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A NEW FAMILY OF DAI-LIAO CONJUGATE GRADIENT METHODS WITH
MODIFIED SECANT EQUATION FOR UNCONSTRAINED OPTIMIZATION

Yutao Zheng*

Abstract. In this paper, a new family of Dai-Liao–type conjugate gradient methods are proposed for
unconstrained optimization problem. In the new methods, the modified secant equation used in [H. Yabe
and M. Takano, Comput. Optim. Appl. 28 (2004) 203–225] is considered in Dai and Liao’s conjugacy
condition. Under some certain assumptions, we show that our methods are globally convergent for
general functions with strong Wolfe line search. Numerical results illustrate that our proposed methods
can outperform some existing ones.
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1. Introduction

Consider the following unconstrained optimization problem

min 𝑓(𝑥), 𝑥 ∈ R𝑛, (1.1)

where the objective function 𝑓 : R𝑛 → R is continuously differentiable and its gradient 𝑔(𝑥) is available. The
problem (1.1) has a wide range of applications in areas of scientific computing and engineering. Therefore,
its efficient and effective numerical solution methods have been intensively studied in the literature, including
the spectral gradient methods [5, 15], conjugate gradient methods [4, 13] and memoryless BFGS methods [16].
Among them, conjugate gradient methods are popular and efficient for solving (1.1), especially for large scale
problems.

Let 𝑥𝑘 be the 𝑘th iterate point, 𝑔𝑘 the gradient of 𝑓(𝑥) at 𝑥𝑘, i.e. 𝑔𝑘 = 𝑔(𝑥𝑘). The (nonlinear) conjugate
gradient method is given by

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, (1.2)

where 𝛼𝑘 is the step length computed by carrying out an one-dimension line search and 𝑑𝑘 is the search direction
defined by

𝑑𝑘 =
{︂
−𝑔𝑘, if 𝑘 = 0,
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1, if 𝑘 ≥ 1,

(1.3)
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where 𝛽𝑘 is a scalar.
Since exact line search for searching 𝛼𝑘 is usually expensive and impractical, the strong Wolfe inexact line

search is often considered in the convergence analysis and implementation of nonlinear conjugate gradient
methods. It aims to find a step size 𝛼𝑘 satisfying the following two strong Wolfe conditions

𝑓
(︀
𝑥𝑘 + 𝛼𝑘𝑑𝑘

)︀
≤ 𝑓

(︀
𝑥𝑘

)︀
+ 𝜌𝑔𝑇

𝑘 𝑑𝑘, (1.4)

|𝑔𝑇
𝑘+1𝑑𝑘| ≤ 𝜎|𝑔𝑇

𝑘 𝑑𝑘|, (1.5)

where 0 < 𝜌 < 𝜎 < 1.
Nonlinear conjugate gradient method for unconstrained optimization problem is generated from the linear

conjugate gradient method for a special quadratic minimization problem

min
1
2
𝑥𝑇 𝑄𝑥 + 𝑏𝑇 𝑥 + 𝑐

or its equivalent line system 𝑄𝑥 = 𝑏, where 𝑄 is a real symmetric positive definite matrix. Linear conjugate
gradient methods generate a search direction such that the conjugacy condition holds, namely,

𝑑𝑇
𝑖 𝑄𝑑𝑗 = 0,∀𝑖 ̸= 𝑗. (1.6)

For general nonlinear functions, it follows from the mean value theorem that there exists some 𝜏 ∈ (0, 1) such
that

𝑑𝑇
𝑘 𝑦𝑘−1 = 𝛼𝑘−1𝑑

𝑇
𝑘∇2𝑓

(︀
𝑥𝑘−1 + 𝜏𝛼𝑘−1𝑑𝑘−1

)︀
𝑑𝑘−1,

where 𝑦𝑘−1 = 𝑔𝑘−𝑔𝑘−1 denotes the gradient change. Therefore, it is reasonable to replace (1.6) by the following
conjugacy condition:

𝑑𝑇
𝑘 𝑦𝑘−1 = 0. (1.7)

Let 𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘𝑑𝑘−1 satisfy the above condition, we have the famous Hestenes-Stiefel formula [14]

𝛽𝐻𝑆
𝑘 =

𝑔𝑇
𝑘 𝑦𝑘−1

𝑦𝑇
𝑘−1𝑑𝑘−1

.

