 (𝑣) = 2 and deg𝑇 (𝑤) = 1. Then |𝑓(𝑢𝑣)| +
|𝑓(𝑣)|+ |𝑓(𝑣𝑤)|+ |𝑓(𝑤)| ≥ 3 for any 𝛾⋆

𝑟3(𝑇 )-function 𝑓 .

Proof. If 𝑓(𝑤) = ∅, then to dominate 𝑤 it follows that 𝑓(𝑣𝑤) = [3]. If 𝑓(𝑣𝑤) = ∅, then to dominate 𝑣𝑤 it
follows that 𝑓(𝑢𝑣) ∪ 𝑓(𝑣) ∪ 𝑓(𝑤) = [3]. If 𝑓(𝑣) = ∅, then to dominate 𝑣 it follows that 𝑓(𝑢𝑣) ∪ 𝑓(𝑣𝑤) = [3]. In
the above cases, we have |𝑓(𝑢𝑣)|+ |𝑓(𝑣)|+ |𝑓(𝑣𝑤)|+ |𝑓(𝑤)| ≥ 3. If 𝑓(𝑤), 𝑓(𝑣𝑤) and 𝑓(𝑣) are not empty, then
|𝑓(𝑢𝑣)|+ |𝑓(𝑣)|+ |𝑓(𝑣𝑤)|+ |𝑓(𝑤)| ≥ 3. This completes the proof. �

Theorem 4.3. For every tree 𝑇 , 𝛾⋆
𝑟3(𝑇 ) ≥ 5𝛼′(𝑇 )

2 .

Proof. We proceed by induction on the order 𝑛 of 𝑇 . Obviously, the statement is true for all trees of order
𝑛 ≤ 4.

Let 𝑇 be a tree of order 𝑛 ≥ 5. Suppose that every tree 𝑇 ′ of order 𝑛′(< 𝑛) satisfies 𝛾⋆
𝑟3(𝑇 ′) ≥ 5𝛼′(𝑇 ′)

2 . Let
𝑀 be a maximum matching in 𝑇 . If 𝑇 is a star, then 𝛼′(𝑇 ) = 1 and so 𝑛 + 1 = 𝛾⋆

𝑟3(𝑇 ) > 5
2 . Assume that 𝑇 is a

double star DS𝑝,𝑞 with 𝑝 ≥ 𝑞 ≥ 1. Then 𝛼′(𝑇 ) = 2 and so 𝑛 + 1 = 𝛾⋆
𝑟3(𝑇 ) > 5. Now we assume that 𝑇 is neither

a star or a double star. Then it is easy to see that 𝑇 has diameter at least four.
If 𝑇 has a pendant edge 𝑢𝑣 such that 𝑣 is a leaf and 𝑢𝑣 ̸∈ 𝑀 , then for any 𝛾⋆

𝑟3(𝑇 )-function 𝑓 , the function
𝑔 : 𝑉 (𝑇 −𝑣)∪𝐸(𝑇 −𝑣) defined by by 𝑔(𝑢) = 𝑓(𝑢)∪𝑓(𝑢𝑣) and 𝑔(𝑥) = 𝑓(𝑥) otherwise is a M3RDF of 𝑇 −𝑣 with
weight at most 𝜔(𝑓). By the induction hypothesis, we have 𝛾⋆

𝑟3(𝑇 ) ≥ 𝛾⋆
𝑟3(𝑇 − 𝑣) ≥ 5𝛼′(𝑇−𝑣)

2 = 5𝛼′(𝑇 )
2 . Thus, we

assume the following.

Assumption 4.4. All pendant edges of 𝑇 belong to each maximum matching.

Then it follows that all support vertices have degree 2. If ∆(𝑇 ) = 2, then 𝑇 is a path. So, the result
follows by Proposition 3.1. From now on, assume that ∆(𝑇 ) ≥ 3. Among all of diametrical paths in 𝑇 , we
choose 𝑥0𝑥1, . . . , 𝑥𝑑 so that it maximizes the size of 𝑓(𝑥𝑑−2). Root 𝑇 at 𝑥0. It follows from Lemma 4.2 that
|𝑓(𝑥𝑑−2𝑥𝑑−1)|+ |𝑓(𝑥𝑑−1)|+ |𝑓(𝑥𝑑−1𝑥𝑑)|+ |𝑓(𝑥𝑑)| ≥ 3. We divide our consideration into three cases.

