
RAIRO-Oper. Res. 55 (2021) 3379–3397 RAIRO Operations Research
https://doi.org/10.1051/ro/2021160 www.rairo-ro.org

DESIGNING SCREEN LAYOUT IN MULTIMEDIA APPLICATIONS THROUGH
INTEGER PROGRAMMING AND METAHEURISTIC

Pedro Henrique González1,* , Glauco Amorim1 , Ueverton S. Souza2 ,
Igor Morais1 , Joel dos Santos1 , Vanessa de A. Guimarães1 and

Glaydston M. Ribeiro3

Abstract. Binding audiovisual content into multimedia applications requires the specification of each
media item, including its size and position, to define a screen layout. The multimedia application
author must plan the application’s screen layout (ASL), considering a variety of screen sizes where the
application shall be executed. An ASL that maximizes the area occupied by media items on the screen is
essential, given that screen space is a valuable asset for media broadcasters. In this paper, we introduce
the Application Screen Layout Optimization Problem, and present its 𝒩𝒫-hardness. Besides,
two integer programming formulations and an Iterated Local Search (ILS) metaheuristic are proposed
to solve it. The efficiency of the proposed methods is evaluated, showing that the metaheuristic achieves
better results and is at least 12 times faster, on average, than the mathematical formulations. Also, the
proposed approaches were compared to a layout design algorithm, showing their effectiveness.

Mathematics Subject Classification. 90-05.

Received April 12, 2021. Accepted October 18, 2021.

1. Introduction

In multimedia applications an application’s screen layout (ASL) consists of the disposition of visual content
on the screen. It is usually defined by indicating the position of each media item relative to the screen, where
for each media item its attributes are set in relation to the screen top-left corner. In general, languages enable
the application author to define such values either in pixels or percentage [1].

The multimedia application author, usually a content producer, has to plan the ASL and, possibly, consider
a variety of screen sizes where the application shall be executed. Analyzing different interactive multimedia
applications transmitted in real applications and/or stored in an application repository called Clube NCL [7],
we can find presentation characteristics common to most. It was noticed that the media objects were arranged
using a grid structure to determine candidate positions. These structure is important because all the media
objects arrangement use these points as candidates to create the application layout.

Keywords. Screen layout planning, integer programming, ILS.

1 CEFET/RJ - Federal Center for Technological Education of Rio de Janeiro, Rio de Janeiro, Brazil.
2 UFF - Fluminense Federal University, Rio de Janeiro, Brazil.
3 UFRJ - Rio de Janeiro Federal University, Rio de Janeiro, Brazil.
*Corresponding author: pegonzalez@eic.cefet-rj.br

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021160
https://www.rairo-ro.org
https://orcid.org/0000-0003-0057-7670
https://orcid.org/0000-0001-6110-7424
https://orcid.org/0000-0002-5320-9209
https://orcid.org/0000-0003-2006-5250
https://orcid.org/0000-0001-7234-613X
https://orcid.org/0000-0001-7662-3499
https://orcid.org/0000-0001-8452-057X
mailto:pegonzalez@eic.cefet-rj.br
https://creativecommons.org/licenses/by/4.0

3380 P.H. GONZÁLEZ ET AL.

Figure 1. An application’s screen layout for a screen 𝑅 with a grid of center points 𝐺𝐶 .

Although several tools have been used to rearrange media objects on a screen [3, 9, 10], whether on the
smartphone or television, these techniques are not intended to create an optimized layout. The literature’s
known tools do not guarantee that the layout produced will be maximized concerning the display screen’s
occupation. Since an ASL that maximizes the area occupied on the screen by media items is essential, due
screen space is a valuable asset for media broadcasters, in this paper, we introduce and study the Application
Screen Layout Optimization Problem (ASLOP), the problem of finding an ASL (a subset of items and their
positions) from a set of media items that, when distributed on the screen, maximize the occupied area and
avoids overlap of items. This problem is especially difficult when the number of media items to be distributed
on the screen grows. Its description is as follows.

Input: A large rectangle 𝑅 (the application screen) with integer dimensions, a set of smaller
rectangles 𝑀 (set of media items) also having integer dimensions, and a set 𝐶 of
points within the screen 𝑅 forming a grid 𝐺𝐶 (candidate central points of media
items) where the distance between consecutive points of 𝐺𝐶 on the 𝑥-axis and the
𝑦-axis are not necessarily the same.

Goal: Find a subset 𝑆 of pairs (𝑟, 𝑐), 𝑟 ∈ 𝑀 , 𝑐 ∈ 𝐶 (media items and their center’s
position) which fits inside the screen, maximizing the covered area of 𝑅 without
overlapping items.

Application Screen Layout Optimization Problem

Figure 1 illustrates an application’s screen layout obtained from a set of media items for a screen 𝑅 with a
grid of central points 𝐺𝐶 .

Following the typology defined in [38], from a combinatorial optimization point of view, ASLOP can be
categorized respectively as (i) two-dimensional, since it considers both axes 𝑥 and 𝑦; with a (ii) strongly hetero-
geneous assortment, since there are many items of many different shapes or sizes; it has (iii) one large object
(the screen); and (iv) regular small items, given that media items are rectangles.

In fact, ASLOP fits in the Cutting and Packing class of problems. Cutting and Packing (C&P) is a class
of optimization problems with a wide range of applications in resource management, such as wood or glass
industries, warehousing context, newspaper paging and, most recently, web browser layout [13,38,39].

In particular, ASLOP is closely related to widely studied optimization problems such as Two-dimensional
knapsack, Rectangle Packing, and Guillotine Cut problem.

Although there are several problems related to fitting rectangles within a larger one, due to the constraints
concerning the grid of central points, none of these classical problems correctly model the Application Screen

DESIGNING SCREEN LAYOUT IN MULTIMEDIA APPLICATIONS 3381

Figure 2. (A) A feasible solution for Two-dimensional Knapsack/Rectangle Packing;
(B) an optimal solution for ASLOP considering only media items having the same shape.

Layout Optimization Problem. The classical problems do not consider that each rectangle in the solu-
tion needs to be assigned to a candidate center. Once this characteristic is clear, it is not difficult to verify
that ASLOP behaves differently than Two-dimensional Knapsack, Rectangle Packing, and Guillo-
tine Cut problem, for example. Figure 2 shows that a solution for Rectangle Packing as well as Two-
dimensional Knapsack may not be a solution for ASLOP.

In addition, Figure 1 shows that a solution for ASLOP, may not be a solution for the Guillotine Cut
Problem as well as Figure 2 illustrates that an optimal solution for Guillotine Cut Problem may not be
a solution for ASLOP.

Therefore, one may conclude that although ASLOP belongs to the same class of problems such as Two-
dimensional Knapsack, Rectangle Packing and Guillotine Cut Problem, none of them can be used to
solve ASLOP. Other researches that work with problems similar to ASLOP can be found in [4,6,11,18,19,23,36].
However, given its specific characteristics, previous techniques may not be directly applied to solve it.

Motivated by its real applicability in the area of Webmedia, as well as its challenging combinatorial nature
from the point of view of the Optimization field, in this paper, we analyze the complexity of the ASLOP problem
as well as develop tools to solve it. First, we prove that the problem is 𝒩𝒫-hard then, from a parameterized
complexity perspective, we show that the problem is fixed-parameter tractable with respect to the area to be
covered. Next, we present two integer programming formulations. Moreover, considering the limitations of the
two proposed integer programming formulations to find high quality solutions and prove optimatility, an Iterated
Local Search (ILS) metaheuristic was also proposed to solve the ASLOP. The efficiency of both formulations
and the ILS was evaluated and compared through the analyzes of the covered area for several data sets.

