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A MULTI-OBJECTIVE MODEL FOR AN INTEGRATED OIL AND NATURAL
GAS SUPPLY CHAIN UNDER UNCERTAINTY

Ahmed M. Ghaithan1,3,*, Ahmed M. Attia2,3 and Salih O. Duffuaa2

Abstract. The oil and gas networks are overlapped because of the inclusion of associated gas in crude
oil. This necessitates the integration and planning of oil and gas supply chain together. In recent years,
hydrocarbon market has experienced high fluctuation in demands and prices which leads to considerable
economic disruptions. Therefore, planning of oil and gas supply chain, considering market uncertainty
is a significant area of research. In this regard, this study develops a multi-objective stochastic opti-
mization model for tactical planning of downstream segment of oil and natural gas supply chain under
uncertainty of price and demand of petroleum products. The proposed model was formulated based on
a two-stage stochastic programming approach with a finite number of realizations. The proposed model
helps to assess various trade-offs among the selected goals and guides decision maker(s) to effectively
manage oil and natural gas supply chain. The applicability and the utility of the proposed model has
been demonstrated using the case of Saudi Arabia oil and gas supply chain. The model is solved using
the improved augmented 𝜀-constraint algorithm. The impact of uncertainty of price and demand of
petroleum products on the obtained results was investigated. The Value of Stochastic Solution (VSS)
for total cost, total revenue, and service level reached a maximum of 12.6%, 0.4%, and 6.2% of wait-and
see solutions, respectively. Therefore, the Value of the Stochastic Solution proved the importance of
using stochastic programming approach over deterministic approach. In addition, the obtained results
indicate that uncertainty in demand has higher impact on the oil and gas supply chain performance
than the price.
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1. Introduction

Oil and gas supply chain is long network that constitute many entities starting from oil and gas fields and
ends with the customers. Along this network, the oil and gas products pass through several stages including
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production, processing, refining, and transformation to different by-products in gaseous and liquefied forms.
Stewart and Arnold [43] explained the activities performed along the oil and gas supply chain in details. The oil
network involves oil fields, oil and gas separation plants, oil processing plants, refinery plants, storage facilities,
and customers. On the other hand, the natural gas network comprises gas fields, gas plants, fractionator plants,
storage facilities, and customers. The two networks overlap in different entities and products. For instance,
crude oil produced from oil fields contains natural gas termed “associated gas”. The associated gas along with
the non-associated produced from gas fields are both shipped to gas plants for processing. In addition, propane
and butane are produced in both gas fractionator and refinery plants [5, 20, 36]. This overlap between the two
networks necessitates the integration and planning of oil and gas supply chain together. Therefore, it is crucial
to optimize and integrate both oil and gas networks as a single supply chain.

Another challenge facing the oil producers is managing oil and gas industries in the presence of market
uncertainty and variations. The uncertainties may include variations in fuel prices, demands, risks, etc. A high
variation in price of petroleum products have been observed in the last few years due to variation in supply,
political instability and tendency to utilize renewable energy. This uncertainty has tremendous economic impact
on producing and consuming countries. For example, in 2015, the oil prices have declined sharply, as a result,
petroleum-producing countries faced budget deficit, and then, many projects were faltered or delayed. Moreover,
in 2020, oil prices fell below zero dollars for the first time in the history due to the spread of COVID-19 pandemic.
Therefore, optimizing operations of oil and gas supply chain taking into consideration uncertainty as well as
integration of both networks is crucial. Stochastic programming is one approach that can develop a robust plan
taking into account uncertainties. Another challenge is to develop a decision support system that takes into
consideration different conflicting goals i.e., economic, sustainability, environment, etc.

The area of integration of oil and gas supply chain has not been tackled, only [5, 20] have developed deter-
ministic models for the upstream and downstream segments, respectively. To the authors knowledge the impact
of uncertainty of key market conditions; demand and price has not been tackled in the literature especially in
multi-objective optimization as can be discussed in the Section 2 and summarized in Table 1.

To tackle the above-mentioned challenges, this study developed a stochastic multi-objective decision-making
model that aims to assist decision makers to effectively manage both oil and gas networks considering various
trade-offs among different goals. In addition, the model takes into consideration the impact of oil and gas market
fluctuations on decisions. This study aims to develop a stochastic model for an integrated downstream oil and
gas supply chain based on two-stage stochastic programming. The model is expected to help in deriving tactical
decisions for the supply chain and study the impact of uncertainty of demand and price on these decisions. The
optimal tactical decisions are medium range decisions that include the determination of optimal productions,
processing, distributions and allocation of final products to demand centers.

The applicability of the proposed model has been validated using a real case of Saudi Arabia oil and gas supply
chain. The multi-objective stochastic model is solved using the improved augmented 𝜀-constraint algorithm
proposed by Mavrotas and Florios [34]. The deterministic equivalence model of the Saudi case is large and has
23 846 variables and 16 897 constraints. The paper is structured into the following sections: Section 2 presents
and classifies the literature review with focus on stochastic models. Section 3 describes the problem under study.
Section 4 develops the multi-objective stochastic optimization model. Section 5 describes the case study. The
obtained results are discussed in Section 6. Finally, Section 7 concludes the paper.

2. Literature review

Several studies have been conducted on optimization of Hydro-Carbone Supply Chain (HCSC). This section
presents the relevant literature on the optimization of HCSC under uncertainty. Escudero et al. [17] formulated a
two-stage stochastic programming model for a multi-period supply chain. The model addressed downstream oil
supply chain starting from crude oil supply to refineries up to distribution. The model determined refining and
distribution-scheduling activities under uncertainties of demand, cost of supply, and refined oil prices. Dempster
et al. [15] formulated a two-stage stochastic planning model that is used for transformation and distribution
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activities of oil supply chain. The optimized oil network comprises of crude oil depots and refinery plants. In
recent years, researchers have enriched the literature in the HCSC planning and optimization with the purpose
of maximization or minimization of a single objective function. Iakovou [22] dealt with long term decisions of
maritime transportation to minimize the transportation and risk costs. The problem is formulated as a multi-
objective, multi-commodity, multiple origin-destination pairs, and multimodal problem. The output of their
model, a network of routes for transporting vessels between different nodes. The model needs to be modified to
account for different scenarios in transportation activities (i.e., robust model).

Lababidi et al. [25] developed a stochastic model for petrochemical supply chain considering uncertainties of
demand, prices, and costs of supply and production. Li et al. [28] proposed two tactical programming models;
two-stage and chance-constraint models to refinery plant planning considering uncertainties in demand and
supply. Their model contains two service objectives: confidence level (i.e., probability of satisfying customer
demand) and fill rate (i.e., proportion of the demand satisfied from the refinery plant). The model considered
optimizing production rate of a single oil product at refinery and flow quantity of oil to final customer. Neiro and
Pinto [37] formulated a multi-period and tactical mixed integer non-linear programming model for optimizing
production plans in oil refineries. The model studied the uncertainty in price and demand of crude and oil
products. The objective function contained a nonlinear operating cost term as a result of the unit operating
mode and inlet stream flow rate.

Al-Othman et al. [1] developed an integrated single objective stochastic model for oil supply chain with
uncertainties arising from market demands and prices. Three scenarios are considered for demand and prices;
above, base, and below average. In the first stage the production quantities are specified for each type of crude
oil, while in the second stage the production quantities of refinery and petrochemical products are optimized.
MirHassani [35] developed a two-stage stochastic linear programming model under uncertain demand. The
model is used for planning of a petroleum supply chain contains refinery plants and depots with the objective
to minimize holding and transportation costs. He studied the effect of transportation capacity on demand
fulfillment. Khor et al. [23] developed two-stage stochastic model and stochastic robust programming model to
optimize production operation of a refinery. The models considered transforming of crude oil at refinery and
the flow of the oil to the final customer. The model addressed uncertainty of crude and oil-by products demand,
prices, and yields. The variance was adopted as the risk measure.