In 2001, Dai and Liao [6] suggested an extended one

𝑑𝑇
𝑘 𝑦𝑘−1 = 𝑡𝑔𝑇

𝑘 𝑠𝑘−1, (1.8)

which leads to the following conjugate gradient parameter

𝛽DL+
𝑘 = max

{︃
𝑔𝑇

𝑘 𝑦𝑘−1

𝑦𝑇
𝑘−1𝑑𝑘−1

, 0

}︃
− 𝑡

𝑔𝑇
𝑘 𝑠𝑘−1

𝑑𝑇
𝑘−1𝑦𝑘−1

, (1.9)

where 𝑡 > 0 is a scalar, 𝑠𝑘−1 = 𝑥𝑘−𝑥𝑘−1. Note that the first item has been restricted to be nonnegative like [10].
The DL+ method (1.2)–(1.3) with 𝛽𝑘 in (1.9) is globally convergent for general functions under the sufficient
descent condition

𝑔𝑇
𝑘 𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2, 𝑐 > 0. (1.10)

and some other suitable conditions, where and hereafter ‖ · ‖ denotes the Euclidean norm of vectors.
As a special case of Dai-Liao–type conjugate gradient method, the efficient CG descent method [12] utilizes

a particular 𝑡. The conjugacy parameter of CG descent method is

𝛽𝑁
𝑘 =

𝑔𝑇
𝑘 𝑦𝑘−1

𝑦𝑇
𝑘−1𝑑𝑘−1

− 2
‖𝑦𝑘−1‖2

𝑠𝑇
𝑘−1𝑦𝑘−1

· 𝑔𝑇
𝑘 𝑠𝑘−1

𝑑𝑇
𝑘−1𝑦𝑘−1

.



A NEW FAMILY OF DAI-LIAO CONJUGATE GRADIENT METHODS 3283

Two further developments of the Dai and Liao’s method were made by Yabe and Takano [20] and Li et al.
[17] based on different modified secant equations. Some more efficient Dai-Liao–type methods were designed
and studied in [2, 9, 22, 23] by using different techniques. In this paper, we further give a new family of Dai-
Liao–type conjugate gradient methods for unconstrained optimization problems, including their convergence
analysis. Numerical experiments show that our methods can outperform the existing ones.

The rest of this paper is organized as follows. In Section 2, we introduce a new Dai-Liao–type method by
modifying the conjugate gradient parameter. Based on the strong Wolfe line search rules, the global convergence
for uniformly convex and general objective functions is studied in Section 3 and numerical experiments are
performed in Section 4. Finally, in Section 5, we give some conclusions to end this paper.

2. New Dai-Liao–Type methods

We start with the original Dai and Liao’s method in which the quasi-Newton techniques are used. In the
quasi-Newton method, an approximation Hessian 𝐵𝑘 is updated such that

𝐵𝑘𝑠𝑘−1 = 𝑦𝑘−1

and the search direction 𝑑𝑘 is calculated by

𝑑𝑘 = −𝐵−1
𝑘 𝑔𝑘. (2.1)

Combining the above two equations, we have

𝑑𝑇
𝑘 𝑦𝑘−1 = −𝑔𝑇

𝑘 𝑠𝑘−1.

The above relation implies that (1.7) holds in case of 𝑔𝑇
𝑘 𝑑𝑘−1 = 0, i.e. the line search is exact. However, in

practical numerical algorithms, the inexact line search is adopted instead of exact line search. Dai and Liao
suggested the following conjugacy condition:

𝑑𝑇
𝑘 𝑦𝑘−1 = −𝑡𝑔𝑇

𝑘 𝑠𝑘−1, (𝑡 ≥ 0).