The remaining of this paper is organized as follows. Section 1.1 presents the problem’s motivation inspired
by multimedia applications and related works to solve the applied problem in practice. Section 2 shows an 𝒩𝒫-
hardness proof for ASLOP, and present a kernelization algorithm which allows us to observe that the problem is
fixed-parameter tractable (ℱ𝒫𝒯) concerning the area to be covered by the media items as parameter. Section 3
presents two integer programming formulations to solve ASLOP and an ILS metaheuristic. Section 4 presents
experiments using the proposed formulations and a comparison between them. Finally, Section 5 concludes this
paper and presents future work.

1.1. Motivation and related works

The multimedia production pipeline for digital TV and IPTV includes steps from the planning of the audio-
visual content to be presented, their capture and binding into an application latter deployed to the spectator [5].
Binding audiovisual content into a multimedia application is usually performed using specific domain languages,
such as HTML5 (HyperText Markup Language) [33], SMIL (Synchronized Multimedia Integration Language) [32]
and NCL (Nested Context Language) [20]. Those languages focus on presenting audiovisual content, such as

3382 P.H. GONZÁLEZ ET AL.

videos, audios, and images, synchronized in time and distributed along the exhibition device screen. Recently,
some languages are able to provide synchronization between audiovisual content and sensory effects [27].

Initiatives such as Hybrid broadcast broadband TV (HbbTv) [17] and Integrated broadcast-broadband sys-
tems [21] indicates that Digital TV marketplace is an interesting research area. In this scenario, some studies
such as [24, 25] present that broadcasted television shows are becoming more interactive allowing even home
viewers to be part of them. Therefore, interactive TV applications with enjoyable layouts are desirable for users.

Many research attempts to address the designing of screen layouts in multimedia applications in different
ways. One approach is to provide authoring tools to ease the creation of the ASL, such as [3,9,10], where tools
are proposed to represent media items and enable the author to rearrange such medias in the tool interface.
Once the ASL is created, the tool generates the corresponding code in the language used for the application
creation.

CSS Flexible Box Layout enables the author to define a region on the screen (called flex container and flex
items) composed of a set of spatial properties, such as direction, wrap, and justify-content, and alignment [34].
It focuses on space distribution in a primary axis using a bottom-up approach to arrange items. It can also
use a content-sizebased line-wrapping system to control its secondary axis. CSS Grid Layout controls the sizing
and positioning of regions and their contents [35]. Unlike CSS Flexible Box Layout, it works considering the
arrangement of items in both dimensions. Using CSS Grid Layout authors can adapt the ASL to changes in the
presentation device, such as factors, orientation, and available space. It combines CSS media queries with CSS
properties that control the disposition of the grid container and its children during a presentation.

Adaptive layouts are templates where the author defines the ASL by means of predefined arrangements, such
as grids and flows1 [1]. At processing time, media items are distributed on the screen according to the chosen
arrangement definition, such as its size, its items size and so on. Such approach works associating media items
with a given layout arrangement (grid or flow) in the order they are declared in the document. Therefore, while
rendering the layout, presentation characteristics are created according to the number of media items associated
with each layout arrangement, following a similar approach to CSS [35].

Depending on the approach used for providing an adaptive layout, some media items may not be displayed
because the screen size was not sufficient to accommodate them. W3C [34, 35] requires the presentation of all
available items on the available screen. When the available screen area is not sufficient for presenting all items,
it does not provide a solution. Amorim et al. [1] creates a partition considering the media item’s order in the
document. CSS uses scroll bars to enable the presentation of all media items.

Although several tools have been used to rearrange media objects on a screen, whether on the smartphone
or on television, these techniques are not intended to create an optimized layout. These tools do not guarantee
that the layout produced will be maximized in relation to the occupation of the display screen.

To summarize, we propose tools to support multimedia application authors to create an ASL that maximizes
the occupied area on the screen, thus solving the ASLOP. We follow an alternative approach where we neither
use the order of media items declared in the document to create the spatial arrangement nor create media
item partitions when the available space is not sufficient to accommodate them all [1]. Instead, the proposed
approach uses integer programming formulations to choose media items that maximize the occupied area. Some
media items may not be displayed because the screen size was not sufficient to accommodate them. However,
it is possible to perform a second round to choose the next subset of media items to be displayed.

From a practical standpoint, the rational use of the screen becomes even more relevant during the COVID-
19 pandemic, since most parts of the daily activities are being performed online. These activities are diverse,
including from e-commerce to home-office. As a result, platforms used to work meetings grew vertiginously:
Google Hangout, for instance, grew to 60% daily in March, while Zoom jumped from 10M to 220M users from
12/2019 to 03/2020 [28].

Regarding trade, according to a Brazilian report about Economy and Consumption during the pandemic,
although the Trade Sales Index of Brazilian Retailer registered 25.1% retraction in the same month of the

1The paper also proposes other predefined arrangements, but for simplicity, we do not address them here.

DESIGNING SCREEN LAYOUT IN MULTIMEDIA APPLICATIONS 3383

previous year, the e-commerce has grown 32.6% in the number of orders [28]. Then, considering that the
maximization of the screen use could promote a more significant number of ads incentivizing e-commerce, this
research becomes relevant to help, albeit indirectly, in the marketing and sales areas.

2. Computational complexity

Once having explained the importance of ASLOP to the field of study and the applied area, it is necessary
to show the difficulty in solving it, which combined with its relevance, would justify our study.

Theorem 2.1. The Application Screen Layout Optimization Problem is 𝒩𝒫-hard.

Proof. The proof uses a reduction from the Subset Sum problem, shown to be NP-hard by [22]. In Subset Sum
we are given 𝑛 elements, {𝑎1, . . . , 𝑎𝑛} and a target 𝑏. We are asked to determine whether there is a subset of
elements 𝑎𝑖 which adds up exactly to 𝑏.

Let us consider an instance of Subset Sum, formed by a finite set 𝐴, such that |𝐴| = 𝑛 and each 𝑎𝑖 ∈ 𝐴 is an
integer greater than zero. Moreover, consider 𝑏 a positive integer. From this instance we construct an instance
of ASLOP as follows:

– create a rectangular screen 𝑀 of dimension 1× 𝑏;
– for each 𝑎𝑖 ∈ 𝐴, create a rectangular media item 𝑚𝑖 of dimension 1× 𝑎𝑖;

Now, consider the bottom-left and top-right corners of the screen 𝑅 at points (0, 0) and (1, 𝑏) of the Cartesian
space:

– Let 𝐺𝐶 be the grid formed starting at the point (0, 0) in such a way that the distance between consecutive
points of 𝐺𝐶 on the 𝑥-axis as well as the 𝑦-axis is 0.5, and the top-right point is (1, 𝑏).

Since, by construction, the height of the screen and of all media items are equal to 1, it is easy to see that
there is a subset 𝑋 ⊆ 𝐴 with

∑︀
𝑥∈𝑋 𝑥 = 𝑏 if and only if there is a subset 𝑍 of media items that occupy the

entire screen area.
If the reader feels more comfortable having elements with both height and width of non-unitary value, to

modify the proof, just create a media of size 𝑟 + 1× 𝑏, where 𝑟 =
∑︀

𝑎𝑖∈𝐴 𝑎𝑖 (the sum of the values in 𝐴), and 𝑏
is the target value of Subset Sum. In addition, we make the screen size equal to 𝑟 + 2× 𝑏, and increase the grid
proportionately. In this way, a solution occupying the entire screen will exist if and only if, in addition to using
the media of size 𝑟 + 1× 𝑏, there is a set of medias that correspond to a Subset Sum solution. �

As shown in Theorem 2.1, the problem remains NP-hard even when both the screen and the input medias
have height equal to one. Next, we present an analysis of the relationship between the complexity of the problem
and the size of the solution. More precisely, we show that the problem is fixed-parameter tractable concerning
the size of the solution as parameter. More details on Parameterized Complexity can be found in [8] and [12].

