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A MATHEURISTIC APPROACH FOR THE MAXIMUM BALANCED
SUBGRAPH OF A SIGNED GRAPH

Jorge Reynaldo Moreno Raḿırez* , Yuri Abitbol de Menezes Frota
and Simone de Lima Martins

Abstract. A graph 𝐺 = (𝑉, 𝐸) with its edges labeled in the set {+,−} is called a signed graph. It is
balanced if its set of vertices 𝑉 can be partitioned into two sets 𝑉1 and 𝑉2, such that all positive edges
connect nodes within 𝑉1 or 𝑉2, and all negative edges connect nodes between 𝑉1 and 𝑉2. The maximum
balanced subgraph problem (MBSP) for a signed graph is the problem of finding a balanced subgraph
with the maximum number of vertices. In this work, we present the first polynomial integer linear
programming formulation for this problem and a matheuristic to obtain good quality solutions in a
short time. The results obtained for different sets of instances show the effectiveness of the matheuristic,
optimally solving several instances and finding better results than the exact method in a much shorter
computational time.
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1. Introduction

Let 𝐺 = (𝑉,𝐸) be an undirected graph where 𝑉 is the set of vertices and 𝐸 is the set of edges. Consider
the set of labels {+,−} and the function 𝑠 : 𝐸 → {+,−} that assigns a label (or sign) to each edge in 𝐸. An
edge 𝑒 ∈ 𝐸 is called negative if 𝑠(𝑒) = − and positive if 𝑠(𝑒) = +. For some interesting problems an edge can
be both positive and negative. In this case, it is called a parallel edge (𝑠(𝑒) = ±). In this context, an undirected
graph 𝐺 together with a function 𝑠 is called a signed graph 𝐺 = (𝑉,𝐸, 𝑠) or briefly an s-graph.

Signed graphs were introduced by Heider [13] for describing sentiment relations between people of the same
social group. In the conventional approach for modeling a social network, a positive edge represents a friendship
or similarity, while a negative edge represents some enmity. Signed graphs have been studied by researchers
in different scientific areas, including portfolio analysis in risk management [12, 14], biological systems [5] and
detection of embedded matrix structures [11].

The concept of balanced signed graphs was formalized by Cartwright and Harary [4], as an extension of
Heider’s theory. The authors stated that a balanced signed graph could be partitioned into two vertex sets,
being that all edges within the sets are positive, and all those between the sets are negative. It is clear that not
every signed graph is balanced, and there are different situations in which finding a balanced signed subgraph
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results in a problem of interest. Despite this fact, the problem of finding a balanced subgraph with maximum
number of vertices (MBSP) has been applied in almost as many applications as the problem of finding signed
graphs [11,12,14].

To formally define the MBSP problem, we present some additional notations used in the rest of the paper. Let
𝐺 = (𝑉,𝐸, 𝑠) denote a signed graph where 𝐸− ⊆ 𝐸 and 𝐸+ ⊆ 𝐸 denote, respectively, the set of negative and
positive edges in 𝐺. Similarly, for a vertex 𝑣 ∈ 𝑉 , we define by 𝛿−(𝑣) and 𝛿+(𝑣) the set of vertices adjacent to 𝑣
connected by negative and positive edges. Moreover, for a vertex set 𝑉 ′ ⊆ 𝑉 , let 𝐸[𝑉 ′] = {{𝑢, 𝑣} ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑉 ′}
be the subset of edges induced by 𝑉 ′ and 𝐺𝑉 ′ = (𝑉 ′, 𝐸[𝑉 ′], 𝑠) its vertex induced subgraph of 𝐺. To simplify
notation we will assume that |𝐺𝑉 ′ | = |𝑉 ′|. We also define that a signed graph 𝐺 = (𝑉,𝐸, 𝑠) is balanced if its
vertex set can be partitioned into sets 𝑉1 and 𝑉2 in such a way that 𝐸[𝑉1] ∪ 𝐸[𝑉2] = 𝐸+. Thus, given a signed
graph 𝐺 = (𝑉,𝐸, 𝑠), the MBSP is the problem of finding a subset of vertices 𝑉 ′ ⊆ 𝑉 such that the subgraph
𝐺𝑉 ′ is balanced and maximizes the cardinality of 𝑉 ′.

Gülpinar et al. [11] proved that MBSP is NP-hard, and the literature presents some heuristic and exact
approaches to solve this problem [8,9,11]. Branch-and-cut methods presented in [8,9] use mathematical models
based on the fact that a signed graph is balanced if and only if it does not contain a parallel edge or a cycle
with an odd number of negative edges [2, 11, 21]. Also, heuristics and metaheuristics were developed for this
problem, such as the GGMZ heuristic [11] and a GRASP metaheuristic in [8]. More recently, a new heuristic
for this problem, based on negative chordless cycles, was presented by Marinelli and Parente [16].

Different strategies appear in the literature to combine exact and heuristics algorithms. In this context,
matheuristics [7, 10, 17] have attracted the attention of the scientific community. Matheuristics may use some
features of the mathematical models of one problem to customize heuristics to solve these problems or use
heuristics to improve time effectiveness of mathematical programming techniques.

In this work, we propose an alternative optimization formulation for the one proposed in [8, 9]. In contrast
with their formulation, the size of our optimization model is polynomial in the input size. We also introduce a
matheuristic developed to solve the MBSP to obtain good quality solutions quickly.

The remainder of this paper is organized as follows. Section 2 presents a new formulation for the MBSP
problem. Section 3 describes the main algorithms used in the proposed matheuristic. In Section 4, we present
the results obtained by the matheuristic and the comparison with previous heuristics. Finally, conclusions are
discussed in Section 5.

2. A new formulation for the MBSP

Previous mathematical formulations are based in the fact that a signed graph is balanced if and only if it
does not contain a parallel edge or a cycle with an odd number of negative edges. The branch-and-cut algorithm
proposed in [9] and extended in [8] is based on this result and consider a possible exponential set of odd negative
cycles in 𝐺, denoted as 𝐶−.

The formulation used in this algorithm is the following:

max
∑︁
𝑣∈𝑉

𝑦𝑣 (2.1)

subject to:

𝑦𝑢 + 𝑦𝑣 ≤ 1, ∀{𝑢, 𝑣} ∈ 𝐸− ∩ 𝐸+, (2.2)∑︁
𝑣∈𝐶

𝑦𝑣 ≤ |𝐶| − 1, ∀𝐶 ∈ 𝐶−, (2.3)

𝑦𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝑉 , (2.4)

where 𝑦𝑣 = 1 if and only if vertex 𝑣 belongs to the balanced subgraph, 𝑦𝑣 = 0 otherwise. The objective function
(2.1) tries to maximize the number of vertices in the balanced subgraph. Constraints (2.2) ensure that the
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endpoints vertices 𝑢 and 𝑣 of any parallel edge cannot belong together to the balanced subgraph. Constraints
(2.3), denoted as odd negative cycle inequalities, prohibit cycles with an odd number of negative edges in the
subgraph.

