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DESIGNING A BI-OBJECTIVE DECISION SUPPORT MODEL FOR THE
DISASTER MANAGEMENT

SINA NAYERI, EBRAHIM ASADI-GANGRAJ*, SAEED EMAMI AND JAVAD REZAEIAN

Abstract. This paper addresses the allocation and scheduling of the relief teams as one of the main
issues in the response phase of the disaster management. In this study, a bi-objective mixed-integer
programming (BOMIP) model is proposed to assign and schedule the relief teams in the disasters.
The first objective function aims to minimize the sum of weighted completion times of the incidents.
The second objective function also minimizes the sum of weighted tardiness of the relief operations.
In order to be more similar to the real world, time windows for the incidents and damaged routes
are considered in this research. Furthermore, the actual relief time of an incident by the relief team
is calculated according to the position of the corresponding relief team and the fatigue effect. Due to
NP-hardness of the considered problem, the proposed model cannot present the Pareto solution in a
reasonable time. Thus, NSGA-IT and PSO algorithms are applied to solve the problem. Furthermore,
the obtained results of the proposed algorithms are compared with respect to different performance
metrics in large-size test problems. Finally, the sensitivity analysis and the managerial suggestions are
provided to investigate the impact of some parameters on the Pareto frontier.
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1. INTRODUCTION

Disasters have always been a major threat to human societies such that disasters have led to many casualties
and economic losses during recent years. Regarding the unpredictability of these incidents (e.g. earthquake and
flood), Emergency Operation Centers (EOC) must always be prepared to respond to the disasters, efficiently.
Thus, designing a Decision Support Model (DSM) for planning the emergency resources is essential to reduce
the economic losses and mortality rate. Allocation of the emergency resources is a key issue in the EOC, which
includes preparing the relief supplies and rescue workers [51,52,61,63]. In the real world, many areas in the
disaster impact zones are dispersed geographically, and this makes the emergency action very difficult due to
time pressure and resource constraints. Hence, effective planning of the rescue units (involving allocation and
scheduling) is one of the most important issues in the emergency rescue operations [17]. Also, since the severity
level of any disaster may vary across the affected areas, the emergency resources are usually sent the relief
teams to the most severely affected areas [4,28]. Undoubtedly, the efficient planning of the relief teams is vital
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because it leads to reduce the casualties and economic losses during the emergency response phase. Regarding
the literature, this context has received little attention during the last years.

In disasters, allocation and scheduling of the relief teams can be likened to known problems in scheduling and
routing literature [67]. In association with the routing problem, it is so close to the multiple traveling salesman
problem (MTSP) [5], such that, it can be considered the relief teams and incidents as salesmen and cities,
respectively. In addition, total processing time and necessary time for the relief teams to travel between two
successive incidents are considered the total travel time. On the other hand, the relief operation is started from
the EOC, and the relief operation is done without preemption.

On the other side, if the incidents are considered as jobs, relief teams as machines, relief time as processing
time, and travel time as sequence-dependent setup times, we can resemble the disaster management problem
to the unrelated parallel machine scheduling problem with sequence-dependent setup times. Regarding the
literature and due to the similarity of the considered problem to scheduling and routing problems, allocation
and scheduling the relief teams in the disasters is an NP-hard problem [67].

Recently, the fatigue effect has been introduced by Nayeri et al. [34] in disaster management. According to
this phenomenon, the processing time of the incidents not to be fixed in the planning horizon. The rescuers lose
their physical power after successive activities and their performance decreased step-by-step, and the necessary
time to process the incidents can be increased due to the fatigue effect. This concept is also considered in this
paper.

In the real world, disaster relief must be done within a specified time after the incident; otherwise the damages
will be irreparable. We consider this issue as time window in the research problem. Because, the time window
is so important when people are buried alive, and they need to be rescued, quickly.

In this paper, a bi-objective mixed-integer programming (BOMIP) model is proposed for designing an efficient
DSM to allocate and schedule relief teams in the disasters. Due to the NP-hardness of the problem, the NSGA-
IT and MOPSO algorithms are applied to solve the problem. In addition to the physical power of the rescuers
(fatigue effect), the time window and the damaged routes are also considered in this research due to similarity
to the real world.