Ghatee and Hashemi [21] developed a stochastic model considering daily production of each unit in supply
chain, daily exportation of each port, refinery intake, pipelines and storage capacities. Carneiro et al. [10]
formulated a two-stage scenario based stochastic programming model incorporating conditional value at risk
(CVaR) a risk measure to maximize the expected portfolio return. Al-Qahtani and Elkamel [3] extended the
deterministic model of Al-Qahtani and Elkamel [2] by incorporating uncertainties of crude oil supply and final
products demand and prices. Two models were formulated; the first model is a MILP stochastic model and
the second model is a robust mixed integer no-linear programming model. The sample average approximation
(SAA) is employed to generate the required samples. They considered crude oil processing at refineries and
marketing of refined oil refined products locally and internationally, and imports of refined oil products.

Ribas et al. [41] formulated stochastic and robust models for strategic decision making. The considered
uncertain parameters are oil products demands and prices. A comparison was conducted for performance of
the two models. The proposed model comprises refinery and petrochemical plants. The inlet crude oil to the
refinery plants are from local, international, gas, and vegetable oil. Leiras et al. [26] extended Ribas et al. [40]
and Al-Qahtani and Elkamel [2] work by considering material supplies cost and final item price as uncertain
parameters. The model investigated the strategic planning decisions related to refineries integration. Yang et al.
[45] utilized Markov chain to represent the fluctuation of product yield of refineries. They used chance constraint
programming in the formulation. Ribas et al. [41] formulated a stochastic model considering uncertainty in
prices and demands. The model used for refineries production planning considering environmental legislation
(e.g., limiting the sulfur production).

Tong et al. [44] built a stochastic model with the assumption of demand uncertainty and production fluctua-
tion. The model considered risks from customer resentment and inventory infringement. The model was solved
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using a heuristic algorithm integrated with a simulation framework based on iterative procedure, where, the
optimality needs more work to be proved. Oliveira and Hamacher [38] formulated a strategic stochastic pro-
gramming model for distributing petroleum products under the assumption of uncertain demand. The proposed
model did not consider the processing of crude oil and the importation of products. Tong et al. [44] incorpo-
rated CVaR in the objective function, and estimated the threshold value by SAA. Oliveira et al. [39] developed
a stochastic model used for design and capacity expansion with the assumption of stochastic demand. The con-
sidered network compromises of supply nodes, primary and secondary bases. Fernandesa et al. [18] formulated
a stochastic model to maximize net present value based on demand uncertainty.

Azadeh et al. [7] presented a multi-objective model for planning natural gas supply chain considering the
uncertainty of demand, capacity, and costs as a fuzzy parameter for minimizing the total costs and environmental
costs. The model was solved through two steps first by getting the deterministic equivalent, and second by
converting the model into a single objective. Within the few research works that considered environmental
legislation; Liqiang and Guoxin [32] proposed a model oriented around CO2 emissions. They mitigate the
carbon emissions through minimizing the taxes from environment legislation.

Azadeh et al. [8] proposed a deterministic MINLP model to design both segments of crude oil supply chain.
The model optimizes development of oil field and crude oil processing and distribution. Lima et al. [31] proposed
a multistage stochastic programming model to optimize production, and distribution activities of refined prod-
ucts with the aim of profit maximization. The model considered demand and price as uncertain parameters.
Ghaithan et al. [20] optimized oil and gas supply chain in an integrated network under the assumption of cer-
tain environment. For further reading, recent reviews conducted by Lima et al. [30] and Sahebi et al. [42] in the
area of application of mathematical programming techniques. Also, Leiras et al. [27] reviewed the literature for
techniques and methodologies used for optimizing refinery operations. Table 1 summarizes the relevant works
in terms of type of supply chain, optimization approach, and considered uncertain parameters.

Despite of the intensive work in the area of hydrocarbon supply chain optimization, several gaps have been
observed. For instance, it has been noticed that most researches have optimized oil and gas separately. Moreover,
the oil and gas supply chain has not been integrated especially in a multi-objective stochastic framework.
Therefore, this paper is an attempt to fill the above-mentioned gaps by developing a multi-period and multi-
objective stochastic mathematical model under uncertainty of key market conditions.

3. Problem statement

The oil and gas products pass through a long journey before they reach the final customers. Due to the long
and complexity of the oil and gas supply, researches divided the network into segments [42] namely, upstream and
downstream. The borders between the two segments are subjective. The upstream segment consists of various
entities, namely, oil and natural gas fields, gas oil separation plants, and storage facilities. The downstream
segment comprises oil processing plants, gas plants, refinery plants, fractionator plants, export terminals, and
import terminals as shown in Figure 1. Many activities are performed along the oil and gas supply chain such as
transportation, crude oil processing, natural gas separation, crude oil refining, refined products transportation,
storage, distribution, and marketing [43].

The final petroleum products goes through many processing and transforming activities to be ready for the
final use; as follows: Sour oil produced at oil fields is shipped to oil storages and then distributed to processing
plants for sweetening process to remove impurity sulfur. After sweetening, the sour oil is then called crude oil
that is used to satisfy international market demand and local demand of refinery plants. The crude oil is further
transformed in refinery plants into its oil by-products, namely, diesel, naphtha, gasoline, propane, butane, fuel
oil, asphalt, and kerosene. The oil by-products are then stored in bulk plants before distribution to local, export
terminals, and industry customers.

There are two types of natural gases; associated and non-associated natural gases. The associated natural gas
is separated from crude oil at gas oil separation plants (GOSPs) while the non-associated natural gas is produced
directly from pure gas fields. The two gas streams are then shipped to gas storages and then distributed to gas
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Table 1. Summary of the relevant works.

Reference Network Optimization approach Uncertain parameter
Oil Gas Single Multi- Price Demand Yield Others

objective objective

Escudero et al. [17] * * * *
Dempster et al. [15] * * * *
Iakovou [22] * *
Lababidi et al. [25] * * * * *
Li et al. [28] * * * *
Neiro and Pinto [37] * * * *
Khor et al. [23] * * * * *
Al-Qahtani et al. [2] * * * * *
Al-Othman et al. [1] * * * *
Ghatee and Hashemi [21] * * *
Yang et al. [45] * * *
Al-Qahtani and Elkamel [3] * * * *
Leiras et al. [26] * * * *
Carneiro et al. [10] * * * *
Ribas et al. [40] * * * *
Ribas et al. [41] * * * *
MirHassani and Noori [35] * * *
Tong et al. [44] * * * * *
Oliveira and Hamacher [38] * * *
Oliveira et al. [39] * * *
Liqiang and Guoxin [32] * * *
Fernandesa et al. [18] * * *
Azadeh et al. [7] * * * *
Azadeh et al. [8] * *
Lima et al. [31] * * * *
This paper * * * * *

plants to be processed into natural gas liquid (NGL), methane and hydrogen sulfide. The methane is used as
raw material by industries and the NGL is fractionated in fractionator plants into its gas by-products including
ethane, propane, butane and natural gasoline. The gas by-products are utilized to satisfy local, industry, and
international demands [20]. The shortages of oil and gas are fulfilled from international markets represented by
the import terminals in Figure 1.

As per the above discussion, there is an overlap between the oil and gas networks due to the existence of
natural gas associated with crude oil. Moreover, propane and butane gases are produced in refinery plants as
well as fractionation plants. This overlap necessitates the integration and planning of oil and gas supply chain
together.

The oil and gas supply chain comprises uncertain parameters such as supply, demand, price, yields, etc.
For instance, in the last years, huge variations in petroleum products demand and price has been noticed.
Therefore, when modeling oil and gas supply chain, it is important to consider these uncertainties. In addition,
decision maker(s) should take into account the trade-off between economic and customer satisfaction objectives.
In this study, each uncertain parameter is represented by discrete possible realization/scenarios with a specific
probability of occurrence. The model is formulated based on two-stage stochastic programming approach with
recourse [14], also known as scenario based analysis [9]. The location of first and second stage decision vari-
ables are illustrated in Figure 1. The first-stage decisions include the supply from upstream to the oil and gas
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Figure 1. Schematic representation of oil and gas supply chain [20].

storages/inventories. These decisions should be made prior to the realization of demand and price. The second-
stage decisions comprise quantities of all shipments between each two nodes in the network, productions, inven-
tory levels, as well as importation and exportation quantities.

