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A BEAM SEARCH FOR THE EQUALITY GENERALIZED SYMMETRIC
TRAVELING SALESMAN PROBLEM

Ibtissem Ben Nejma1 and Rym M’Hallah2,*

Abstract. This paper studies the equality generalized symmetric traveling salesman problem
(EGSTSP). A salesman has to visit a predefined set of countries. S/he must determine exactly one
city (of a subset of cities) to visit in each country and the sequence of the countries such that s/he
minimizes the overall travel cost. From an academic perspective, EGSTSP is very important. It is NP-
hard. Its relaxed version TSP is itself NP-hard, and no exact technique solves large difficult instances.
From a logistic perspective, EGSTSP has a broad range of applications that vary from sea, air, and
train shipping to emergency relief to elections and polling to airlines’ scheduling to urban transporta-
tion. During the COVID-19 pandemic, the roll-out of vaccines further emphasizes the importance of
this problem. Pharmaceutical firms are challenged not only by a viable production schedule but also
by a flawless distribution plan especially that some of these vaccines must be stored at extremely low
temperatures. This paper proposes an approximate tree-based search technique for EGSTSP. It uses
a beam search with low and high level hybridization. The low-level hybridization applies a swap based
local search to each partial solution of a node of a tree whereas the high-level hybridization applies
2-Opt, 3-Opt or Lin-Kernighan to the incumbent. Empirical results provide computational evidence
that the proposed approach solves large instances with 89 countries and 442 cities in few seconds while
matching the best known cost of 8 out of 36 instances and being less than 1.78% away from the best
known solution for 27 instances.
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1. Introduction

Logistics in general and transportation in particular are the cornerstones of modern life. Their importance
emanates from their multi-fold repercussions on the cost of goods, profit margins of transportation companies,
clients’ service quality, drivers’ well being, and air pollution.. In fact, they involve several parties: end clients,
manufacturers, distributors, drivers, stock holders, etc. In addition, they require the scheduling of several inter-
related tasks that are dynamic in nature and constrained in time and space. The economic and temporal
constraints augment their complexity. Solving them requires the migration of tools from diverse disciplines
including information technology, optimization, and vehicle routing.
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Among the most widely studied transportation problems is the traveling salesman problem (TSP). A traveler
has to visit a finite number of countries starting from one country and returning back to it, and visiting every
country exactly once. The objective is to find a minimal cost route, where the cost can be total duration, travel
distance, etc. TSP’s importance emanates from its occurrence as a subproblem of complex real life problems in
the transport of passengers/goods and in scheduling. For these problems, TSP identifies a minimal-cost itinerary
for each salesman. For example, TSP is a special case of the equality generalized symmetric traveling salesman
problem (EGSTSP), where the salesman chooses exactly one of many cities of a country to visit; i.e., a TSP
with a covering constraint.

Formally, consider a set of nodes that are divided into clusters. EGSTSP searches for the shortest route that
visits exactly one node from every cluster starting and ending at the same cluster. EGSTSP is more difficult
than TSP because of the combinatorial aspect added by the sizes of the clusters. EGSTSP occurs in several
real-life applications such as maritime ship routing, distribution of medical supplies, urban waste management,
telecommunication networks, logistics, rapid post dispatching, VLSI, circuit designs, and in laser cutting to
determine the trajectory of a laster cutter [18, 21]. During the COVID-19 pandemic, EGSTSP has drawn a
lot of attention. With reduced air-traffic and disrupted logistic chains, the procurement and dispatching of
goods to confined customers and isolated cities has become a true challenge. In addition, the availability of
a vaccine raises the issue of its fair distribution and of health care equity. Some of these vaccines impose a
cold chain that can’t be broken. In such cases, optimizing the distribution plan is of prime importance. This
optimization is equivalent to solving a large scale EGSTSP. Evidently, its exact solution may be challenging.
However, the continuous advancement of the computing technologies provides near-optimal solutions to such
difficult problems. They are allowing approximate methods to undertake a more extensive search; thus obtaining
nearer-global optima in shorter times.

