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A NEW FAMILY OF DAI-LIAO CONJUGATE GRADIENT METHODS WITH
MODIFIED SECANT EQUATION FOR UNCONSTRAINED OPTIMIZATION

YUTAO ZHENG®*

Abstract. In this paper, a new family of Dai-Liao-type conjugate gradient methods are proposed for
unconstrained optimization problem. In the new methods, the modified secant equation used in [H. Yabe
and M. Takano, Comput. Optim. Appl. 28 (2004) 203-225] is considered in Dai and Liao’s conjugacy
condition. Under some certain assumptions, we show that our methods are globally convergent for
general functions with strong Wolfe line search. Numerical results illustrate that our proposed methods
can outperform some existing ones.
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1. INTRODUCTION

Consider the following unconstrained optimization problem
min f(z), z € R", (1.1)

where the objective function f : R™ — R is continuously differentiable and its gradient g(x) is available. The
problem (1.1) has a wide range of applications in areas of scientific computing and engineering. Therefore,
its efficient and effective numerical solution methods have been intensively studied in the literature, including
the spectral gradient methods [5,15], conjugate gradient methods [4,13] and memoryless BFGS methods [16].
Among them, conjugate gradient methods are popular and efficient for solving (1.1), especially for large scale
problems.
Let xp be the kth iterate point, g, the gradient of f(z) at zy, i.e. gr = g(xx). The (nonlinear) conjugate
gradient method is given by
Tht1 = Tk + apdg, (1.2)

where ay, is the step length computed by carrying out an one-dimension line search and dj, is the search direction
defined by

_ —9k, lf k = 07
@ = { — g+ By, if k> 1, (1.3)
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where [y is a scalar.

Since exact line search for searching «ay, is usually expensive and impractical, the strong Wolfe inexact line
search is often considered in the convergence analysis and implementation of nonlinear conjugate gradient
methods. It aims to find a step size «j satisfying the following two strong Wolfe conditions

f(zk + awdy) < f(2k) + pyi di, (1.4)
gty 1di| < olgl dl, (1.5)
where 0 < p <o < 1.

Nonlinear conjugate gradient method for unconstrained optimization problem is generated from the linear
conjugate gradient method for a special quadratic minimization problem

1
min ixTQx +blz+c

or its equivalent line system Qx = b, where @ is a real symmetric positive definite matrix. Linear conjugate
gradient methods generate a search direction such that the conjugacy condition holds, namely,

d} Qd; = 0,Yi # j. (1.6)

For general nonlinear functions, it follows from the mean value theorem that there exists some 7 € (0, 1) such
that
di yk—1 = op—1d{ V2 f(zp1 + To—1di—1) dj—1,
where yr—1 = gr — gr—1 denotes the gradient change. Therefore, it is reasonable to replace (1.6) by the following
conjugacy condition:
di y—1 = 0. (1.7)

Let dy = —gi + Ordi—1 satisfy the above condition, we have the famous Hestenes-Stiefel formula [14]
HS gfyk_l
Pyl dea
In 2001, Dai and Liao [6] suggested an extended one
dFyp_1 = tgl'si_1, (1.8)
which leads to the following conjugate gradient parameter

T T
DL+ 9k Yk—1 9 Sk—1
=max{ ———,0) —t=— (1.9)
F {yg_ldkl } dz_lykfl

where ¢ > 0 is a scalar, sy_1 = 2 —xk—1. Note that the first item has been restricted to be nonnegative like [10].
The DL+ method (1.2)—(1.3) with 8 in (1.9) is globally convergent for general functions under the sufficient
descent condition

g di < —c|lgrll?, ¢ > 0. (1.10)

and some other suitable conditions, where and hereafter || - || denotes the Euclidean norm of vectors.
As a special case of Dai-Liao—type conjugate gradient method, the efficient CG_descent method [12] utilizes
a particular ¢. The conjugacy parameter of CG_descent method is

gy — 9k Yk—1 _ g1l ) 9 Sk—1
k, - .
Z/kT,ldk—1 nglyk—l dgflyk—l
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Two further developments of the Dai and Liao’s method were made by Yabe and Takano [20] and Li et al.
[17] based on different modified secant equations. Some more efficient Dai-Liao—type methods were designed
and studied in [2,9,22,23] by using different techniques. In this paper, we further give a new family of Dai-
Liao—type conjugate gradient methods for unconstrained optimization problems, including their convergence
analysis. Numerical experiments show that our methods can outperform the existing ones.