Theorem 2.2. The problem of determining whether there is a set of media items that cover an area of size at
least 𝑘 of the application screen without overlapping them is fixed-parameter tractable when parameterized by 𝑘.

Proof. Considering the problem of determining whether there is a solution covering an area of size at least 𝑘
(the size of the solution to be found), a kernel can be obtained by applying the following reduction rules:

(1) Remove all media that do not fit the screen;
(2) If the sum of the remaining items areas is less than 𝑘, return No;
(3) If any remaining item has an area of size at least 𝑘, return Yes.

If Rules 2 or 3 were applied then the problem was solved. Otherwise, the number of different media items
shapes is bounded by 𝑘2. Since the height/width of the medias are integers, a minimal set of media covering
an area of size at least 𝑘 contains no more than 𝑘 items. Therefore, the following reduction rule can be
safely applied.

3384 P.H. GONZÁLEZ ET AL.

Figure 3. Screen grid and possible centers. The figure presents a 3x3 grid, considering the
smallest dimensions find in media items. Centers are distributed from the upper-left corner to
the bottom-right corner.

(4) For each media item shape remove all but 𝑘 items.
Now, the number of remaining media items is bounded by 𝑘3.

(5) If the distance between consecutive points of 𝐺𝐶 on the 𝑥-axis (as well as the 𝑦-axis) is greater than 𝑘,
contract it to 𝑘 by applying a directional scaling.
Note that if on a given axis the distance between any two points on the grid is at least 𝑘, then there will
be no overlap with respect to that axis, since the area of each item is less than 𝑘 and the points of the grid
are central positions. Thus, contraction up to 𝑘 is safe.

(6) Similarly to the previous rule, we reduce up to 𝑘
2 (if necessary) the distance between the edges of the border

of 𝑅 to the bottom-left and top-right points of the grid.
Finally, it remains to apply the last reduction rule:

(7) If the screen has a height or width greater than 2𝑘2 − 𝑘, return Yes.
The safety of Rule 5 follows from the fact that all the remaining media items fit the screen and have a
height and width less than 𝑘. Note that 2𝑘 is a safe distance between two central points on the same line
as 𝑘

2 is a safe distance from a central point to the border. Thus, if the height of the screen is greater than
2𝑘2−𝑘 then we can insert it into the screen, in a top-down manner, the remaining 𝑘 media of greater area.
Analogously, if the width of the screen is greater than 𝑘2 then we can insert on the screen, in a left-right
manner, the remaining 𝑘 media of greater area.

After applying the reduction rules above, we either assert Yes or No to the decision problem, or we conclude
that the screen has a height and width less than 2𝑘2 − 𝑘 and return an instance with at most 𝑘3 smaller media
items composing a polynomial-sized kernel for the problem.

Since a problem is ℱ𝒫𝒯 if and only if it has a kernel (see [12]), the claim holds. �

Theorem 2.2 shows that if the threshold size of the desired area to be covered is small then the problem can
be efficiently solved.

3. Tools to solve ASLOP

The ASLOP presents several difficulties in its modeling and solving. First of all, if each possible coordinate
inside the screen is a candidate to be the center of a media, the non-overlapping constraints would necessarily

DESIGNING SCREEN LAYOUT IN MULTIMEDIA APPLICATIONS 3385

be non-convex constraints, which is not a good thing when working with integer programming problems [37]. In
order to avoid that kind of situation, it was decided to use a discretization of the screen, creating a grid where
each point would be a center candidate. Figure 3 represent this idea for a 3x3 grid.

Considering that each media item 𝑟 ∈ 𝑅 has an associated width 𝑤𝑟 and height ℎ𝑟, the generated grid has
its points created using 𝛥𝑤 and 𝛥ℎ, which are, respectively, the smallest width and the smallest height of the
candidate media items.

𝛥𝑤 = {𝑤𝑟 | 𝑤𝑟 ≤ 𝑤𝑟 ∀ 𝑟, 𝑟 ∈ 𝑅} (3.1)

𝛥ℎ = {ℎ𝑟 | ℎ𝑟 ≤ ℎ𝑟 ∀ 𝑟, 𝑟 ∈ 𝑅}. (3.2)

This means that after centering the origin (0, 0) in the upper-left corner of the screen, every candidate center
can be found through the expression (ℎ1

𝛥𝑤

2 , ℎ2
𝛥ℎ

2), where ℎ1 ∈ [1, 2 𝑚
𝛥𝑤

− 1] ∩ Z and ℎ2 ∈ [1, 2 𝑛
𝛥ℎ

− 1] ∩ Z.
Having defined the grid and consequently a set 𝐶 of possible centers, the two integer programming formulations
can be defined.

The remainder of this section is organized as follow: Subsection 3.1 presents the first formulation proposed,
called Distance Formulation. In Subsection 3.2, a second integer programming formulation based on the inde-
pendent set problem [31] is presented. At last, Subsection 3.3 presents the soft computing techniques.

3.1. Distance formulation

Let 𝑐.𝑥 and 𝑐.𝑦 be defined as the x-coordinate and y-coordinate of center 𝑐 ∈ 𝐶. Through a preprocessing
procedure, one can create sets 𝑅(𝑐) which contains all media items 𝑟 that may be centered in center 𝑐 without
trespassing the borders of the screen. Following the same idea, it is possible to define 𝐶(𝑟) as the set of all
possible centers for media item 𝑟, for whom the border of the screen is not trespassed if 𝑟 is placed in center 𝑐.
In order to verify whether an overlapping happens, given 𝑟, 𝑟 ∈ 𝑅, 𝑐 ∈ 𝐶(𝑟) and 𝑐 ∈ 𝐶(𝑟) whenever the following
expressions hold true, items 𝑟 and 𝑟 cannot be placed at centers 𝑐 and 𝑐 simultaneously:

(︀
𝑟.𝑥 + 𝑤𝑟 ≥ 𝑟.𝑥 ∧ 𝑟.𝑥 + 𝑤𝑟 ≥ 𝑟.𝑥

)︀
(3.3)

(︀
𝑟.𝑦 + ℎ𝑟 ≥ 𝑟.𝑦 ∧ 𝑟.𝑦 + ℎ𝑟 ≥ 𝑟.𝑦

)︀
(3.4)

where 𝑟.𝑥, 𝑟.𝑦, 𝑟.𝑥 and 𝑟.𝑦 can be defined as:

𝑟.𝑥 = 𝑐.𝑥− 𝑤𝑟

2
𝑟.𝑥 = 𝑐.𝑥− 𝑤𝑟

2
(3.5)

𝑟.𝑦 = 𝑐.𝑦 − ℎ𝑟

2
𝑟.𝑦 = 𝑐.𝑦 − ℎ𝑟

2
· (3.6)

The relations described by equations (3.3) and (3.4) can be seen graphically in Figure 4.
To facilitate the notation lets create the function 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔(𝑟, 𝑟, 𝑐, 𝑐) that returns 𝑡𝑟𝑢𝑒 if both equa-

tions (3.3) and (3.4) are true, otherwise, false. At last, let 𝑝𝑐
𝑟 ∈ {0, 1}, ∀𝑟 ∈ 𝑅,∀𝑐 ∈ 𝐶(𝑟), be a decision

variable associated to the media item 𝑟 ∈ 𝑅 and center 𝑐 ∈ 𝐶, which represents whether media item 𝑟 is placed
in center 𝑐. Having defined all the necessary elements, the ASLOP can be formulated as an integer programming
problem as follows.