The tactical decisions will be optimized while taking into consideration limitations of plants capacities,
demand, material balance, and quota specified by Organization of the Petroleum Exporting Countries (OPEC).
The proposed multi-objective stochastic model is solved using the augmented 𝜀-constraint algorithm, which
is an improved version of the classical 𝜀-constraint method. In the 𝜀-constraint method, the generated Pareto
optimal points involve weak efficient solutions. The augmented 𝜀-constraint algorithm generates Pareto optimal
solutions without providing weak solutions by setting other objectives as binding constraints. Therefore, the
solutions are reached quickly as a result of avoiding the generation of weak solutions. In the following sections
the model is developed, solved, and its results are analyzed.

4. Mathematical model formulation

The integrated oil and gas supply chain has been optimized by developing a stochastic model based on
two-stage stochastic programming approach. The two-stage stochastic programming formulation is a decision-
making approach in which decisions are performed sequentially in two stages. The first stage decisions 𝑥 are
made before having clear information about the uncertain parameters 𝜆(𝜔). After recognition of the uncertain
parameter 𝜆, the second stage decisions 𝑦 are made. A recourse action is taken during the second stage after
the uncertainty is resolved. The stochastic formulation for the two-stage problem in terms of a single objective
is shown below, equations (4.1)–(4.6) and its corresponding deterministic equivalent is provided in equations
(4.7)–(4.10), [12].

Maximize𝑥 𝑧 = 𝑐𝑇 𝑥 + 𝐸{𝑄(𝜔)} (4.1)
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subject to 𝐴𝑥 = 𝑏 (4.2)
𝑥 ∈ 𝑋 (4.3)

where

𝑄(𝜔) =
{︁

Maximize𝑦(𝜔)𝑞(𝜔)𝑇
𝑦(𝜔) (4.4)

subject to 𝑇 (𝜔)𝑥 + 𝑊 (𝜔)𝑦(𝜔) = ℎ(𝜔) (4.5)
𝑦(𝜔) ∈ 𝑌 }, ∀𝜔 ∈ Ω. (4.6)

The deterministic equivalent model of the above formulation is shown below:

Maximize𝑥,𝑦(𝜔) 𝑧 = 𝑐𝑇 𝑥 +
∑︁
𝜔∈Ω

𝜋(𝜔)𝑞(𝜔)𝑇
𝑦(𝜔) (4.7)

subject to 𝐴𝑥 = 𝑏 (4.8)
𝑇 (𝜔)𝑥 + 𝑊 (𝜔)𝑦(𝜔) = ℎ(𝜔), ∀𝜔 ∈ Ω (4.9)
𝑥 ∈ 𝑋, 𝑦(𝜔) ∈ 𝑌, ∀𝜔 ∈ Ω. (4.10)

To prove the importance of considering uncertain price and demand on the model performance, the Expected
Value of Perfect Information (EVPI) and the Value of the Stochastic Solution (VSS) are used. The EVPI
represents the quantity that decision maker(s) is willing to pay for obtaining perfect information about the
future. The EVPI is calculated as the difference between the wait and see solutions (𝑍WS) and the stochastic
solutions (𝑍S). The EVPI is represented mathematically for maximization and minimization problems as [12]:

EVPImax = 𝑍WS − 𝑍S (4.11)

EVPImin = 𝑍S − 𝑍WS (4.12)

where the 𝑍WS is the mean of objective function obtained by solving the problem separately for each scenario.
The VSS is an indicator to the advantage of using a stochastic programming over a deterministic approach.
The VSS is the difference between the expected value solution (𝑍EV) and the stochastic solution (𝑍S) which
represented mathematically for maximization and minimization problems as [12]:

VSSmax = 𝑍S − 𝑍EV (4.13)

VSSmin = 𝑍EV − 𝑍S. (4.14)

The 𝑍EV is determined as follows: first the mean of each stochastic parameter is determined and the problem
is solved as deterministic problem. Then the obtained solutions are considered as first stage decisions for the
stochastic problem. The stochastic model is then solved to determine the second-stage decisions. The obtained
objective function is the EEV solution. The notations used to develop the proposed model are listed in Table 2.

4.1. Objective functions

The objective functions are defined in equations (4.15)–(4.18). The total cost; equation (4.15) involves two
main parts; deterministic and stochastic terms. The deterministic term involves holding costs of raw material
coming from upstream to the oil and gas storages. The second stage terms contain the expected costs of
transforming and separation, transportation, holding, and penalty costs of producing over and under the specified
demand.

Min 𝑍1 =
∑︁
𝑖∈𝑆

∑︁
𝑟∈𝑅

∑︁
𝑡∈𝑇

𝐻𝑐𝑟
𝑖𝑡𝑌

𝑟
𝑖𝑡 +

∑︁
𝜔∈Ω

𝜋𝜔

⎡⎣∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑁1

∑︁
𝑟∈𝑅

∑︁
𝑡∈𝑇

𝐶𝑝𝑟
𝑖𝑗𝑡𝑋

𝑟
𝑖𝑗𝑤𝑡 +

∑︁
𝑖∈𝑁1

∑︁
𝑗∈𝑁2

∑︁
𝑝∈𝑃

∑︁
𝑡∈𝑇

𝐶𝑝𝑝
𝑖𝑗𝑡𝑋

𝑝
𝑖𝑗𝑤𝑡
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Table 2. The notations.

Sets

𝑖, 𝑗 ∈ 𝐼 : All nodes

𝑁1 ⊆ 𝐼 : Set of petroleum plants belong to the first echelon of oil and gas supply chain

𝑁2 ⊆ 𝐼 : Set of petroleum plants belong to second echelon

𝑁3 ⊆ 𝐼 : Set of demand nodes belong to third echelon

𝑁4 ⊆ 𝐼 : Set of import nodes belong to the fourth echelon

𝑆 ⊆ 𝐼 : Set of oil and gas storage centers

𝑅 : Set of raw materials imported from upstream to first echelon

𝑃 : Set of products processed at first echelon

𝐵 : Set of by-products processed at second echelon

𝑇 : Time horizon

Ω : Set of scenarios
Indices
𝑡 : Time periods, 𝑡 = {1, 2, . . . , 𝑇}
𝑟 : Raw material imported from upstream, 𝑟 = {1, 2, . . . , 𝑅}
𝑝 : Product produced at echelon 1, 𝑝 = {1, 2, . . . , 𝑃}
𝑏 : By-product produced at echelon 2, 𝑏 = {1, 2, . . . , 𝐵}
𝑤 : Scenarios 𝑤 = {𝑤1, 𝑤2, . . . , Ω}
Decision variables
First stage decisions:
𝑌 𝑟

𝑖𝑡 : Supply of raw material 𝑟 from upstream to storage centers belong to first echelon 𝑖 at time 𝑡
Second-stage decisions:
𝑋𝑟

𝑖𝑗𝑤𝑡 : Flow of raw material 𝑟 from storage centers 𝑖 to customer/plant 𝑗 at time 𝑡, under scenario 𝑤

𝑋𝑝
𝑖𝑗𝑤𝑡 : Flow of product 𝑝 from plant 𝑖 to customer/plant 𝑗 at time 𝑡, under scenario 𝑤

𝑋𝑏
𝑖𝑗𝑤𝑡 : Flow of by-product 𝑏 from plant 𝑖 to customer/plant 𝑗 at time 𝑡, under scenario 𝑤

𝑥𝑝+
𝑗𝑤𝑡 : Amount of product 𝑝 produced above the demand of customer 𝑗 during time 𝑡, under scenario 𝑤

