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ON k-RAINBOW DOMINATION IN MIDDLE GRAPHS

Kuung Kiv*

Abstract. Let G be a finite simple graph with vertex set V(G) and edge set E(G). A function
f:V(GQ) — P{1,2,...,k}) is a k-rainbow dominating function on G if for each vertex v € V(G)
for which f(v) = 0, it holds that U, ¢y, f(u) = {1,2,...,k}. The weight of a k-rainbow dominating

function is the value 3 4 | f(v)]. The k-rainbow domination number v, (G) is the minimum weight
of a k-rainbow dominating function on G. In this paper, we initiate the study of k-rainbow domination
numbers in middle graphs. We define the concept of a middle k-rainbow dominating function, obtain
some bounds related to it and determine the middle 3-rainbow domination number of some classes of
graphs. We also provide upper and lower bounds for the middle 3-rainbow domination number of trees
in terms of the matching number. In addition, we determine the 3-rainbow domatic number for the
middle graph of paths and cycles.
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1. INTRODUCTION

Let G = (V, E) be a connected undirected graph with the vertex set V' = V(G) and edge set E = E(G). The
order of G is defined as the cardinality of V. The open neighborhood of v € V(QG) is the set N(v) = {u € V(G) |
uv € E(G)} and the closed neighborhood of v € V(G) is the set N[v] := N(v) U {v}. The degree of v € V(G) is
defined as the cardinality of N(v), denoted by deg(v). When no confusion arises, we may delete the subscript
G in degq(v). The mazimum degree and minimum degree of G are denoted by A(G) and §(G), respectively. We
write P,, C), and K, for a path, a cycle and a complete graph, respectively.

In [8], Hamada and Yoshimura defined the middle graph of a graph. The middle graph M(G) of a graph G is
the graph obtained by subdividing each edge of G exactly once and joining all these newly introduced vertices
of adjacent edges of G (see Fig. 1). The precise definition of M (G) is as follows. The vertex set V(M (G)) is
V(G) U E(G). Two vertices v,w € V(M(QG)) are adjacent in M(G) if (i) v,w € E(G) and v, w are adjacent in
G or (ii) v € V(G), w € E(G) and v, w are incident in G.

In graph domination theory, a set of vertices is selected as guards such that each vertex not selected has a guard
as a neighbor. As a generalization of the graph domination, Bresar et al. introduced the concept of k-rainbow
domination in [3]. In k-rainbow domination theory, k-different types of guards are required in the neighborhood
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FIGURE 1. The middle graph M (G) of G.
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FIGURE 2. A middle 3-rainbow dominating function on G () is omitted).

n

FIGURE 3. A 3-rainbow dominating function on M(G) (@ is omitted).

of a non-selected vertex. Let [k] be the set of positive integers at most k. A function f : V(G) — P([k])
is a k-rainbow dominating function on G if for each vertex v € V(G) for which f(v) = 0, it holds that
Uwen(w) f(u) = [k]. The weight of a k-rainbow dominating function is the value 3, oy (q) |f(v)[- The k-rainbow
domination number ~,;(G) is the minimum weight of a k-rainbow dominating function on G. In [4], Chang
et al. proved that the k-rainbow domination is NP-complete. So, it is worthwhile to determine the k-rainbow
domination numbers of some classes of graphs. The latest survey on k-rainbow domination is introduced in [2].
Indeed, there are many papers on the 2-rainbow domination. For k > 3, it is more difficult to determine the
k-rainbow domination number of a graph. The following are a few results on the 3-rainbow domination number.
In [10], Shao et al. determined the 3-rainbow domination numbers of paths, cycles and generalized Petersen
graphs P(n,1). In [12], Wang et al. determined the 3-rainbow domination number of P3s0P,. In [7], Gao et al.
determined the 3-rainbow domination numbers of C30C,, and C4OC,,. In [5], Cynthia et al. determined the
3-rainbow domination number of circulant graph G(n;+{1,2,3}). In [6], Furuya et al. proved that for every
connected graph G of order n > 8 with §(G) > 2, ,3(G) < 3.

To study k-rainbow domination numbers in the class of middle graphs, we define the following concept. For
v € V(G), we denote {e € E(G) | e is incident with v} by Nps(v). For e € E(G), we denote {x € V(G)UE(G) | =
is either adjacent or incident with e} by Ny (e). We write Nas[z] = Nps(x)U{z}. A middle k-rainbow dominating
function (MKkRDF) on a graph G is a function f : VUE — P([k]) such that every element xz € V U E for which
f(z) = 0 satisfies |, Nur(z) S (W) = [k]. A middle k-rainbow dominating function f gives an ordered partition
(Vo U Eg,V1UE, Vo UEs, ...,V UE})), where V; ;= {z € V | |f(z)] =i} and E; :== {z € E | |f(x)| = i}.
The weight of a middle k-rainbow dominating function f is w(f) := > cyup |f(z)]. The middle k-rainbow
domination number v5.(G) of G is the minimum weight of a middle k-rainbow dominating function of G. A
~vrx(G)-function is a MKkRDF on G with weight 77, (G). We remark that v/, (G) = v, (M (G)) for any graph G.
As an example, we give Figures 2 and 3.
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In [9], only 2-rainbow domination numbers of the middle graphs were considered. In this paper, we initiate
the study of the middle k-rainbow domination in graphs. In particular, we determine the exact value of middle
3-rainbow domination numbers of some classes of graphs. A matching in a graph G is a set of pairwise non-
adjacent edges. The maximum number of edges in a matching of a graph G is called the matching number of
G and denoted by o/(G). We provide upper and lower bounds for the middle 3-rainbow domination number of
trees in terms of the matching number. A set {f1,..., fa} of k-rainbow dominating functions of G is called a
k-rainbow dominating family on G if Z?Zl |fi(v)| < k for each v € V(G). The maximum number of functions
in a k-rainbow dominating family on G is the k-rainbow domatic number of G, denoted by d,;(G). It is known
that k-rainbow domatic number is well-defined and d,(G) > k for every graph G (see [11]). We determine the
3-rainbow domatic number for the middle graph of paths and cycles.