3386 P.H. GONZÁLEZ ET AL.

Figure 4. Graphical representation of two overlapping media items 𝑟 and 𝑟. Overlapping is
calculated in both axes 𝑥 and 𝑦 using equations (3.3) and (3.4). Initial points (𝑟.𝑥, 𝑟.𝑦) and
(𝑟.𝑥, 𝑟.𝑦) are obtained using equations (3.5) and (3.6).

max
∑︁
𝑟∈𝑅

∑︁
𝑐∈𝐶

𝐴𝑟𝑝
𝑐
𝑟

s.t. 𝑝𝑐
𝑟 + 𝑝𝑐

𝑟 ≤ 1, ∀𝑟 ̸= 𝑟 ∈ 𝑅, 𝑐 ∈ 𝐶(𝑟), 𝑐 ∈ 𝐶(𝑟)|
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔(𝑟, 𝑟, 𝑐, 𝑐) = 𝑡𝑟𝑢𝑒∑︁

𝑟∈𝑅(𝑐)

𝑝𝑐
𝑟 ≤ 1, ∀𝑐 ∈ 𝐶

∑︁
𝑐∈𝐶(𝑟)

𝑝𝑐
𝑟 ≤ 1, ∀𝑟 ∈ 𝑅

𝑝𝑐
𝑟 ∈ {0, 1}, ∀𝑟 ∈ 𝑅,∀𝑐 ∈ 𝐶(𝑟).

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

The objective function (3.7) states the maximization of the sum of the chosen media items’ area. In this
function, 𝐴𝑟 is the area of a rectangle. Constraints (3.8) ensure that no overlapping is allowed between chosen
media items. Constraints (3.9) ensure that each center 𝑐 can have assigned to it at most one media item
𝑟. Constraints (3.10) ensure that one media item 𝑟 can be used at most one time in the solution. At last,
Constraint (3.11) define the domain of the decision variables.

3.2. Independent set formulation

In order to use this formulation one must build a conflict graph [2] 𝐺 = (𝑉,𝐸), such that each vertex 𝑖 ∈ 𝑉 is
associated to a pair (𝑟, 𝑐) and has a cost 𝑣𝑖 = 𝐴𝑟, where 𝐴𝑟 remains the area of a rectangle. In this graph, given
two vertex 𝑖 ∼ (𝑟, 𝑐) and 𝑗 ∼ (𝑟, 𝑐), whenever at least one of the expressions 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔(𝑟, 𝑟, 𝑐, 𝑐), or 𝑟 = 𝑟,
or 𝑐 = 𝑐 is true, an edge (𝑖, 𝑗) is added to 𝐸. Let 𝜋 ∈ {0, 1}|𝑉 | be decision variables which represent whether
a vertex is in the solution. Once this graph was build and the decision variables were defined, another integer
programming formulation to represent the ASLOP can be defined as follows.

max
∑︁
𝑖∈𝑉

𝑣𝑖𝜋𝑖

s.t. 𝜋𝑖 + 𝜋𝑗 ≤ 1, ∀(𝑖, 𝑗) ∈ 𝐸

𝜋 ∈ {0, 1}|𝑉 |.

(3.12)

(3.13)

(3.14)

DESIGNING SCREEN LAYOUT IN MULTIMEDIA APPLICATIONS 3387

The objective function (3.12) states the maximization of the sum of the chosen media item’s area. Con-
straints (3.13) ensure that overlapping and multiple use of the same media item is not allowed. At last, Con-
straints (3.14) define the domain of the decision variables.

3.3. Soft computing techniques

In this section an Iterated Local Search [26] to solve the ASLOP is presented. This subsection is organized in
such way that the following three subsection present the components of the ILS and the last one present how
these components are combined in the proposed approach.

3.3.1. Constructive heuristic

Soft computing techniques are being used to deal with many layout optimization problems [16,40]. The con-
structive heuristic applied here uses the black-box LocalSolver framework2, which has been used successfully in
covering problems [16]. The LocalSolver framework has a hybrid approach of neighborhood search, which allows
it to combine different optimization techniques in a dynamic way during the resolution process. As described
in their website, this framework may combine local search techniques, constraint propagation and inference
techniques, linear mixed-integer programming techniques, as well as non-linear programming techniques. Since
it is a black-box, how these techniques are combined is not available to general public.

Given a valid representation of the problem, the black-box LocalSolver framework applies several techniques in
order to find high quality solutions. In this paper, the Independent Set Formulation (as described in Sect. 3.2)
was used as a representation of the problem in the LocalSolvers’ API for C++. This was done since the
Independent Set Formulation provided better results than the ones obtained when using Distance Formulation
together with LocalSolver. An important remark is that, since LocalSolver is dependent of the representation
used, a better representation may lead to better solutions. In the following sections, LSH is used to refer to the
use of LocalSolver as a constructive heuristic.

3.3.2. Perturbation

The perturbation, defined as a component of the proposed ILS, consists in adding a new item or removing
an item from the solution 𝑠. In order to decide whether the addition (𝑓𝐴) or the removal (𝑓𝑅) will be used, a
random number between zero and one is generated. If this number is smaller than or equal to the threshold 𝛾
the removal happens, otherwise the addition procedure is selected. When there is no media item to be removed,
removal procedure cannot be performed. So instead of removal, an addition procedure is selected. When most
of the region is covered by multiple media items and no more can be added, a media item is removed executing
the removal procedure. The perturbation, called 𝐴𝑑𝑑𝐷𝑟𝑜𝑝, is described in more details in Algorithm 1.

In Algorithm 1, the methods RemoveItem(𝑠) and AddItem(𝑠), receives a solution and return whether it was
possible to make the movement. If it was possible, the AddItem returns the new solution, otherwise RemoveItem
returns a new solution.

3.3.3. Local search

In order to improved a given feasible solution, a Local Search heuristic is applied. The local search used in the
proposed ILS uses as neighborhood all solutions that have exactly one item different from the current explored
solution. Mathematically speaking, the neighborhood 𝒩 of a solution 𝑠 ∈ 𝑆, where 𝑆 is the solution space, can
be define as:

𝒩 (𝑠) = {𝑠′ ∈ 𝑆|𝜌(𝑠, 𝑠′) = 1} (3.15)

where 𝜌(𝑠, 𝑠′) represents the number of different elements between these two solutions.
Having defined that, the local search procedure may be represented by Algorithm 2.

2LocalSolver Framework - http://www.localsolver.com.

http://www.localsolver.com.

3388 P.H. GONZÁLEZ ET AL.

Algorithm 1: Swap Drop.
1 Input: 𝑠,𝛾
2 begin
3 𝑜𝑝𝑡← 𝑟𝑎𝑛𝑑(0, 1);
4 {𝑓𝑅, 𝑓𝐴} ← true;
5 if 𝑜𝑝𝑡 ≤ 𝛾 then
6 𝑓𝑅←RemoveItem(𝑠);
7 if 𝑓𝑅 = false then
8 AddItem(𝑠);
9 end

10 else
11 𝑓𝐴←AddItem(𝑠);
12 if 𝑓𝐴 = false then
13 RemoveItem(𝑠);
14 end

15 end

16 end
17 return 𝑠;

Algorithm 2: Local Search.
1 Input: 𝑠
2 begin
3 𝑠← 𝑠;
4 𝑓* ← 𝑐𝑜𝑠𝑡(𝑠);
5 𝑛𝑖𝑚𝑝← false;
6 repeat
7 for 𝑖 ∈ 𝑠 do
8 for 𝑗 /∈ 𝑠 do
9 if 𝑓𝑒𝑎𝑠(𝑠, 𝑖, 𝑗) = true then

10 if (𝑐𝑜𝑠𝑡((𝑠 ∖ {𝑖}) ∪ {𝑗}) ≥ 𝑓*) then
11 𝑖𝑛← 𝑗;
12 𝑜𝑢𝑡← 𝑖;
13 𝑓* ← 𝑐𝑜𝑠𝑡((𝑠 ∖ {𝑖}) ∪ {𝑗});
14 𝑛𝑖𝑚𝑝← true;

15 end

16 end

17 end

18 end
19 if 𝑛𝑖𝑚𝑝 = true then
20 𝑠𝑤𝑎𝑝(𝑠, 𝑖𝑛, 𝑜𝑢𝑡)
21 end

22 until 𝑛𝑖𝑚𝑝 = false;

23 end
24 return 𝑠;

Algorithm 2 receives as a parameter a feasible solution and tries to improve it by swapping one item in the
solution with another one that is not in the solution. In order to do that, it verifies all feasible solutions 𝑠′ in
the current neighborhood and move to the best one. In order to verify feasibility, the function 𝑓𝑒𝑎𝑠(𝑠, 𝑖, 𝑗) is
used. The function 𝑓𝑒𝑎𝑠(𝑠, 𝑖, 𝑗) verify whether it is possible to exchange items 𝑖 and 𝑗. After verifying feasibility,
Algorithm 2 verifies whether the cost of the this solution is better than the current best one. This calculation is

DESIGNING SCREEN LAYOUT IN MULTIMEDIA APPLICATIONS 3389

done through function 𝑐𝑜𝑠𝑡(𝑠) =
∑︁
𝑟∈𝑠

𝐴𝑟, which receives a solution 𝑠 as parameter and returns the covered area.