The rest of this paper is organized as follows. In Section 2, we introduce a new Dai-Liao—type method by
modifying the conjugate gradient parameter. Based on the strong Wolfe line search rules, the global convergence
for uniformly convex and general objective functions is studied in Section 3 and numerical experiments are
performed in Section 4. Finally, in Section 5, we give some conclusions to end this paper.

2. NEw DAI-L1AO—TYPE METHODS

We start with the original Dai and Liao’s method in which the quasi-Newton techniques are used. In the
quasi-Newton method, an approximation Hessian Bj is updated such that

Bisk—1 = Yk—1
and the search direction dj, is calculated by
dy = =By ' gk (2.1)
Combining the above two equations, we have
dkT-yk—1 = —ngSk—L

The above relation implies that (1.7) holds in case of gl dx_1 = 0, i.e. the line search is exact. However, in
practical numerical algorithms, the inexact line search is adopted instead of exact line search. Dai and Liao
suggested the following conjugacy condition:

diyk—1 = —tg} sp—1, (t >0).

In 2004, Yabe and Takano [20] used the modified secant equation

u
Bit15k =y + prbi uTk (2.2)

k Sk

where py, € [0,3] and 0 = 2(fr — frr1) + (& —|—gk+1)Tsk, uy, is chosen s.t. u{sk # 0, to derive a new conjugacy
condition through replacing yx by zr = yi + prr —+— T , the modified conjugacy parameter is

T
BYTH — ma {gk—HZk 0} _ t9k+13k
k1 d{zk ’ d{zk

In this paper, we will derive a new conjugacy condition from another view of point. Combining (2.2) with
(2.1), we have

T T Uk
di1Yk = dj1q (Bk+15k — Pk uTsk)

k
T
T uy, di41
= dk+1Bk+1Sk — pkekTi
uk k
U, dk+1

—9hi15K — PO
kS



3284 Y. ZHENG

Using the Dai-Liao’s conjugacy condition

di 1Yk = —tgis 1Sk
and dgy+1 = —gr+1 + Bk+1di, where t € [0, 1], we have
T
up, (—gr+1 + Brr1di
POk i ( T ) = (t — 1)gi 415k,

Uj, Sk

which yields a new conjugate gradient parameter

(t— 1)9,? 15k ufsk
Bril = p:9k + Gtk /dfuk
_ 91{+1uk 1 )ufsk _g£+18k
dfuk Pkok d%uk

if ppr # 0, otherwise, Dai and Liao’s conjugate gradient parameter ﬁ,? L+ will be used. According to the
experience of the quasi-Newton methods with modified secant equations [21], we choose uy = yg.

new

In the case of ux = y, the conjugacy parameter G can be written as

o (t —1)gf sk - yf sk
Brs1 = [ +; + gl{+1yk /d;{yk
PrUk
_ Gy | (= Dylsy , it 15k (2.3)
dFye Pr0Ok dfye
and we correct it as . .
ﬁnew+ - 9i+1Yk (t — 1)y£8k . 9i+15k (2 4)
gl = max T 0 T .
E Yk Pr|Ok| L Yk

We call the method (1.2) and (1.3) with G5 given in (2.4) NEW+ method. The corresponding algorithm is
given as below:

Algorithm 2.1. Improved Dai-Liao conjugate gradient method

Step 1: Given zy € R", €,n > 0, set dg = —go, k :=0; if ||go|| < &, then stop;

Step 2: Compute oy, such that strong Wolfe line search (1.4) and (1.5) hold;

Step 3: Let xp11 = x + agdg, if ||gr+1]| < €, then stop;

Step 4: Compute ;41 by (2.4) if |0 > n, otherwise, compute Si+1 by (1.9); generate dir1 by (1.3);

Step 5: Set k:=k + 1 and go to Step 2.

In the rest of the paper, we first analyze the convergence properties of the new algorithm, then give some
numerical results which show the modified algorithms are robust and efficient.

3. CONVERGENCE ANALYSIS

Throughout this section, we assume that g, # 0 for all £ > 0, otherwise a stationary point is found. We first
give some standard assumptions.
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Assumption 3.1. The level set L ={z € R": f(x) < f(x0)} is bounded, where xo € R™ is an initial point.

Assumption 3.2. In some neighborhood N of L, the function f is continuously differentiable and its gradient
g(x) is Lipschitz continuous, i.e. there exists a positive constant L > 0 such that ||g(z) — g(y)|| < Lljz — y|| for
allz,y € N.