In this work, a different formulation is proposed based on the construction of two disjoint sets 𝑉1, 𝑉2 ⊆ 𝑉 ,
aiming to maximize the number of vertices in the resulting balanced signed graph 𝐺𝑉1∪𝑉2 . Our main objective
is to employ a polynomial number of constraints in order to reach a polynomial bounded formulation. Thus,
we define the binary variables 𝑥𝑣 for all 𝑣 ∈ 𝑉 , such that 𝑥𝑣 = 1 if and only if vertex 𝑣 belongs to the set
𝑉1; otherwise, 𝑥𝑣 = 0. Similarly, for all 𝑣 ∈ 𝑉 , we define binary variables 𝑧𝑣 = 1 if vertex 𝑣 belongs to the set
𝑉2; otherwise, 𝑧𝑣 = 0. In this context, we have formulated the MBSP as the following integer programming
problem:

max
∑︁
𝑣∈𝑉

(𝑥𝑣 + 𝑧𝑣) (2.5)

subject to:

𝑥𝑣 + 𝑧𝑣 ≤ 1, ∀𝑣 ∈ 𝑉 , (2.6)
𝑥𝑢 + 𝑥𝑣 ≤ 1, ∀{𝑢, 𝑣} ∈ 𝐸−, (2.7)
𝑧𝑢 + 𝑧𝑣 ≤ 1, ∀{𝑢, 𝑣} ∈ 𝐸−, (2.8)
𝑥𝑢 + 𝑧𝑣 ≤ 1, ∀(𝑢, 𝑣) ∈ 𝐴+, (2.9)

𝑥𝑢 + 𝑧𝑢 + 𝑥𝑣 + 𝑧𝑣 ≤ 1, ∀{𝑢, 𝑣} ∈ 𝐸+ ∩ 𝐸−, (2.10)
𝑥𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝑉 , (2.11)
𝑧𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝑉 , (2.12)

where 𝐴+ = {(𝑢, 𝑣), (𝑣, 𝑢) | {𝑢, 𝑣} ∈ 𝐸+}.
The above model is said to be a clustering formulation. The objective function (2.5) maximizes the total

number of vertices in 𝑉1 ∪ 𝑉2. Constraints (2.6) indicate that any vertex in the solution has to belong to only
one set, 𝑉1 or 𝑉2. Constraints (2.7) and (2.8) ensure that there are no negative edges with both endpoints in 𝑉1

and 𝑉2, respectively. Moreover, constraints (2.9) indicate that there are no positive edges that have one endpoint
in 𝑉1 and the other in 𝑉2. Constraints (2.10) ensure that if there is a parallel edge between two vertices, both
vertices cannot be in the solution.

3. A matheuristic for the MBSP

In Figueiredo and Frota [8], a GRASP heuristic was proposed to solve the MBSP and provided the best
quality results among the heuristics developed for this problem for the instances analyzed. In addition, the
NCCH heuristic presented in [16], obtained the best quality results for the instances used in that work. This
section details our proposed matheuristic to tackle the MBSP.

3.1. The NCCH heuristic

The greedy heuristic NCCH proposed in [16] is based on the observation that a vertex set 𝑈 ⊆ 𝑉 induces a
balanced subgraph 𝐺𝑈 if and only if 𝐺𝑈 contains no negative cycles, i.e., cycles with an odd number of negative
edges [2]. Therefore, this greedy approach tries to reduce negative cycles progressively by applying the Negative
Cycle Contraction (NCC) rule shown in Algorithm 1 [16]. This procedure preserves the sign of all negative
cycles and shortens those containing an edge {𝑢, 𝑣} that is not a parallel edge. Any balanced induced subgraph
of the signed graph obtained by applying the NCC-rule to all the vertices of 𝑉 is a balanced induced subgraph
of 𝐺.

Algorithm 2 presents the NCCH heuristic using this rule.
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Algorithm 1: NCC rule.
Input: The signed graph 𝐺 = (𝑉, 𝐸, 𝑠) and edge {𝑢, 𝑣} ∈ 𝐸

1 if 𝑠({𝑢, 𝑣}) ̸= ± then
2 foreach 𝑤 ∈ 𝑉 ∖ {𝑣} adjacent to 𝑢, where 𝑠({𝑢, 𝑤}) ̸= ± do
3 * ← 𝑠({𝑢, 𝑣}) · 𝑠({𝑢, 𝑤})
4 if {𝑣, 𝑤} /∈ 𝐸* then
5 𝐸* ← 𝐸* ∪ {𝑣, 𝑤}

6 𝐸 = 𝐸∖{𝑢, 𝑣}

Algorithm 2: NCCH.

Input: The signed graph 𝐺 = (𝑉, 𝐸, 𝑠), function 𝜔.
Output: The balanced subgraph 𝐺𝑈 .

1 𝑆 ← 𝑉
2 𝑈 ← ∅
3 while 𝑆 ̸= ∅ do
4 𝑢← the vertex in 𝑆 with the smallest positive value of 𝜔
5 Apply NCC-rule to every vertex 𝑣 adjacent to 𝑢
6 foreach 𝑣 adjacent to 𝑢 do
7 if 𝑠({𝑢, 𝑣}) = ± then
8 delete 𝑣 from 𝑆

9 𝑈 ← 𝑈 ∪ {𝑢}
10 𝐺𝑈 ← (𝑈, 𝐸[𝑈 ], 𝑠)
11 return 𝐺𝑈

This greedy procedure runs from lines 3 to 9, while there are vertices from 𝑆 to be examined. In each step, it
selects a vertex 𝑢 by using a greedy criterion defined by the function 𝜔 (line 4). Then it applies the NCC rule
to every vertex 𝑣 adjacent to 𝑢 (line 5). Later (lines 6–8), the method deletes all parallel edges generated after
applying the NCC-rule. At the end of Algorithm 2 (line 10), the vertex set 𝑈 induces a balanced signed graph
(see details in [16]).

The function 𝜔 should prioritize vertices that have few and small negative cycles without chords associated
with them. Marinelli and Parente [16] proposed three options for 𝜔, and showed that the performance of the
heuristic varies depending on the 𝜔 function and instance structure.

3.2. Construction procedure based on negative chordless cycles

Based on the NCCH heuristic, we developed a construction procedure using a Restricted Candidate List
(RCL) [19]. This procedure, shown in Algorithm 3, is similar to the above algorithm. The only difference
between the original NCCH heuristic and this new one is that the former greedily selects the vertex using the
function 𝜔, while the latter creates a list 𝐿 to select the vertex from that list randomly. The list 𝐿 contains all
vertices with the minimum value for the 𝜔 function.

Choosing a random vertex from this list at each step causes the final solution to differ from the solution
obtained by the NCCH heuristic. Thus, Algorithm 3 can be used to generate different feasible solutions. In this
work 𝜔(𝑣) = 𝑑𝐺(𝑣) was selected, where 𝑑𝐺(𝑣) represents the degree of vertex 𝑣 ∈ 𝑉 . This is one of the functions
proposed in [16], and it was chosen because it demands less computational time to be calculated.
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Algorithm 3: Construction NCCH.

Input: The signed graph 𝐺 = (𝑉, 𝐸, 𝑠), function 𝜔.
Output: The balanced subgraph 𝐺𝑈 .

1 𝑆 ← 𝑉
2 𝑈 ← ∅
3 while 𝑆 ̸= ∅ do
4 𝐿← {𝑣 ∈ 𝑆 |𝜔(𝑣) ≤ 𝜔(𝑢), ∀𝑢 ∈ 𝑆}
5 𝑢← random element from 𝐿
6 Apply NCC-rule to every vertex 𝑣 adjacent to 𝑢
7 foreach 𝑣 adjacent to 𝑢 do
8 if 𝑠({𝑢, 𝑣}) = ± then
9 delete 𝑣 from 𝑆

10 𝑈 ← 𝑈 ∪ {𝑢}
11 𝐺𝑈 ← (𝑈, 𝐸[𝑈 ], 𝑠)
12 return 𝐺𝑈

3.3. Local Search

The purpose of this procedure is to find locally optimal solutions with respect to some neighborhood in order
to improve the initial solution provided by Algorithm 3. The local search in [8] obtains neighboring solutions by
removing one or two vertices from the current solution, and including as many vertices as possible (maintaining
feasibility), in order to reach an improved solution.