This paper is organized as follows. The literature review is presented in the next section. Then, the problem
definition and the mathematical model are provided in Section 3. The methodology of the research is described
in Section 4. In Section 5, computational experiments are presented. Finally, in Section 6, we conclude the paper
and suggest the future works.

2. LITERATURE REVIEW

Based on the literature, three phases are considered to handle the challenges in the disaster management,
including preparation phase, response phase, and recovery phase [1,2,41], such that each of which is involved
some tasks. The different phases of disaster management and some of the most important tasks are categorized
in Figure 1 [2,16,23,35, 38,46, 54, 58, 74].

There are many studies that are focused on the relief logistics. For instance, Camacho-Vallejo et al. [10]
proposed a bi-level optimization model to improve an existing model to distribute the relief supplies. Huang
et al. [27] considered some humanitarian objectives in the emergency response to the disasters. Also, some
researchers optimized the relief supply distribution considering uncertainty [6,25,30,60]. Also, some of them are
considered integration of the location problems, vehicle routing problems (VRP), and allocations of the relief
supply [11,13,26,33,36,39,43,44,53].

Regarding the literature, a few studies dealt with the assignment of the rescue teams in the disasters. Falasca
et al. [21] proposed a multi-objective model to assist in the assignment of volunteers to tasks. Rolland et al.
[45] proposed a DSM to allocate the incidents to the relief teams and schedules them. They applied a hybrid
heuristic algorithm based on neighborhood search and adaptive reasoning technique (ART) to solve the proposed
model. Wex et al. [64-67] studied the disaster management problem in the context of allocation and scheduling
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Fi1GURE 1. Different phases of disaster management and tasks.

approach. They examined the problem under certainty and uncertainty and solved the proposed models by a
heuristic method based on Monte-Carlo simulation.

Yuan et al. [70] studied the capabilities of the rescuers for different rescue tasks and proposed an assignment
model for emergency tasks based on these capabilities. Zhang et al. [72] formulated the resource allocation model
as a two-stage mixed-integer linear programming model (MILP). In the first stage, the total losses are minimized,
and in the second stage, the resource allocation for the rescue service is optimized by a heuristic algorithm.
Visheratin et al. [59] proposed an advanced hybrid genetic algorithm based on scheduling algorithm and replica
reduction concept to schedule some components of the early warning system (EWS). Zhang et al. [73] presented
a multi-stage model to allocate the relief teams in the response phase of a disaster, dynamically. They also
provided NSGA-IT and C-METRIC approaches to solve the problem and developed scheduling strategies for a
specific disaster situation. Cunha et al. [18] developed a biased random-key genetic algorithm for allocation and
scheduling of the relief teams in the natural disaster. They considered fuzzy processing times for the incidents
and showed the proposed algorithm could obtain high-quality solutions. Rauchecker and Schryen [42] developed
a branch-and-price algorithm to handle the scheduling of the relief teams in disaster response problems in a
reasonable time. Nayeri et al. [34] introduced the fatigue effect in the disaster management and proposed a
MIP model to design the DSM for emergency operation center (EOC). They developed a hybrid metaheuristic
algorithm to solve the proposed model and showed their algorithm obtained high-quality solutions.

Santoso et al. [47] developed a non-linear model for assignment and scheduling of relief teams in disaster
under uncertainty and solved the proposed model with the GRASP metaheuristics algorithm. Sathish Kumar
et al. [48] used queuing theory to study the resource scheduling problem in postdisaster management. Shavarani
et al. [50] proposed a non-linear model and developed three metaheuristic algorithms to solve the allocation of
medical staff to operating rooms in a disaster problem. Xu et al. [68] proposed a mixed-integer non-linear model
multi-stage construction of rescue teams in disaster management and used an accelerated bi-level decomposition
algorithm to solve it. Bodaghi et al. [9] proposed a MIP model to design a DSM for the ASRT problem under
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uncertainty considering different vehicle types. In order to convenience the readers, some important studies are
categorized in Table 1.
According to literature and Table 1, the main contributions of this research can be summarized as follows:

(1) The previous researches have been less focussed on multi-objective programming model for assignment and
scheduling of the relief teams. In this study, a BOMIP model is proposed to cover this research gap.