Assumption 3.1 guarantees that there exists some constant ¢ such that ||sg| < 2¢,Vk > 0. Assumption 3.2
implies that ||g|| <7 for any = € £, where ¥ = 2¢L + ||go]|-
Firstly, we give some estimation on ;. We know by mean value theorem that
Ok = 2(fi — fur1) + (g5 + gr+1) " sn
= =2V f(ne) s + (9% + gr1)" sk
= —[Vf(xr) = V) + Vf(@re1) = V)] sn,

where 1, = x + 7(xp+1 — zx) and 7 € (0,1). Hence
10k < ([IVf(zr) = V) + IV F(@rs1) = V@) D]kl

< Lllwx = nell + ek — nel)ll skl
= L||sx||® < 4L

On the other hand, since 6, is appeared in the denominator, too small value must be avoided for the numerical

stability, we ask |0y| to satisfy 0 < n < |0x| as shown in Algorithm 2.1. Otherwise, 3" will be used.

Let f be a uniformly convex function, then there exists some constant p > 0 such that

(V@) = V5w) @~ 9) > lly — I

which implies
pllskll® < sfyr < Lf|skll. (3.1)
Then we have that

O = 2<fk - fk+1) + (gk + gk+1)T3k

T
> (= glse+ Slsel®) + (o +ge11) s
= —sp yr + pllsi?
“\ T
> _ 1_7)
= ( I S Yk
and

L
0| < L|sil|”* < ;Sfyk~

Thus 0 locates in the interval (— (1— ,u/L)s;fyk, —17) U (77, L/us}:yk). Therefore, we assume that the following
relationship always holds.

Sk Yk ‘ 1
O
The following theorem states the global convergence property of new method for uniformly convex functions.

g\ <.

€

~I=

Theorem 3.3. Let f be a uniformly convex function and Assumptions 3.1 and 3.2 hold. Suppose that {xy} is
the sequence generated by Algorithm 2.1 with By in (2.4), then

lim [|gx]| = 0. (3.2)
k—oo
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Proof. Tt follows from f is uniformly convex function that
diye > po—1 || de—1|*.

By using Triangular and Cauchy-Schwartz inequalities, we have

Ikl < llgrll + 188 [l dr -1l
(L+A=1)/) llgrll Isu-all \ ,

2 lldk—1l]
peg—1 || dg—1|

S uTHL A A= t)/e+w)grll,

> o =+
512 '

k>1

< llgrll +
which means

Therefore, from Lemma 3.2 [6] and the fact f is a uniformly convex function, we have
li =0.
Jim (gi | =0
O

For the general function, we only need to show the modified Dai-Liao method with 8 in (2.4) satisfies the
Property(*) depicted by Gilbert and Nocedal [10]. The rest analysis is similar to the original Dai-Liao’s method.

Definition 3.4. Consider a method of the form (1.2)—(1.3), and suppose that
0 << llgell <7 (3.3)

for all kK > 1. We say that the conjugate gradient method has the Property(x), if for all k, there exist constants
b > 1,k > 0 such that for all &,

. 1
Bl < band [lsxa| < A mply || < (3.4)

By the strong Wolfe condition (1.5), (1.10) and (3.3), we have
di_yye—1 > (0 = Dgg_ydi—1 > (1 — 0)er™.

Using this and boundedness of ||sk||, we obtain
(L+ @ =t)/) gl llsk—all o 2(L+ (L —t)/e)ye _

(1—0)ey? T (I=o)ey?
Note that b can be defined such that b > 1. If we set

(1-0)ey’
L+ (1—1t)/e)¥

|Bk] <

and sp_1 < A, then
L+(1—-t)/e)yx 1
g < EHO=0/930 1
(1—o0)ey b
Therefore, the NEW+ method has Property (*). Thus, we have the following convergence theorem.

Theorem 3.5. Let Assumptions 3.1 and 3.2 hold. If the sequence {xy} is generated by the NEW+ method with
the strong Wolfe line search for o € (0,1), where dy, satisfies condition (1.10) with ¢ > 0. Then we have

lim inf [|gx|| = 0.
lim inf ||gi[| = 0
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TABLE 1. Tested conjugate gradient algorithms.

B Name of method Abbreviation
BER The Fletcher-Reeves method [8] FR
ERP+ The Polak-Ribiere-Polyak [18,19] PRP+
1S The Hestenes-Stiefel method [14] HS
DY The Dai-Yuan method [3] DY
By The Hager and Zhang’s method [12] HZ
Bt The Dai-Liao method [6] DL+
Tt Yabe-Takano’s method [20] YT+
nevt Our method NEW+

TABLE 2. Numerical results for Trigonometric with n = 5000.