If we consider the removal of all possible pairs of elements, a quadratic component is incorporated in the
local search. This neighborhood would be computationally expensive in large graphs. So, our local search
procedure obtains neighboring solutions by randomly removing 𝑝 ≤ |𝑈 ′| vertices from a feasible solution 𝐺𝑈 ′ =
(𝑈 ′, 𝐸[𝑈 ′], 𝑠) (shrinking phase) and reapplying the NCCH heuristic shown in Algorithm 2 (expansion phase).
The parameter 𝑝 is determined by the input parameter 𝛼 that indicates a percentage of the number of vertices of
the input graph 𝐺 (line 2). Thereby, we define the 𝑝-neighborhood, denoted by 𝑁𝑝, as the family of all solutions
obtained by removing 𝑝 vertices from 𝑈 ′ and reapplying the NCCH heuristic described in Algorithm 2. As the
number of neighbors grows exponentially, only 𝑘 neighbors in 𝑁𝑝 are analyzed in each local search step.

The local search procedure, shown in Algorithm 4, tries to increase the solution’s cardinality returned by the
construction phase. Each time it finds an enhancement, the current best solution 𝐺best is updated (lines 6–8).
The method stops if there is no further improvement of the solution after exploring 𝑘 neighbors in 𝑁𝑝.

3.4. The MS NCCH heuristic

Using the constructive procedure and the local search algorithm we propose the MS NCCH heuristic
described in Algorithm 5, based on a multi-start schema.

Each MS NCCH iteration starts with an initial solution generated for the problem (lines 6–9). For the first
iteration, we use the greedy NCCH heuristic described in Algorithm 2. Then, we use the constructive procedure
defined in Section 3.2 for the remaining iterations. Once a feasible solution is created, the local search tries
to improve the quality of that solution (line 10). The best global solution 𝐺best is updated (line 12) if the
solution found by the local search improves it. The method maintain a pool of elite solutions 𝐸𝐿 (line 13) that
is updated with new solutions found in the local search procedure that are better than those in 𝐸𝐿, respecting
the size limit 𝐸𝑙𝑖𝑡𝑒𝑆𝑖𝑧𝑒 of 𝐸𝐿. That implies that all neighboring solutions obtained in the local search stage
are considered. As 𝐸𝐿 has a limited size, when a solution has a better value than the worst solution of 𝐸𝐿, the
new solution enters the set, while the worst solution leaves 𝐸𝐿.

From lines 14 to 17 the set of elite solutions is checked. If some new solution enters the set, then the counter
for the number of iterations without change in 𝐸𝐿 is restarted.



3126 J.R. MORENO RAMÍREZ ET AL.

Algorithm 4: Local Search.
Input: The balanced subgraph 𝐺, a maximum number of attempts 𝑘 and the percentage of vertices to remove 𝛼.
Output: The balanced subgraph 𝐺𝑏𝑒𝑠𝑡 with at least as many vertices as 𝐺.

1 𝑎𝑡𝑡𝑒𝑚𝑝𝑡← 0
2 𝐺𝑏𝑒𝑠𝑡 ← 𝐺
3 𝑝 = 𝛼 · |𝐺|
4 while 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 < 𝑘 do
5 𝐺′ ← random neighbor of 𝐺𝑏𝑒𝑠𝑡 in 𝑁𝑝

6 if |𝐺′| > |𝐺𝑏𝑒𝑠𝑡| then
7 𝐺𝑏𝑒𝑠𝑡 ← 𝐺′

8 𝑎𝑡𝑡𝑒𝑚𝑝𝑡← 0

9 else
10 𝑎𝑡𝑡𝑒𝑚𝑝𝑡← 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 + 1

11 return 𝐺𝑏𝑒𝑠𝑡

Algorithm 5: MS NCCH

Input: graph 𝐺, 𝑀𝑎𝑥𝑇𝑖𝑚𝑒, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝐸𝑙𝑖𝑡𝑒, 𝑘, 𝛼.
Output: The balanced subgraph 𝐺𝑏𝑒𝑠𝑡.

1 𝐺𝑏𝑒𝑠𝑡 ← ∅
2 𝑖𝑡𝑒𝑟 ← 1
3 𝑖𝑡← 1
4 𝐸𝐿← ∅
5 repeat
6 if 𝑖𝑡𝑒𝑟 = 1 then
7 𝐺0 ← NCCH(𝐺, 𝜔)

8 else
9 𝐺0 ← Construction NCCH(𝐺, 𝜔)

10 𝐺* ← Local Search(𝐺0, 𝑘, 𝛼)
11 if |𝐺*| > |𝐺𝑏𝑒𝑠𝑡| then
12 𝐺𝑏𝑒𝑠𝑡 ← 𝐺*

13 Update 𝐸𝐿 with new solutions found in the local search that are better than those in 𝐸𝐿.
14 if there is a change in 𝐸𝐿 then
15 𝑖𝑡← 1

16 else
17 𝑖𝑡← 𝑖𝑡 + 1

18 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

19 until 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 limit reached or 𝑖𝑡𝑒𝑟 > 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 or 𝑖𝑡 > 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝐸𝑙𝑖𝑡𝑒
20 return 𝐺𝑏𝑒𝑠𝑡

The algorithm stops if it reaches the maximum running time 𝑀𝑎𝑥𝑇𝑖𝑚𝑒, the maximum number of overall
iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟, or there are no changes in the elite set during 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝐸𝑙𝑖𝑡𝑒 iterations.

3.5. The matheuristic MH MBSP

The MH MBSP is a matheuristic developed using the proposed formulation presented in Section 2 and the
solutions inserted in the elite set by the MS NCCH heuristic. The proposed compact formulation can be described
using a polynomial number of variables and constraints. This feature allows the formulation to be integrated
with the MS NCCH heuristic in order to quickly find feasible solutions after fixing a subset of variables. The
quality of solution depends on the choice of which and how many variables will be selected to be fixed.
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In our first approach we try to identify a subset of vertices 𝑈 ⊆ 𝑉 that appear in all solutions of the elite
set 𝐸𝐿 in the end of the method MS NCCH. Then, we include Constraints 3.1 into the formulation, indicating
that these vertices must be present in the solution:

𝑥𝑣 + 𝑧𝑣 = 1, ∀𝑣 ∈ 𝑈. (3.1)

Unfortunately, this approach turned out to be very restrictive to the formulation, not improving the solutions.
So, we decided to use the subset of vertices that appear in all solutions that were ever inserted in the elite set.
This strategy improved the results and is adaptive for each instance, as the number of solutions inserted in the
elite set varies depending on the instance.

Algorithm 6: MH MBSP.
Input: The signed graph 𝐺 = (𝑉, 𝐸, 𝑠), 𝑀𝑎𝑥𝑇𝑖𝑚𝑒, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝐸𝑙𝑖𝑡𝑒, 𝑘, 𝛼

1 𝐺𝑏𝑒𝑠𝑡 ← MS NCCH(𝐺, 𝑀𝑎𝑥𝑇𝑖𝑚𝑒, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝐸𝑙𝑖𝑡𝑒, 𝑘, 𝛼)
2 𝑈 ← Subset of vertices presented in all solutions ever inserted in the elite set 𝐸𝐿
3 𝑡𝑖𝑚𝑒𝑀𝑆 ← Time used by the MS NCCH heuristic
4 if 𝑡𝑖𝑚𝑒𝑀𝑆 >= 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 then
5 return 𝑆𝑜𝑙

6 𝑀 ← The formulation described in Section 2 for the input graph 𝐺, with Constraints 3.1 defined by vertex set 𝑈
7 𝐺′𝑏𝑒𝑠𝑡 ← Solution found by solving 𝑀 with a time limit of (𝑀𝑎𝑥𝑇𝑖𝑚𝑒− 𝑡𝑖𝑚𝑒𝑀𝑆)
8 if 𝐺′𝑏𝑒𝑠𝑡 is better than 𝐺𝑏𝑒𝑠𝑡 then
9 return 𝐺′𝑏𝑒𝑠𝑡

10 else
11 return 𝐺𝑏𝑒𝑠𝑡

Algorithm 6 shows the MH MBSP matheuristic for the MBSP problem. It starts by storing the best solution
obtained by the MS NCCH heuristic (line 1) and the subset of vertices presented in all solutions ever inserted
in the elite set (line 2).