In the rest of this section, we present some necessary terminology and notation. For terminology and notation
on graph theory not given here, the reader is referred to [1]. Let T' be a (rooted) tree. A leaf of T is a vertex of
degree one. A pendant edge is an edge incident with a leaf. A support vertex is a vertex adjacent to a leaf. For
a vertex v, C(v) denote the set of the children of v. D[v] denote the set of the descendants and v. The subtree
induced by DIv] is denoted by T,. We write K ,_1 for the star of order n > 3. The double star DS, 4, where
p,q > 1, is the graph obtained by joining the centers of two stars K; , and Ki 4. A healthy spider Sy, is the
graph from a star K;; by subdividing each edges of K ;. A wounded spider S, is the graph from a star K; ;
by subdividing r edges of K ;, where » <t — 1. Note that a star K, is a wounded spider Sy . For a graph G
and its subset S, G — S denotes the subgraph of G induced by V(G) \ V(S). A diametral path of G is a path
with the length which equals the diameter of G. The complement of G = (V, E) is the graph (V, E), which is
denoted by G, where uv € E if and only if uv € E.

2. GENERAL BOUNDS OF THE MIDDLE k-RAINBOW DOMINATION NUMBER

In this section, we obtain general bounds of the middle k-rainbow domination number. First, we begin by
giving a simple lower bound on the middle k-rainbow domination number.

Observation 2.1. If G is a graph with |V(G)| + |E(G)| > k, then v, (G) > k.

Proof. Let f be a 7 (G)-function. If f(z) = 0 for some z € V(G) U E(G), then clearly U, cn,, @) f(¥) =
{1,...,k}. If f(z) # 0 for all z € V(G)U E(G), then it follows from |V(G)| + |E(G)| > k that v, (G) > k. O

Proposition 2.2. Let G be a graph of order n > 2. Then v}5(G) = 3 if and only if G € {K3, P2}

Proof. If G € {K3, P,}, then clearly 775 (G) = 3. Conversely, assume that 7% (G) = 3 and let f be a 7’5 (G)-
function. If there exists € V(G)U E(G) such that f(x) = [3], then z € E(G) for otherwise « can not dominate
the other vertices. Thus, G = P>.

Now assume that there is no element with weight 3. If f(v) = @) for some v € V(G), then there exist at least
two edges e1, e2 incident to v such that f(e;) and f(e2) are not empty. But, end vertices of e, es except for v
are not dominated, a contradiction. Thus, every vertex in V(G) has non-zero weight so that there are at most
three vertices in the graph G. One can easily check that G = K3 or P;. (]

Theorem 2.3. If G is a graph and v € V(G), then v}, (G) — min{ A(G) + 1,k} <~ (G —v) < ~/.(G).

Proof. First, we claim that 7. (G) — min{A(G) + 1,k} < 7%.(G —v). Let f be a 75, (G — v)-function. If
k < A(G) + 1, then define g : V(G) U E(G) — P([k]) by g(v) = [k], g(x) = 0 for z € Np(v) and g(z) = f(z)
otherwise. If k& > A(G) + 1, then define g : V(G) U E(G) — P([k]) by g(x) = {1} for each z € Nys[v] and
g(x) = f(x) otherwise. Clearly, g is a MkRDF of G with weight at most 7}, (G —v) + min{A(G) + 1, k}. Thus,
12(G) = minfAG) + Lk} < 75,(G — o).

Next, we claim that v/, (G—v) < ~4%.(G). Let f be a v} (G)-function. Define h : V(G —v)UE(G—v) — P([k])
by h(u) = f(u) U f(uv) for u € N(v) and h(z) = f(x) otherwise. Then clearly h is a MKkRDF of G — v with
weight v (G). O
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Theorem 2.4. Let G be a graph. Then

(1) 45(G) — k < 37(G +¢) < 45(G) +1 Jor e € E(G),
(2) 73(G) — 1 < 375(G — €) < 74(G) + k for e € E(G).

Proof. (i) First, we show that v (G +e) <% (G)+ 1. Let f be 7%, (G)-function. Clearly, we can extend f to
a MKRDF of G + e by assigning {1} to f(e).

Next, we claim that 7. (G) — k < 75.(G + €). Let f be 77, (G + e)-function and let e = wv. If f(e) =0,
then clearly the function f|y(@yue(a) is @ MKRDF of G. This implies 775 (G) — k < 775.(G) < v/, (G +e).
Now assume that f(e) # 0. Then define g : V(G)UE(G) — P([k]) by g(u) = f(u)U f(e), g(v) = f(v)U f(e)
and g(z) = f(x) otherwise. Clearly, g ia a MKRDF of G with weight 7%, (G+¢€)+|f(e)|. Thus, v/.(G) —k <
1k(G) = [ (e)] <77 (G +e).

(i) By (i), 75 (G —€e) —k < v ((G —e) +€) < v/ (G —e) + 1. This implies (ii). O

Theorem 2.5. Let T be a tree of order n > 3. Then ~}5(T) < % with equality if and only if T = Ps.