FR PRP+ HS DY HZ CG_descent

167/292 133/340 39/109 213/291 96/195 73/278
t

Pk 0.1 03 05 0.7 0.9
DL+ 0 21/100 49/136 20/92 64/156 69/158
YT+ | 21/100 82/177 20/92 61/152 63/I51
NEW+ 78/169 61/143 52/136 19/91  66/156
YT+  ,, 20/99 67/160 20/93 21/95 63/153
NEW ® 20/94 20/93  20/91 65/157 67/161
YT+ . 19/95 21/91 42/134 41/127 88/127
NEW+ 2 20/92 19/88 19/89 64/155 71/162
YT+ . 22/107 21/93 67/154 69/162 23/100
NEW+ * 22/108 45/135 20/91  64/152 64/152
YT+, 20/95 068/166 21/99 88/127  33/1
NEW+ 7 20/97 47/140 20/98 67/158 19/94
YT+ Lo 2197 20/90 21/9 40/132  22/95
NEW+ °  20/97 44/128 19/89 65/153 19/95

4. NUMERICAL EXPERIMENTS

In this section, some numerical results are reported on a a set of 76 unconstrained optimization problems
selected from [1] and CUTEst library [11]. We tested the conjugate gradient algorithms with the conjugacy
parameters given in Table 1.

For the algorithms DL+, YT+ and our new method, different scaled parameters p and t are used. In the case
where an ascent direction is generated, we restart the algorithm by setting dy = —gx.

All codes were written in Fortran and in double precision arithmetic. (Note that, for the sake of fairness, at
the beginning of experiments we do not directly run Hager and Zhang’s CG_descent codes for the test problems,
we just use their conjugate parameter under the same linear search in our test framework). The stopping rule
is set as [|gkllc < 1075, The iteration is also terminated if the total number of iterations exceeds 10,000.
Partial numerical results are summarized in Tables 2-6 and given in the form of (number of iterations/number
of function-gradient evaluations), the detailed complete numerical results can be downloaded from the website
https://github.com/piratetwo/mdl.
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TABLE 3. Numerical results for ENGVAL1 with n = 5000.

FR PRP+ HS DY HZ CG_descent

285/8484 195/5333  695/20246 1711/53963 229/6770 24/78
t

Pk 0.1 0.3 05 0.7 0.9

DL+ 0 117/3068 33/364  24/72  105/2642  161/4520
YT+ | 101/2570 224/G557 145/3867 105/2774  43/704

NEW+ 189/5398 162/4586  93/2162  197/5752  269/7994
YT+, 166/4696 185/5180 184/5306 112/2886  181/5142
NEW+ 2 228/6821 200/6005 307/9366  137/3683  255/7464
YT+ - 179/5123 171/4828 157/4448  140/3857 1363666
NEW+ 7 162/4693 164/4715 170/4931  78/1778  144/3926
YT+ . 58/1225  79/1805  8I/I896  217/63I1  164/4696
NEW+ ' 46/805 253/7499 126/3339  157/4211  128/3529
YT+ o 200/6064 127/3524 60/1233  149/4241  250/7689
NEW+ 7 37/431 177/4856 72/1552  234/6807 116/2866
YT+ Lo 120/3187 150/4454 109/2979  282/8316  145/4029
NEW+ °  94/2333  62/1125 120/3091 102/2489  119/3154

TABLE 4. Numerical results for Raydan 1 with n = 5000.

FR PRP+ HS DY HZ CG_descent
~/- /- 756/1019 739/819 856/1334  490/1472
¢
Pk 0.1 03 05 0.7 0.9

DL+ 0 816/1077 782/1082 724/972  766/1046 812/1101
YT+ | 834/1274 770/1041 766/1077 540/711 767/1001
NEW+ 850/1166 689/933  808/1092 649/853 785/1037
YT+, 809/1109 749/1038 782/1063 810/1122 863/1140
NEW+ - 839/1142 628/858 748/1010 791/1063 864/1154
YT+ . 752/1082 744/1015 749/1028 724/964  829/1135
NEW+ 7 764/1015 732/1011 779/1058  710/964  801/1090
YT+ . 622/853 679/915 826/1144 842/I1114 789/1065
NEW+ ' 719/970  736/992 704/953  696/940  820/1081
YT+ |, 712/074 824/1004 882/1224 777/1045 890/1187
NEW+ 7 671/891 870/1151 786/1062 851/1179 746/991
YT+ Lo 708/957 850/1183  669/897 876/1176 815/1103
NEW+ °  722/969  715/972  759/1023  706/948  680/905

In the Tables 2-6, the boldface font is used to mark the first and second efficient method which performs
better than the other two algorithms for each p; and ¢. The number of the best performance for Algorithm
NEW+, YT+, DL+ are 32, 15 and 3, respectively.