In 2004, Yabe and Takano [20] used the modified secant equation

𝐵𝑘+1𝑠𝑘 = 𝑦𝑘 + 𝜌𝑘𝜃𝑘
𝑢𝑘

𝑢𝑇
𝑘 𝑠𝑘

, (2.2)

where 𝜌𝑘 ∈ [0, 3] and 𝜃𝑘 = 2(𝑓𝑘 − 𝑓𝑘+1) + (𝑔𝑘 + 𝑔𝑘+1)𝑇 𝑠𝑘, 𝑢𝑘 is chosen s.t. 𝑢𝑇
𝑘 𝑠𝑘 ̸= 0, to derive a new conjugacy

condition through replacing 𝑦𝑘 by 𝑧𝑘 = 𝑦𝑘 + 𝜌𝑘𝜃𝑘
𝑢𝑘

𝑢𝑇
𝑘 𝑠𝑘

, the modified conjugacy parameter is

𝛽𝑌 𝑇+
𝑘+1 = max

{︁𝑔𝑇
𝑘+1𝑧𝑘

𝑑𝑇
𝑘 𝑧𝑘

, 0
}︁
− 𝑡

𝑔𝑇
𝑘+1𝑠𝑘

𝑑𝑇
𝑘 𝑧𝑘

.

In this paper, we will derive a new conjugacy condition from another view of point. Combining (2.2) with
(2.1), we have

𝑑𝑇
𝑘+1𝑦𝑘 = 𝑑𝑇

𝑘+1

(︁
𝐵𝑘+1𝑠𝑘 − 𝜌𝑘𝜃𝑘

𝑢𝑘

𝑢𝑇
𝑘 𝑠𝑘

)︁
= 𝑑𝑇

𝑘+1𝐵𝑘+1𝑠𝑘 − 𝜌𝑘𝜃𝑘
𝑢𝑇

𝑘 𝑑𝑘+1

𝑢𝑇
𝑘 𝑠𝑘

= −𝑔𝑇
𝑘+1𝑠𝑘 − 𝜌𝑘𝜃𝑘

𝑢𝑇
𝑘 𝑑𝑘+1

𝑢𝑇
𝑘 𝑠𝑘

.
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Using the Dai-Liao’s conjugacy condition

𝑑𝑇
𝑘+1𝑦𝑘 = −𝑡𝑔𝑇

𝑘+1𝑠𝑘

and 𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘+1𝑑𝑘, where 𝑡 ∈ [0, 1], we have

𝜌𝑘𝜃𝑘
𝑢𝑇

𝑘 (−𝑔𝑘+1 + 𝛽𝑘+1𝑑𝑘)
𝑢𝑇

𝑘 𝑠𝑘
= (𝑡− 1)𝑔𝑇

𝑘+1𝑠𝑘,

which yields a new conjugate gradient parameter

𝛽new
𝑘+1 =

[︂
(𝑡− 1)𝑔𝑇

𝑘+1𝑠𝑘 · 𝑢𝑇
𝑘 𝑠𝑘

𝜌𝑘𝜃𝑘
+ 𝑔𝑇

𝑘+1𝑢𝑘

]︂⧸︁
𝑑𝑇

𝑘 𝑢𝑘

=
𝑔𝑇

𝑘+1𝑢𝑘

𝑑𝑇
𝑘 𝑢𝑘

− (1− 𝑡)
𝑢𝑇

𝑘 𝑠𝑘

𝜌𝑘𝜃𝑘
·
𝑔𝑇

𝑘+1𝑠𝑘

𝑑𝑇
𝑘 𝑢𝑘

if 𝜌𝑘𝜃𝑘 ̸= 0, otherwise, Dai and Liao’s conjugate gradient parameter 𝛽DL+
𝑘 will be used. According to the

experience of the quasi-Newton methods with modified secant equations [21], we choose 𝑢𝑘 = 𝑦𝑘.
In the case of 𝑢𝑘 = 𝑦𝑘, the conjugacy parameter 𝛽new