𝑥𝑝−
𝑗𝑤𝑡 : Amount of product 𝑝 produced below the demand of customer 𝑗 during time 𝑡, under scenario 𝑤

𝑥𝑏+
𝑗𝑤𝑡 : Amount of by-product 𝑏 produced above the demand of customer 𝑗 during time 𝑡, under scenario 𝑤

𝑥𝑏−
𝑗𝑤𝑡 : Amount of by-product 𝑏 produced below the demand of customer 𝑗 during time 𝑡, under scenario 𝑤

𝐼𝑟+
𝑖𝑤𝑡 : Inventory level of raw material 𝑟 at plant 𝑖 during time 𝑡, under scenario 𝑤

𝐼𝑝+
𝑖𝑤𝑡 : Inventory level of products 𝑝 at plant 𝑖 during time 𝑡, under scenario 𝑤

𝐼𝑏+
𝑗𝑤𝑡 : Inventory level of products 𝑏 at storage 𝑗 during time 𝑡, under scenario 𝑤

+
∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑁1

∑︁
𝑟∈𝑅

∑︁
𝑡∈𝑇

𝐶𝑡𝑟𝑖𝑗𝑡𝑋
𝑟
𝑖𝑗𝑤𝑡 +

∑︁
𝑖∈𝑁1

∑︁
𝑗∈𝑁2

∑︁
𝑝∈𝑃

∑︁
𝑡∈𝑇

𝐶𝑡𝑝𝑖𝑗𝑡𝑋
𝑝
𝑖𝑗𝑤𝑡 +

∑︁
𝑖∈𝑁2

∑︁
𝑗∈𝑁3

∑︁
𝑏∈𝐵

∑︁
𝑡∈𝑇

𝐶𝑡𝑏𝑖𝑗𝑡𝑋
𝑏
𝑖𝑗𝑤𝑡

+
∑︁

𝑖∈𝑁1

∑︁
𝑟∈𝑅

∑︁
𝑡

𝐻𝑐𝑟
𝑖𝑡𝐼

𝑟+
𝑖𝑤𝑡 +

∑︁
𝑖∈𝑁2

∑︁
𝑝∈𝑃

∑︁
𝑡∈𝑇

𝐻𝑐𝑝
𝑖𝑡𝐼

𝑝+
𝑖𝑤𝑡 +

∑︁
𝑖∈𝑆

∑︁
𝑏∈𝐵

∑︁
𝑡

𝐻𝑐𝑏
𝑖𝑡𝐼

𝑏+
𝑖𝑤𝑡 +

∑︁
𝑗∈𝑁3

∑︁
𝑝∈𝑃

∑︁
𝑡∈𝑇

𝐶𝑤𝑝+
𝑗𝑡 𝑥𝑝+

𝑗𝑤𝑡

+
∑︁

𝑗∈𝑁3

∑︁
𝑝∈𝑃

∑︁
𝑡∈𝑇

𝐶𝑤𝑝−
𝑗𝑡 𝑥𝑝−

𝑗𝑤𝑡 +
∑︁

𝑗∈𝑁3

∑︁
𝑏∈𝐵

∑︁
𝑡∈𝑇

𝐶𝑤𝑏+
𝑗𝑡 𝑥𝑏+

𝑗𝑤𝑡

∑︁
𝑗∈𝑁3

∑︁
𝑏∈𝐵

∑︁
𝑡∈𝑇

𝐶𝑤𝑏−
𝑗𝑡 𝑥𝑏−

𝑗𝑤𝑡

⎤⎦. (4.15)
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Table 2. continued.

Parameters

𝐶𝑎𝑖 : Capacity of plant 𝑖

𝐶𝑟𝑖𝑗 : Capacity of route connecting plant 𝑖 with plant/customer 𝑗

𝐷𝑝
𝑗𝑤𝑡 : Demand quantities of product 𝑝 at demand node 𝑗 at time 𝑡, under scenario 𝑤

𝐷𝑏
𝑗𝑤𝑡 : Demand quantities of by-product 𝑏 at demand node 𝑗 at time 𝑡, under scenario 𝑤

𝐶𝑝𝑟
𝑖𝑗𝑡 : Cost of processing product stream 𝑋𝑟

𝑖𝑗𝑤𝑡 coming from storage centers 𝑖 and processed at plant 𝑗 at
time 𝑡

𝐶𝑝𝑝
𝑖𝑗𝑡 : Cost of processing product stream 𝑋𝑝

𝑖𝑗𝑤𝑡 coming from plant 𝑖 and processed at plant 𝑗 at time 𝑡

𝐶𝑡𝑟
𝑖𝑗𝑡 : Cost of shipping raw material 𝑟 from storage centers 𝑖 to customer/plant 𝑗 at time 𝑡

𝐶𝑡𝑝
𝑖𝑗𝑡 : Cost of shipping product 𝑝 from plant 𝑖 to customer/plant 𝑗 at time 𝑡

𝐶𝑡𝑏
𝑖𝑗𝑡 : Cost of shipping by-product 𝑏 from plant 𝑖 to customer/plant 𝑗 at time 𝑡

𝐶𝑤𝑝+
𝑗𝑡 : Cost incurred due to producing product 𝑝 more than the demand of customer 𝑗 at time 𝑡

𝐶𝑤𝑝−
𝑗𝑡 : Cost incurred due to producing product 𝑝 less than the demand of customer 𝑗 at time 𝑡

𝐶𝑤𝑏+
𝑗𝑡 : Cost incurred due to producing by-product 𝑏 more than the demand of customer 𝑗 at time 𝑡

𝐶𝑤𝑏−
𝑗𝑡 : Cost incurred due to producing by-product 𝑏 less than the demand of customer 𝑗 at time 𝑡

𝐻𝑐𝑟
𝑖𝑡 : Inventory holding cost of raw material 𝑟 per period 𝑡 at plant 𝑖

𝐻𝑐𝑝
𝑖𝑡 : Inventory holding cost of product 𝑝 per period 𝑡 at plant 𝑖

𝑆𝑝𝑝
𝑗𝑤𝑡 : Price of product 𝑝 at demand node 𝑗 at time 𝑡, under scenario 𝑤

𝑆𝑝𝑏
𝑗𝑤𝑡 : Price of by-product 𝑏 at demand node 𝑗 at time 𝑡, under scenario 𝑤

𝑤𝑟
𝑖𝑡 : Composition of product 𝑟 obtained from raw materials streaming from upstream segments to storage

𝑖 at time 𝑡

𝑤𝑝
𝑖𝑗𝑡 : Composition of product 𝑝 obtained from raw materials streaming from storage centers 𝑖 to plant 𝑗

at time 𝑡

𝑤𝑏
𝑖𝑗𝑡 : Composition of by-product 𝑏 obtained from product 𝑝 streaming from plant 𝑖 to plant 𝑗 at time 𝑡

OPEC𝑡 : Market share of crude oil specified to an oil petroleum country at time 𝑡

𝜋𝜔 : Probability of scenario 𝑤

Equation (4.16) represents the expected total revenue after subtracting the over-production quantities.

Max 𝑍2 =
∑︁
𝜔∈Ω

𝜋𝜔

⎡⎣ ∑︁
𝑖∈𝑁1

∑︁
𝑗∈𝑁3

∑︁
𝑝∈𝑃

∑︁
𝑡∈𝑇

𝑆𝑝𝑝
𝑗𝑤𝑡𝑋

𝑝
𝑖𝑗𝑤𝑡 −

∑︁
𝑗∈𝑁3

∑︁
𝑝∈𝑃

∑︁
𝑡∈𝑇

𝑆𝑝𝑝
𝑗𝑤𝑡𝑥

𝑝+
𝑗𝑤𝑡

+
∑︁

𝑖∈𝑁2

∑︁
𝑗∈𝑁3

∑︁
𝑏∈𝐵

∑︁
𝑡∈𝑇

𝑆𝑝𝑏
𝑗𝑤𝑡𝑋

𝑏
𝑖𝑗𝑤𝑡 −

∑︁
𝑗∈𝑁3

∑︁
𝑏∈𝐵

∑︁
𝑡∈𝑇

𝑆𝑝𝑏
𝑗𝑤𝑡𝑥

𝑏+
𝑗𝑤𝑡

⎤⎦. (4.16)

Equation (4.17) represents the service level objective function.