If the time used by the heuristic reached the time limit 𝑀𝑎𝑥𝑇𝑖𝑚𝑒, it returns the solution found by the
MS NCCH heuristic (line 5); otherwise, the model 𝑀 is created according to Section 2 (line 6), and expanded
by Constraints 3.1 defined by vertex set 𝑈 , indicating that these vertices must be fixed in the solution, belonging
to any of solution sets 𝑉1 or 𝑉2.

Subsequently, the formulation is solved using (𝑀𝑎𝑥𝑇𝑖𝑚𝑒𝑀𝐻 − 𝑡𝑖𝑚𝑒𝑀𝑆) as the time limit (line 7). The
matheuristic result is the best solution between the one found by the MS NCCH heuristic and the one found
by solving the model with the initialized variables (lines 8–11).

4. Computational experiments

This section reports the computational experiments carried out with the heuristics methods described in the
previous sections. We performed several computational experiments to validate the effectiveness of the proposed
methods. First, we analyzed the same set of instances of [8], which contains several groups of instances (DMERN,
Portfolio, and Random) having signed graphs with different sizes and densities. Then, we analyzed the set of
instances proposed in [16], which contains three groups of instances (N, P, and R instances).

4.1. Exact method

The new proposed mathematical formulation described in Section 2 is the starting point for our exact method
used in the matheuristic. We executed it for an hour to verify its performance. Experiments for the exact method
were executed on an Intel (R) Core i5-4460S CPU @ 2.90 GHz and 8 Gb of RAM using the operating system
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Fedora 22. All methods were programmed in C++ language using the gcc compiler. The IBM ILOG CPLEX
12.6 was used with a single thread of execution, and all other CPLEX parameters were left to their default
values.

In [8], the authors showed the results obtained by their exact method based on removing cycles with an odd
number of negative edges. These experiments were executed on an Intel (R) Pentium (R) 4 CPU 3.06 GHz,
equipped with 3 GB of RAM. In order to establish a more similar environment, we calculated the associated
time scaling factor of 0.34 (based on Pass mark benchmark), representing the ratio between the speed of the
processor in [8] and the speed of our processor. Based on this, we show their time values multiplied by this
associated factor.

Table 1 shows the results obtained for instances set DMERN, composed of 61 instances with the number
of vertices |𝑉 | varying from 144 to 8317. Columns 2, 3, and 4 present, respectively, the upper bound provided
by the root node relaxation, the best lower bound value, and the time to reach this value for the exact model
shown in [8]. Columns 5, 6, and 7 have the same meaning, but for our exact method. The symbol “–” means
that the optimal solution was not found within the execution time limit.

According to Table 1, our method could solve nine more instances than the method in [8]. On the other hand,
the new formulation presents a much weaker relaxation at the root node. However, the resolution times were
short, and our exact method presents high-quality lower bounds (feasible solutions). Together with the fact that
the new formulation is compact, these features indicate that our proposed formulation may be a good choice to
be integrated with a heuristic to search for high-quality and fast feasible solutions.

4.2. Choosing parameters

We used the Irace package [15] to select the parameters for the MS NCCH heuristic. This package includes
the iterated F-race algorithm [3] and several extensions for finding the most appropriate parameter settings
for an optimization algorithm. It needs the specification of the parameters to be configured and instances for
training. According to Section 3.4, the parameters to be configured are:

– 𝛼: The percentage of vertices to be removed from the solution set in the local search phase. Its values ranged
from 5% to 50%.

– 𝑘: The maximum number of neighbors explored during the local search. Its values were in the range of 10
to 1000.

– 𝑖𝑡: The number of iterations without a change in the elite set, tested in the range of 1 to 50.

We configure the Irace to run 1000 experiments using 10 instances, none of them present in previous works
or used in later comparisons. The instances used were:boeing1, boeing2, capri, degen2, file150.7, finnis, scfxm1,
scfxm3, scsd6 and standata, coming from a set of general mixed integer programs in Netlib (https://www.
netlib.org/lp/data). The instances were selected with different sizes and densities to provide parameters
that work well with different input structures.

From the results of Irace, the final configurations were: 𝛼 = 33.3%, 𝑘 = 1000 and 𝑖𝑡 = 20. The parameter
𝐸𝑙𝑖𝑡𝑒𝑆𝑖𝑧𝑒 was set to 10, as used in Martins et al. [18] and de Holanda Maia et al. [6]. For all experiments, we
used 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 100 and 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 = 30 s.

4.3. Analyzing the performance of the heuristics

Tests were developed on an Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz with 8 Gb of RAM using Ubuntu
16.04. All methods were programmed in C++ language using the gcc compiler. We used the instances presented
in [16] to analyze the NCCH, MS-NCCH, and MH-MBSP heuristics performance. The goal of these tests was
to verify the impact on the solution of each developed strategy. For all heuristics, the function 𝑤 is the vertex
degree.

The three sets of instances are N-instances, P-instances, and R-instances. N-instances consist of 34 signed
graphs obtained from a set of preprocessed and scaled Netlib matrices. P-instances are 50 randomly generated

https://www.netlib.org/lp/data
https://www.netlib.org/lp/data


MATHEURISTIC SOLUTIONS FOR THE MBSP PROBLEM 3129

Table 1. Exact results for instance set DMERN.

Instance Relax𝐶 ILP𝐶 Time𝐶 Relax ILP Time

danoint 126 97 165.0 136 97 0.5
bienst1 118 90 2772.0 184 90 1.0
stein45 30.17 29 – 331 30 0.1
disctom 397 299 643.0 399 299 44.0
fc.60.20.1 384 371 171.0 414 371 7.3
air05 240.5 63 – 426 69 –
neos17 2 2 61.0 485 2 0.4
p100x588 638 633 63.0 688 633 0.4
air04 383 113 – 823 133 –
r80x800 840 828 699.0 880 828 19.1
nug08 301 128 150.0 912 128 0.2
p50x864 889 884 107.0 914 884 4.4
n5-3 941 912 82.0 1012 912 0.3
neos21 924 191 782.0 1085 191 0.4
n4-3 1109 1062 165.0 1178 1062 0.7
dano3mip 1150 588 – 1203 760 –
n8-3 1197 1176 120.0 1300 1176 0.3
neos20 595.5 627 107.0 1320 627 0.1
p200x1188 1288 1272 – 1388 1273 –
p200x1188c 1288 1273 – 1388 1276 365.1
roll3000 583 824 170.0 1205 824 0.9
janos-us-ca–D-D-M-N-C-A-N-N 1554 1521 214.0 1643 1521 0.5
pioro40–D-B-M-N-C-A-N-N 1573 1560 126.0 1649 1560 0.5
n13-3 1562 1537 214.0 1661 1537 0.7
n2-3 1669 1656 259.0 1752 1656 0.7
zib54–U-U-E-N-C-A-N-N 1728 1728 62.0 1728 1728 0.5
qap10 200 200 427.0 1820 200 1.9
ns1688347 468.43 375 – 1806 448 –
germany50–U-U-M-N-C-A-N-N 2000 2000 91.0 2000 2000 0.4
protfold 611.61 383 – 1990 574 –
cap6000 2074 2074 111.0 2169 2074 103.7
n7-3 2197 2162 1191.0 2278 2162 2.4
n9-3 2187 2112 1330.0 2280 2112 4.6
acc-1 567 480 – 2286 491 41.3
n3-3 2192 2059 2827.0 2303 2059 8.5
zib54–D-B-E-N-C-A-N-N 2277 2268 211.0 2347 2268 0.8
n12-3 2265 2214 1067.0 2358 2214 3.3
neos818918 2019.83 2018 800.0 2350 2018 6.2
germany50–D-B-M-N-C-A-N-N 2355 2350 262.0 2438 2350 0.8
acc-2 567 454 – 2520 491 60.0
ta2–U-U-M-N-C-A-N-N 2470 2471 175.0 2470 2471 0.5
n6-3 2602 2538 2785.0 2686 2538 5.1
berlin 2678 2653 – 2704 2653 44.4
neos11 752.11 702 – 2686 742 3.3
ta2–D-B-M-N-C-A-N-N 2748 2731 470.0 2837 2731 2.9
acc-6 1011.28 899 – 3040 939 –
acc-5 1002.93 875 – 3045 944 –
acc-3 1125 1125 221.0 3240 1071 –
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Table 1. continued.