𝑘+1 can be written as

𝛽new
𝑘+1 =

[︂
(𝑡− 1)𝑔𝑇

𝑘+1𝑠𝑘 · 𝑦𝑇
𝑘 𝑠𝑘

𝜌𝑘𝜃𝑘
+ 𝑔𝑇

𝑘+1𝑦𝑘

]︂⧸︁
𝑑𝑇

𝑘 𝑦𝑘

=
𝑔𝑇

𝑘+1𝑦𝑘

𝑑𝑇
𝑘 𝑦𝑘

+
(𝑡− 1)𝑦𝑇

𝑘 𝑠𝑘

𝜌𝑘𝜃𝑘
·
𝑔𝑇

𝑘+1𝑠𝑘

𝑑𝑇
𝑘 𝑦𝑘

. (2.3)

and we correct it as

𝛽new+
𝑘+1 = max

{︂
𝑔𝑇

𝑘+1𝑦𝑘

𝑑𝑇
𝑘 𝑦𝑘

, 0
}︂

+
(𝑡− 1)𝑦𝑇

𝑘 𝑠𝑘

𝜌𝑘|𝜃𝑘|
·
𝑔𝑇

𝑘+1𝑠𝑘

𝑑𝑇
𝑘 𝑦𝑘

. (2.4)

We call the method (1.2) and (1.3) with 𝛽𝑘 given in (2.4) NEW+ method. The corresponding algorithm is
given as below:

Algorithm 2.1. Improved Dai-Liao conjugate gradient method

Step 1: Given 𝑥0 ∈ 𝑅𝑛, 𝜀, 𝜂 > 0, set 𝑑0 = −𝑔0, 𝑘 := 0; if ‖𝑔0‖ ≤ 𝜀, then stop;

Step 2: Compute 𝛼𝑘 such that strong Wolfe line search (1.4) and (1.5) hold;

Step 3: Let 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, if ‖𝑔𝑘+1‖ ≤ 𝜀, then stop;

Step 4: Compute 𝛽𝑘+1 by (2.4) if |𝜃𝑘| > 𝜂, otherwise, compute 𝛽𝑘+1 by (1.9); generate 𝑑𝑘+1 by (1.3);

Step 5: Set 𝑘 := 𝑘 + 1 and go to Step 2.

In the rest of the paper, we first analyze the convergence properties of the new algorithm, then give some
numerical results which show the modified algorithms are robust and efficient.

3. Convergence Analysis

Throughout this section, we assume that 𝑔𝑘 ̸= 0 for all 𝑘 ≥ 0, otherwise a stationary point is found. We first
give some standard assumptions.
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Assumption 3.1. The level set ℒ = {𝑥 ∈ R𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded, where 𝑥0 ∈ R𝑛 is an initial point.

Assumption 3.2. In some neighborhood 𝒩 of ℒ, the function 𝑓 is continuously differentiable and its gradient
𝑔(𝑥) is Lipschitz continuous, i.e. there exists a positive constant 𝐿 > 0 such that ‖𝑔(𝑥)− 𝑔(𝑦)‖ ≤ 𝐿‖𝑥− 𝑦‖ for
all 𝑥, 𝑦 ∈ 𝒩 .

Assumption 3.1 guarantees that there exists some constant 𝑐 such that ‖𝑠𝑘‖ ≤ 2𝑐,∀𝑘 > 0. Assumption 3.2
implies that ‖𝑔‖ ≤ 𝛾 for any 𝑥 ∈ ℒ, where 𝛾 = 2𝑐𝐿 + ‖𝑔0‖.

Firstly, we give some estimation on 𝜃𝑘. We know by mean value theorem that

𝜃𝑘 = 2(𝑓𝑘 − 𝑓𝑘+1) + (𝑔𝑘 + 𝑔𝑘+1)𝑇 𝑠𝑘

= −2∇𝑓(𝜂𝑘)𝑇 𝑠𝑘 + (𝑔𝑘 + 𝑔𝑘+1)𝑇 𝑠𝑘

= −[∇𝑓(𝑥𝑘)−∇𝑓(𝜂𝑘) +∇𝑓(𝑥𝑘+1)−∇𝑓(𝜂𝑘)]𝑇 𝑠𝑘,

where 𝜂𝑘 = 𝑥𝑘 + 𝜏(𝑥𝑘+1 − 𝑥𝑘) and 𝜏 ∈ (0, 1). Hence

|𝜃𝑘| ≤ (‖∇𝑓(𝑥𝑘)−∇𝑓(𝜂𝑘)‖+ ‖∇𝑓(𝑥𝑘+1)−∇𝑓(𝜂𝑘)‖)‖𝑠𝑘‖
≤ 𝐿(‖𝑥𝑘 − 𝜂𝑘‖+ ‖𝑥𝑘+1 − 𝜂𝑘‖)‖𝑠𝑘‖
= 𝐿‖𝑠𝑘‖2 ≤ 4𝐿𝑐2.