Proof. We proceed by induction on the order n of T'. Obviously, the statement is true for a path Ps.

Let T be a tree of order n > 4. Suppose that every tree T’ of order n'(< n) satisfies v (7") < 3"/27_1 Let
f be a v/5(T")-function. If T is a star Ki,_1, then 7/5(T) = n+1 < 22=1. Assume that T is a double star
DS, qwithp>¢g>1 Thenp+qg+3=n+1=~5%(T) < 3"2_1. Now we assume that T is neither a star or a
double star. Then it is easy to see that T' has diameter at least four. Among all of diametrical paths in T, we
choose xgx1,...,24 so that it maximizes the degree of z4_1. Root T at zg. We divide our consideration into
three cases.

Case 1. degT(zd_l) =t>3.
Now T, ~ Ky41. Let T = T — T, ,. Applying the induction hypothesis to 7", we have v}5(T") <

%~ Define g : V(T) U E(T) — P([3]) by g(za—1) = g(xa—22z4-1) = g(xa) = 0, g(xa—124) = [3],
g(xg—1z) = 0 and g(z) = {1} for x € C(zg—1) \ {z4} and g(x) = f(x) otherwise. Then clearly g is a M3RDF
of T" and so

—t)—1 —t41 —1
MHH:%ZJF <3n2 .

Yr3(T) S wl(g) =1 (T) +t+1<

Case 2. degT(:cd,l) =2 and degp(zq_2) =1t > 3.
Now T, ~ S 1, wherel <r <t—1 Let T" =T —1T,, ,. Applying the induction hypothesis to 1",

we have 7% (77) < 2= Dofine g V(T) U E(T) — P(3]) by g(va—sa—2) = g(za_2) = g(var) =
9(@a-174) = 0, g(xa-22a-1) = [3], g(za) = {1}, g(a—22) = 0 for x € C(za—2) \ {z4-1}, g(x) = {1} if
z € Czg—2) \ {zq-1} is a leaf, g(x ) =0, g(zy) = [3] and g(y) = 0 if © € C(x4—2) \ {xa—1} is a support

vertex, where y € C(z), and g(z) = f(z) otherwise. Then clearly g is a M3RDF of T and so

3n—t—r)—1 3n—t+r—1 3n-1
- +i+2r= 5 < 5

Yr3(T) S w(g) = v5(T") +t+2r <

Case 3. degp(zq4—1) = 2 and degp(z4—2) = 2.
Now Ty, , = Ps. Let T' =T —1T,, ,. Applying the induction hypothesis to T”, we have v/3(T") <
Define g : V(T) U E(T) — P([3]) by g(za—s2a—2) = g(xa—2) = 9(xd-1) = g(xa-124) = 0, g(xa—22a-1) = [3],
g(xq) = {1} and g(z) = f(x) otherwise. Then clearly g is a M3RDF of T and so

3(n—3)—1
—_—

3(n—3)—1 3n—2 3n—1
'Y:;;(T)Sw(g):’y:?)(T/)—i—éLg( 2) =T <
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3. THE MIDDLE 3-RAINBOW DOMINATION NUMBER OF PATHS, CYCLES AND COMPLETE
GRAPHS

In this section, we determine the middle 3-rainbow domination number of paths, cycles and complete graphs.

Proposition 3.1. Forn > 2,
n=l for n =1 (mod 3);

Vig(Pp) = AL for n =2 (mod 3);
i for n =0 (mod 3).

Proof. One can check that v75(P2) = 3, 7/3(Ps) = 4, 773(Pa) = 5, 7/3(Ps5) = 7 and ~/3(Fs) = 8. We proceed
by induction on n. Assume that P, = vjvs,...,v, and let x9;_1 = v; for 1 < i < n and x9; = v;v;41 for
1<i<n-—1.Let V(P,)UE(R,) ={x1,...,22,—1} and [ be a v5(P,)-function. We divide our consideration
into three cases.

Case 1. n =1 (mod 3).
First, we claim that v55(P,) > %%, Assume that n > 7. It is easy to see that Zle |f(z:)] > 3. If
Z?Zl |f(z:)] = 3 and |f(z4)| + |f(x5)| = 0, then, to dominate x5, it must be f(xg) = {1,2,3}. Thus, it
is easy to see that 23:1 |f(z;)| > 6. Define h : V(P, — {v1,...,04}) U E(P, — {v1,...,v4}) — P([3]) by
h(xg) = f(xs) U f(z9) and h(x;) = f(x;) for 10 <4 < 2n — 1. Clearly, h is a M3KDF of P,_, with weight
at most w(f) — 6. By the induction hypothesis, we have
4(n —4) _dn+2

Yr3(Pn) = w(h) +6 > 7/5(Prq) +6 = T+6_ 3

If Zf L f(x:)] =3 and |f(x4)| + | f(x5)| # 0, then there is one possibility, namely |f(z1)] = 1, |f(z2)| =0,
|f(7x3 | =1, |f(z4)] =1 and |f(z5)| = 0. To dominate x5, it must be |f(z¢)| = 2. Thus, it is easy to see that
Y ieq [f(xi)] = 5. Define h: V(P, — {v1,...,04}) UE(P, —{v1,...,v4}) — P([3]) by h(zg) = f(xs) U f(xg)
and h(z;) = f(z;) for 10 < i < 2n — 1. Clearly, h is a M3KDF of P,,_4 with weight at most w(f) — 5. By
the induction hypothesis, we have