At last, after completely exploring the neighborhood, the 𝑠𝑤𝑎𝑝(., ., .) function is called, in order to move to the
newly best solution found, if one was found (𝑛𝑖𝑚𝑝 = true). This procedure repeats until no further improvement
can be done.

3.3.4. Iterated local search - ASLOP

The Iterated Local Search (ILS) [15, 26, 29], is a metaheuristic that repeatedly applies local search proce-
dures to solutions obtained by perturbing previously visited local optimal solutions. The ILS presented here
uses as its components the LSH presented in Section 3.3.1, the Local Search and Perturbation presented in
Sections 3.3.3 and 3.3.2, respectively. The methods are applied in a straightforward way. First we run the LSH
to get a feasible solution. Secondly we try to improve the quality of the previously found solution by applying
the Local Search and the Perturbation. So, the algorithm is described in Algorithm 3.

Algorithm 3: ILS-ASLOP.
1 Input: 𝛾,𝑆𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
2 begin
3 𝑠← LSH();
4 𝑠← LocalSearch(𝑠);
5 𝑠𝑏𝑒𝑠𝑡 ← UpdateBest(𝑠);
6 while 𝑆𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = false do
7 𝑠← AddDrop(𝑠, 𝛾);
8 𝑠← LocalSearch(𝑠);
9 𝑠𝑏𝑒𝑠𝑡 ← UpdateBest(𝑠);

10 end
11 return 𝑠𝑏𝑒𝑠𝑡

12 end

In the proposed ILS, the initial solution is generated by the LSH method. Then, the LocalSearch function
performs the local search procedure and the AddDrop performs a perturbation. The UpdateBest, is responsible
to store the best solution found.

4. Computational experiments

This section presents computational experiments on the formulations presented in Sections 3.1 and 3.2, and
the ILS described in Section 3.3.4. Experiments considered four common screen sizes (640 × 480, 800 × 600,
1024 × 768 and 1920 × 1080) and five sets of media items (containing 14, 20, 28, 34 and 42 media items)
with different dimensions to be distributed along the screen. Thus, 20 ASL instances were created for each
combination of screen size and media item quantity.

Each ASLOP instance contains 64% of small media items and 36% of big media items. Small and big media
items are created considering a base size calculated as a function of the screen size and considering a grid
composed by 10, 15, 20, 25 and 30 media items, respectively. One should notice that the number of media items
generated for each ASL instance is approximately 40% higher than the grid size so that the formulation has to
choose among the available media items.

Let 𝑏𝑠 be the base size in a given dimension (width or height), the size of a small media item in that
dimension is given by 0.7 · 𝑏𝑠 + 𝑟𝑎𝑛𝑑𝑜𝑚(0.6 · 𝑏𝑠). That means that small media items are generated with sizes
that are in the proximity of the base size by a factor of 30%. Moreover, let 𝑠𝑠 be the screen size in a given
dimension, the size of a big media item in that dimension is given by 𝑏𝑠 + 𝑟𝑎𝑛𝑑𝑜𝑚(𝑠𝑠 − 𝑏𝑠). That means that

3390 P.H. GONZÁLEZ ET AL.

Table 1. Results obtained by the mathematical formulations.

Distance Independent Set
Instances Formulation Formulation

BSF Time GAP(%) BSF Time GAP(%)

640 480 1 76.597 65.010 0.000 76.597 501.260 0.000
640 480 2 72.183 3600.000 0.780 67.420 3600.000 25.174
640 480 3 84.551 3600.000 1.830 73.262 3600.000 50.930
640 480 4 71.156 3600.000 4.799 0.000 3600.000 –
640 480 5 66.374 2400.000 7.141 0.000 3600.000 –
800 600 1 76.415 39.940 0.000 76.415 117.040 0.000
800 600 2 74.543 3600.000 0.714 74.543 3600.000 12.859
800 600 3 71.631 3600.000 3.321 71.631 3600.000 46.704
800 600 4 85.117 3600.000 2.734 0.000 3600.000 –
800 600 5 82.503 3600.000 6.929 0.000 3600.000 –
1024 780 1 81.214 19.380 0.000 81.214 360.710 0.000
1024 780 2 75.523 3600.000 0.858 76.733 3600.000 18.240
1024 780 3 74.186 3600.000 3.741 73.458 3600.000 48.030
1024 780 4 74.434 2787.534 6.437 63.198 3600.000 152.120
1024 780 5 79.715 3600.000 6.156 0.000 3600.000 –
1920 1080 1 69.423 26.880 0.000 69.423 41.430 0.000
1920 1080 2 73.503 3600.000 0.646 70.235 3600.000 20.790
1920 1080 3 75.528 3600.000 3.185 74.360 3600.000 34.777
1920 1080 4 77.873 3600.000 3.850 0.000 3600.000 –
1920 1080 5 78.832 3600.000 6.490 78.832 3600.000 174.854
Average 76.065 2786.937 2.981 51.366 2931.022 41.748

big media items have its size between the base size and the screen size. All generated instances are available at
https://github.com/oca-cefetrj.

This section is organized as follows. The first subsection presents and analyze the results obtained by both
mathematical formulations. The second subsection presents the results obtained by the proposed ILS and
compare them with the results obtained by the mathematical formulation.

4.1. Mathematical formulation experiments

Both formulations were implemented in C++ and compiled with g++ 7.2.0 using the -03 optimization flag.
The experiments were carried out on an Intel(R) Core i7-7740X CPU 4.30GHz machine with 32GB of RAM. For
the implementation and execution of the formulations, CPLEX Studio 12.8 framework was used with its cuts,
pre-processing and heuristics disabled. A one-hour processing time limit was determined and no parallel option
of the processor was activated. Table 1 presents the results obtained by the mathematical formulations. The
first column (Instance) presents the name of the instance. Columns (BSF - Best Solution Found) and (Time),
respectively, present the coverage, in percentage, obtained by the mathematical formulation and the CPU time
in seconds spent to prove optimality (or reach the time limit). Column (GAP) present the final GAP obtained
by CPLEX. The last line presents the average of columns Time and GAP. Whenever column GAP presents a
dash (“-”), it means that the mathematical formulation was not able find a feasible solution.

Analyzing Table 1, one can verify that the Distance Formulation was able to find a coverage over 70% in all
the instances, except by 640 480 5 and 1920 1080 1 (whose the coverage was 66.34% and 69.42%, respectively).
The Independent Set Formulation, by its turn, had a worse performance: it has not found a feasible solution in
six out of twenty instances. Nevertheless, the other instances achieved a coverage index over 70%. In average,
the Distance Formulation achieved a cover of 76.065% of the screen, while the Independent Set Formulation
was able to find a cover, in average, of just 51.366%.

https://github.com/oca-cefetrj

DESIGNING SCREEN LAYOUT IN MULTIMEDIA APPLICATIONS 3391

Table 2. ILS results.