On the other hand, since 𝜃𝑘 is appeared in the denominator, too small value must be avoided for the numerical
stability, we ask |𝜃𝑘| to satisfy 0 < 𝜂 ≤ |𝜃𝑘| as shown in Algorithm 2.1. Otherwise, 𝛽DL+

𝑘 will be used.
Let 𝑓 be a uniformly convex function, then there exists some constant 𝜇 > 0 such that(︁

∇𝑓(𝑥)−∇𝑓(𝑦)
)︁𝑇

(𝑥− 𝑦) ≥ 𝜇‖𝑦 − 𝑥‖2,

which implies
𝜇‖𝑠𝑘‖2 ≤ 𝑠𝑇

𝑘 𝑦𝑘 ≤ 𝐿‖𝑠𝑘‖2. (3.1)

Then we have that

𝜃𝑘 = 2
(︁
𝑓𝑘 − 𝑓𝑘+1

)︁
+

(︁
𝑔𝑘 + 𝑔𝑘+1

)︁𝑇

𝑠𝑘

≥
(︁
− 𝑔𝑇

𝑘+1𝑠𝑘 +
𝜇

2
‖𝑠𝑘‖2

)︁
+

(︁
𝑔𝑘 + 𝑔𝑘+1

)︁𝑇

𝑠𝑘

= −𝑠𝑇
𝑘 𝑦𝑘 + 𝜇‖𝑠𝑘‖2

≥ −
(︁

1− 𝜇

𝐿

)︁
𝑠𝑇

𝑘 𝑦𝑘

and
|𝜃𝑘| ≤ 𝐿‖𝑠𝑘‖2 ≤

𝐿

𝜇
𝑠𝑇

𝑘 𝑦𝑘.

Thus 𝜃𝑘 locates in the interval
(︁
− (1−𝜇/𝐿)𝑠𝑇

𝑘 𝑦𝑘,−𝜂
)︁
∪

(︁
𝜂, 𝐿/𝜇𝑠𝑇

𝑘 𝑦𝑘

)︁
. Therefore, we assume that the following

relationship always holds.
𝜇

𝐿
≤

⃒⃒⃒𝑠𝑇
𝑘 𝑦𝑘

𝜃𝑘

⃒⃒⃒
≤ 1

𝜖
.

The following theorem states the global convergence property of new method for uniformly convex functions.

Theorem 3.3. Let 𝑓 be a uniformly convex function and Assumptions 3.1 and 3.2 hold. Suppose that {𝑥𝑘} is
the sequence generated by Algorithm 2.1 with 𝛽𝑘 in (2.4), then

lim
𝑘→∞

‖𝑔𝑘‖ = 0. (3.2)
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Proof. It follows from 𝑓 is uniformly convex function that

𝑑𝑇
𝑘 𝑦𝑘 ≥ 𝜇𝛼𝑘−1‖𝑑𝑘−1‖2.

By using Triangular and Cauchy-Schwartz inequalities, we have

‖𝑑𝑘‖ ≤ ‖𝑔𝑘‖+ |𝛽new
𝑘 |‖𝑑𝑘−1‖

≤ ‖𝑔𝑘‖+
(𝐿 + (1− 𝑡)/𝜖) ‖𝑔𝑘‖ ‖𝑠𝑘−1‖

𝜇𝛼𝑘−1 ‖𝑑𝑘−1‖2
‖𝑑𝑘−1‖

≤ 𝜇−1(𝐿 + (1− 𝑡)/𝜖 + 𝜇)‖𝑔𝑘‖,

which means ∑︁
𝑘≥1

1
‖𝑑𝑘‖2

= +∞.

Therefore, from Lemma 3.2 [6] and the fact 𝑓 is a uniformly convex function, we have

lim
𝑘→∞

‖𝑔𝑘‖ = 0.