4(n —4) dn — 1

Ta(Pa) 2 (k) +6 2 45(Pa-a) +5 =~ 5= 2

Now assume that Zle |f(z;)] > 4. Define g : V(P, — {v1,v2,v3}) U E(P,, — {v1,v2,v3}) — P([3]) by
g(xz7) = f(ze) U f(z7) and g(x;) = f(a;) for 8 <i < 2n — 1. Clearly, g is a M3KDF of P,_3 with weight at
most w(f) — 4. By the induction hypothesis, we have
Via(Pa) 2 wle) 442 Aia(Pag) 4= DLy SIS

Next, we claim that 7;‘3(P ) < 4=l Define h: V(P,)UE(P,) — P([3]) by h(vi43;) = {1} for 0 <4 < 2L
hzat6i) = [3] (z) = 0 otherwise. It is easy to see that h is a M3RDF of P, with
weight %=1, Thus, we have 7:3(Pn) = 4ol

Case 2. n =2 (mod 3).
By the same argument as in Case 1, we can show that v5(P,) > ¥4 Define g : V(P,) U E(P,) — P([3])
by g(vi4s;) = {1} for 0 <4 < 232, g(x4+6l) = [3] for 0 <4 < 235, g(vn) = {2,3} and g(x) = 0 otherwise.
It is easy to see that g is a M3RDF of P, with weight 4”3“. Thus, we have v5(P,) = ‘”LTH.

Case 3. n =0 (mod 3).
By the same argument as in Case 1, we can show that ~}5(P,) > 4. Define h : V/(P,) U E(P,) — P([3])
by h(viqs;) = {1} for 0 <i < 253 h(m4+61) =[3] for 0 < i<z and h(xz) = 0 otherwise. It is easy to see

that h is a M3RDF of P, with welght An Thus, we have 75 (P, ) n, O
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Proposition 3.2. Forn > 3,
nt2 - for p =1 (mod 3);
723 (Cp) = { AL for n =2 (mod 3);

4n3
3 for n =0 (mod 3).

Proof. Assume that C,, = v1va, ..., v,v1, where the subscript k of vy is read by modulo n. Let f be a v5(C),)-
function such that the size of N := {v; | f(v;) # (0} is as small as possible. We divide our consideration into
three cases.

Case 1. n =1 (mod 3).
If there exists some k such that |f(vg)| + | f(vkvk+1)| + | f(vk+1)| > 3, then define g : V(C), — {vg, vky1}) U
E(Cy, — {vk,ve1}) — P([3]) by g(vk-1) = f(vk-1) U f(vk—10k), 9(vkt2) = f(vk+1Vkt2) U f(vrt2) and
g(x) = f(x) otherwise. It is easy to see that g is a M3RDF of P,_o with weight at most 7%;(C,,) — 3. By
Proposition 3.1, we have

* % 4n—2)+1 4dn + 2
a(Cn) 2 wl(g) +3 2 g (Pug) +3 = WD L g A0 E2
Assume that
|f(ui)| + | f (vkvg1)] + [f(or41)] < 2 (3.1)

for each k € [n].
If there exists some k € [n] such that |f(vx)| > 2, then define g : V(C,, — vx) U E(C,, — vx) — P([3]) b

(v
9(vi1) = F(vr-1) U F0r-1v)s 9(vit) = Furen) U f(0xviss) and g(x) = f(x) otherwise. Cleatly, g is a
M3RDF of P,_; with weight at most v}5(C,,) — 2. By Proposition 3.1, we have

N N 4(n—1 dn + 2
Yr3(Cn) = w(g) +2 > 13(Pao1) +2 > % =—0

2
* 3

Assume that |f(vg)| <1 for each k € [n]. If | f(vg)| = 0 for each k € [n], then to dominate vy, we must have
f(vk—1vk) U f(vgvgs1) = [3]. Thus, it follows from n > 4 that

WC)=3 Y lf@i=2 > TE2

1<k<n zENM (vg)

Now assume that N is not empty. For a fixed v; € N, if | f(v;)|+|f (v;vir1) |+ f (vig1)] = 1, then v; 10,42 must
dominate v;11 so that f(vit1vi42) = [3], a contradiction to (3.1). Thus, |f(vi)| + |f(vivig1)| + | f(vigr1)| =
2. By the same argument, we have |f(v;)| + |f(vi—1vi)| + |f(vi—1)] = 2. Suppose that f(v;—1) # 0 and
f(vit1) # 0. Without loss of generality, assume that f(v;) = {1}, f(vi—1) = {3} and f(v;+1) = {2}. Then
to dominate v;_jv; and v;v;41, we must have f(v;_ov;—1) = {2} and f(v;11v;42) = {3}. It follows from
(3.1) that f(vi—2) = f(viy2) = 0. To dominate v;_s and v;y2, we must have f(v;_3v;—2) = {1,3} and
f(vit2virs) = {1,2}. It follows from (3.1) that f(v;—3) = f(vi+s) = 0. To dominate v;—3 and v;4+3, we must
have {2} C f(v;—4v;—3) and {3} C f(viy3vi14). Define g : V(C,,) U E(C,,) — P([3]) by g(vi—3) = g(vi13) =
{1}, g(vi2vi—1) = g(Vit1vis2) = [3], g(vi—svi—2) = g(vi—2) = g(vi—1) = g(vi—1v;) = g(vivit1) = g(vis1) =
9(Viye) = g(vipaviys) = 0 and g(x) = f(z) otherwise. Then ¢ is a M3RDF of C,, with weight w(f). As
above, this implies that 7;3(C),) > 452,