In most cases, our new method improves Yabe-Takano’s method. For a special p; = 3, which was used in
the modified quasi-Newton method, we compare the numerical performance of YT+ and NEW+. We run the
codes with different ¢ = 0.1,0.2,...,1 and compute the medians for each problem. The performance profiles
introduced by Dolan and Moré [7] are used to display the behaviours of these two methods. Figure 1 shows
that the NEW+ method performs the best result regarding the number of iterations and function-gradient
evaluations, which is located at the top curve in Figure 1.
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TABLE 5. Numerical results for SINQUAD with n = 5000.

FR PRP+ HS DY HZ CG_descent
1455/2665 /-  —/— 1891/2579 2021/4044  1071/3813
¢
Pk 0.1 0.3 0.5 0.7 0.9

DL+ 0  481/1014  681/1424  728/1532 475/1018  588/1238
YT+ 01 602/1270 499/1043  792/1676  703/1515  390/874
NEW+ 550/1172  530/1145 465/1021 451/965  606,/1282
YT+ 0.3 533/1121  568/1225  1431/2951 477/1013  526/1110
NEW+ ~°  482/1009 721/1507  638/1325  599/1277  597/1249
YT+ 0.5 528/1095  579/1272  544/1210  687/1474  553/1185
NEW+ 532/1132  491/1057  804/1682  503/1059  500/1094
YT+ 0T 588/1295  842/1773 496/1048 555/1197  499/1102
NEW+ 533/1105  543/1195  565/1189  452/1158  476/1012
YT+ 0.9 546/1212  522/1088  610/1275  598/1287  568/1235
NEW+ 483/1029  594/1280  502/1068  489/1046  644/1358
YT+ L0 423/873  590/1272  538/1162  498/1048  483/1011
NEW+ 593/1275  526/1119  567/1182  569/1204  506,/1064

3289

TABLE 6. Numerical results for Woods with n = 5000.

FR PRP+ HS DY HZ CG _descent
112/218 65/133 87/214 95/178 161/309  182/683
t
P 0.1 0.3 05 0.7 0.9
DL+ 0 39/80 52/99  43/85  45/90  48/94
YT+ | 32/68 37/76 63/122 50/113 46/90
NEW+ 38/77 37/75 70/123 43/90  44/89
YT+ o 48/93 40/101 53/103 58/116 6L/114
NEW+ °  39/83  44/86  48/97  46/96 36/74
YT+ o 32/69 42/83  41/80 8I/161 58/116
NEW+ 7 62/113 34/72 50/100 36/78 53/103
YT+ . 35/7&  49/99 40/81 58/114 45/91
NEW+ *  35/76 51/103 36/70 69/132 58/109
YT+ 31/66 44/3G  47/93 38/79 39/79
NEW+ 7 40/83  49/97 57/108 36/74  59/99
YT+ Lo AL/83 41/83 36/74 39/79 50/1I8
NEW+ °  48/95 60/113 32/67 46/91  41/84

Finally, we run Hager and Zhang’s method with the approximate Wolfe line search conditions (Hager and
Zhang’s CG _descent Fortran code Version 1.47). From Figure 2, for about 62% of all problems, CG_descent
needs the least iterations, it has the best performance. However, CG_descent has the poorer performance than
the YT+ and NEW+ regarding the number of function-gradient evaluations which mainly affects the efficiency
of the methods.

%https://people.clas.ufl.edu/hager/software/
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FIGURE 1. Performance profiles based on iterations and function-gradient evaluations for YT+
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FIGURE 2. Performance profiles based on iterations and function-gradient evaluations for YT+,
NEW+ and CG_descent.

5. CONCLUSIONS

In this paper, based on the Dai and Liao’s conjugacy condition and the modified secant condition proposed
by Zhang and Xu [21], we derived a new family of Dai-Liao—type conjugate gradient methods. Under some
certain assumptions, we show that our methods are globally convergent for general functions. Numerical results
show that our new methods can outperform some existing ones.
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