Instances LS BSF AvgSol StdSol AvgTime StdTime

640 480 1 68.305 74.245 74.245 0.000 206.586 12.878
640 480 2 63.296 71.182 71.120 0.124 217.099 19.888
640 480 3 71.923 84.627 84.627 0.000 211.157 17.749
640 480 4 76.074 87.442 87.442 0.000 214.698 29.826
640 480 5 72.730 82.648 82.648 0.000 262.918 151.697
800 600 1 65.041 72.268 72.268 0.000 202.954 3.665
800 600 2 70.815 74.543 74.543 0.000 203.700 5.160
800 600 3 61.602 71.631 71.631 0.000 206.262 5.727
800 600 4 79.158 85.117 85.117 0.000 211.650 20.050
800 600 5 72.602 82.503 82.503 0.000 205.152 5.203
1024 768 1 71.468 81.214 81.214 0.000 201.112 3.138
1024 768 2 69.229 81.446 81.446 0.000 209.666 16.742
1024 768 3 68.964 78.654 77.488 1.829 264.646 88.899
1024 768 4 75.660 85.678 85.678 0.000 253.712 126.868
1024 768 5 79.544 85.532 85.532 0.000 230.586 73.568
1920 1080 1 61.786 69.423 69.423 0.000 196.274 4.580
1920 1080 2 66.152 73.503 73.503 0.000 217.213 35.352
1920 1080 3 75.672 80.831 80.503 0.402 264.356 94.295
1920 1080 4 72.911 80.123 80.123 0.000 234.385 78.215
1920 1080 5 72.879 80.977 80.977 0.000 228.692 65.588

Average 70,791 79.179 79.102 0.118 222.141 42.954

Now, analyzing the average computational time spent by the methods, it is possible to verify that both
methods had a similar performance stopping when the time limit was reached (3600 s). In this case, Distance
Formulation took less time to solve the problem to all number of media (ranging from 1.54 to 18.61 times
faster). Nevertheless, even using the whole time available, the Independent Set has not found a feasible result
when adopting a larger number of media items. The Distance Formulation was, on average, 200𝑠 faster than
the Independent Set Formulation. In two cases, instances 640 480 5 and 1021 780 4, the Distance Formulation
had its process stopped because the process reached the maximum RAM capacity. Nonetheless, even in this
case, the Distance Formulation was able to find better coverage than the Independent Set Formulation. It is
interesting to remark that the Independent Set Formulation was not able to find a single feasible solution for 6
out of 20 instances.

From a theoretical point of view, both formulations are strictly the same since one can map each variable 𝑝𝑐
𝑟

to one variable 𝜋𝑖. Constraints (3.8) are in Constraints (3.13), while Constraints (3.9) and (3.10) are stronger
version of Constraints (3.13) ∖ Constraints (3.8). Considering that, one may verify that the relaxation of Distance
Formulation is tighter than the other.

4.2. ILS experiments

The proposed ILS was implemented in C++ and compiled with g++ 7.2.0 using the -03 optimization flag.
The experiments were carried out on the same machine presented in Section 4.1. After testing different values
for 𝛾, {0.35, 0.5, 0.75}, we chose 𝛾 = 0.5. As for the stopping criterion, the number of iterations was 100, after
testing {50, 100, 150, 200, 250}.

Table 2 is organized in such way to show the coverage of solution of the constructive phase (LS), the coverage
of the best solution found by ILS (BSF), the average coverage obtained by ILS (AvgSol), the standard deviation
for the obtained solutions (StdSol), the average time spent in seconds (AvgTime) and the standard deviation
for the computational time (StdTime).

It is possible to note that the coverage of the ILS ranges from 69.423% to 85.678%, achieving an average
coverage of 79.102%, which is better than the average solution found by the Distance and Independent Set

3392 P.H. GONZÁLEZ ET AL.

Table 3. ILS 𝑣𝑠. Formulations.

GAP Time GAP Time
Instances DF DF ISF ISF

640 480 1 0.031 0.315 0.031 2.426
640 480 2 0.014 16.582 −0.056 16.582
640 480 3 −0.001 17.049 −0.155 17.049
640 480 4 −0.229 16.768 − 16.768
640 480 5 −0.245 9.128 − 13.693
800 600 1 0.054 0.197 0.054 0.577
800 600 2 0.000 17.673 0.000 17.673
800 600 3 0.000 17.454 0.000 17.454
800 600 4 0.000 17.009 − 17.009
800 600 5 0.000 17.548 − 17.548
1024 780 1 0.000 0.096 0.000 1.794
1024 780 2 −0.078 17.170 −0.061 17.170
1024 780 3 −0.060 13.603 −0.071 13.603
1024 780 4 −0.151 10.987 −0.356 14.189
1024 780 5 −0.073 15.612 − 15.612
1920 1080 1 0.000 0.137 0.000 0.211
1920 1080 2 0.000 16.574 −0.047 16.574
1920 1080 3 −0.070 13.618 −0.087 13.618
1920 1080 4 −0.029 15.359 − 15.359
1920 1080 5 −0.027 15.742 −0.027 15.742

Average −0.043 12.431 −0.055 13.033

formulations. It is also possible to note that the standard deviation is small, which shows that the ILS seems
to be a stable method.

In order to improve the analysis, Table 3 shows the results of the comparison between the ILS and the
mathematical formulations. Columns GAP DF and GAP ISF show the GAP of the the average solution found
by the ILS in relation to the solutions obtained by the Distance Formulation (GAP DF) and the Independent
Set Formulation (GAP ISF).

The GAP was calculated using the solution obtained by one of the mathematical formulations (MFsol) and
the solution of ILS (ILSsol). equation (4.1) define how the GAP was computed:

𝐺𝐴𝑃 =
𝑀𝐹𝑠𝑜𝑙−𝐼𝐿𝑆𝑠𝑜𝑙

𝐼𝐿𝑆𝑠𝑜𝑙
(4.1)

In addition, the column Time DF shows the quotient between the computational time spent by Distance
Formulation (Time DF) and the ILS; while the column Time ISF shows the quotient between the Independent
Set Formulation (Time ISF) and ILS.

The experimental results presented in Table 3 indicates that the proposed ILS not only was able to find, in
average, better solutions than the mathematical formulations, but also was, in average, 12 times faster than the
Distance Formulation and 13 times faster than the Independent Set Formulation. By comparing ILS with DF,
the two methods with better performance, it was possible to realize that ILS had a better coverage in eleven
out of twenty cases, being tied in seven of twenty. Regarding the time, ILS is faster in sixteen out of twenty
instances. In the four instances that ILS is slower, the coverage is the same in two of them and it is worse in
the other two).

Another comparison can be seen in Figure 5, where the average solutions obtained by the ILS are compared
with the best solutions found by the two mathematical formulations. Figure 5 is a comparison, presenting
three dimensions, first the transparence that represents the best solution, the opaque color presents the average
solution and the time is represented by the width of the section. This representation shows how fast the ILS

DESIGNING SCREEN LAYOUT IN MULTIMEDIA APPLICATIONS 3393

Figure 5. ILS vs. best solutions found by the mathematical formulations.

is in comparison to the formulations and how ILS is close and yet better in solution quality to the Distance
Formulation.

It is worth mentioning that grids bigger than 5×5 are uncommon in digital TV applications, as well as media
items smaller than 20% of the screen size. Given that the proposed solution was able to provide results for all
the experimental scenarios, it points to the possible use of the ILS in real-world scenarios, e.g., for defining a
TV program ASL.

It is the technique used by the main tools for building multimedia applications. The technique is simple to
facilitate the application author, who is usually not an experienced programmer.