Now assume that for each v; € N, |f(vZ ;)| =1 or |f(vivig1)| = 1. Since }° oy, o) [/ (@)] = 2 for v; € N
and }- e ny, o 1/ (@) = 3 for v; € V(Cr) \ N, we have

N 3(n—1t) t 3n _ 4dn+2
> t+-) =2
Vr3(Chn) = 9 +< +2> 5 = 3

where t = |N]|.
By Theorem 2.4, v55(Cy) < 773(P,) + 1. Thus, we have 775(C,,) = 142,



MIDDLE K-RAINBOW DOMINATION 3453

Case 2. n =2 (mod 3).
If there exists some k such that |f(vg)| + | f(vkve+1)| + | f(vk41)| = 3, then define g : V(C,, — {vg, vky1}) U
E(Cn = {vk,vksa}) — P(3]) by g(vr-1) = f(ve—1) U fvr—1vk), 9(vk42) = f(vk+1vk+2) U f(vk+2) and
g(x) = f(x) otherwise. It is easy to see that g is a M3RDF of P,_o with weight at most 7%(C,,) — 3. By
Proposition 3.1, we have
A(n —2) An+1

Yr3(Cn) > w(g) +3 > 773(Pr2) +3 = —g 3=

Now suppose that
|f (i)l + [f (orvrq1)| + [ f (vr41)] < 2
for each k € [n].
If there exists some k € [n] such that |f(vg)| > 2, then define g : V(C,, — vi) U E(C), — vx) — P([3]) b

(v
9(0k1) = f(0h1) U f(0k108), 9(0k41) = F(0r41) U f(o50s1) and g(z) = f(z) otherwise. Clearly, g is a
M3RDF of P,_; with weight at most v}5(C,,) — 2. By Proposition 3.1, we have

An—1)—1 4n +1
2N T 9= .
3 N 3

Yr3(Cn) > w(9) +2 > v3(Pr1) +22>
Assume that |f(vg)| < 1 for each k € [n]. By the same argument as Case 1, we have v5(C,,) > 4”3“
Define h : V/(Cy) U E(Cy,) — P([3]) by h(vi4si) = {1} for 0 <i < 256 h(v2+51v3+31) =[3] for 0 <i < 25®
h(vp—1v,) = [3] and h(z) = 0 otherwise. It is easy to see that h is a M3RDF of C,, with weight 4%t Thub
we have 7,5(Cp,) = 4%
Case 3. n =0 (mod 3).
If there exists some k € [n] such that |f(vg)| > 1, then define g : V(C,, — vx) U E(C,, — vx) — P([3]) by
g(k-1) = f(vr—1) U f(vk—1vk), 9(vk+1) = f(vks1) U f(vkvr41) and g(z) = f(x) otherwise. Clearly, g is a
M3RDF of P,_; with weight at most v’5(C,,) — 1. By Proposition 3.1, we have
dn—1)+1 4n
5 +1=3
Assume that |f(v;)] = 0 for each i € [n]. If there exists some k € [n] such that |f(vgvgs1)] = 3, then
define g : V(Cp — {vg, vit1}) U E(Cr — {vi, vig1}) — P([3]) by g(vr-1) = f(ve—1) U f(vk-10k), g(vit2) =
f(vgg2) U f(’l)k+11}]c+2) and g(x) = f( ) otherwise. Clearly, g is a M3RDF of P,,_5 with weight at most
~73(Crn) — 3. By Proposition 3.1, we have

Yr3(Cn) 2 w(g) + 12> v55(Pu1) +12>

4(n—2)—1+3_47n.

7:3(Cn) Zw(g)+3 Z’Y:3(Pn72)+3 > 3 = 3

Now assume that |f(v;v;41)] < 2 for each ¢ € [n]. Then the assignment of edges under f should start one

of the following: (i) {1},{2,3},{1},{2,3}..., (i) {2},{1,3},{2},{1,3}..., (iii) {3},{1,2},{3},{1,2}....

Thus, one can check that
n n 4n
* > | = —|>=
7ra(Cn) 2 [2-‘ +2L2J =73
Therefore, we have 7;i3(Cy) > %t
Define h : V(C,,) U E(C,,) — P([3]) by h(vi4si) = {1} for 0 < i < 252 h(’U2+3ﬂ}3+3z) =[3]for0<i< 2

and h(x) = 0 otherwise. It is easy to see that h is a M3RDF of C,, w1th welght . Thus, we have 7;55(Cy, )
4n
?.

e

Proposition 3.3. Forn > 2,
= if n is even;

VTS(Kn) = { 32n—1 if n is odd.
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Proof. Let V(K,) = {v1,...,vp}. If n is odd, then define g : V(K,) U E(K,) — P([3]) by g(v1) = {1},
g(v2;02;41) = [3] for 1 < i < ”Tfl and g(x) = () otherwise. It is easy to see that g is a M3RDF of K,, with weight
3n-1 If n is even, then define h : V(K,) U E(K,) — P([3]) by h(vai_1vs;) = [3] for 1 <i < 2 and h(z) =
otherwise. It is easy to see that h is a M3RDF of K,, with weight 37"

Now we claim that v5(K,) > 32 if n is even and v}5(K,) > 321 if n is odd. One can easily check that
Vi (K2) = 3, 753 (K3) = 4, and 73 (K4) = 6. We proceed by induction on n. Assume that n > 5.