Case 1. deg(𝑥𝑑−2) ≥ 3.
First, suppose that there is a path 𝑥𝑑−2𝑦𝑧 in 𝑇 such that 𝑧 is a leaf and 𝑦 ̸∈ {𝑥𝑑−3, 𝑥𝑑−1}. Then it follows
from Lemma 4.2 that |𝑓(𝑧)|+ |𝑓(𝑦𝑧)|+ |𝑓(𝑦)|+ |𝑓(𝑥𝑑−2𝑦)| ≥ 3. Without loss of generality, we may assume
that

|𝑓(𝑥𝑑−2𝑦)| ≥ |𝑓(𝑥𝑑−2𝑥𝑑−1)|. (4.1)

Let 𝑇 ′ = 𝑇 − {𝑥𝑑−1, 𝑥𝑑}. Then clearly 𝛼′(𝑇 ′) = 𝛼′(𝑇 ) − 1. Since both 𝑓(𝑥𝑑−2𝑦) and 𝑓(𝑥𝑑−2𝑥𝑑−1) are not
[3], the assumption (4.1) implies that 𝑓 |𝑉 (𝑇 ′)∪𝐸(𝑇 ′) is a M3RDF of 𝑇 ′ with weight at most 𝜔(𝑓)− 3. By the
induction hypothesis, we have 𝛾⋆

𝑟3(𝑇 ) ≥ 𝛾⋆
𝑟3(𝑇 ′) + 3 ≥ 5𝛼′(𝑇 ′)

2 + 3 = 5(𝛼′(𝑇 )−1)
2 + 3 > 5𝛼′(𝑇 )

2 .
Now assume that every element of 𝐶(𝑥𝑑−2) ∖ {𝑥𝑑−1} is a leaf. Then it follows from Assumption 4.4 that
|𝐶(𝑥𝑑−2) ∖ {𝑥𝑑−1}| = 1. Let 𝑣 ∈ 𝐶(𝑥𝑑−2) ∖ {𝑥𝑑−1}. If 𝑓(𝑣) = ∅, then 𝑥𝑑−2𝑣 can not dominate 𝑣. Thus, we
must have 𝑓(𝑣) ̸= ∅. We consider the following subcases.
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Subcase 1.1. |𝑓(𝑥𝑑−2𝑥𝑑−1)| ≤ 1.
This implies that |𝑓(𝑥𝑑−1)| + |𝑓(𝑥𝑑−1𝑥𝑑)| + |𝑓(𝑥𝑑)| = 3. Let 𝑇 ′ = 𝑇 − {𝑥𝑑−1, 𝑥𝑑}. Define 𝑔 : 𝑉 (𝑇 ′) ∪
𝐸(𝑇 ′) → 𝒫([3]) by 𝑔(𝑥𝑑−2) = 𝑓(𝑥𝑑−2) ∪ 𝑓(𝑥𝑑−2𝑥𝑑−1) and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Clearly 𝑔 is a M3RDF
of 𝑇 ′ with weight 𝜔(𝑓)− 3. The result follows as above.

Subcase 1.2. |𝑓(𝑥𝑑−2𝑥𝑑−1)| ≥ 2.
It is easy to see that |𝑓(𝑥𝑑−1)|+|𝑓(𝑥𝑑−1𝑥𝑑)|+|𝑓(𝑥𝑑)| = 4−|𝑓(𝑥𝑑−2𝑥𝑑−1)|. Let 𝑇 ′ = 𝑇−{𝑥𝑑−2, 𝑣, 𝑥𝑑−1, 𝑥𝑑}.
Define 𝑔 : 𝑉 (𝑇 ′)∪𝐸(𝑇 ′) → 𝒫([3]) by 𝑔(𝑥𝑑−3) = 𝑓(𝑥𝑑−3)∪𝑓(𝑥𝑑−3𝑥𝑑−2) and 𝑔(𝑥) = 𝑓(𝑥) otherwise. Clearly
𝑔 is a M3RDF of 𝑇 ′ with weight 𝜔(𝑓)− 5. By the induction hypothesis, we have 𝛾⋆

𝑟3(𝑇 ) ≥ 𝛾⋆
𝑟3(𝑇 ′) + 5 ≥

5𝛼′(𝑇 ′)
2 + 5 = 5(𝛼′(𝑇 )−2)

2 + 5 = 5𝛼′(𝑇 )
2 .