�

For the general function, we only need to show the modified Dai-Liao method with 𝛽𝑘 in (2.4) satisfies the
Property(*) depicted by Gilbert and Nocedal [10]. The rest analysis is similar to the original Dai-Liao’s method.

Definition 3.4. Consider a method of the form (1.2)–(1.3), and suppose that

0 < 𝛾 ≤ ‖𝑔𝑘‖ ≤ 𝛾 (3.3)

for all 𝑘 ≥ 1. We say that the conjugate gradient method has the Property(*), if for all 𝑘, there exist constants
𝑏 > 1, 𝑘 > 0 such that for all 𝑘,

|𝛽𝑘| ≤ 𝑏 and ‖𝑠𝑘−1‖ ≤ 𝜆 imply |𝛽𝑘| ≤
1
2𝑏

. (3.4)

By the strong Wolfe condition (1.5), (1.10) and (3.3), we have

𝑑𝑇
𝑘−1𝑦𝑘−1 ≥ (𝜎 − 1)𝑔𝑇

𝑘−1𝑑𝑘−1 ≥ (1− 𝜎)𝑐𝛾2.

Using this and boundedness of ‖𝑠𝑘‖, we obtain

|𝛽𝑘| ≤
(𝐿 + (1− 𝑡)/𝜖) ‖𝑔𝑘‖ ‖𝑠𝑘−1‖

(1− 𝜎)𝑐𝛾2
≤ 2(𝐿 + (1− 𝑡)/𝜖)𝛾𝑐

(1− 𝜎)𝑐𝛾2
=: 𝑏.

Note that 𝑏 can be defined such that 𝑏 > 1. If we set

𝜆 :=
(1− 𝜎)𝑐𝛾2

𝑏(𝐿 + (1− 𝑡)/𝜖)𝛾

and 𝑠𝑘−1 ≤ 𝜆, then

|𝛽𝑘| ≤
(𝐿 + (1− 𝑡)/𝜖)𝛾𝜆

(1− 𝜎)𝑐𝛾2
=

1
𝑏
.

Therefore, the NEW+ method has Property (*). Thus, we have the following convergence theorem.

Theorem 3.5. Let Assumptions 3.1 and 3.2 hold. If the sequence {𝑥𝑘} is generated by the NEW+ method with
the strong Wolfe line search for 𝜎 ∈ (0, 1), where 𝑑𝑘 satisfies condition (1.10) with 𝑐 > 0. Then we have

lim inf
𝑘→+∞

‖𝑔𝑘‖ = 0.
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Table 1. Tested conjugate gradient algorithms.

𝛽𝑘 Name of method Abbreviation

𝛽FR
𝑘 The Fletcher-Reeves method [8] FR

𝛽PRP+
𝑘 The Polak-Ribiere-Polyak [18,19] PRP+

𝛽HS
𝑘 The Hestenes-Stiefel method [14] HS

𝛽DY
𝑘 The Dai-Yuan method [3] DY

𝛽N
𝑘 The Hager and Zhang’s method [12] HZ

𝛽DL+
𝑘 The Dai-Liao method [6] DL+

𝛽YT+
𝑘 Yabe-Takano’s method [20] YT+

𝛽new+
𝑘 Our method NEW+

Table 2. Numerical results for Trigonometric with 𝑛 = 5000.

FR PRP+ HS DY HZ CG descent

167/292 133/340 39/109 213/291 96/195 73/278

𝜌𝑘
𝑡

0.1 0.3 0.5 0.7 0.9
DL+ 0 21/100 49/136 20/92 64/156 69/158
YT+

0.1
21/100 82/177 20/92 61/152 63/151

NEW+ 78/169 61/143 52/136 19/91 66/156
YT+

0.3
20/99 67/160 20/93 21/95 63/153

NEW 20/94 20/93 20/91 65/157 67/161
YT+

0.5
19/95 21/91 42/134 41/127 38/127

NEW+ 20/92 19/88 19/89 64/155 71/162
YT+

0.7
22/107 21/93 67/154 69/162 23/100

NEW+ 22/108 45/135 20/91 64/152 64/152
YT+

0.9
20/95 68/166 21/99 38/127 33/1

NEW+ 20/97 47/140 20/98 67/158 19/94
YT+

1.0
21/97 20/90 21/95 40/132 22/95

NEW+ 20/97 44/128 19/89 65/153 19/95

4. Numerical Experiments

In this section, some numerical results are reported on a a set of 76 unconstrained optimization problems
selected from [1] and CUTEst library [11]. We tested the conjugate gradient algorithms with the conjugacy
parameters given in Table 1.