EGSTSP has been solved by exact approaches (such as dynamic programming, branch and bound, and
branch and cut), and by approximate ones such as local improvement heuristics (𝑘-opt, swap, insertion, etc.),
and meta-heuristics (tabu search, ant colony, genetic algorithms, etc.). This paper proposes a new approximate
hybrid approach for the EGSTSP. Hybrid heuristics have identified the best known solutions to several complex
combinatorial optimization problems. They are powerful search methods because they tackle two competing
goals: exploration and exploitation. Exploration is a diversification of the search. It investigates the solution
space in order to determine the part that has a higher chance of containing the global optimum. Exploitation
refines (or intensifies) the search on the part of the space that has a high potential of containing the global
optimum.

The proposed hybrid heuristic is a beam search (BS) (i.e., a truncated branch and bound) that is augmented
with improvement techniques. It ensures exploration via a standard width-first BS and exploitation via local
search heuristics. BS strives for global optimization while local search heuristics strive for local optimization in
the global optimum’s neighborhood. That is, BS can be assimilated to evolution while local search to learning.
Generally, synchronization of evolution and learning yields efficient hybrid heuristics. Specifically, the proposed
hybrid BS embeds

– a low-level hybridization, which addresses the functional composition of BS by subjecting the partial solution
at each node to a local search; and

– a high level hybridization that maintains BS self containing by subjecting the incumbent of BS to a 𝑘-opt
type of search.

To the best of the authors’ knowledge, this is the first application of BS to EGSTSP. In addition, the
hybridization explores the success of local search to assess the nodes of the tree and to estimate their potential.
It subsequently chooses the nodes with the best potential to branch on and prunes the non-promising ones; thus,
it explores the search space’s parts that contain near-global optima while it discards the others. It then applies a
2-opt, a 3-opt or the notorious improved Lin-Kernighan (LK) heuristic [9] to its incumbent. The computational
investigation provides computational evidence of the good performance of the hybridized BS within a reduced
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runtime. Its deviation from the best known solution is less than 0.0578% for half of the instances and less than
1.78% for three quarters of them.

Section 2 defines the problem. Section 3 reviews the literature on EGSTSP. Section 4 details the proposed
approaches. It presents the algorithm of a standard BS, its adaptation to EGSTSP, the low-level hybridized BS,
and the high-level hybridized BS when applying each of the three local improvement methods: 2-Opt, 3-Opt
and LK. Section 5 presents the computational results, which assess the efficiency of the methods in terms of
solution quality and runtime and highlights the utility of the hybridizations. Finally, Section 6 summarizes the
findings and gives potential research extensions.

2. Problem definition

EGSTSP is an NP-hard combinatorial optimization problem. It consists of finding the optimal path of a
salesman who has to travel through a set of countries while visiting exactly one city from each country and
visiting every country once. The optimal path minimizes the total traveled cost. Hence, the salesman must
determine for each country the city s/he will visit and the order of visit of the countries. EGSTSP is more
complex than TSP. For TSP, each country consists of a single town while EGSTSP has the additional complexity
of choosing a city from each country. Because it extends TSP, which is NP-hard, EGSTSP is also NP-hard.

Herein, we define EGSTSP using the notation of [6,7] and present their integer linear program (ILP). Formally,
consider a complete non-oriented graph 𝐺 = (𝑁, 𝐸) where 𝑁 = {1, . . . , 𝑛} is a set of nodes that are divided
into 𝑚 mutually exclusive clusters 𝐶ℎ, ℎ = 1, . . . ,𝑚, and 𝑚 ≥ 3. 𝐸 = {[𝑖, 𝑗] : 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗} denotes the
set of edges 𝑒 connecting pairs (𝑖, 𝑗) of distinct nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗. The cost of traveling through
edge 𝑒 ∈ 𝐸 is 𝑑𝑒. This cost may be assimilated to a linear function of the Euclidean distance between 𝑖 and 𝑗.
The objective of EGSTSP is to determine a minimal cost cycle 𝑇 ⊆ 𝐸 such that 𝑇 includes exactly one city
from each cluster, and each cluster is visited once.

To define the ILP model of EGSTSP, we introduce the following notation. For a subset 𝑆 ⊆ 𝑁, 𝐸(𝑆) :=
{[𝑖, 𝑗] ∈ 𝐸 : 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑆} denotes the set of edges with both endnodes in 𝑆 and 𝛿(𝑆) := {[𝑖, 𝑗] ∈ 𝐸 : 𝑖 ∈ 𝑆, 𝑗 /∈ 𝑆}
the set of edges with exactly one end node in 𝑆. For simplicity, we denote 𝛿({𝑣}) by 𝛿(𝑣), for 𝑣 ∈ 𝑁 .