(2) As shown in Table 1, the time window has less addressed in previous research related to assignment and
scheduling the relief teams. Due to the importance of the time window in disaster management, this concept
is also provided in this research.

(3) The previous studies have been less focussed on the co-allocation of the relief teams. In the real world, the
relief operations may need more than one capability, or an incident may allocate to more than one relief
team. In this research, collaborative assignments of the relief teams are allowed, and an incident can be
allocated to more than one relief team.

(4) As shown in Table 1, the damaged routes have been less addressed in the literature. This study considered
this concept in the proposed model.

(5) Since time is a prominent issue in the disaster management and with respect to the complexity of the
research problem, two multi-objective metaheuristic approaches, namely NSGA-IT and MOPSO algorithm,
are provided to achieve the Pareto solutions in a reasonable time.

3. DEFINITION AND MODELING OF THE PROBLEM

It is assumed that there are m relief teams and n incidents. Each incident has a weighting factor corresponding
to casualties and damage, which is considered as destruction or severity level. Each incident needs a special
ability to relief it, and all the relief teams have different capabilities. Hence, any incident cannot be assigned
to each relief team, unless this team can do it. Relief operations must be started in a certain time interval,
such that we consider time windows for the incidents. We also consider two dummy incidents denoted by zero
and n + 1 as the starting location or depot and endpoint, respectively. The processing time and severity level
for these incidents equal to zero, but the travel time take into account for every relief team for travel from an
emergency operation center to a location of incidents. The travel time to dummy incident n + 1 is equal to zero
for all the relief teams.

In this study, parallel processing of an incident by the relief teams is also allowed. It means that each incident
is considered a processed incident when all the required relief teams have finished their operations. Furthermore,
when a relief team has finished processing an incident, it can be allocated to another incident. The schematic
of the research problem with five incidents and two relief teams (medical team and fire brigade team), and
two damaged routes is illustrated in Figure 2. For example, the medical team processes three incidents, and
the route between the second and third incidents is damaged. After processing all incidents, the medical team
comes back to the depot. Also, parallel processing of an incident is shown in Figure 2 (yellow section).

To calculate the actual processing time based on normal processing time and fatigue effect, we used a known
concept in scheduling problems, named learning effect. The learning effect will affect the processing time of
a job by the repetition of a particular operation execution. This effect is dependent on the skills, knowledge,
tools, and equipment. The concept of the learning effect in scheduling problems is introduced by Biskup [7] and
Cheng and Wang [14]. Moreover, some comprehensive surveys related to scheduling with learning effects were
provided by [8,15,29,62,69] in recent years. According to Biskup [7], the actual processing time of job ¢, when
scheduled in position r of machine k, is calculated by P, = Py - 7%, where Pj,. is the actual processing time,
P;i is the normal processing time, and a < 0 is the learning index. On the contrary, we consider the fatigue
effect through the above formula by considering a > 0.

3.1. Model assumptions

The following assumptions are made in this study:
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FIGURE 2. The schematic of the research problem.

— The number of relief teams is less than the number of incidents.

— Each relief team has different capabilities (one relief team can have more than one capability), and each
incident needs a specific ability to rescue.

— Processing times (relief times) are dependent on the incidents and relief teams.

— The travel time between the incidents is dependent on the relief teams.

— All the relief teams begin their relief operations from the depot and return to the depot after finishing the
relief operation.

— There is no precedence relationship between the incidents.

— No interruption is allowed for the relief operations.

— A weighted factor, named destruction factor or severity level, is assigned to each incident.

— Processing times are not fixed due to the fatigue effect.

— Time windows are considered for the incidents.

Figure 3 shows a conceptual outline for the proposed decision support model.