For the algorithms DL+, YT+ and our new method, different scaled parameters 𝜌 and 𝑡 are used. In the case
where an ascent direction is generated, we restart the algorithm by setting 𝑑𝑘 = −𝑔𝑘.

All codes were written in Fortran and in double precision arithmetic. (Note that, for the sake of fairness, at
the beginning of experiments we do not directly run Hager and Zhang’s CG descent codes for the test problems,
we just use their conjugate parameter under the same linear search in our test framework). The stopping rule
is set as ‖𝑔𝑘‖∞ ≤ 10−6. The iteration is also terminated if the total number of iterations exceeds 10,000.
Partial numerical results are summarized in Tables 2–6 and given in the form of (number of iterations/number
of function-gradient evaluations), the detailed complete numerical results can be downloaded from the website
https://github.com/piratetwo/mdl.

https://github.com/piratetwo/mdl
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Table 3. Numerical results for ENGVAL1 with 𝑛 = 5000.

FR PRP+ HS DY HZ CG descent

285/8484 195/5333 695/20246 1711/53963 229/6770 24/78

𝜌𝑘
𝑡

0.1 0.3 0.5 0.7 0.9
DL+ 0 117/3068 33/364 24/72 105/2642 161/4520
YT+

0.1
101/2570 224/6557 145/3867 105/2774 43/704

NEW+ 189/5398 162/4586 93/2162 197/5752 269/7994
YT+

0.3
166/4696 185/5189 184/5306 112/2886 181/5142

NEW+ 228/6821 200/6005 307/9366 137/3683 255/7464
YT+

0.5
179/5123 171/4828 157/4448 140/3857 136/3666

NEW+ 162/4693 164/4715 170/4931 78/1778 144/3926
YT+

0.7
58/1225 79/1805 81/1896 217/6311 164/4696

NEW+ 46/805 253/7499 126/3339 157/4211 128/3529
YT+

0.9
200/6064 127/3524 60/1233 149/4241 259/7689

NEW+ 37/431 177/4856 72/1552 234/6807 116/2866
YT+

1.0
120/3187 159/4454 109/2979 282/8316 145/4029

NEW+ 94/2333 62/1125 120/3091 102/2489 119/3154

Table 4. Numerical results for Raydan 1 with 𝑛 = 5000.

FR PRP+ HS DY HZ CG descent

–/– –/– 756/1019 739/819 856/1334 490/1472

𝜌𝑘
𝑡

0.1 0.3 0.5 0.7 0.9
DL+ 0 816/1077 782/1082 724/972 766/1046 812/1101
YT+

0.1
834/1274 770/1041 766/1077 540/711 767/1001

NEW+ 850/1166 689/933 808/1092 649/853 785/1037
YT+

0.3
809/1109 749/1038 782/1063 810/1122 863/1140

NEW+ 839/1142 628/858 748/1010 791/1063 864/1154
YT+

0.5
752/1032 744/1015 749/1028 724/964 829/1135

NEW+ 764/1015 732/1011 779/1058 710/964 801/1090
YT+

0.7
622/853 679/915 826/1144 842/1114 789/1065

NEW+ 719/970 736/992 704/953 696/940 820/1081
YT+

0.9
712/974 824/1094 882/1224 777/1045 890/1187

NEW+ 671/891 870/1151 786/1062 851/1179 746/991
YT+

1.0
708/957 859/1183 669/897 876/1176 815/1103

NEW+ 722/969 715/972 759/1023 706/948 680/905

In the Tables 2–6, the boldface font is used to mark the first and second efficient method which performs
better than the other two algorithms for each 𝜌𝑘 and 𝑡. The number of the best performance for Algorithm
NEW+, YT+, DL+ are 32, 15 and 3, respectively.