ILP uses two types of binary variables: 𝑥𝑒 = 1 if the salesman travels through edge 𝑒 ∈ 𝐸 and 0 otherwise,
and 𝑦𝑣 = 1 if the salesman visits node 𝑣 ∈ 𝑁 and 0 otherwise. Using the aforementioned notation and these
two sets of binary variables, EGSTSP can be formulated as follows.

min 𝑧 =
∑︁
𝑒∈𝐸

𝑑𝑒𝑥𝑒 (2.1)

s.t.
∑︁

𝑒∈𝛿(𝑣)

𝑥𝑒 ≤ 2𝑦𝑣 𝑣 ∈ 𝑁 (2.2)

∑︁
𝑣∈𝐶𝑘

𝑦𝑣 = 1 𝑘 = 1, . . . ,𝑚 (2.3)

∑︁
𝑒∈𝛿(𝑆)

𝑥𝑒 ≥ 2(𝑦𝑖 + 𝑦𝑗 − 1) 𝑆 ⊂ 𝑁, 2 ≤ |𝑆| ≤ 𝑛− 2, 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑁 ∖ 𝑆 (2.4)

𝑥𝑒 ∈ {0, 1} 𝑒 ∈ 𝐸 (2.5)
𝑦𝑣 ∈ {0, 1}. 𝑣 ∈ 𝑁 (2.6)

The objective function, given by equation (2.1), minimises the total travel cost. Equation (2.2) preserves the
flow through every node. A node is visited if it has both a predecessor and a successor node; therefore the
righthand side is 2; otherwise, the righthand side must be zero. Equation (2.3) ensures that the tour includes
exactly one city from each cluster. Equation (2.4) guarantees the connectivity of the solution: Each cut separating
two visited nodes 𝑖 and 𝑗 must be crossed at least twice. Finally, equations (2.5) and (2.6) determine the nature
of the decision variables.
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Because EGSTSP is NP-hard, solving large instances of EGSTSP using ILP is difficult. Herein, we are
interested in efficiently solving large instances of EGSTSP using heuristic methods, and in comparing the
heuristics’ solutions to the ILP results that are readily available in the literature (and given by 𝑧lit in the
computational section and in the Appendix).

3. Literature review

Small instances of the equality generalized TSP (EGTSP) were solved exactly using dynamic programming
[26], branch and bound [14], and branch and cut [6]. Large instances have been tackled approximately; for
example, Noon and Bean [20] applied the TSP’s closest neighborhood heuristic. Lien et al. [16] assimilated
EGTSP to a TSP whose number of nodes is three times as large as the number of clusters. Dimitrijevic and Saric
[5] developed an alternative transformation that had fewer nodes; i.e., using twice as many nodes as the number
of clusters of the original EGTSP. Ben-Arieh et al. [2] opted for a transformation that had as many nodes as the
number of clusters of EGTSP using the ‘exact’ Noon–Bean, and two modifications of the non-exact Fischetti–
Salazar–Toth transformation. Helsgaun [9] transformed EGSTSP into a classic TSP and applied LK to the
transformed TSP. Karapetyan and Gutin [11] proposed an LK heuristic for EGSTSP. Smith and Imeson [25]
applied an iterative remove and insert heuristic for EGSTSP. They opted for three insertion mechanisms: the
furthest node, the cheapest, and random insertion. Karapetyan and Gutin [12] also designed a large neighborhood
search for EGSTSP. Renaud et al. [23] proposed an Initialization, Insertion and Improvement heuristic that
[22] further generalized. Khachai and Neznakhina [13] developed a dynamic programming based heuristic for
EGSTSP.

Another surge of the EGSTSP literature came from hybrid approaches. Ardalan et al. [1] hybridized the
Imperialist Competitive Algorithm with a local search. Lawrence and Daskin [15] hybridized a random key
genetic algorithm with a local search. Their algorithm is quite fast. It identifies its best solution within the
first two or three iterations. Its good performance is due to the utility of the local search in identifying the
best solution. However, their algorithm is outperformed by the mimetic algorithm of [8], who combined the
advantages of genetic algorithms and local search. Chira et al. [4] designed a “sensible” ant colony system that
makes the ants sensitive to the pheromone level in their trail; thus, explore the most promising regions of the
search space. Yang et al. [28] augmented ant colony optimization to EGSTSP with a mutation mechanism
and a local search. They showed the importance of the local search, in particular, for instances with fewer
than 200 nodes. Bontoux et al. [3] proposed a mimetic algorithm whose crossover operator is based on a large
neighborhood search.