Instance Relax𝐶 ILP𝐶 Time𝐶 Relax ILP Time

acc-4 1125 1125 240.0 3276 1071 –
brasil 3335 3307 – 3364 3307 32.6
mkc 2964 3220 341.0 3124 3223 0.5
p500x2988 3238 3199 – 3488 3206 –
p500x2988c 3238 3098 – 3488 3194 –
mod011 3208 3854 416.0 3240 3854 0.8
neos1 1194 1099 – 2712 1186 29.3
seymour 472.04 559 – 4794 610 –
seymour1 472.04 599 – 4794 610 –
n370a 5100 5100 1374.0 5150 5100 1.4
rentacar 3280 4662 2403.0 4257 4693 1.5
manna81 3382 2322 1178.0 6480 2322 –
neos12 1546.41 1401 – 8275 1546 –

power-law signed graphs, five instances for each size |𝑉 | = 100𝑘 with 𝑘 ∈ {1, . . . , 10}. R-instances are random
signed graphs generated with the function 𝑅𝑎𝑛𝑑𝑜𝑚𝐺𝑟𝑎𝑝ℎ(𝑛, 𝑝) provided by Mathematica [20], with the number
of vertices ranging from 50 to 200 and density in the set {0.1, 0.3, 0.5, 0.7}.

Table 2 shows the results for N-instances. Column 2 shows the results of the greedy heuristic NCCH. The
time in seconds, used by this heuristic, is presented in Column 3. Columns 4 and 5 show the average result
and time of MS-NCCH heuristic, respectively, after 10 runs. Next two columns show the same information but
for the MH-MBSP matheuristic. The final column shows the gap between the best solution found by the exact
method (ILP) and the average result found by the matheuristic (Col. 6). The gap is calculated by the following
equation:

gap = BestILP −AvgMH-MBSP

where BestILP is the best solution found by our exact method in the time limit of 1 h.
Since the exact optimization phase of the matheuristic starts when the MS-NCCH heuristic finishes, the

results and time of MS-NCCH are always worse and less than or equal to those obtained by MH-MBSP. For the
same reason, the NCCH results are always worse than or equal to those obtained by the MS-NCCH heuristic.
Cells with an asterisk in the last column indicate that the problem was not optimally solved in 1 h and the gap
is calculated related to the best feasible solution found. Moreover, the value “–” in the time column indicates
that the method reached the maximum assigned time of 30 s.

The N-instances set contains “easy” instances, and the greedy heuristic NCCH was able to solve optimally 22
of the 34 instances. For those 12 instances not solved optimally by the NCCH heuristic, the MS-NCCH heuristic
solved optimally eight new instances and improved the results for other two unsolved instances. The exact
optimization phase of the matheuristic did not improve the results of the remaining four unsolved instances.
When analyzing these instances, we can see that they are instances in which the MS-NCCH heuristic used all
execution time, and there was no available time to perform the exact optimization phase in three of them.

Table 3 shows the results for P-instances. Columns of this table have the same meaning as in Table 2. These
instances are a little more complex than N-instances, and the results reflect that. In this set, the NCCH heuristic
found seven optimal results. For the remaining 43 instances, the MS-NCCH heuristic always obtained a better
result than the NCCH heuristic and found 10 additional optimal solutions. For the remaining 33 unsolved
instances, the matheuristic MH-MBSP improved all results and found 19 new optimal values.

The R-instances are classified in [16] as hard instances because they are graphs connected with many negative
cycles. Table 4 shows the results for these instances, and its columns have the same meaning as in the previous
tables. The MS-NCCH heuristic improved all results found by the NCCH heuristic. Moreover, the MS-NCCH
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Table 2. Heuristics results for N-instances.

NCCH MS-NCCH MH-MBSP
Instance Result Time Avg Time Avg Time Gap

25fv47 212 0.00 212.0 0.22 212.0 0.23 0.00
80bau3b 1328 0.01 1329.1 12.72 1329.1 12.76 16.90
agg2 62 0.00 62.0 0.09 62.0 0.10 0.00
agg3 62 0.00 62.0 0.09 62.0 0.10 0.00
bnl1 261 0.00 261.0 0.23 261.0 0.24 0.00
bnl2 1364 0.01 1367.0 1.25 1367.0 1.28 0.00
cycle 504 0.00 504.0 1.06 504.0 1.06 0.00
czprob 717 0.00 717.0 – 717.0 – 1.00
d2q06c 802 0.00 804.0 0.45 804.0 0.47 0.00
degen3 776 0.01 796.0 2.83 796.0 3.39 0.00
dfl001 4175 0.57 4409.1 – 4409.1 – *103.90
fffff800 125 0.00 125.0 0.29 125.0 0.30 0.00
ganges 534 0.00 534.0 1.96 534.0 1.98 0.00
gfrd-pnc 522 0.00 522.0 1.77 522.0 1.82 0.00
greenbea 884 0.00 890.0 3.92 890.0 3.95 0.00
greenbeb 884 0.00 890.0 3.96 890.0 3.98 0.00
maros 300 0.00 300.0 0.37 300.0 0.38 0.00
modszk1 130 0.00 130.0 0.02 130.0 0.02 0.00
nesm 190 0.00 190.0 0.17 190.0 0.17 0.00
perold 143 0.00 143.0 0.07 143.0 0.08 0.00
pilot87 306 0.00 306.0 0.39 306.0 0.40 0.00
pilot 252 0.00 252.0 0.24 252.0 0.24 0.00
pilot.ja 198 0.00 198.0 0.13 198.0 0.14 0.00
pilotnov 203 0.00 203.0 0.13 203.0 0.13 0.00
pilot.we 202 0.00 202.0 0.11 202.0 0.12 0.00
scfxm2 250 0.00 252.0 0.03 252.0 0.05 0.00
sctap2 470 0.00 470.0 0.84 470.0 0.84 0.00
seba 140 0.00 140.0 1.04 140.0 1.24 0.00
shell 480 0.00 482.0 4.13 482.0 4.15 0.00
ship12l 732 0.00 732.0 6.14 732.0 6.23 0.00
ship12s 360 0.00 360.0 1.31 360.0 1.34 0.00
stocfor2 1104 0.01 1106.0 3.07 1106.0 3.11 0.00
stocfor3 8512 0.42 8513.2 – 8513.2 – 2.80
woodw 301 0.00 301.0 0.24 301.0 0.24 0.00

heuristic found 27 optimal solutions. The exact optimization phase of the matheuristic improved the MS-NCCH
heuristic results in 14 instances and found six new optimal solutions. The MH-MBSP average results improved
the NCCH results by 31.0%. A remarkable result of the matheuristics MH-MBSP was for instance rn200d05-2,
as it obtained, in 7.65 s, a better result than the exact method in one hour of processing.

The above experiments showed the impact that each NCC-rule-based heuristic has on the quality of the
solutions. The next section compares the MH-MBSP matheuristic with the heuristic GRASP developed in [8],
which is the best-known metaheuristic for the problem.

4.4. DMERN, portfolio and random graphs

This section compares the MH-MBSP matheuristic to the GRASP method proposed in [8], which is the best
metaheuristic in the literature for the problem. As the authors kindly provided the GRASP source code, we
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Table 3. Heuristics results for P-instances.