In most cases, our new method improves Yabe-Takano’s method. For a special 𝜌𝑘 = 3, which was used in
the modified quasi-Newton method, we compare the numerical performance of YT+ and NEW+. We run the
codes with different 𝑡 = 0.1, 0.2, . . . , 1 and compute the medians for each problem. The performance profiles
introduced by Dolan and Moré [7] are used to display the behaviours of these two methods. Figure 1 shows
that the NEW+ method performs the best result regarding the number of iterations and function-gradient
evaluations, which is located at the top curve in Figure 1.
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Table 5. Numerical results for SINQUAD with 𝑛 = 5000.

FR PRP+ HS DY HZ CG descent

1455/2665 –/– –/– 1891/2579 2021/4044 1071/3813

𝜌𝑘

𝑡
0.1 0.3 0.5 0.7 0.9

DL+ 0 481/1014 681/1424 728/1532 475/1018 588/1238
YT+

0.1
602/1270 499/1043 792/1676 703/1515 390/874

NEW+ 550/1172 530/1145 465/1021 451/965 606/1282
YT+

0.3
533/1121 568/1225 1431/2951 477/1013 526/1110

NEW+ 482/1009 721/1507 638/1325 599/1277 597/1249
YT+

0.5
528/1095 579/1272 544/1210 687/1474 553/1185

NEW+ 532/1132 491/1057 804/1682 503/1059 500/1094
YT+

0.7
588/1295 842/1773 496/1048 555/1197 499/1102

NEW+ 533/1105 543/1195 565/1189 452/1158 476/1012
YT+

0.9
546/1212 522/1088 610/1275 598/1287 568/1235

NEW+ 483/1029 594/1280 502/1068 489/1046 644/1358
YT+

1.0
423/873 590/1272 538/1162 498/1048 483/1011

NEW+ 593/1275 526/1119 567/1182 569/1204 506/1064

Table 6. Numerical results for Woods with 𝑛 = 5000.

FR PRP+ HS DY HZ CG descent

112/218 65/133 87/214 95/178 161/309 182/683

𝜌𝑘
𝑡

0.1 0.3 0.5 0.7 0.9
DL+ 0 39/80 52/99 43/85 45/90 48/94
YT+

0.1
32/68 37/76 63/122 59/113 46/90

NEW+ 38/77 37/75 70/123 43/90 44/89
YT+

0.3
48/93 40/101 53/103 58/116 61/114

NEW+ 39/83 44/86 48/97 46/96 36/74
YT+

0.5
32/69 42/83 41/80 81/161 58/116

NEW+ 62/113 34/72 50/100 36/78 53/103
YT+

0.7
35/74 49/99 40/81 58/114 45/91

NEW+ 35/76 51/103 36/70 69/132 58/109
YT+

0.9
31/66 44/86 47/93 38/79 39/79

NEW+ 40/83 49/97 57/108 36/74 59/99
YT+

1.0
41/83 41/83 36/74 39/79 59/118

NEW+ 48/95 60/113 32/67 46/91 41/84

Finally, we run Hager and Zhang’s method with the approximate Wolfe line search conditions (Hager and
Zhang’s CG descent Fortran code Version 1.42). From Figure 2, for about 62% of all problems, CG descent
needs the least iterations, it has the best performance. However, CG descent has the poorer performance than
the YT+ and NEW+ regarding the number of function-gradient evaluations which mainly affects the efficiency
of the methods.

2https://people.clas.ufl.edu/hager/software/

https://people.clas.ufl.edu/hager/software/
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Figure 1. Performance profiles based on iterations and function-gradient evaluations for YT+
and NEW+.

Figure 2. Performance profiles based on iterations and function-gradient evaluations for YT+,
NEW+ and CG descent.

5. Conclusions

In this paper, based on the Dai and Liao’s conjugacy condition and the modified secant condition proposed
by Zhang and Xu [21], we derived a new family of Dai-Liao–type conjugate gradient methods. Under some
certain assumptions, we show that our methods are globally convergent for general functions. Numerical results
show that our new methods can outperform some existing ones.
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