Different variants of EGSTSP have appeared recently. Sundar and Rathinam [27] applied a branch and cut
and [30] extended Christofide’s TSP algorithm to the multi-depot EGSTSP where there are several travelers;
each departing from a different depot (node). Mestria [19] considered the clustered TSP, where all nodes of a
cluster must be visited in a contiguous manner. The author hybridized a variable neighborhood random descent
with local search (for intensification) and with a greedy randomized adaptive search (for diversification). This
latter consists of a constructive heuristic and a perturbation method. The author applied several variable
neighborhood structures, in a random order. Jiang et al. [10] proposed a hybrid genetic ant colony algorithm
for the multiple TSP, where each salesman departs from a specific depot and returns to it. Yuan et al. [29]
studied the generalized TSP with time windows, where arrival to a city must occur within a time window. They
proposed two integer linear programs and valid inequalities that are separated dynamically within a branch-
and-cut algorithm. They initiated their branch and bound from a feasible solution built via a simple heuristic.
They solved instances with up to 30 clusters within a one-hour runtime. Salman et al. [24] imposed precedence
constraints on EGSTSP, developed a new branching rule, and adapted some existing bounds to the problem.

This literature review suggests that EGSTSP was never tackled via BS. It further suggests that hybridization
is a key factor in the success of most approaches to TSP related problems. To explore these findings, this paper
proposes a hybrid BS that employs local search at each node and applies a 𝑘-opt type of search to the incumbent.
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Figure 1. A standard BS.

4. Proposed approaches

We efficiently solve EGSTSP using hybridized BS-based algorithms. BS is a truncated tree search. It avoids
exhaustive enumeration by branching on a subset of elite nodes, believed to lead to the optimum. They usually
have minimal fitness values, which are either the cost of their partial solutions or their upper bounds. At each
iteration, 𝜔 nodes are selected for branching, where 𝜔 is the beam width. The other nodes are permanently
discarded, and no backtracking is performed. We enhance the performance of BS by hybridizing it at two levels.
The low-level hybridization adds a local search phase at each node of the BS tree. The high-level hybridization
applies 2-opt, 3-opt or LK heuristics to the best solution that BS obtains. Section 4.1 describes a standard BS.
Section 4.2 explains our adaptation of BS to EGSTSP. Sections 4.3 and 4.4 present the low- and high-level
hybridization.

4.1. Standard beam search

The pseudo code of a standard BS is given in Figure 1. It consists of an initialization step, an iterative step
and a stopping criterion. The initialization step declares the set 𝒩 of current nodes of the tree to the root node
𝜇0 and the set ℳ of offspring nodes to the empty set. When an initial feasible solution x is available, this step
further sets the incumbent x* and its value 𝑧* = 𝑧(x*) to, respectively, this initial solution x and its objective
function value. When an initial feasible solution is not available, the upper bound 𝑧* is set to ∞.

The iterative step chooses a node from 𝒩 , and sets it as the current node. It branches out of the current
node, and adds all new nodes to ℳ except for leaves. Leaves constitute feasible solutions; thus, are candidate
solutions. A leaf becomes the incumbent whenever its cost is less than 𝑧*. The iterative step appends the 𝜔
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smallest-cost nodes of ℳ to 𝒩 and re-initializes ℳ to the empty set. This process is reiterated until no further
branching is possible; that is, till 𝒩 = ∅. When applying a width-first BS, the nodes of 𝒩 belong to the same
level of the tree.

4.2. Proposed beam search

This section presents our proposed BS-based method BS0 for EGSTSP. BS0 identifies a least cost ordering of
the clusters. It assimilates the nodes of the tree to partial solutions (i.e., ordered subsets of 𝐶), and branching
out of a node to augmenting it with an additional cluster. Its tree starts at the root node (i.e., level ℓ = 0) with
an empty tour, and has at most 𝑚 levels. A partial solution 𝑠ℓ corresponding to a node at level ℓ, ℓ = 1, . . . ,𝑚,
is a sequence of cities 𝑖1, 𝑖2, · · · , 𝑖ℓ all belonging to 𝑁 and to different clusters. As all tree-search techniques,
BS0 has three major steps: branching, assessment, and selection.