NCCH MS-NCCH MH-MBSP
Instance Result Time Avg Time Avg Time Gap

g0100 1 93 0.00 94.0 0.06 94.0 0.08 0.00
g0100 2 94 0.00 95.0 0.05 95.0 0.06 0.00
g0100 3 96 0.00 97.0 0.02 97.0 0.03 0.00
g0100 4 95 0.00 95.0 0.05 95.0 0.05 0.00
g0100 5 94 0.00 94.0 0.04 94.0 0.05 0.00
g0200 1 188 0.00 190.0 0.02 190.0 0.04 0.00
g0200 2 188 0.00 190.0 0.03 190.0 0.13 0.00
g0200 3 188 0.00 188.0 0.01 188.0 0.03 0.00
g0200 4 190 0.00 190.0 0.12 190.0 0.13 0.00
g0200 5 189 0.00 190.0 0.04 190.0 0.07 0.00
g0300 1 281 0.00 283.9 0.11 284.0 0.27 0.00
g0300 2 281 0.00 283.5 0.05 284.0 0.41 0.00
g0300 3 283 0.00 285.0 0.09 285.0 0.24 0.00
g0300 4 283 0.00 283.0 0.31 283.0 0.33 0.00
g0300 5 283 0.00 285.0 0.04 285.0 0.10 0.00
g0400 1 377 0.00 379.7 0.08 380.0 0.41 0.00
g0400 2 379 0.00 380.0 0.26 380.0 0.51 0.00
g0400 3 377 0.00 378.5 0.11 379.0 0.52 0.00
g0400 4 381 0.00 381.0 0.20 381.0 0.23 0.00
g0400 5 378 0.00 380.0 0.10 380.0 0.27 0.00
g0500 1 471 0.00 474.8 0.12 475.0 0.67 0.00
g0500 2 473 0.00 476.6 0.16 477.0 0.47 0.00
g0500 3 470 0.00 472.4 0.15 473.0 1.23 0.00
g0500 4 473 0.00 473.0 0.16 473.0 0.50 0.00
g0500 5 476 0.00 476.9 0.13 477.0 0.27 0.00
g0600 1 564 0.00 567.5 0.27 568.0 6.36 0.00
g0600 2 569 0.00 571.2 0.24 571.9 1.40 0.10
g0600 3 566 0.00 566.8 0.25 568.0 12.86 0.00
g0600 4 567 0.00 568.3 0.21 569.0 2.26 0.00
g0600 5 567 0.00 570.6 0.24 571.0 0.80 0.00
g0700 1 661 0.00 665.5 0.39 666.0 2.00 0.00
g0700 2 658 0.00 667.5 0.33 668.0 1.27 0.00
g0700 3 661 0.00 662.5 0.29 663.0 3.30 0.00
g0700 4 657 0.00 661.0 0.33 662.0 1.77 0.00
g0700 5 664 0.00 664.0 0.36 664.5 0.82 0.50
g0800 1 750 0.00 754.6 0.44 756.6 16.98 0.40
g0800 2 751 0.00 756.5 0.44 758.9 – 0.10
g0800 3 759 0.00 761.9 0.46 763.0 2.52 0.00
g0800 4 757 0.00 758.6 0.52 759.0 6.15 0.00
g0800 5 754 0.00 759.3 0.39 760.0 4.15 0.00
g0900 1 844 0.00 849.6 0.58 851.7 – 0.30
g0900 2 845 0.00 850.5 0.57 852.8 – 0.20
g0900 3 848 0.00 852.8 0.48 854.4 14.52 0.60
g0900 4 846 0.00 849.5 0.59 852.8 20.59 0.20
g0900 5 848 0.00 851.3 0.60 852.9 – 0.10
g1000 1 937 0.00 942.0 0.59 945.2 – *0.80
g1000 2 941 0.00 946.8 0.59 949.0 – *1.00
g1000 3 940 0.00 944.6 0.68 947.3 – *0.70
g1000 4 942 0.00 947.2 0.80 948.7 26.93 0.30
g1000 5 945 0.00 948.5 0.51 949.8 2.58 0.20
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Table 4. Heuristics results for R-instances.

NCCH MS-NCCH MH-MBSP
Instances Result Time Avg Time Avg Time Gap

rn50d01-1 39 0.00 41.0 0.06 41.0 0.07 0.00
rn50d01-2 35 0.00 40.0 0.01 40.0 0.14 0.00
rn50d01-3 36 0.00 43.0 0.06 43.0 0.07 0.00
rn50d03-1 18 0.00 33.0 0.08 33.0 0.09 0.00
rn50d03-2 32 0.00 33.0 0.08 33.0 0.09 0.00
rn50d03-3 31 0.00 32.9 0.03 32.9 0.04 0.10
rn50d05-1 27 0.00 30.0 0.08 30.0 0.09 0.00
rn50d05-2 27 0.00 28.0 0.05 28.0 0.06 0.00
rn50d05-3 29 0.00 30.0 0.08 30.0 0.09 0.00
rn50d07-1 23 0.00 26.0 0.07 26.0 0.08 0.00
rn50d07-2 24 0.00 27.0 0.08 27.0 0.09 0.00
rn50d07-3 11 0.00 24.9 0.02 24.9 0.05 0.10
rn100d01-1 60 0.00 75.0 0.33 75.0 0.40 0.00
rn100d01-2 52 0.00 72.0 0.16 72.0 0.42 0.00
rn100d01-3 54 0.00 78.0 0.32 78.0 0.37 0.00
rn100d03-1 40 0.00 54.0 0.29 54.0 0.35 0.00
rn100d03-2 46 0.00 56.0 0.19 56.0 0.21 0.00
rn100d03-3 40 0.00 50.0 0.08 50.0 0.52 0.00
rn100d05-1 38 0.00 43.9 0.04 44.0 0.09 0.00
rn100d05-2 21 0.00 41.0 0.14 41.0 1.16 0.00
rn100d05-3 13 0.00 42.0 0.07 42.0 1.73 0.00
rn100d07-1 31 0.00 38.4 0.28 39.0 1.77 0.00
rn100d07-2 36 0.00 39.1 0.22 39.1 0.34 0.90
rn100d07-3 26 0.00 36.3 0.14 36.6 2.06 0.40
rn150d01-1 71 0.00 96.0 0.87 96.0 1.18 0.00
rn150d01-2 91 0.00 103.0 0.80 103.0 0.83 0.00
rn150d01-3 93 0.00 103.0 0.85 103.0 0.87 0.00
rn150d03-1 58 0.00 71.0 0.24 71.0 0.30 0.00
rn150d03-2 54 0.00 67.0 0.45 67.0 1.26 0.00
rn150d03-3 41 0.00 67.8 0.31 68.0 2.64 0.00
rn150d05-1 40 0.00 55.5 0.26 56.0 5.77 0.00
rn150d05-2 46 0.00 55.7 0.11 55.9 1.88 0.10
rn150d05-3 30 0.00 52.2 0.26 53.0 5.64 0.00
rn150d07-1 25 0.00 45.1 0.28 45.3 20.61 0.70
rn150d07-2 25 0.00 46.8 0.17 47.0 8.68 0.00
rn150d07-3 31 0.00 44.8 0.20 44.9 8.22 1.10
rn200d01-1 79 0.00 119.0 0.56 119.0 0.79 0.00
rn200d01-2 121 0.00 131.0 1.88 131.0 1.92 0.00
rn200d01-3 102 0.00 121.0 0.76 121.0 0.83 0.00
rn200d03-1 59 0.00 74.3 0.26 74.9 3.46 *0.10
rn200d03-2 61 0.00 76.9 0.31 77.3 5.27 0.70
rn200d03-3 53 0.00 77.9 0.40 77.9 14.58 *0.10
rn200d05-1 45 0.00 59.4 0.25 59.4 26.76 *0.60
rn200d05-2 45 0.00 58.8 0.24 59.1 7.65 *-1.10
rn200d05-3 46 0.00 61.7 0.29 61.7 22.00 *0.30
rn200d07-1 33 0.00 48.0 0.12 48.0 26.56 *2.00
rn200d07-2 28 0.00 48.9 0.15 48.9 22.31 *0.10
rn200d07-3 37 0.00 52.0 0.24 52.0 22.45 *0.00
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ran both heuristics in the same machine and executed each instance ten times with the same time limit as
MH-MBSP (30 s).