Case 1. n is odd.
Let f be a 773 (K, )-function. If Y7 | [ f(vs)| = 0, then to dominate each v; we must have [3] C Ueen,, (v,)f(€)
for each v; € V(K,,). This implies that

25K = Y 1f(e)]=3n

i=1 e€Npr(v;)

Thus, 75(K,) > 251

Assume that Y1, [f(v;)| # 0. Without loss of generality, assume that f(vy) # 0. Define g : V(K,, — v1) U
E(K, —v1) — P([3]) by g(v;) = f(v;) U f(v1v;) for 2 < i < n and g(z) = f(x) otherwise. Then g is a
M3RDF with weight at most v} (K,,) — 1. By the induction hypothesis, we have

oK) 2 wlg) +12 () +1= 20y 3L
Case 2. n is even.
We choose a 775 (K,,)-function f so that the size of {v; € V(K,,) | f(v;) # 0} is as small as possible.
For an edge v;v; € E(K,,), if [f(vi)| + |f(v;)| + | f(vivj)| = 3, then define h : V(K,, — {v;,v;}) U E(K,, —
{vi,v;}) = P([3]) by h(vi) = f(vr) U f(vgvi) U f(vgv;) for vg, € V(K,) \ {vi,v;} and h(z) = f(x) otherwise.
Clearly h is a M3RDF with weight 7% (K,,) — 3. By the induction hypothesis, we have

3(n—2 3

oK) 2 wlh) +3 2 4y (Ka) +3= 20D g2 30
Assume that |f(v;)] + [f(v;)] + | f(vivj)] < 2 for any v;,v; € V(K,,).
For a vertex v; € V(K,), if |f(v;)] = 2, then define g : V(K,, — v;) U E(K,, — v;) — P([3]) by g(vx) =
fog) U fogy) for vy € V(K,) \ {v;} and g(x) = f(z) otherwise. Clearly g is a M3RDF with weight
~¥r5(Kp) — 2. By the induction hypothesis, we have

N N 3(n—1)—-1 3n

oK) 2 wlg) +22 () +2= 20Ty 30

Assume that |f(v;)] <1 for each v; € V(K,,).
Let N := {v; € V(K,) | f(v;) # 0}. For a fixed v; € N, suppose that there exists no v; € V(K,) such
that f(v;v;) # 0. Without loss of generality, we may assume that f(v;) = {1}. To dominate elements in
{viv | vk € V(EKn)\{vi}}, Useny oy f(2) should contain 2 and 3 for each vy, € V/(Ky,)\{vi}. Thus, we have
52,83 > &, where s := [{z € V(K,, —v;) UE(K, —v;) | j € f(2)}]. If f(z) # 0 for all x € Nps[vg] \ {vivr},
then >° cn, 1w [/ (@) = n. This implies 77i3(K;) > 38 Assume that for v, € V(K,) \ {v;} there exists
x € Ny[vg]\ {vivg} such that f(z) = (. Then to dominate such an element z, U, ¢y, () f(y) should contain
1. Thus, we have s; > % so that w(f) > |f(vi)| +s2 453 +51 =1+ 57”
Assume that for each v; € N there exists a vertex v; € V(K,) such that f(v;v;) # 0. Let ¢t be the size of
set N. For v; € V(Kn)\ N, Uzeny, (v, /(@) should contain [3]. For v; € N, U, e, (vy) (@) contains at least

one element. Thus, we have v (K,) > @ + (t+ %) = 2. This completes the proof. O



MIDDLE K-RAINBOW DOMINATION 3455

4. LOWER AND UPPER BOUNDS FOR TREES

In this section, we provide lower and upper bounds for the middle 3-rainbow domination number of trees in
terms of the matching number.

Theorem 4.1. For every tree T of order n, v55(T) <n+d'(T).

Proof. Take a maximum matching M in T. Let U be the set of vertices which are not saturated by M. Define
a function by f(e) = [3] for e € M, f(u) = {1} for u € U and f(x) = 0 otherwise. Clearly, f is a M3RDF of T'.
Thus, v/5(T) < |U| + 3|M| = (n—2d'(T)) 4+ 3a/(T) = n+ o/ (T). O

Lemma 4.2. Let T be a tree and P3 = wow a path in T with degp(v) = 2 and degp(w) = 1. Then | f(uv)| +
[f ()] + [f(ow)| + [f(w)| = 3 for any 775(T)-function f.

Proof. Tf f(w) = 0, then to dominate w it follows that f(vw) = [3]. If f(vw) = 0, then to dominate vw it
follows that f(uv) U f(v) U f(w) = [3]. If f(v) =0, then to dominate v it follows that f(uv)U f(vw) = [3]. In
the above cases, we have |f(uv)| + |f(v)| + |f(vw)| + | f(w)] > 3. If f(w), f(vw) and f(v) are not empty, then
|f ()| + |f(v)| + |f(vw)| + | f(w)] > 3. This completes the proof. O

5a’(T)

Theorem 4.3. For every tree T, v;5(T) > 2=

Proof. We proceed by induction on the order n of T'. Obviously, the statement is true for all trees of order
n < 4.

Let T be a tree of order n > 5. Suppose that every tree 7" of order n/(< n) satisfies 5 (T") > %(T/) Let
M be a maximum matching in 7. If T is a star, then o/ (T) =1 and so n+ 1 = 7%5(T) > 3. Assume that T is a
double star DS, ; with p > ¢ > 1. Then &/(T) = 2 and so n+ 1 = v}5(T) > 5. Now we assume that T is neither
a star or a double star. Then it is easy to see that T has diameter at least four.