In order to improve the study, we compared the ILS against a technique for positioning media objects used
by the main tools for building multimedia applications [1, 27]. This technique is widely used in multimedia
applications because it is simple which is called Arrangement in Order (AiO). The operation of the AiO is
described as follows: the media objects that will be positioned on the display screen are declared in a text file.
This file is analyzed, and each media object is evaluated in the order in which it was declared. The technique
tries to position the first analyzed media object in the first available center. The centers are traversed from right
to left and from top to bottom. If possible, both the media object and the center are marked as used and move
on to the next media object. If it is impossible to place the media object in that center, a next available center
is sought. This action is done until there are no more available centers or media objects to allocate.

The Figure 6 shows the comparison between the ILS and the AiO technique. The metric used for the com-
parison was the area covered by the media objects.

It is possible to notice that the ILS metaheuristic wins in all instances with significant differences. This
situation was already expected since the aim of the ILS is to optimize the covered area. However, it is possible
to note that the AiO technique depends a lot on how media objects are declared. The average coverage of the
AiO technique is approximately 48%, while ILS has an average of 79% coverage. The average difference found
between the approaches is approximately 31%, a significant value. It is noticed that the use of the ILS heuristic
enhances the use of the space for presenting media objects resulting in a benefit that cannot be disregarded by
content providers.

3394 P.H. GONZÁLEZ ET AL.

Figure 6. Comparison between the ILS and the AiO in the area covered. The instances are
presented in the axis Y and the covered area (%) is presented in the axis X.

5. Conclusions and future works

Binding audiovisual content into a multimedia application in the production pipeline of digital TV and IPTV
require authors (usually content producers) to specify for each media item its size and position when defining
the application screen layout. This process requires much authoring effort since the author has to plan the
ASL and consider a variety of screen sizes. Besides, it is important to maximize the area occupied on the
screen, given that screen space is a valuable asset for media broadcasters. We called this problem as Application
Screen Layout Optimization Problem (ASLOP). This paper proposed a new approach to deal with (ASLOP)
and its applications for digital TV and IPTV. A formal definition for ASLOP and its proof of 𝒩𝒫-hardness
was provided. A kernelization algorithm which allows us to observe that the problem is ℱ𝒫𝒯 concerning the
area to be covered by the media items as a parameter is also presented. In addition, two integer programming
formulations and a metaheuristic were presented to solve ASLOP: the Distance Formulation, the Independent
Set Formulation and the ILS metaheuristic. All methods were tested with different screen sizes and number of
media items to be distributed along the screen. The computational cost and time spent were presented for each
method.

The computational experiments showed that, in practice, the Distance Formulation outperformed the Inde-
pendent Set Formulation. The Distance Formulation found better solutions than the Independent Set Formula-
tion for 12 out the 20 instances and an equal solution in 7 out the 20 instances. Now comparing the formulations
with ILS, one may verify that the ILS outperformed the mathematical formulations in 10 out the 20 instances,
tied in 9 out the 20 instances and lost in just one. In addition it is important to remark that, in average, the
ILS was at least 12 times faster than the mathematical formulations.

In addition, it was possible to show that the ILS heuristic has a much better covered area rate than the
AiO technique, normally used by multimedia applications for building layouts. ILS demonstrated an average
coverage rate of 79% versus 48% for the AiO technique.

DESIGNING SCREEN LAYOUT IN MULTIMEDIA APPLICATIONS 3395

5.1. Future works

Future researches could focus on strengthening the formulations and developing efficient cutting-plane algo-
rithms, so a branch and cut technique could be developed. Considering the structure of the problem, one may
focus on using clique cuts to do the above proposed. It is also possible to combine the ILS with the formulations
in a way to improve the starting solution generating a positive effect on branch and bound and branch and cut
prunes’, decreasing the computational time. In order to do combine heuristics and exact methods investigating
hybrid methods that combine exact methods, meta-heuristics and data mining seems to be a suited path to
pursue [14,16,30].

Also recalling that ASLOP generalizes classical combinatorial optimization problems like Subset Sum and
Knapsack, and as shown in Theorem 2.1, the problem remains NP-hard even when both the screen and the
input media have some of the dimensions equal to one. This implies that combinatorial explosions are inherent in
solving the problem, even for instances that intuitively should be “easy”, for example, instances with simplified
shapes (i.e., having both media and media items with just one dimension). To try to unravel characteristics
that make instances of the problem difficult, we should go into deeper computational complexity issues. More
precisely, there is a branch of Computing Theory called Parameterized Complexity Theory that aims to map
the parameters that are sources of the intractability of a problem. An analysis of the Parameterized Complexity
of ASLOP is also a potential future work.

5.2. Some generalizations of the problem

As one can see, the ASLOP problem is a simple version of the real problem having three structural restrictions:
fitting in the screen dimension, overlap avoidance, positioning items in candidate central points of the given grid.
Having said that, several variants could be proposed. The first one, instead of considering the area coverage,
one must decide that it should be interesting to weigh the media and maximize the summation of the weight of
the used items instead of maximizing the covered area. Note that ASLOP is a particular case of this problem
where the weight of each item corresponds to its area. This variant can be explained when different enterprises
have different marketing budgets and are willing to pay different amounts for their advertising. Recall that one
can handle this variant using the methods proposed in this paper.

One possible second variant would deal with conflict sets of items, where items from such sets are not allowed
together in the solution. This can be easily seen whenever two competing brands decide to try to advertise
on the same platform. In other words, in addition to the screen 𝑅, the set of media items 𝑀 , and the grid
𝐺𝐶 , we are given sets 𝐿1, 𝐿2, . . . 𝐿ℓ of items and asked to find a conflict-free solution 𝑆 for the problem where
|𝑆∩𝐿𝑖| ≤ 1 for each 1 ≤ 𝑖 ≤ ℓ, representing that a solution 𝑆 contains at most one item by a group of conflicting
elements. To deal with this variant, both presented mathematical formulations will need one more constraint
for each conflict set. These constraints will ensure that at most one item in the set is selected. From the ILS
perspective, to adapt it to this variant, one should keep an auxiliary data structure to remove/add candidates
whenever one item of a conflict set is selected or removed from the current solution.

Another path to pursue consists of considering multiple media with different shapes, for example, rectangular
and circular media altogether, which leads to the necessity of adjustments in equations (3.3) and (3.4). Besides
these adjustments, the proposed methods are also able to deal with this variant.

Another point that may be investigated as future work is the choice of the centers as well as considering that
the candidate centers are not positioned according to a grid.

Acknowledgements. This work was partially supported by the National Council for Scientific and Technological Develop-
ment - CNPq, under grants #307835/2017-0, #303726/2017-2 and #309832/2020-9 and by the Fundação Carlos Chagas
Filho de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ, grants #233926 and E-26/203.272/2017.

References

[1] G.F. Amorim, J.A.F. dos Santos and D.C. Muchaluat-Saade, Providing adjustable and dynamic spatial layouts for multimedia
applications with style. Multimed. Tools. Appl. 79 (2020) 25989–26021.

3396 P.H. GONZÁLEZ ET AL.

[2] A. Atamtürk, G.L. Nemhauser and M.W.P. Savelsbergh, Conflict graphs in solving integer programming problems. Eur. J.
Oper. Res. 121 (2000) 40–55.

[3] R.G.A. Azevedo, E.C. Araújo, B. Lima, L.F.G. Soares and M.F. Moreno, Composer: meeting non-functional aspects of hyper-
media authoring environment. Multimed. Tools Appl. 70 (2014) 1199–1228.

[4] J.E. Beasley, An exact two-dimensional non-guillotine cutting tree search procedure. Oper. Res. 33 (1985) 49–64.

[5] D. Bulterman, P. Cesar and R.L. Guimaraes, Socially-aware multimedia authoring: Past, present, and future. ACM Trans.
Multimedia Comput. Commun. Appl. (TOMCCAP) 9 (2013) 35.

[6] A. Caprara and M. Monaci, On the two-dimensional knapsack problem. Oper. Res. Lett. 32 (2004) 5–14.