Max 𝑍3 =
∑︁
𝜔∈Ω

𝜋𝜔

∑︀
𝑖∈𝑁1

∑︀
𝑗∈𝑁3

∑︀
𝑝∈𝑃

∑︀
𝑡∈𝑇

[︀
𝑋𝑝

𝑖𝑗𝑤𝑡 − 𝑥𝑝+
𝑗𝑤𝑡

]︀
+

∑︀
𝑖∈𝑁2

∑︀
𝑗∈𝑁3

∑︀
𝑏∈𝐵

∑︀
𝑡∈𝑇

[︀
𝑋𝑏

𝑖𝑗𝑤𝑡 − 𝑥𝑏+
𝑗𝑤𝑡

]︀∑︀
𝑗∈𝑁3

∑︀
𝑝∈𝑃

∑︀
𝑡∈𝑇 𝐷𝑝

𝑗𝑤𝑡 +
∑︀

𝑗∈𝑁3

∑︀
𝑏∈𝐵

∑︀
𝑡∈𝑇 𝐷𝑏

𝑗𝑤𝑡

·

(4.17)
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4.2. Model constraints

Material balance

Constraint (4.18) represents the material balance at storage centers. The input to the storage centers plus
the inventory remains from the previous period equal to flow from storage centers to the plants of first level
plus inventory level at the current period.

𝑤𝑟
𝑖𝑡𝑌

𝑟
𝑖𝑡 + 𝐼𝑟+

𝑖𝑤𝑡−1 =
∑︁

𝑗∈𝑁1

𝑋𝑟
𝑖𝑗𝜔𝑡 + 𝐼𝑟+

𝑖𝑤𝑡 ∀𝑖 ∈ 𝑆, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑤 ∈ Ω. (4.18)

The material balance of the plants belong to the first level are represented by constraint (4.19). The material
flow from upstream plus the inventory left from the previous period equal production volumes at each plant.
The processed quantities are then shipped to the next echelon to satisfy the local and international demands.
The flow quantities between each two entities of the oil and gas supply chain depends on the realization of the
uncertain parameters; 𝜔.∑︁

𝑟

∑︁
𝑖∈𝑆

𝑤𝑝
𝑖𝑗𝑡𝑋

𝑟
𝑖𝑗𝜔𝑡 +

∑︁
𝑟

𝐼𝑟+
𝑗𝑤𝑡−1 =

∑︁
𝑘∈𝑁2,𝑁3

𝑋𝑝
𝑗𝑘𝑤𝑡 +

∑︁
𝑟

𝐼𝑟+
𝑗𝑤𝑡 ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝑁1, 𝑘 > 𝑗, 𝑤 ∈ Ω, 𝑡 ∈ 𝑇. (4.19)

The inlet to the second echelon of the oil and gas supply chain is then processed and fractionated to by-
products based on its compositions. The by-products flow then shipped to the third echelon to satisfy the local
and international demands 𝑗, constraint (4.20).∑︁

𝑝

∑︁
𝑖∈𝑁1

𝑤𝑏
𝑖𝑗𝑡𝑋

𝑝
𝑖𝑗𝑤𝑡 +

∑︁
𝑝

𝐼𝑝+
𝑗𝑤𝑡−1 =

∑︁
𝑘∈𝑁3

𝑋𝑏
𝑗𝑘𝑤𝑡 +

∑︁
𝑝

𝐼𝑝+
𝑗𝑤𝑡 ∀𝑏 ∈ 𝐵, 𝑗 ∈ 𝑁2, 𝑘 > 𝑗, 𝑤 ∈ Ω, 𝑡 ∈ 𝑇. (4.20)

The by-products are stored in bulk plants before distribution to customers. Equation (4.21) represents the
material balance at the bulk plant storage.∑︁

𝑖∈𝑁2

𝑋𝑏
𝑖𝑗𝜔𝑡 + 𝐼𝑏+

𝑗𝑤𝑡−1 =
∑︁

𝑘∈𝑁3

𝑋𝑏
𝑗𝑘𝑤𝑡 + 𝐼𝑏+

𝑗𝑤𝑡 ∀𝑏 ∈ 𝐵, 𝑗 ∈ 𝑆, 𝑤 ∈ Ω, 𝑡 ∈ 𝑇. (4.21)

Plant and route capacities

The input to any petroleum plants is limited by plant’s capacity. Constraints (4.22)–(4.24) represent the
capacity constraints of oil and gas storages, plants belong to the first and the second echelons of the oil and gas
supply chain, respectively.∑︁

𝑟

𝑌 𝑟
𝑖𝑡 +

∑︁
𝑟

𝐼𝑟+
𝑖𝑤𝑡−1 ≤ 𝐶𝑎𝑖𝑡 ∀𝑖 ∈ 𝑆, 𝑤 ∈ Ω, 𝑡 ∈ 𝑇 (4.22)∑︁

𝑟

∑︁
𝑖∈𝑆

𝑋𝑟
𝑖𝑗𝜔𝑡 +

∑︁
𝑟

𝐼𝑟+
𝑗𝑤𝑡−1 ≤ 𝐶𝑎𝑗𝑡 ∀𝑗 ∈ 𝑁1, 𝑤 ∈ Ω, 𝑡 ∈ 𝑇 (4.23)∑︁

𝑖∈𝑁1

∑︁
𝑝

𝑋𝑝
𝑖𝑗𝑤𝑡 +

∑︁
𝑝

𝐼𝑝+
𝑗𝑡−1 ≤ 𝐶𝑎𝑗𝑡 ∀𝑗 ∈ 𝑁2, 𝑤 ∈ Ω, 𝑡 ∈ 𝑇. (4.24)

The flow through in each arc is less than or equal route capacity; constraints (4.25)–(4.27).

𝑋𝑟
𝑖𝑗𝑤𝑡 ≤ 𝐶𝑟𝑖𝑗 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑁1, 𝑝 ∈ 𝑃,𝑤 ∈ Ω, 𝑡 ∈ 𝑇 (4.25)

𝑋𝑝
𝑖𝑗𝑤𝑡 ≤ 𝐶𝑟𝑖𝑗 ∀𝑖, 𝑗 ∈ {𝑁1, 𝑁2, 𝑁3}, 𝑝 ∈ 𝑃,𝑤 ∈ Ω, 𝑡 ∈ 𝑇 (4.26)

𝑋𝑏
𝑖𝑗𝑤𝑡 ≤ 𝐶𝑟𝑖𝑗 ∀𝑖, 𝑗 ∈ {𝑁1, 𝑁2, 𝑁3}, 𝑏 ∈ 𝐵, 𝑤 ∈ Ω, 𝑡 ∈ 𝑇. (4.27)
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Figure 2. Saudi Arabia oil network [20].