The branching of a node of the tree corresponds to appending a cluster to the partial solution of that node.
That is, out of a node of level ℓ emanate 𝑚−ℓ branches; each leading to a different cluster. A node inherits the
path of its parent, and appends a cluster to the end of its parent’s path. Specifically, branching out of the node
corresponding to 𝑠ℓ consists in appending a city from a non-visited cluster to 𝑠ℓ.

The assessment of the cost of a newly created node 𝑠ℓ is based on a straightforward/simple lower bound and
on an upper bound. The lower bound is the cost 𝑧𝑠ℓ of the partial solution 𝑠ℓ. It is the sum of the travel costs
between the successive nodes of 𝑠ℓ:

𝑧𝑠ℓ = 𝑑𝑖1,𝑖2 + 𝑑𝑖2,𝑖3 + . . . + 𝑑𝑖ℓ−2,𝑖ℓ−1 + 𝑑𝑖ℓ−1,𝑖ℓ .

It is the sum of its parent node’s cost 𝑧𝑠ℓ−1 = 𝑑𝑖1,𝑖2 + 𝑑𝑖2,𝑖3 + . . . + 𝑑𝑖ℓ−2,𝑖ℓ−1 and of the travel cost 𝑑𝑖ℓ−1,𝑖ℓ from
its parent node to the appended cluster. The upper bound is a total-cost of a complete solution constructed by
iteratively appending the closest city of a ‘not yet assigned’ cluster to the partial solution 𝑠ℓ.

At a given level ℓ of the tree, the selection chooses the 𝜔 best nodes among all generated child nodes for
further branching at the next level ℓ+1 of the tree. These iterative branching, evaluation and selection processes
are repeated until ℓ = 𝑚; that is, until all clusters are visited. Herein, BS0 is started with a feasible solution
obtained via a greedy heuristic that chooses arbitrarily the first city 𝑖1 and iteratively appends the closest city
from a non-visited cluster.

In summary, BS0 is a constructive approach that starts at the root node with an empty tour and appends a
cluster at each level of the tree. It stops when the tour has 𝑚 clusters visited. It has an 𝑂(𝜔𝑚) worst case time
complexity. Thus, our transformation of EGSTSP into TSP is less complex than competing transformations. It
maintains 𝑚 < 𝑛 nodes whereas TSP considers 𝑛 nodes.

4.3. Enhanced beam search

The low-level hybridized BS, denoted hereafter as BS1, subjects each partial solution 𝑠ℓ obtained at a node
of a level ℓ, ℓ = 3, . . . ,𝑚, of the tree to a local search. The local search is simple but efficient. It preserves the
order of the clusters in 𝑠ℓ but changes the selected node of one or more clusters. It chooses the ‘best’ city among
all nodes of every cluster of the partial solution 𝑠ℓ. At a level ℓ ∈ {3, . . . ,𝑚}, BS generates 𝑚− ℓ nodes. Let 𝑠ℓ

be one of these nodes and let 𝑠ℓ = ([1], . . . , [ℓ]), where [𝑖] denotes the 𝑖th cluster of the tour. The local search
iterates for ℎ = [2], . . . , [ℓ− 1]. It fixes the partial paths [1], . . . , [ℎ− 1] and [ℎ + 1], . . . , [ℓ], and iterates through
all the cities 𝑣 of cluster 𝐶ℎ. It retains the city 𝑣* ∈ 𝐶ℎ that minimizes the distance from [ℎ− 1] to 𝑣 to [ℎ + 1];
i.e.,

𝑑[ℎ−1]𝑣* + 𝑑𝑣*[ℎ+1] = min
𝑣∈𝐶ℎ

{𝑑[ℎ−1]𝑣 + 𝑑𝑣[ℎ+1]}.

When applied to a node 𝑠ℓ, the local search has 𝑂(ℓ𝑐) complexity (𝑐 = 𝑐), where 𝑐 = max
ℎ=1,...,𝑚

{|𝐶ℎ|} is the

maximum number of cities among all clusters. Because it is applied to all
𝑚∑︁

ℓ=3

ℓ(𝑚 − ℓ) nodes of the tree, the
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local search increases the complexity of BS1 to at worst 𝑂(𝜔𝑚2𝑐). Yet, it allows BS1 to attenuate the myopic
nature of BS0; i.e., BS0 may miss the global optimum when it selects the 𝜔 best nodes of a level and permanently
prunes the others.