[7] N. Clube, A liberdade de desenvolver e compartilhar conteúdo interativo (2011). http://clube.ncl.org.br/

[8] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk and S. Saurabh, Parameterized
algorithms, Vol. 4. Springer (2015).

[9] R.S. de Abreu, D. Mattos, Jd. Santos, G. Ghinea and D.C. Muchaluat-Saade, Toward content-driven intelligent authoring of
mulsemedia applications. IEEE MultiMed. 28 (2021) 7–16.

[10] D.P. de Mattos and D.C. Muchaluat-Saade, Steve: Spatial-temporal view editor for authoring hypermedia documents. In:
Proceedings of the 22Nd Brazilian Symposium on Multimedia and the Web, ACM, New York, NY, USA, Webmedia ’16 (2016)
63–70. DOI: 10.1145/2976796.2976865

[11] A.M. Del Valle, T.A. de Queiroz, F.K. Miyazawa and E.C. Xavier, Heuristics for two-dimensional knapsack and cutting stock
problems with items of irregular shape. Expert Syst. Appl. 39 (2012) 12589–12598.

[12] R.G. Downey and M.R. Fellows, Fundamentals of parameterized complexity, vol 4. Springer (2013).

[13] K.A. Dowsland and W.B. Dowsland, Packing problems. Eur. J. Oper. Res. 56 (1992) 2–14.

[14] P.H. Gonzalez and J. Brandão, A biased random key genetic algorithm to solve the transmission expansion planning problem
with re-design. In: 2018 IEEE Congress on Evolutionary Computation (CEC), IEEE (2018) 1–7.

[15] P.H. Gonzalez, L. Simonetti, P. Michelon, C. Martinhon and E. Santos, A variable fixing heuristic with local branching for the
fixed charge uncapacitated network design problem with user-optimal flow. Comput. Oper. Res. 76 (2016) 134–146.

[16] P.H. Gonzalez, A.F.U.S. Macambira, R.V. Pinto, L. Simonetti, M. Maculan and P. Michelon, New proposals for modelling and
solving the problem of covering solids using spheres of different radii. RAIRO-Oper. Res. 54 (2020) 873–882.

[17] HbbTV Association (2018) HbbTV 2.0.2 Specification. https://www.hbbtv.org/resource\discretionary{-}{}{}library/
#specifications Accessed 20 July (2018).

[18] K. He, Y. Jin and W. Huang, Heuristics for two-dimensional strip packing problem with 90 rotations. Expert Syst. Appl. 40
(2013) 5542–5550.

[19] E. Huang and R.E. Korf, Optimal rectangle packing: An absolute placement approach. J. Artif. Intell. Res. 46 (2013) 47–87.

[20] ITU, Nested Context Language (NCL) and Ginga-NCL for IPTV services. http://www.itu.int/rec/T-REC-H.761-200904-S,
iTU-T Recommendation H.761 Accessed Mar. 13, 2018 (2009).

[21] ITU, Integrated broadcast-broadband systems. https://www.itu.int/pub/R-REP-BT.2267-8-2018, Report ITU-R BT.2267-8
Accessed 15 December, 2018 (2018).

[22] R.M. Karp, Reducibility among combinatorial problems. In: Complexity of computer computations, Springer (1972) 85–103.

[23] S.C.H. Leung and D. Zhang, A fast layer-based heuristic for non-guillotine strip packing. Expert Syst. Appl. 38 (2011) 13032–
13042.

[24] J. Li, T. Röggla, M. Glancy , J. Jansen and P. Cesar, A new production platform for authoring object-based multiscreen tv
viewing experiences. In: Proceedings of the 2018 ACM International Conference on Interactive Experiences for TV and Online
Video (2018) 115–126.

[25] J. Li, Z. Zheng, B. Meixner, T. Röggla, M. Glancy and P. Cesar, Designing an object-based preproduction tool for multiscreen
tv viewing. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (2018) 1–6.

[26] H. Lourenco, O. Martin and T. Stutzle, Iterated local search. In “handbook of metaheuristics”, edited by F. glover and
G. kochenberger. isorms 57 (2002) 321–353.

[27] D.P.D. Mattos, D.C. Muchaluat-Saade and G. Ghinea, Beyond multimedia authoring: On the need for mulsemedia authoring
tools. IEEE MultiMed. 54 (2021) 1–31.

[28] R. Meirelles, C. Júlio and Á.M. Dias, Economia e Consumo na Era da Pandemia. Tech. rep., Locomotiva - Pesquisa e Estratégia
(2020). DOI: 10.1017/CBO9781107415324.004

[29] E. Santos, L.S. Ochi, L. Simonetti and P.H. González, A hybrid heuristic based on iterated local search for multivehicle
inventory routing problem. Electron. Notes Discrete Math. 52 (2016) 197–204.

[30] G. Souto, I. Morais, G.R. Mauri, G.M. Ribeiro and P.H. González, A hybrid matheuristic for the two-stage capacitated facility
location problem. Expert Syst. Appl. 185 (2021) 115501.

[31] R.E. Tarjan and A.E. Trojanowski, Finding a maximum independent set. SIAM J. Comput. 6 (1977) 537–546.

[32] W3C, Synchronized Multimedia Integration Language - SMIL 3.0 Specification. http://www.w3c.org/TR/SMIL3, world-Wide
Web Consortium Recommendation Accessed Fev. 15, 2018 (2008).

[33] W3C, HTML5: A vocabulary and associated APIs for HTML and XHTML. https://www.w3.org/TR/2010/
WD-html5-20100624/, world-Wide Web Consortium Recommendation Accessed Mar. 12, 2018 (2014).

[34] W3C, CSS Flexible Box Layout Module Level 1. https://www.w3.org/TR/css-flexbox-1/, w3C Candidate Recommendation
Accessed Apr. 05, 2018 (2017).

[35] W3C, CSS Grid Layout Module Level 1. https://www.w3.org/TR/css-grid/, w3C Candidate Recommendation Accessed Apr.
05, 2018 (2017).

http://clube.ncl.org.br/
https://doi.org/10.1145/2976796.2976865
https://www.hbbtv.org/resource\discretionary {-}{}{}library/#specifications
https://www.hbbtv.org/resource\discretionary {-}{}{}library/#specifications
http://www.itu.int/rec/T-REC-H.761-200904-S
https://www.itu.int/pub/R-REP-BT.2267-8-2018
https://doi.org/10.1017/CBO9781107415324.004
http://www.w3c.org/TR/SMIL3
https://www.w3.org/TR/2010/WD-html5-20100624/
https://www.w3.org/TR/2010/WD-html5-20100624/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css-grid/

DESIGNING SCREEN LAYOUT IN MULTIMEDIA APPLICATIONS 3397

[36] Y. Wang and L. Chen, Two-dimensional residual-space-maximized packing. Expert Syst. Appl. 42 (2015) 3297–3305.

[37] L. Wolsey, Integer Programming. Wiley Series in Discrete Mathematics and Optimization, Wiley (1998).

[38] G. Wäscher, H. Haußner and H. Schumann, An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183
(2007) 1109–1130.

[39] Z.Z. Zeng, X.G. Yu , K. He and Z.H. Fu, Adaptive tabu search and variable neighborhood descent for packing unequal circles
into a square. Appl. Soft Comput. J. 65 (2018) 196–213.

[40] B. Zhang, H.F. Teng, Y.J. Shi, Layout optimization of satellite module using soft computing techniques. Appl. Soft Comput.
8 (2008) 507–521.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Motivation and related works

	Computational complexity
	Tools to solve ASLOP
	Distance formulation
	Independent set formulation
	Soft computing techniques
	Constructive heuristic
	Perturbation
	Local search
	Iterated local search - ASLOP

	Computational experiments
	Mathematical formulation experiments
	ILS experiments

	Conclusions and future works
	Future works
	Some generalizations of the problem

	References