If T has a pendant edge uv such that v is a leaf and uv € M, then for any 75 (7T)-function f, the function
g: V(T —v)UE(T —v) defined by by g(u) = f(u)U f(uv) and g(z) = f(x) otherwise is a M3RDF of T'— v with
weight at most w(f). By the induction hypothesis, we have %5 (T) > 755 (T —v) > 5a/(§_v) = 5“/2(T). Thus, we
assume the following.

Assumption 4.4. All pendant edges of T' belong to each maximum matching.

Then it follows that all support vertices have degree 2. If A(T) = 2, then T is a path. So, the result
follows by Proposition 3.1. From now on, assume that A(T) > 3. Among all of diametrical paths in T, we
choose xgz1,...,xq so that it maximizes the size of f(z4—2). Root T at zg. It follows from Lemma 4.2 that
If (@a—awa—1)| + | f(xa—1)| + |f(a—124)| + | f(z4)| > 3. We divide our consideration into three cases.

Case 1. deg(x4—2) > 3.
First, suppose that there is a path x4_oyz in T such that z is a leaf and y € {x4_3,24—1}. Then it follows
from Lemma 4.2 that |f(2)| + | f(y2)| + |f(v)] + | f(za—2y)| = 3. Without loss of generality, we may assume
that
|f(za—29)| > | f(zd—274-1)]- (4.1)

Let T" =T — {x4-1,24}. Then clearly o/(T") = o/(T) — 1. Since both f(z4—2y) and f(z4_224-1) are not
(3], the assumption (4.1) implies that f|y g is a MBRDF of T” with weight at most w(f) — 3. By the

induction hypothesis, we have v (T) > %5 (T") + 3 > % +3= w +3> w
Now assume that every element of C(z4—2) \ {x4-1} is a leaf. Then it follows from Assumption 4.4 that
|C(z4—2) \ {za-1}| = 1. Let v € C(xq-2) \ {za-1}. If f(v) = 0, then z4_ov can not dominate v. Thus, we

must have f(v) # 0. We consider the following subcases.
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Subcase 1.1. |f(z4—2z4-1)| < 1.
This implies that |f(zq—1)| + |f(za—124)| + |f(zq)| = 3. Let T = T — {x4_1,24}. Define g : V(T') U
E(T") — P([3]) by g(x4—2) = f(zg-2) U f(zg—2z4-1) and g(x) = f(z) otherwise. Clearly g is a M3RDF
of T” with weight w(f) — 3. The result follows as above.

Subcase 1.2. |f(z4—224-1)] > 2.
It is easy to see that | f(xg—1)|+|f (@a—12a)|+|f(xa)| = 4—|f(®a—22a-1)|. Let T/ = T—{xg4—2,v, 4—1, Ta}-
Define g : V(T)UE(T') — P([3]) by g(xa—3) = f(zda—3)Uf(z4—324—2) and g(x) = f(z) otherwise. Clearly
g is a M3RDF of T" with weight w(f) — 5. By the induction hypothesis, we have v/5(T) > v/5(T") +5 >
Sa/éT') +5= 5(a'(§)—2) +5= 50/2(T) )

Case 2. deg(xq—2) = 2 and deg(zq4—3) > 3.

It follows from Assumption 4.4 that x4 _3zq_o, x4 124 € M. If there exists a path x4_sxyz in T such that
x &€ {xq_2,24-4} and z is a leaf. By Case 1 and Assumption 4.4, we may assume that deg(z) = deg(y) = 2. It
follows from Assumption 4.4 and x4_sz4—2 € M that x4_sz,xy ¢ M. But, (M \ {yz}) U{zy} is a maximum
matching in 7' not containing a pendant edge, a contradiction.

It follows from deg(zy—3) > 3 that there exists a path z4_3yz such that deg(y) = 2 and z is a leaf.
By Lemma 4.2, we have |f(z4_2a1)| + |f(za_1)| + | (za 120)| + |f(za)] > 3 and |f(wa_sy)| + £ ()] +
|fyz)| +|f(2)] = 3.

Since f is a )5 (T)-function, it is easy to see that
4> S(x4-3yz) >3 and 6 > S(vq_324—2T4—174) > 4,

where S(za_ay%) = |/ (2a_s)l+ |f(za_sy)+ |F()] +1f @) +1£()] and S(za_sza_sza 1) = |f (2as)|+
|f(za—3za—2)| + |f(®a—2)| + |f(@a—2Ta-1)| + | f(®a-1)| + |f(za-17a)| + | f(2a)]-

If S(z4—324-224—124) = 6, then without loss of generality we may assume that f(xg_sxq—2) = f(x4—124) =
[3]. Let T" = T — {x4_1,24}. The function f|yryupr) is a MBRDF of T” with weight w(f) — 3. By the

induction hypothesis, we have v (T) > %5 (T") + 3 > % +3= w +3> w
If S(z4-3yz) = 3, then [f(y)| + |f(y2)| + | f(2)| = 3 and f(x4-3) = f(za—3y) = 0. Let T" =T — {y, z}. The
function fly (ryugr) is a M3RDF of T with weight w(f) — 3. The result follows as above.
Now we assume that S(x4_3yz) =4 and 5 > S(z4-324—22q-124) > 4. Then without loss of generality we
may assume that f(xq_sy) = [3] and f(z) = {1}.
If S(x4—3%4—224—124) = 5, then define g : V(T) U E(T) — P([3]) by g(za—2) = {1}, g(xa—124) = [3] and
f(xa—3) = f(®g—3x4—2) = f(xa—2Ta-1) = f(4—1) = f(zq) = 0. Clearly g is a M3RDF of T" with weight
w(f) — 1, a contradiction.
Assume that S(z4_32x4—224—124) = 4. Then without loss of generality we may assume that f(z4—2) = {1}
and f(x4-12q) = [3]. Let T" = T — {wq_1,74}. The function f|y(ryurr) is a MBRDF of T with weight
w(f) — 3. The result follows as above.