4.4. High-level hybridized beam search

The high level hybridized BS, denoted BS·, · = 2, 3, 4, applies a 2-Opt, a 3-Opt, or LK heuristic to the best
solution obtained by BS1. Because the hybridization is high-level, the worst time complexity of BS·, · = 2, 3, 4
is the sum of the complexity of BS1 and of the adopted hybridization approach.

The 2-Opt has an 𝑂(𝑚2) complexity where 𝑚 is the number of clusters of the tour. It chooses two clusters
of the tour randomly and reverses the flow between them. It is repeated as long as the solution is improved.
For instance, consider a tour [1], [2], . . . , [𝑖 − 1], [𝑖], [𝑖 + 1], . . . , [𝑗 − 1], [𝑗], [𝑗 + 1], . . . , [𝑚], [1], where [𝑖] denotes
the [𝑖]th cluster of the tour. When 2-Opt chooses randomly clusters [𝑖] and [𝑗], it generates the new solution
[1], [2], . . . , [𝑖− 1], [𝑗], [𝑗 − 1], . . . , [𝑖 + 1], [𝑖], [𝑗 + 1], . . . , [𝑚], [1].

The 3-Opt has an 𝑂(𝑚3) complexity where 𝑚 is the number of clusters of the tour. For a tour [1], [2], . . . , [𝑖−
1], [𝑖], [𝑖 + 1], . . . , [𝑗 − 1], [𝑗], [𝑗 + 1], . . . , [𝜅− 1], [𝜅], [𝜅 + 1], . . . , [𝑚], [1], 3-Opt chooses randomly three clusters [𝑖],
[𝑗] and [𝜅] of the tour, and generates the new solution [1], [2], . . . , [𝑖], [𝜅], [𝜅− 1], . . . , [𝑗 + 1], [𝑖 + 1], . . . , [𝑗], [𝜅 +
1], . . . , [𝑚], [1]. It repeats this process as long as the solution is improved.

LK yields near-global optima when started from a large number of initial solutions. An LK perturbation of a
solution causes, on average, increases of the order of 10 to 15% of its cost. It is one of the best heuristics for the
symmetric TSP because of its adaptive nature. Indeed, it swaps a number of partial sequences of the tour. This
number is not predetermined; yet, it offers a good tradeoff between solution quality and runtime. While 2-opt
and 3-opt break 2 and 3 edges of the tour, LK chooses the number of edges to be broken such that this number
yields a minimal cost tour. In this sense, LK may be perceived as a variable-𝑘 exchange of 𝑘 edges. It chooses 𝑘
links to exchange and tests the utility of exchanging 𝑘 + 1 links. (Initially 𝑘 = 2.) Any exchange must generate
a feasible neighbor. Its utility is assessed via the difference of the costs of the current solution and its neighbor.
It is only adopted when it reduces the current solution’s cost. LK marks the exchanged edges yielding the best
net cost reduction as permanent and prohibits their elimination for a number of iterations by inserting them
into a tabu list. When the exploration of exchanging 𝑘 + 1 links reduces the incumbent’s cost, LK updates the
incumbent, and reduces 𝑘; otherwise, it increases 𝑘. LK stops when the incumbent can no longer be improved.
Even though the complexity of LK is not well determined in the literature, our implementation has a worst
time complexity of 𝑂(𝑚5): It binds 𝑘 to 5.

5. Computational results

The computational investigation assesses the performance of hybridization in general, and of its type, in
particular, on the solution quality and on the runtime of BS. For this purpose, it uses five versions of BS:

BS0 A standard width-first beam search of beam width 𝜔,
BS1 BS0 augmented with a local search at each node of the tree,
BS2 BS1 with its best solution subject to a 2-opt,
BS3 BS1 with its best solution subject to a 3-opt, and
BS4 BS1 with its best solution subject to the LK heuristic with 𝑘 up to 5.