Demand and OPEC quota

Constraints (4.28) and (4.29) represent demand for petroleum products at each demand node during time
period 𝑡 under scenario 𝜔.∑︁

𝑖∈𝑁1

𝑋𝑝
𝑖𝑗𝑤𝑡 +

∑︁
𝑖∈𝑁4

𝑋𝑝
𝑖𝑗𝑤𝑡 − 𝑥𝑝+

𝑗𝑤𝑡 + 𝑥𝑝−
𝑗𝑤𝑡 = 𝐷𝑝

𝑗𝑤𝑡 ∀𝑗 ∈ 𝑁3, 𝑝 ∈ 𝑃,𝑤 ∈ Ω, 𝑡 ∈ 𝑇 (4.28)∑︁
𝑖∈𝑁2

𝑋𝑏
𝑖𝑗𝑤𝑡 +

∑︁
𝑖∈𝑁4

𝑋𝑏
𝑖𝑗𝑤𝑡 − 𝑥𝑏+

𝑗𝑤𝑡 + 𝑥𝑏−
𝑗𝑤𝑡 = 𝐷𝑏

𝑗𝑤𝑡 ∀𝑗 ∈ 𝑁3, 𝑏 ∈ 𝐵, 𝑤 ∈ Ω, 𝑡 ∈ 𝑇. (4.29)

For each scenario 𝜔, exportation volumes from each crude oil type should not exceed the quota specified by
OPEC to each member in the OPEC Organization, constraint (4.30).∑︁

𝑖∈𝑁1

∑︁
𝑗∈𝑁3

∑︁
𝑝∈𝑃

𝑋𝑝
𝑖𝑗𝑤𝑡 ≤ OPEC𝑡 ∀𝑤 ∈ Ω, 𝑡 ∈ 𝑇. (4.30)

5. Case study

The proposed mathematical model has been validated using the Saudi Arabia oil and gas supply chain. The
oil and gas network under study is represented graphically in two separated figures for easy representation.
Figures 2 and 3 illustrate the Saudi Arabian oil and natural gas networks, respectively. The network is a
representation of the figures available in Murray [36]. The flow along the whole downstream segment is as
follows: The sour oil produced at oil fields is processed at oil processing plants (i.e., Abqaiq, Shaybah, Khurais,
Qatif, Khuraniyah, Safaniya, Tanajib, and RasTunura) to remove sulfur. After sweetening, sour oil is called
crude oil. Saudi Arabia produces four types of crude oil (i.e., Arabian light, Arabian extra light, Arabian
medium, and Arabian heavy). Then, crude oil is distributed to the local refinery plants (i.e., RasTunura, Yanbu,
Riyadh, Jiddah, PetroRabigh, SAMREF, SASREF, and SATORP, and Jazan) and international markets (i.e.,
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Figure 3. Saudi Arabia Natural gas network [20].

RasTunura, Jauymah, and Yanbu). The crude oil is processed into its by-products at the refinery plants. The oil
by products are naphtha, gasoline, diesel, kerosene, fuel oil, propane, butane, and asphalt. These products are
shipped to the bulk plants and then distributed to local customers of five regions (i.e., East, West, Middle, and
South regions) and three industrial cities (i.e., Yanbu, Jubail, and Rabigh). The shortages of some oil products
such as gasoline and diesel are imported from international markets. The oil by-products such as naphtha and
fuel oil are exported to international markets.

The associated natural gas produced at GOSPs and the non-associated natural gas produced from pure
gas fields are processed at the gas plants (i.e., Uthmaniyah, Berri, Shedgum, Khursaniyah, Yanbu, Haradh,
Hawiyah, Juaymah, and Wasit) into natural gas liquid (NGL), methane and hydrogen sulfide. The methane is
consumed locally to satisfy the industrial demand while the hydrogen sulfide is exported to the international
markets. Part of the NGL is exported and some of it is sent to the fractionator plants (Juaymah, RasTunura,
Yanbu, Wasit, and Hawiyah) for further processing into gas products such as ethane, butane, propane, and
natural gasoline. The ethane volumes are consumed by industry. The other gas products are sent to the local
and international customers. The shortages in meeting ethane demand are imported from international market.

The data needed to run the model are collected from different sources. The crude oil and gas compositions
were collected from Al-Saleh et al. [4] and Duffuaa et al. [16]. The rest of data set including demands, prices,
OPEC quota, capacities, and costs are collected from Ghaithan et al. [20], Attia et al. [5,6] and Ghaithan [19].
Two uncertain parameters have been considered: the demand and prices. The domestic demand is considered to
be an uncertain parameter because the increase in the domestic demand of the petroleum products. This high
variation is due to the rapid population growth of Kingdom of Saudi Arabia and due to high utilizing of crude
oil in electricity generation, private and public sectors. The international price is selected to be consistent with
the fluctuation in petroleum products prices due to the increase in production quantities of petroleum products
over the world demand as noticed in the last years.

The uncertain parameters are represented by scenarios with associated probability of occurrence for each
scenario. Three levels are assumed for each uncertain parameter; low, base, and high. The values of low, base,
and high scenarios of uncertain parameters with their associated probabilities were assigned in accordance to
Saudi Arabia case study and validated with experts from ARAMCO Company. The high-price and demand
scenarios consider a 25% higher than the current case of petroleum products, while the low-price and demand
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Table 3. Realization and probabilities of uncertain parameters.

Uncertain Realizations Probability
parameter

Low 0.25
Demand Base 0.50

High 0.25
Low 0.25

Price Base 0.50
High 0.25

Figure 4. Scenario tree.

Table 4. Multi-objective stochastic model statistics.

Blocks of equations 96 Single equations 16 897
Blocks of variables 75 Single variables 23 846
CPU time (s) 3815 Non-zero elements 208 552

scenarios assumed to be 25% lower than the current case. The finite realization of scenarios construction were
also used by other authors [1, 24,29,35,40].

Table 3 shows the probability of the three possible scenarios (High, Base, and Low) for each uncertain
parameter. The joint probabilities of 9 scenarios are generated by multiplying the probabilities of uncertain
parameters. Cooper [13] figured out that in oil and gas markets the demand is not highly insensitive to changes
in price in the short run. Therefore, in this study demand and price are assumed to be independent as shown
in scenario tree; Figure 4.

6. Computational results and discussion

The improved augmented 𝜀-constraint algorithm is adopted in GAMS software and is used to solve the
proposed model using the CPLEX 13.3 commercial solver [33]. A PC type Intel (R) Core (TM) i7-6600U CPU
processor with 2.60 GHz and 8 GB RAM was used for all computations in this paper. The planning horizon is
three (3) months with a one-month planning period which represents the length of time period over which Saudi
Arabia sign the contracts. The model statistics are summarized in Table 4. The mean computational time for
this problem for 100 grid generated Pareto-optimal solutions is 64 min.
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Table 5. The intervals of each objective function.

Total cost Total revenue Service level

Min total cost 6902.86 41 446.91 0.821
Max total revenue 7661.66 41 678.69 0.899
Max service level 7006.39 41 503.86 0.950

Figure 5. Pareto surface for the three objectives.

The interval of the three objective functions obtained by lexicographic optimization are summarized in
Table 5. The values are obtained as follows; first, the model is solved as a single objective problem; minimization
total cost which yields optimal total cost of $6902.86 million per three months. Then, the model is optimized
considering only maximization of total revenue after adding the obtained total cost value as a binding constraint;
the optimal solution is $41 678.69 million per three months. Finally, the service level is optimized by adding the
total cost and revenue values as binding constraints. To generate the values in the second and third rows, the
same procedure is repeated considering different orders of the total revenue and service level.

After generating the intervals, the Pareto efficient solutions are then generated using a systematic search
by dividing the ranges of revenue and service level equidistantly. The Pareto efficient solutions of the three
objectives are plotted in Figure 5.

As service level increases, total revenue and cost increase. The increase in revenue is due to more sales which
increases service level. The high sales lead to more production and then high production cost and transportation
cost. Therefore, a least cost, high revenue and service level cannot be achieved simultaneously. Consequently,
there is a trade-off between the selected objectives. Decision maker(s) can select his/her plan based on his/her
preference using any multi-criteria decision making approaches.

For the purpose of comparison, one plan was selected from the set of Pareto solutions using a multi-criteria
decision making approach called TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
[11] assigning equal weight for each objective function. The ability of the stochastic programming approach to
capture market uncertainties is evaluated using the EVPI and VSS. The EVPI measure is determined as the
difference between stochastic solution and wait-and see solutions and it indicates how much is worth to know
the future with full certainty. To study the impact of uncertainties of demand and price on oil and gas supply
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Table 6. EVPI ($millions/3 months) when considering demand as uncertain parameter.