Table 5 shows the results obtained for the set of instances DMERN. Columns 2 and 3 show the average
GRASP solution and the gap between the best solution found by the exact method (ILP) and the average result
found by the GRASP. Columns 4 and 6 have the same meaning as columns 2 and 3 but for the MH-MBSP
matheuristic. Moreover, column 5 shows the average execution time for MH-MBSP, because the optimization
phase could stop before the time limit. Those results in bold font are strictly better than the results from the
other methods. An asterisk in the gap cells indicates that the exact method could not find an optimal solution
in one hour, and the gap is calculated using the best solution found. The value “–” in the time cells indicates
that the method reached the maximum assigned time of 30 s.

Table 5 shows that the GRASP heuristic obtained the best average results for two instances, which are
the smallest in the group and correspond to graphs with 144 vertices (danoint) and 184 vertices (bienst1). In
these cases, the GRASP heuristic always found the optimal value, while the matheuristic MH-MBSP found the
optimal value sometimes. For the 53 remaining instances, the MH-MBSP got better results than GRASP.

In general, as the instances’ size increases, it is more difficult for GRASP to find good quality solutions in
a limited time. It may happen because GRASP has a strictly quadratic and more intensive local search. Thus,
for small instances, this more intensive search can find good values in a short time, but it would take much
more time to achieve a better result for larger ones. In contrast, our local search explores a limited number of
neighbors that is a fraction of the total number of vertices. Thus, we work with a local search with a linear
behavior, which obtains good quality results for large instances without spending so much time.

We also analyzed the performance of the proposed methods on the Portfolio instances set, which is composed
of instances with the number of vertices |𝑉 | varying in the set {390, 420, 450, 480, 510}, and the threshold value
𝑡 used in the creation of the instances varying in the set {0.300, 0.325, 0.350, 0.375, 0.400} (see Huffner et al.
[14] for more details). For each combination of these values, there are ten different signed graphs, resulting in
250 instances.

Table 6 shows the results for the Portfolio instances. This table is presented in a format similar to that used
by Figueiredo and Frota [8]. In this case, each line represents a group of 10 instances generated with the same
threshold 𝑡. Columns 3–7 in this table have the same meaning as columns 2–6 in Table 5.

The matheuristics MH-MBSP always got a better result than the GRASP heuristic. Moreover, the value
obtained by the matheuristic was very accurate as the gap column values are at a maximum distance of 1 from
the optimal solution. In three groups of instances, the matheuristic MH-MBSP found all optimal values. For
instances with 420 vertices and parameter 𝑡 = 350, it found a better solution than the one found by the exact
algorithm in one hour of processing. Additionally, the average resolution time obtained by MH-MBSP was much
less than the time limit of 30 s.

In the last experiment, we consider the results obtained for the Random set of instances, which is composed
by randomly generated instances classified into two groups. Group 1 is the set of random signed graphs without
parallel edges (𝐸− ∩ 𝐸+ = ∅), with the number of vertices |𝑉 | varying in the set {50, 100, 150, 200}, density 𝑑
varying in the set {0.25, 0.50, 0.75}, and |𝐸−|/|𝐸+| varying in the set {0.5, 1.0, 2.0}. For each combination of
these values, there are 3 different signed graphs, resulting in 108 instances. Group 2 is the set of random signed
graphs with parallel edges (𝐸− ∩ 𝐸+ ̸= ∅), with the number of vertices and the density varying as in Group
1, and |𝐸− ∩ 𝐸+|/|𝐸| varying in the set {0.25, 0.50, 0.75}. For each combination of these values, there are 3
different signed graphs, resulting in other 108 instances.

Table 7 presents the results where each row represents a group of 27 graphs. Similarly to Table 6, we give
the average information per group of instances. For these instances, the GRASP heuristic obtained the best
average results in all groups. However, the gaps were small for both heuristics, being at an average distance of
only 1 from the best value obtained by the exact algorithm. We verified that the time used by the MS-NCCH
heuristic is 0.6% of the time used by the exact phase of the MH-MBSP for these instances. We believe that if
the local search of the MS-NCCH is more exhaustive for small instances like these, the elite set’s quality may
improve and accelerate the exact phase.
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Table 5. Comparisons of heuristics methods on DMERN instances. For Tables 5–7, results in
bold font indicate that are strictly better than the results from the other methods.

GRASP MH-MBSP
Instance Avg Gap Avg Time Gap

danoint 97.0 0.00 96.4 0.45 0.60
bienst1 90.0 0.00 89.2 0.48 0.80
stein45 30.0 0.00 30.0 0.62 0.00
disctom 299.0 0.00 299.0 14.47 0.00
fc.60.20.1 366.2 4.80 371.0 0.35 0.00
air05 66.8 3.20 68.5 16.54 *1.50
neos17 2.0 0.00 2.0 2.64 0.00
p100x588 624.2 8.80 633.0 2.21 0.00
air04 122.1 8.90 129.8 – *1.20
r80x800 816.4 11.60 828.0 1.40 0.00
nug08 128.0 0.00 128.0 7.08 0.00
p50x864 874.1 9.90 884.0 3.95 0.00
n5-3 686.2 225.80 912.0 6.14 0.00
neos21 188.1 2.90 191.0 5.94 0.00
n4-3 804.6 257.40 1062.0 8.21 0.00
dano3mip 629.3 140.70 649.0 17.73 *121.00
n8-3 905.1 270.90 1176.0 9.31 0.00
neos20 603.7 23.30 627.0 2.69 0.00
p200x1188 1250.3 22.70 1273.0 9.76 0.00
p200x1188c 1249.8 26.20 1276.0 9.50 0.00
roll3000 794.0 30.00 824.0 13.71 0.00
janos-us-ca–D-D-M-N-C-A-N-N 1188.8 332.20 1521.0 18.16 0.00
pioro40–D-B-M-N-C-A-N-N 1306.5 253.50 1560.0 17.50 0.00
n13-3 1230.0 307.00 1537.0 25.46 0.00
n2-3 1359.3 296.70 1656.0 21.61 0.00
zib54–U-U-E-N-C-A-N-N 1538.9 189.10 1728.0 23.95 0.00
qap10 200.0 0.00 200.0 – 0.00
ns1688347 374.0 74.00 444.7 – *3.30
germany50–U-U-M-N-C-A-N-N 1660.5 339.50 2000.0 – 0.00
protfold 403.2 169.80 546.0 12.19 *27.00
cap6000 2074.0 0.00 2074.0 – 0.00
n7-3 1750.3 411.70 2162.0 – 0.00
n9-3 1433.5 678.50 2112.0 – 0.00
acc-1 380.5 110.50 456.0 – 35.00
n3-3 1382.4 676.60 2059.0 – 0.00
zib54–D-B-E-N-C-A-N-N 1985.5 282.50 2268.0 – 0.00
n12-3 1715.5 498.50 2214.0 – 0.00
neos818918 1753.4 264.60 2018.0 2.34 0.00
germany50–D-B-M-N-C-A-N-N 1857.0 493.00 2350.0 – 0.00
acc-2 375.5 115.50 450.9 – 40.10
ta2–U-U-M-N-C-A-N-N 2036.0 435.00 2471.0 – 0.00
n6-3 2099.9 438.10 2538.0 – 0.00
berlin 1670.5 982.50 2653.0 – 0.00
neos11 637.6 104.40 741.7 9.50 0.30
ta2–D-B-M-N-C-A-N-N 2097.2 633.80 2731.0 – 0.00
acc-6 776.4 200.60 952.1 – 24.90
acc-5 787.6 190.40 952.9 – 25.10
acc-3 852.3 272.70 1125.0 21.41 0.00
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Table 5. continued.