It applies these five versions (coded in C and run on an Intel Core i3-4030U, 1.90 GHz, 4GB RAM) to 36
benchmark instances of EGSTSP, all available at http://www.cs.rhul.ac.uk/home/zvero/GTSPLIB/. Let 𝑧lit

be the best known solution, and 𝑧BS·
𝜔 , · = 0, 1, 2, 3, 4 the corresponding BS· solution value, for a beam width

𝜔 = 1, 2, 3, 4, 5, 10, obtained within runtime 𝑡·𝜔 (expressed in seconds). For this solution, the percent optimality
gap ∆·𝜔 = 100% 𝑧·𝜔−𝑧lit

𝑧lit . Herein, we analyze the results, reported in A, focusing on the utility of the low- and
high-level hybridization of BS. We then conclude with some useful remarks.

http://www.cs.rhul.ac.uk/home/zvero/GTSPLIB/
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Figure 2. Mean runtime of BS0, . . . , BS4 as a function of beam width 𝜔.

5.1. Utility of the low level hybridization

First, we compare the runtime and solution quality of BS0 to that of BS1; that is, of BS without and with
local search at each node. (cf. Tabs. A.1 and A.2 for the detailed results.) We undertake this comparison to
highlight the importance of the low-level hybridization undertaken at each node of each level ℓ of the search
tree.

Figure 2, which displays the mean runtime of BS0, . . . , BS4, suggests that the mean runtime of BS increases
linearly as a function of the beam width 𝜔. Its average runtime (in seconds) can be estimated as a linear
function of 𝜔: 𝑡0 = 0.5454𝜔− 0.0459 and 𝑡1 = 0.5473𝜔 + 0.0080, with 99.03% and 99.98% respective coefficients
of determination. This behavior is expected as a larger beam width requires more evaluations of partial solutions,
of bounds, of sorting, stocking, and retrieving.

Figure 3, which displays box plots of the observed run times, further clarifies this tendency. Yet, it stipulates
that the local search does not increase the run time. A statistical paired t-test infers that there is no difference
between the mean run times of BS0 and BS1 at any level of significance while a paired statistical test infers that
the mean ∆BS1 is less than the mean ∆BS0 at any level of significance and that the mean difference ∆BS0−∆BS1

has a 4.84% point estimate and a 4.19% lower bound of a 95% confidence interval estimate. This difference is
due to the local search, which enhances the search of BS, by investigating the neighborhood of the partial
solution at each node. In fact, ∆BS0 > ∆BS1 for all tested instances and for all beam widths. In addition, the
average percent deviation 100% 𝑧1

𝜔−𝑧0
𝜔

𝑧0
𝜔

is of the order of 26%; further highlighting the importance of the local
search undertaken by BS1 at every node. Because BS1 is superior to BS0 in terms of solution quality while being
equally good in terms of runtime, it can be inferred that BS1 is better than BS0.

Figure 4 displays the box plots and means of the percent deviation of the solutions of BS·, · = 0, . . . , 4, from
𝑧lit. Zooming on the box plots and means of BS0 and BS1, we detect a seemingly counter-intuitive behavior for
small 𝜔. Increasing 𝜔 from 1 to 4 does not decrease ∆BS0 and ∆BS1 . This is most likely because it makes BS
choose, at a level ℓ, partial solutions that –despite their good quality at level ℓ– do not lead to near-optima.
That is, the diversification brought up by the larger beam width focuses on areas of the search space that do
not contain the global optimum. The local search undertaken at each node does not mitigate this glitch. On the
other hand, increasing 𝜔 beyond 5 overcomes this issue. Setting 𝜔 = 10 allows BS to obtain solutions that are
closer to the global optimum. That is, it makes BS investigate areas of the search space that contain near-global
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Figure 3. Box plots of observed run times of BS0, . . . , BS4 as a function of beam width 𝜔.

Figure 4. Box plots of percent deviation of the solutions of BS0, . . . , BS4 as a function of
beam width 𝜔.

optima. This highlights the importance of the choice of the partial solutions at a level ℓ in order to direct the
search toward the most promising regions. In this sense, the local search provides a lookahead strategy that
helps BS judiciously choose its partial solutions.

5.2. Utility of the high level hybridization

Second, we compare the performance of BS2, BS3, and BS4. This comparison highlights the important impact
of the high level hybridization, which requires a negligible additional runtime. (cf. Tabs. A.3–A.5 for the detailed
results.)
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Figure 5. Mean percent deviations of the solutions of BS0, . . . , BS4 from 𝑧lit as a function of
beam width 𝜔.