Pareto Stochastic solution (𝑍S) Wait-and-see (𝑍WS) EVPI
set 𝑍1 𝑍2 𝑍3 𝑍1 𝑍2 𝑍3 𝑍1 𝑍2 𝑍3

1 6843.07 41 459.14 0.823 6739.846 41 469.18 0.859 103.221 10.042 0.036
2 6847.59 41 493.16 0.827 6744.525 41 502.91 0.864 103.071 9.752 0.037
3 6855.62 41 525.11 0.857 6752.476 41 534.57 0.890 103.144 9.452 0.033
4 6867.69 41 557.89 0.862 6769.730 41 567.06 0.890 97.957 9.162 0.028
5 6890.63 41 589.44 0.862 6799.091 41 598.30 0.890 91.539 8.862 0.028
6 6937.77 41 622.64 0.862 6856.127 41 631.21 0.890 81.648 8.572 0.028
7 7035.24 41 652.21 0.883 7012.166 41 660.49 0.890 23.069 8.281 0.007
8 7675.84 41 684.45 0.901 7616.422 41 692.44 0.902 59.422 7.991 0.001
9 6843.64 41 467.08 0.841 6740.242 41 471.62 0.873 103.400 4.541 0.032
10 6845.14 41 474.39 0.868 6741.432 41 480.73 0.890 103.704 6.331 0.022
11 6846.93 41 474.12 0.860 6742.404 41 483.97 0.901 104.521 9.852 0.041
12 6850.80 41 488.13 0.901 6744.257 41 491.12 0.915 106.543 2.991 0.014
13 6861.35 41 500.13 0.878 6748.577 41 506.30 0.929 112.776 6.171 0.051
14 6892.12 41 517.33 0.901 6758.961 41 528.83 0.942 133.157 11.502 0.041
15 6941.09 41 533.67 0.897 6783.413 41 539.08 0.956 157.676 5.411 0.059

chain performance, the EVPI is calculated for each stochastic parameter separately. Table 6 lists the EVPI
values when considering demand as uncertain parameter and price is fixed at the expected value. Table 7 shows
the EVPI values when considering price as uncertain parameter and demand is fixed at the expected value.

As described in Section 4, the EVPI values in Tables 6 and 7 are obtained as follows: first the stochastic
problem is solved for each scenario separately. Given the optimal solution and the probabilities of each scenario,
the weighted averages is then calculated for all the solutions which represents the wait-and-see solution (𝑍WS).
Then the EVPI is calculated as the difference between the wait and see solutions (𝑍WS) and the stochastic
solutions (𝑍S).

It can be concluded from Tables 6 and 7 that, the EVPI values when considering demand as uncertain
parameter are higher than when considering price as uncertain parameter. This indicates that uncertainty in
demand has higher impact on the generated plans. Consequently, it is crucial to accurately forecast the future
market demand of petroleum products. Also these results should convince the oil decision makers to spend more
on improving their knowledge of the stochastic parameters.

To measure the benefits of using stochastic programming approach over deterministic approach, the VSS
is calculated; as the absolute difference between the EEV solutions and the SS solutions; Table 8. The VSS
can be interpreted as the amount that the decision maker(s) would give up to use the stochastic solution.
It is investigated that the VSS for total cost is higher than the VSS for total revenue and service level. The
percentages of the VSS range 1.8%–12.6%, 0.0%–0.4%, and 0.8%–6.2% of the wait-and-see solution for total
cost, total revenue, and service level, respectively, which can be interpreted as a measure of the savings due to
the consideration of uncertainty. The higher the VSS values, the better the stochastic programming approach
to tackle the market uncertainties.

The VSS is determined as the difference between the stochastic solution (𝑍S) and the expected value solution
(𝑍EV). The 𝑍EV is determined as follows: first the problem is solved as deterministic problem considering
expected values of uncertain parameters. The obtained solutions are considered as first stage decisions for the
stochastic problem. Then, the stochastic model is solved and the obtained objective function is the expected
value solution (𝑍EV).

In real-world, the price and demand parameters are dependent and correlated. The two parameters are
negatively related; as price increases, demand decreases. Therefore, this relation can be analyzed by assigning
high probabilities to the scenarios of (low demand-high price and high demand-low price). In scenario I, high
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Table 7. EVPI ($millions/3 months) when considering price as uncertain parameter.

Pareto Stochastic solution (𝑍S) Wait-and-see (𝑍WS) EVPI
set 𝑍1 𝑍2 𝑍3 𝑍1 𝑍2 𝑍3 𝑍1 𝑍2 𝑍3

1 6527.61 41 521.03 0.814 6527.61 41 521.03 0.825 0.000 0.000 0.011
2 6532.43 41 551.43 0.818 6532.43 41 551.45 0.835 0.000 0.020 0.018
3 6539.56 41 579.76 0.848 6539.55 41 579.79 0.862 0.010 0.030 0.014
4 6554.78 41 608.92 0.853 6553.26 41 608.97 0.869 1.560 0.050 0.016
5 6576.56 41 636.84 0.853 6574.57 41 636.91 0.878 1.990 0.070 0.026
6 6620.11 41 666.41 0.853 6618.27 41 666.49 0.878 1.840 0.090 0.026
7 6750.10 41 692.37 0.873 6742.84 41 692.47 0.880 7.261 0.100 0.007
8 7470.89 41 720.99 0.891 7470.34 41 721.09 0.902 0.550 0.110 0.011
9 6529.03 41 527.46 0.832 6528.96 41 527.49 0.862 0.070 0.040 0.031
10 6532.78 41 547.89 0.859 6532.53 41 548.79 0.872 0.250 0.890 0.013
11 6541.85 41 565.09 0.851 6540.99 41 567.21 0.882 0.860 2.120 0.031
12 6560.09 41 588.36 0.891 6557.58 41 590.56 0.904 2.510 2.200 0.013
13 6587.71 41 604.34 0.869 6584.22 41 604.45 0.918 3.491 0.140 0.049
14 6625.73 41 598.56 0.891 6619.59 41 599.64 0.931 6.131 1.080 0.039
15 6679.29 41 566.15 0.887 6668.32 41 575.16 0.944 10.972 9.001 0.057

Table 8. Value of the Stochastic Solutions (VSS).

Pareto
set

Stochastic solution
(𝑍S)

Expected value solution
(𝑍EV)

Value of Stochastic
Solution (VSS)

Improvement
(% of 𝑍WS)

𝑍1 𝑍2 𝑍3 𝑍1 𝑍2 𝑍3 𝑍1 𝑍2 𝑍3 𝑍1 𝑍2 𝑍3

1 6902.85 41 551.71 0.857 7717.14 41 446.91 0.821 814.29 104.8 0.036 12.0 0.3 4.4
2 6904.25 41 568.42 0.862 7718.11 41 480.02 0.8 849.52 88.4 0.062 12.5 0.2 7.6
3 6911.6 41 585.13 0.888 7721.34 41 513.13 0.855 844.02 72 0.033 12.5 0.2 3.9
4 6922.23 41 601.84 0.888 7725.52 41 546.24 0.86 836.74 55.6 0.028 12.3 0.1 3.3
5 6942.91 41 618.55 0.888 7729.69 41 579.35 0.86 819.93 39.2 0.028 12.0 0.1 3.3
6 6981.69 41 635.26 0.888 7736.89 41 612.46 0.862 780.1 22.8 0.026 11.4 0.1 3.1
7 7078.09 41 651.97 0.888 7752.19 41 645.58 0.881 681.12 6.39 0.007 9.7 0.0 0.8
8 7661.66 41 678.69 0.899 7801.47 41 668.68 0.859 137.67 10.01 0.04 1.8 0.0 4.5
9 6903.56 41 559.39 0.871 7717.72 41 455.78 0.839 852.43 103.61 0.032 12.6 0.3 3.8
10 7661.66 41 643.49 0.889 7718.52 41 578.69 0.879 852.09 64.8 0.01 12.6 0.2 1.2
11 6904.86 41 566.66 0.899 7719.83 41 459.97 0.858 851.31 106.69 0.041 12.6 0.3 4.7
12 7661.66 41 678.71 0.913 7724.05 41 615.67 0.899 851.52 63.04 0.014 12.6 0.2 1.6
13 6907.48 41 590.95 0.927 7736.16 41 461.79 0.876 852.01 129.16 0.051 12.5 0.3 5.6
14 7661.66 41 678.68 0.94 7759.61 41 607.69 0.899 847.57 70.99 0.041 12.4 0.2 4.4
15 6912.61 41 615.02 0.954 7792.35 41 466.35 0.895 840.07 148.67 0.059 12.2 0.4 6.2

probability (0.5) is assigned to scenario of (low demand-high price) and a probability of 0.5 is assigned to
scenario II (high demand-low price).