Case 2. deg(𝑥𝑑−2) = 2 and deg(𝑥𝑑−3) ≥ 3.
It follows from Assumption 4.4 that 𝑥𝑑−3𝑥𝑑−2, 𝑥𝑑−1𝑥𝑑 ∈ 𝑀 . If there exists a path 𝑥𝑑−3𝑥𝑦𝑧 in 𝑇 such that
𝑥 ̸∈ {𝑥𝑑−2, 𝑥𝑑−4} and 𝑧 is a leaf. By Case 1 and Assumption 4.4, we may assume that deg(𝑥) = deg(𝑦) = 2. It
follows from Assumption 4.4 and 𝑥𝑑−3𝑥𝑑−2 ∈ 𝑀 that 𝑥𝑑−3𝑥, 𝑥𝑦 ̸∈ 𝑀 . But, (𝑀 ∖ {𝑦𝑧})∪{𝑥𝑦} is a maximum
matching in 𝑇 not containing a pendant edge, a contradiction.
It follows from deg(𝑥𝑑−3) ≥ 3 that there exists a path 𝑥𝑑−3𝑦𝑧 such that deg(𝑦) = 2 and 𝑧 is a leaf.
By Lemma 4.2, we have |𝑓(𝑥𝑑−2𝑥𝑑−1)| + |𝑓(𝑥𝑑−1)| + |𝑓(𝑥𝑑−1𝑥𝑑)| + |𝑓(𝑥𝑑)| ≥ 3 and |𝑓(𝑥𝑑−3𝑦)| + |𝑓(𝑦)| +
|𝑓(𝑦𝑧)|+ |𝑓(𝑧)| ≥ 3.
Since 𝑓 is a 𝛾⋆

𝑟3(𝑇 )-function, it is easy to see that

4 ≥ 𝑆(𝑥𝑑−3𝑦𝑧) ≥ 3 and 6 ≥ 𝑆(𝑥𝑑−3𝑥𝑑−2𝑥𝑑−1𝑥𝑑) ≥ 4,

where 𝑆(𝑥𝑑−3𝑦𝑧) := |𝑓(𝑥𝑑−3)|+ |𝑓(𝑥𝑑−3𝑦)|+ |𝑓(𝑦)|+ |𝑓(𝑦𝑧)|+ |𝑓(𝑧)| and 𝑆(𝑥𝑑−3𝑥𝑑−2𝑥𝑑−1𝑥𝑑) := |𝑓(𝑥𝑑−3)|+
|𝑓(𝑥𝑑−3𝑥𝑑−2)|+ |𝑓(𝑥𝑑−2)|+ |𝑓(𝑥𝑑−2𝑥𝑑−1)|+ |𝑓(𝑥𝑑−1)|+ |𝑓(𝑥𝑑−1𝑥𝑑)|+ |𝑓(𝑥𝑑)|.
If 𝑆(𝑥𝑑−3𝑥𝑑−2𝑥𝑑−1𝑥𝑑) = 6, then without loss of generality we may assume that 𝑓(𝑥𝑑−3𝑥𝑑−2) = 𝑓(𝑥𝑑−1𝑥𝑑) =
[3]. Let 𝑇 ′ = 𝑇 − {𝑥𝑑−1, 𝑥𝑑}. The function 𝑓 |𝑉 (𝑇 ′)∪𝐸(𝑇 ′) is a M3RDF of 𝑇 ′ with weight 𝜔(𝑓) − 3. By the
induction hypothesis, we have 𝛾⋆