As Figure 4 reveals, the improvements of the solution quality due the high-level hybridization are much larger
than their counterparts due to the low-level hybridization, regardless of the beam width. These improvements
occur at no additional runtime cost except for the last three instances when run with BS4 and a beam width
𝜔 = 10. These instances are marked as outliers in Figure 3, which displays the box plots and means of the
observed run times of BS0–BS4. For all beam widths, the mean run time of any of the approaches is larger
than its median; signaling the existence of outlier cases, corresponding to the last three instances. Despite the
presence of these outliers, which drive the run time of BS4 up for 𝜔 = 10, paired t-tests infer that there is no
statistical evidence to claim that the mean run time of any pair of hybridized versions of BS are different at a
5% significance level.

The lack of exploitation and of exploration of the search space makes BS0 obtain better results for larger
beam widthes. This behavior persists for BS1, which benefits from a local search at each of its nodes, and for
BS2, which benefits from an intensified 2-opt search around its best solution. However, for BS3 and BS4, the
3-opt and the LK intensification makes BS obtain its best solutions using a beam width 𝜔 = 3, with a mean
runtime less than 2 seconds. This is confirmed by Figures 2 and 5, which display respectively the mean percent
deviation from 𝑧lit and mean runtime as a function of beam width for BS0 to BS4.

5.3. Remarks

LK is known to obtain good results when initialized from several random initial solutions. The proposed
approach BS4 provides evidence that it is possible to generate initial solutions for LK in a more systematic
manner. Furthermore, the results infer that BS3 with a beam width 𝜔 = 3 yields, on average, better results
than the other considered beam searches. However, it remains true that the incumbent of BS1 can be subjected
to three types of searches 2-opt, 3-opt, and LK, at a negligible additional runtime. In fact, there is no statistical
difference between the runtime of BS1 and BS·, · = 2, 3, 4; implying that the bulk of their runtime is caused
by the BS component. Finally, even though 𝜔 = 3 yields in general the best performance, running BS1 with
different beam widths constitutes a good diversification strategy. Using these two additional aforementioned
intensification and diversification mechanisms reduces the percent deviation gaps of the BS solution to those
observed in the literature; matching the best solution in 22.22% of the instances, and averaging a 0.01344%
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Figure 6. Percent deviation of BS solutions from best known ones.

Figure 7. Box plot of percent deviation of BS solutions from best known ones.

deviation. The mean should be interpreted with care as it is affected by two outlier values, recorded for instances
40kroA200 and 80rd400, as shown in Figure 6. These outliers are clearly depicted in Figure 7, which displays
the resulting box plot of percent deviations for this BS. The corresponding five-point summary of the percent
deviation is (Minimum = 0, Q1 = 0.00063, Q2 = 0.00578, Q3 = 0.01779, Maximum = 0.07027), where Q1, Q2 and
Q3 are the first, second and third quartiles. Ignoring the two outlier instances brings the largest deviation over
the other 34 instances to 0.03925% and its average to 0.01020%.
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6. Conclusion

This paper addressed EGSTSP via a beam search that obtains good solutions for large beam widths. However,
to avoid the exponential increase of runtime associated with branch and bound, we opted for both a low- and
a high-level hybridization of the beam search. First, we performed a local search at each node of the tree. This
local search acts as a lookahead strategy. It allows the beam search to retain the partial solutions that could
lead to near-global optima in lieu of selecting the lowest cost partial solutions. This local search improved the
performance of the beam search without affecting its runtime. Second, we subjected the best solution of the beam
search to each of three local search operators: 2-Opt, 3-Opt and Lin-Kernighan. This high level hybridization
further improved the solution quality of the standard beam search by up to 70% without affecting its runtime.
Applying the three search operators to the incumbent offers BS more exploration and exploitation power.
The proposed hybridization can be applied to different variants of traveling related problems including vehicle
routing, dial-a-ride, and delivery with time windows. Other types of search techniques can also be considered
such as simulated annealing, variable neighborhood search, adaptive, and data-driven techniques.

Appendix A. Detailed computational results

The results of BS·, · = 0, . . . , 4 are reported in Tables A.1–A.5. The first column indicates the ‘.gts’ label
of the instance whereas the second column reports its best known solution 𝑧lit, available in the literature.
The next six triplets of columns report the BS· solution value 𝑧BS·

𝜔 , · = 0, . . . , 4, its percent optimality gap
∆·𝜔 = 100% 𝑧·𝜔−𝑧lit

𝑧lit , and its runtime 𝑡·𝜔 in seconds when the beam width 𝜔 = 1, 2, 3, 4, 5, 10.
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