GRASP MH-MBSP
Instance Avg Gap Avg Time Gap

acc-4 852.4 272.60 1125.0 20.74 0.00
brasil 1044.2 2262.80 3307.0 – 0.00
mkc 1575.5 1647.50 3223.0 23.37 0.00
p500x2988 1081.9 2124.10 3206.0 – 0.00
p500x2988c 1077.3 2116.70 3194.0 11.86 0.00
mod011 1822.4 2031.60 3854.0 – 0.00
neos1 936.0 250.00 1127.6 – 58.40
seymour 541.0 69.00 582.0 – *28.00
seymour1 543.1 66.90 581.0 – *29.00
n370a 457.7 4642.30 5100.0 – 0.00
rentacar 2109.1 2583.90 4684.8 20.89 8.20
manna81 336.8 1985.20 2322.0 – 0.00
neos12 219.9 1326.10 1505.4 – 40.60

Table 6. Comparisons of heuristics methods on Portfolio instances.

GRASP MH-MBSP
𝑉 𝑡 Avg Gap Avg Time Gap

390 0.300 255.7 29.53 284.3 1.8 *0.93
0.325 282.3 33.45 315.2 1.3 *0.55
0.350 309.2 34.12 343.1 1.5 0.20
0.375 344.7 22.42 366.3 1.3 0.78
0.400 373.5 7.76 381.2 1.5 0.12

420 0.300 276.1 23.41 298.9 2.5 *0.63
0.325 299.9 32.57 332.3 2.0 *0.23
0.350 327.3 37.70 365.0 1.6 *−0.01
0.375 356.4 34.78 391.1 0.7 0.10
0.400 400.4 6.77 407.2 1.1 0.00

450 0.300 285.2 32.69 317.5 2.4 *0.37
0.325 314.0 40.02 353.7 2.1 *0.28
0.350 356.7 33.20 389.8 1.5 *0.08
0.375 383.4 35.02 418.4 0.8 0.00
0.400 415.9 20.29 436.2 1.0 0.00

480 0.300 300.7 33.24 333.4 4.3 *0.52
0.325 325.9 46.67 371.4 3.8 *1.18
0.350 357.3 52.17 409.2 2.7 *0.33
0.375 393.4 48.29 441.7 1.9 0.03
0.400 428.9 34.82 463.6 2.2 0.08

510 0.300 316.4 32.71 349.1 7.0 *0.01
0.325 344.6 45.24 389.3 5.8 *0.54
0.350 374.2 55.02 428.1 3.9 *1.13
0.375 423.0 41.41 464.3 2.4 *0.07
0.400 449.1 42.29 491.4 3.4 0.00
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Table 7. Comparisons of heuristics methods on Random instances.

GRASP MH-MBSP
𝑉 Avg Gap Avg Time Gap

Group 1 50 17.89 0.000 17.74 0.60 0.153
100 23.51 0.005 23.24 18.87 *0.389
150 26.43 0.010 25.88 25.78 *0.819
200 28.14 0.013 27.80 26.81 *0.716

Group 2 50 12.44 0.000 12.18 0.21 0.267
100 16.14 0.000 15.94 9.31 *0.209
150 18.17 0.003 17.79 17.84 *0.435
200 19.02 0.001 18.71 22.66 *0.329

Table 8. Instances and targets for convergence analysis.

Instance |𝑉 | Target

air05 426 66
air04 823 120
ns1688347 1866 370

We can conclude from Tables 5–7 that, up to 200 vertices, the GRASP and MH-MBSP heuristics are quite
similar in terms of the results’ quality. But for instances with more than 200 vertices, the heuristic MH-MBSP
always achieved better results, both in terms of solution quality and CPU time.

For the last experiment, we evaluated and compared the run-time distributions (also know as time-to-target
plots) of the GRASP heuristic and the MH-MBSP matheuristic for some instances. Time-to-target plots display
on the ordinate axis the probability that an algorithm will find a solution at least as good as a given target
value in a given running time, shown on the abscissa axis.

The heuristics were performed 200 times in each instance, with different seeds for the pseudo-random number
generator. Then, the empirical probability distributions of each heuristic time spent to find a target solution
value are plotted. The methodology described in [1] was adopted to trace each heuristic’s empirical distribution.
The run times (𝑡𝑖) are sorted in ascending order, and a probability 𝑝𝑖 = (𝑖 − 1

2 )/200 is associated with each
𝑡𝑖. Then, the 𝑧𝑖 = (𝑡𝑖, 𝑝𝑖) points for 𝑖 = 1, . . . , 200 are plotted. The best algorithm is the one that presents the
corresponding leftmost plots.

We chose two instances from different sizes to analyze the performance of the methods (air05 and ns1688347 ).
Table 8 shows the instance’s name, size, and target value. Both heuristics reached all chosen target values in
the previous experiments since our interest was the convergence analysis.

Figure 1 shows the cumulative probability for the MH-MBSP for the instance air05, while Figure 2 shows the
cumulative probability for both heuristics. In Figure 1, we can see how MH-MBSP reaches the target value very
fast, with a high probability of finding the target in a time close to 0.16 s. Also, compared with the GRASP
heuristic, the figure shows that GRASP needs much more time to reach the target value. In addition, for a
probability of finding the target value greater than 50%, the GRASP heuristic needs at least 50 s.

Figures 3 and 4 show the cumulative probability for the ns1688347 instance. Again, the MH-MBSP quickly
reaches (less than one second) the target value for all iterations. While Figure 4 shows that GRASP presents a
probability of 70% of reaching the target value. According to the obtained results, the minimum time to find
the target solution for this instance by the GRASP heuristic was 3.3 s. Moreover, it was necessary to use a time
close to 8.8 s to reach the target value with a probability greater than 50%.
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Figure 1. Cumulative probability of MH-MBSP for air05 instance.

Figure 2. Cumulative probability of MH-MBSP and GRASP for air05 instance.

Figure 3. Cumulative probability of MH-MBSP for ns1688347 instance.
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Figure 4. Cumulative probability of MH-MBSP and GRASP for ns1688347 instance.

5. Conclusions

In this work, we developed methods to obtain heuristic solutions for the MBSP problem. We also provided
an alternative formulation for the problem based on the basic definition of a balanced signed graph, whose size
grows polynomially as a function of the input size.

Our main contribution in this work is the development of a matheuristic for the MBSP problem. Using
different strategies as a multi-start scheme and a fast local search combined with an exact optimization phase
allowed our method to obtain quickly good quality solutions for the tested sets of instances.

The results show that the proposed matheuristic is an appropriate choice to find good quality solutions for the
MBSP problem. Furthermore, for large instances (with more than 200 vertices), the matheuristic MH MBSP
achieved in 30 s similar or better results than those obtained by solving exactly the problem using the proposed
formulation in one hour of processing.

Our current research focus on the investigation of the structure of the polynomial size formulation in order
to develop robust and efficient exact methods for the MBSP. Another direction for future research involves
extending the solution method to similar balanced subgraph problems, such as KMBSP, where the goal is to
find 𝑘-balanced components in the graph.
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de Rio de Janeiro and Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico. The authors would also like to
thank the anonymous reviewer, who helped improve the manuscript with constructive comments.

References

[1] R.M. Aiex, M.G.C. Resende and C.C. Ribeiro, Ttt plots: a perl program to create time-to-target plots. Optim. Lett. 1 (2007)
355–366.

[2] F. Barahona and A.R. Mahjoub, Facets of the balanced (acyclic) induced subgraph polytope. Math. Program. 45 (1989)
21–33.
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