𝑟3(𝑇 ) ≥ 𝛾⋆
𝑟3(𝑇 ′) + 3 ≥ 5𝛼′(𝑇 ′)

2 + 3 = 5(𝛼′(𝑇 )−1)
2 + 3 > 5𝛼′(𝑇 )

2 .
If 𝑆(𝑥𝑑−3𝑦𝑧) = 3, then |𝑓(𝑦)|+ |𝑓(𝑦𝑧)|+ |𝑓(𝑧)| = 3 and 𝑓(𝑥𝑑−3) = 𝑓(𝑥𝑑−3𝑦) = ∅. Let 𝑇 ′ = 𝑇 − {𝑦, 𝑧}. The
function 𝑓 |𝑉 (𝑇 ′)∪𝐸(𝑇 ′) is a M3RDF of 𝑇 ′ with weight 𝜔(𝑓)− 3. The result follows as above.
Now we assume that 𝑆(𝑥𝑑−3𝑦𝑧) = 4 and 5 ≥ 𝑆(𝑥𝑑−3𝑥𝑑−2𝑥𝑑−1𝑥𝑑) ≥ 4. Then without loss of generality we
may assume that 𝑓(𝑥𝑑−3𝑦) = [3] and 𝑓(𝑧) = {1}.
If 𝑆(𝑥𝑑−3𝑥𝑑−2𝑥𝑑−1𝑥𝑑) = 5, then define 𝑔 : 𝑉 (𝑇 ) ∪ 𝐸(𝑇 ) → 𝒫([3]) by 𝑔(𝑥𝑑−2) = {1}, 𝑔(𝑥𝑑−1𝑥𝑑) = [3] and
𝑓(𝑥𝑑−3) = 𝑓(𝑥𝑑−3𝑥𝑑−2) = 𝑓(𝑥𝑑−2𝑥𝑑−1) = 𝑓(𝑥𝑑−1) = 𝑓(𝑥𝑑) = ∅. Clearly 𝑔 is a M3RDF of 𝑇 with weight
𝜔(𝑓)− 1, a contradiction.
Assume that 𝑆(𝑥𝑑−3𝑥𝑑−2𝑥𝑑−1𝑥𝑑) = 4. Then without loss of generality we may assume that 𝑓(𝑥𝑑−2) = {1}
and 𝑓(𝑥𝑑−1𝑥𝑑) = [3]. Let 𝑇 ′ = 𝑇 − {𝑥𝑑−1, 𝑥𝑑}. The function 𝑓 |𝑉 (𝑇 ′)∪𝐸(𝑇 ′) is a M3RDF of 𝑇 ′ with weight
𝜔(𝑓)− 3. The result follows as above.

Case 3. deg(𝑥𝑑−2) = 2 and deg(𝑥𝑑−3) = 2.
If 𝑓(𝑥𝑑−4𝑥𝑑−3) = [3], then it is easy to see that |𝑓(𝑥𝑑−3)| + |𝑓(𝑥𝑑−3𝑥𝑑−2)| + |𝑓(𝑥𝑑−2)| + |𝑓(𝑥𝑑−2𝑥𝑑−1)| +
|𝑓(𝑥𝑑−1)|+ |𝑓(𝑥𝑑−1𝑥𝑑)|+ |𝑓(𝑥𝑑)| = 4, since 𝑓 is a 𝛾⋆

𝑟3(𝑇 )-function. Without loss of generality, we may assume
that 𝑓(𝑥𝑑−1𝑥𝑑) = [3], 𝑓(𝑥𝑑−2) = {1} and 𝑓(𝑥𝑑−3) = 𝑓(𝑥𝑑−3𝑥𝑑−2) = 𝑓(𝑥𝑑−2𝑥𝑑−1) = 𝑓(𝑥𝑑−1) = 𝑓(𝑥𝑑) = ∅.
Let 𝑇 ′ = 𝑇 − {𝑥𝑑−1, 𝑥𝑑}. Then clearly 𝛼′(𝑇 ′) = 𝛼′(𝑇 )− 1 and 𝑓 |𝑉 (𝑇 ′)∪𝐸(𝑇 ′) is a M3RDF of 𝑇 ′ with weight
at most 𝜔(𝑓)−3. By the induction hypothesis, we have 𝛾⋆

𝑟3(𝑇 ) ≥ 𝛾⋆
𝑟3(𝑇 ′)+3 ≥ 5𝛼′(𝑇 ′)

2 +3 = 5(𝛼′(𝑇 )−1)
2 +3 >

5𝛼′(𝑇 )
2 .