One plan has been selected for each scenario (summarized in Tab. 9) using TOPSIS [11] with assigning
equal weight for each objective function. It is noted that solution of scenario I is more profitable because high
probability is assigned to scenarios of high prices. In addition, this plan shows more imports from international
market than scenario II, because the probability of low demand is high and then no need to operate or fully
utilize local resources. On the other hand, plan of scenario II leads to higher oil processing and refining and also
higher gas fractioning because in this case, high probability is assigned for scenarios of high demands. Scenario
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Table 9. Preferred plan for scenarios I and II.

Scenario Total
cost
($10E6)

Revenue
($10E6)

Service
level

Oil
production
(MBL/day)

Oil
imports
(MBL/day)

Gas
production
(Mscft/day)

Gas
imports
(Mscft/day)

I 6852 43 823 0.924 9.87 0.351 12 382 276
II 7652 39 671 0.898 10.13 0.326 12 216 253

Figure 6. Associated and non-associated gas productions versus crude oil production ceiling.

I shows higher service level than scenario II since high probability is assigned to low demand and high prices
which means that most of demand is satisfied.

Nature has made the crude oil in Saudi Arabia in most of its oil fields has associated gas. Furthermore,
propane and butane are produced from fractionation plants and refinery plants. Therefore, it is necessary to
integrate the oil and gas networks. To highlight the importance of interaction between oil and gas networks, a
sensitivity analysis is conducted to study the impact of changing oil production ceiling (represented by OPEC
quota) on the availability of gas to Saudi Arabia petrochemical industries.

To investigate the effect of changing OPEC quota on the associated and non-associated gas processing, we
evaluated the results based on 11 levels of the OPEC quota, given the current OPEC quota allocated for Saudi
Arabia is 9.7 million barrel per day. The obtained associated and non-associated gas productions versus crude
oil production ceiling variations are plotted in Figure 6.

The results indicate high dependency between oil and natural gas productions. As oil production ceiling
increases, the amount of associated gas production increases and the non-associated gas decreases. This is
expected since the associated gas is separated from crude oil. In addition, the increase in associated gas
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Figure 7. Butane gas satisfaction from fractionation and refinery plants for scenario 5 (Base
demand-base price).

production leads to a reduction in non-associated gas production since the two gas types compete to sat-
isfy the demand of lower gas entities. This figure demonstrates that Saudi Arabia can satisfy gas demands for
its petrochemical industry from non-associated gas when oil production ceiling decreases.

The impact of oil production ceiling variations on butane gas production from refinery plants and fractionation
plants are shown in Figure 7. As oil production ceiling increases, the amount of butane gas obtained from refinery
plants and associated gas increases. On the other hand, butane obtained from non-associated gas decreases with
increasing oil production. This variation confirms the high dependency between refinery plants and fractionation
plants since these two resources produce butane gas. With increasing Saudi Arabia OPEC share, demand for
butane gas would be satisfied from refinery plants and associated gas. Decreasing Saudi Arabia OPEC share
lower than 2 million barrels per day, demand for butane gas will be satisfied from non-associated gas processes
at fractionation plants.

7. Conclusion

In this study, a multi-objective stochastic model has been developed for tactical planning of oil and gas
supply chain. The domestic demand and international price were considered to be stochastic parameters. Three
conflicting criteria are considered including minimization of total cost, maximization of total revenue, and
maximization of service level. The model is formulated based on two-stage stochastic approach representing
the uncertain parameters as set of realizations with known probabilities. The applicability of the model is
demonstrated using the case of Saudi Arabia oil and gas supply chain. The advantage of using stochastic
modeling approach over deterministic approach has been proven using the EVPI and the VSS quality measures.
The generated plans have considerably higher EVPI values when considering demand as stochastic compared
to when considering price as uncertain parameter which indicates that demand has higher impact on the
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supply chain planning than price. Also, the generated plans have higher VSS for total cost which justify the
importance of the stochastic approach over the deterministic programming approach. Future research should
consider integrating oil and gas supply chain with other energy resources such as renewable energy, environmental
aspects; emissions, security, and sustainability along with economic aspects during modeling of oil and gas supply
chain. In addition, different modeling techniques could be utilized to model supply chain under uncertainty such
as chance constraints programming and robust optimization. The accuracy of the results can be improved using
machine learning techniques to predict price and demand. Besides, it is interesting to conduct sensitivity analysis
to study different probabilities to different scenarios. Moreover, potential factors that affect the probability
of occurrence of scenarios could be identified by conducting comprehensive literature reviews and experts’
interviews. Then, the probability of scenarios occurrence would be assessed using Markov decision process
(MDP) in order to simulate the behavior of uncertain parameters.

Acknowledgements. The authors thank King Fahd University of Petroleum and Minerals for the support and facilities
that made this research possible.
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[18] L.J. Fernandes, S. Relvas and A.P. Barbosa-Póvoa, Downstream petroleum supply chain planning under uncertainty. In: Vol.
37 of Computer Aided Chemical Engineering (2015) 1889–1894.

[19] A.M. Ghaithan, An optimization model for operational planning and turnaround maintenance scheduling of oil and gas supply
chain. Appl. Sci. 10 (2020) 7531.

[20] A.M. Ghaithan, A. Attia and S.O. Duffuaa, Multi-objective optimization model for a downstream oil and gas supply chain.
Appl. Math. Model. 52 (2017) 689–708.

[21] M. Ghatee and S.M. Hashemi, Optimal network design and storage management in petroleum distribution network under
uncertainty. Eng. Appl. Artif. Intell. 22 (2009) 796–807.

[22] E.T. Iakovou, An interactive multiobjective model for the strategic maritime transportation of petroleum products: risk analysis
and routing. Saf. Sci. 39 (2001) 19–29.

[23] C.S. Khor, A. Elkamel and P.L. Douglas, Stochastic refinery planning with risk management. Pet. Sci. Technol. 26 (2008)
1726–1740.



3446 A.M. GHAITHAN ET AL.

[24] H.M.S. Lababidi, M.A. El-Wakeel, I.M. Alatiqi and A.F. Al-Enzi, Optimizing the supply chain of petrochemical products
under uncertain operational and economical conditions. jdt 1 (2003).

[25] H.M. Lababidi, M.A. Ahmed, I.M. Alatiqi and A.F. Al-Enzi, Optimizing the supply chain of a petrochemical company under
uncertain operating and economic conditions. Ind. Eng. Chem. Res. 43 (2004) 63–73.

[26] A. Leiras, A. Elkamel and S. Hamacher, Strategic planning of integrated multirefinery networks: a robust optimization approach
based on the degree of conservatism. Ind. Eng. Chem. Res. 49 (2010) 9970–9977.

[27] A. Leiras, G. Ribas, S. Hamacher and A. Elkamel, Literature review of oil refineries planning under uncertainty. Int. J. Oil
Gas Coal Technol. 4 (2011) 156–173.

[28] W. Li, C.-W. Hui, P. Li and A.-X. Li, Refinery planning under uncertainty. Ind. Eng. Chem. Res. 43 (2004) 6742–6755.
[29] Z. Li, Y. Zhang and G. Zhang, Two-stage stochastic programming for the refined oil secondary distribution with uncertain

demand and limited inventory capacity. IEEE Access 8 (2020) 119487–119500.
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