Case 3. deg(xzq—2) =2 and deg(z4_3) = 2.
If f(za—aza—3) = [3], then it is easy to see that |f(z4—s3)| + [f(za—3za—2)| + |f(za—2)| + [f(zd—224-1)] +
[f(@a—1)|+|f(xa—1za)|+|f(xq)| = 4, since f is a v}5(T)-function. Without loss of generality, we may assume
that f(z4—174) = 3], f(za—2) = {1} and f(z4-3) = f(Ta—3Ta—2) = f(Ti-2Ta-1) = f(va-1) = f(za) = 0.
Let 7" =T — {xq_1,2za}. Then clearly o/(T") = o/(T) — 1 and f|y(ryup(r) is a M3RDF of 7" with weight
at most w(f) — 3. By the induction hypothesis, we have %5 (T) > vx5(T")+3 > Sa/éT/) +3= 5(‘}/(?)71) +3>
50/ (T)

5.

If f(zq—awa-3) # [3], then it is easy to see that |f(za—3)| + [f(Za—3za—2)| + [f(za-2)| + |f(Ta—2za-1)] +
|[f(za—1)|+|f(@a—1za)|+|f(zq)| = 5, since f is a v (T)-function. Without loss of generality, we may assume
that f(za—3) = f(za) = {1}, f(za—22a-1) = [3] and f(z4-324-2) = f(Ta-2) = f(24-1) = f(Ta-124) = 0.
Let 7" =T —T,,_,. Define g : V(T")UE(T") — P([3]) by 9(x4-1) = f(®4—1)U f(xg—az4—3) and g(z) = f(z)
otherwise. Then clearly o/ (T") = o/(T) — 2 and g is a M3RDF of 7" with weight at most w(f) — 5. By the
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induction hypothesis, we have v%(T) > v%5(T") +5 > w +5= W +5= w This completes

the proof. O

5. THE 3-RAINBOW DOMATIC NUMBER FOR THE MIDDLE GRAPH OF PATHS AND CYCLES

In this section, we determine the 3-rainbow domatic number for the middle graph of paths and cycles.
Theorem 5.1 (See [11]). If G is a graph of order n, then Y1 (G) - di(G) < kn.
Theorem 5.2 (See [11]). For every graph G, d.(G) < §(G) + k.
Proposition 5.3. Forn >4 and n =0 (mod 2), d.3(M(P,)) = 4.

Proof. By Theorem 5.2, d,.3(M(P,)) < 4.
Let P, = vqva, ..., v,. Define the 3-rainbow dominating functions f1, fo, f3, f1 as follows:
f1(vipoiv949;) = [3] for 0 < i < "T’2 and f;(z) = 0 otherwise,

fa(vigai) = {1}, fa(vagai) = {2} for 0 < i < 252, fo(vaqaivsya) = {3} for 0 < i < 2524 and fo(z) = 0
otherwise,

fa(vr2i) = {2}, fa(vayai) = {3} for 0 < i < 32, fy(vayoivaia) = {1} for 0 < i < 25% and fy(z) = 0
otherwise,

fa(vigei) = {3}, fa(vayai) = {1} for 0 < i < 252, fy(vayoivsye;) = {2} for 0 < i < 254 and fy(z) = 0
otherwise.

Then clearly f; is a 3-rainbow dominating function on M (P, ) for each i. Thus, {f1, f2, f3, f4} is a family of
3-rainbow dominating functions on M (P,). O

Proposition 5.4. Forn >4, d.3(M(C,)) = 4.

Proof. By Theorem 5.1, v,.3(M(C,,))-dr3(M(Cy)) < 3-2n. It follows from Proposition 3.2 that d.5(M(Cy,)) < 4.
Let C\, = v1vs, ..., v,v1. We consider the following two cases.

Case 1. n is even.
Extend the 3-rainbow dominating functions fi, f, f3, f4 in Proposition 5.3 as follows:

g1(vpv1) =0 and g1 (x) = f1(z) otherwise,

g2(vpv1) = {1} and go(x) = fo(x) otherwise,

g3(vnv1) = {1} and gs(z) = f3(z) otherwise,

ga(vpv1) = {1} and g4(z) = fa(z) otherwise.

Case 2. n is odd.
Then n — 1 > 4 is even. Let f1, fo, f3, f4 be the 3-rainbow dominating functions on M (P,_1) given by
Proposition 5.3. Extend them as follows:

91(Un—1vy) = 0, g1(vn) = {1}, g1(vpv1) = () and g1(x) = fi(z) otherwise,

92(vn-1v5) = {3}, g2(vn) = {2}, g2(vyv1) = 0 and go(z) = fo(z) otherwise,

93(0n-10a) = {1}, g5(vm) = {3}, ga(vavr) = 0 and ga(z) = fo(2) otherwise,

9a(vn—105) =0, ga(vn) = 0, ga(vyv1) = [3] and ga(x) = fa(z) otherwise.

In any case, clearly g; is a 3-rainbow dominating function on M(C,,) for each i. Thus, {¢1,92,93,94} is a

family of 3-rainbow dominating functions on M (C),). O
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