If 𝑓(𝑥𝑑−4𝑥𝑑−3) ̸= [3], then it is easy to see that |𝑓(𝑥𝑑−3)| + |𝑓(𝑥𝑑−3𝑥𝑑−2)| + |𝑓(𝑥𝑑−2)| + |𝑓(𝑥𝑑−2𝑥𝑑−1)| +
|𝑓(𝑥𝑑−1)|+ |𝑓(𝑥𝑑−1𝑥𝑑)|+ |𝑓(𝑥𝑑)| = 5, since 𝑓 is a 𝛾⋆

𝑟3(𝑇 )-function. Without loss of generality, we may assume
that 𝑓(𝑥𝑑−3) = 𝑓(𝑥𝑑) = {1}, 𝑓(𝑥𝑑−2𝑥𝑑−1) = [3] and 𝑓(𝑥𝑑−3𝑥𝑑−2) = 𝑓(𝑥𝑑−2) = 𝑓(𝑥𝑑−1) = 𝑓(𝑥𝑑−1𝑥𝑑) = ∅.
Let 𝑇 ′ = 𝑇 −𝑇𝑥𝑑−3 . Define 𝑔 : 𝑉 (𝑇 ′)∪𝐸(𝑇 ′) → 𝒫([3]) by 𝑔(𝑥𝑑−4) = 𝑓(𝑥𝑑−4)∪𝑓(𝑥𝑑−4𝑥𝑑−3) and 𝑔(𝑥) = 𝑓(𝑥)
otherwise. Then clearly 𝛼′(𝑇 ′) = 𝛼′(𝑇 )− 2 and 𝑔 is a M3RDF of 𝑇 ′ with weight at most 𝜔(𝑓)− 5. By the
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induction hypothesis, we have 𝛾⋆
𝑟3(𝑇 ) ≥ 𝛾⋆

𝑟3(𝑇 ′) + 5 ≥ 5𝛼′(𝑇 ′)
2 + 5 = 5(𝛼′(𝑇 )−2)

2 + 5 = 5𝛼′(𝑇 )
2 . This completes

the proof. �

5. The 3-rainbow domatic number for the middle graph of paths and cycles

In this section, we determine the 3-rainbow domatic number for the middle graph of paths and cycles.

Theorem 5.1 (See [11]). If 𝐺 is a graph of order 𝑛, then 𝛾𝑟𝑘(𝐺) · 𝑑𝑟𝑘(𝐺) ≤ 𝑘𝑛.

Theorem 5.2 (See [11]). For every graph 𝐺, 𝑑𝑟𝑘(𝐺) ≤ 𝛿(𝐺) + 𝑘.

Proposition 5.3. For 𝑛 ≥ 4 and 𝑛 ≡ 0 (mod 2), 𝑑𝑟3(𝑀(𝑃𝑛)) = 4.

Proof. By Theorem 5.2, 𝑑𝑟3(𝑀(𝑃𝑛)) ≤ 4.
Let 𝑃𝑛 = 𝑣1𝑣2, . . . , 𝑣𝑛. Define the 3-rainbow dominating functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 as follows:
𝑓1(𝑣1+2𝑖𝑣2+2𝑖) = [3] for 0 ≤ 𝑖 ≤ 𝑛−2

2 and 𝑓1(𝑥) = ∅ otherwise,
𝑓2(𝑣1+2𝑖) = {1}, 𝑓2(𝑣2+2𝑖) = {2} for 0 ≤ 𝑖 ≤ 𝑛−2

2 , 𝑓2(𝑣2+2𝑖𝑣3+2𝑖) = {3} for 0 ≤ 𝑖 ≤ 𝑛−4
2 and 𝑓2(𝑥) = ∅

otherwise,
𝑓3(𝑣1+2𝑖) = {2}, 𝑓3(𝑣2+2𝑖) = {3} for 0 ≤ 𝑖 ≤ 𝑛−2

2 , 𝑓3(𝑣2+2𝑖𝑣3+2𝑖) = {1} for 0 ≤ 𝑖 ≤ 𝑛−4
2 and 𝑓3(𝑥) = ∅

otherwise,
𝑓4(𝑣1+2𝑖) = {3}, 𝑓4(𝑣2+2𝑖) = {1} for 0 ≤ 𝑖 ≤ 𝑛−2

2 , 𝑓4(𝑣2+2𝑖𝑣3+2𝑖) = {2} for 0 ≤ 𝑖 ≤ 𝑛−4
2 and 𝑓4(𝑥) = ∅

otherwise.
Then clearly 𝑓𝑖 is a 3-rainbow dominating function on 𝑀(𝑃𝑛) for each 𝑖. Thus, {𝑓1, 𝑓2, 𝑓3, 𝑓4} is a family of

3-rainbow dominating functions on 𝑀(𝑃𝑛). �

Proposition 5.4. For 𝑛 ≥ 4, 𝑑𝑟3(𝑀(𝐶𝑛)) = 4.

Proof. By Theorem 5.1, 𝛾𝑟3(𝑀(𝐶𝑛)) ·𝑑𝑟3(𝑀(𝐶𝑛)) ≤ 3 ·2𝑛. It follows from Proposition 3.2 that 𝑑𝑟3(𝑀(𝐶𝑛)) ≤ 4.
Let 𝐶𝑛 = 𝑣1𝑣2, . . . , 𝑣𝑛𝑣1. We consider the following two cases.

Case 1. 𝑛 is even.
Extend the 3-rainbow dominating functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 in Proposition 5.3 as follows:

𝑔1(𝑣𝑛𝑣1) = ∅ and 𝑔1(𝑥) = 𝑓1(𝑥) otherwise,
𝑔2(𝑣𝑛𝑣1) = {1} and 𝑔2(𝑥) = 𝑓2(𝑥) otherwise,
𝑔3(𝑣𝑛𝑣1) = {1} and 𝑔3(𝑥) = 𝑓3(𝑥) otherwise,
𝑔4(𝑣𝑛𝑣1) = {1} and 𝑔4(𝑥) = 𝑓4(𝑥) otherwise.

Case 2. 𝑛 is odd.
Then 𝑛 − 1 ≥ 4 is even. Let 𝑓1, 𝑓2, 𝑓3, 𝑓4 be the 3-rainbow dominating functions on 𝑀(𝑃𝑛−1) given by
Proposition 5.3. Extend them as follows:

𝑔1(𝑣𝑛−1𝑣𝑛) = ∅, 𝑔1(𝑣𝑛) = {1}, 𝑔1(𝑣𝑛𝑣1) = ∅ and 𝑔1(𝑥) = 𝑓1(𝑥) otherwise,
𝑔2(𝑣𝑛−1𝑣𝑛) = {3}, 𝑔2(𝑣𝑛) = {2}, 𝑔2(𝑣𝑛𝑣1) = ∅ and 𝑔2(𝑥) = 𝑓2(𝑥) otherwise,
𝑔3(𝑣𝑛−1𝑣𝑛) = {1}, 𝑔3(𝑣𝑛) = {3}, 𝑔3(𝑣𝑛𝑣1) = ∅ and 𝑔3(𝑥) = 𝑓3(𝑥) otherwise,
𝑔4(𝑣𝑛−1𝑣𝑛) = ∅, 𝑔4(𝑣𝑛) = ∅, 𝑔4(𝑣𝑛𝑣1) = [3] and 𝑔4(𝑥) = 𝑓4(𝑥) otherwise.

In any case, clearly 𝑔𝑖 is a 3-rainbow dominating function on 𝑀(𝐶𝑛) for each 𝑖. Thus, {𝑔1, 𝑔2, 𝑔3, 𝑔4} is a
family of 3-rainbow dominating functions on 𝑀(𝐶𝑛). �
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