3.2. Mathematical model

In this section, the notations and the proposed BOMIP are presented. The necessary notations are given
below:

Indices and parameters

i Index of incidents (i = 0,1,...,n)

k Index of relief teams (kK =1,2,...,m)

r Index of positions (r =0,1,...,ng)

l Index of the capability of relief teams (I =1,...,d)
NP, Normal processing time of incident ¢ by relief team k

SL; Severity level (destruction factor) of incident ¢
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SNijk

tI’ij
j

L

DL;

a
Capp
Caty
[Ei L]
BigM

Travel time between incidents ¢ and j by relief team k& under normal condition;
(in case i = 0, travel from depot to incident j)

Repair time for damaged route between incidents i and j

Damage degree of the route between nodes ¢ and j;

Aij € [0 1], it is equal to zero when the route is not damaged

A coefficient that measures the effect of a damaged route on travel time
Due date for incident 4

Fatigue factor

1 if relief team k has ability [; 0 otherwise

1 if incident 7 requires ability [; 0 otherwise

Time window for incident 4

A large number

Decision variables

}/ik:r
PTy,
TT 5
Skir]

STk:r
CTir
C
Tardi;

(BT

kLk

1 if incident 7 is assigned to relief team k in position r; 0 otherwise
Actual processing time for an incident in position 7 on relief team k
Travel time between incidents ¢ and j by relief team &

The necessary time to travel to the incident in position r from incidents
in position r — 1 by relief team &

Start time of processing of the incident in position r by the relief team &
Completion time of incident ¢ on relief team k

Completion time of incident ¢

Tardiness in completion time of the incident ¢

] Time window for the incident on relief team k in position r

According to the above definitions, the following BOMILP model is proposed for the research problem:

Min Z SLZ . Cl

3
Min )~ " SL; - Tardi;
i k
n
ZYikrgl k=1,....msr=1,...,ng
i=1
YOk():l k:l,...,m
Yotrme+y =1 k=1,...,m
ZY;k(T+1)SZY;kT T:1727"'7nk_1;k:152,"'5m
i=1 i=1

PTir =Y NP1 Yy k=1,...mr=0,1,...,R
=0

SNZ‘jk )\ij =0

TTijx = Zv] Z#] ;k7T:1527"'5nk
’ {SNijk-(l—FL-)\ij)—FtI‘ij 0< /\LJ <1 {( )| }

3405

(3.1)

(3.2)
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Objective Functions
Minimize
e  Sum of weighted completion

times of the incidents
e  Sum of tardiness of the relief

operations.

Main Inputs
Severity level of the incidents Main Qutputs
Normal processing time of the e  Allocation and scheduling of
incidents the relief teams in the disasters
Traveling times e Reduced the total completion
Time of repairing the damaged times of incidents
routes e Reduced the tardiness of relief
Incidents due date operation
Capability of the relief teams
Required ability for processin .
the incidents : Constraints
Time windows of the incidents e  Allocation constraints
fatigue factor e  Scheduling constraints

e  Capability constraint
e Time-windows constraints
e Damaged routes constraint

Fi1GURE 3. Conceptual outline of the proposed decision support model.

Ll £ i k=1,2,...,m,
Skr > TTy;,, — BigM - (2 — Yirr 7Y;k(7l+1)) {( )l }
r=12,...,n;—1
(G, )i #5}k=1,2,...,m,

S < TTiji + Big - (2= Yiar — Yin(ro) )
r=12,....,n—1

I
—

n
Ser <BigM - [ > Yige | k=1,...,mir
=1

CTig > (SThr +PTr ) - Yigr

STy, = (STk(r—l) +PTk(r—1) +Sk(r—1)) . ZYE}W k=1,....m;r=1,...,np

> > Capyy - Yigr > Caty i=1,...,ml=1,....d
k

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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C;>CTy i=1,....mk=1,....m (3.15)
Tardi; > C; —DL; k=1,...,m;r=0,...,ng (3.16)
Eﬁ]:ZEi~}ri k=1,...,m;r=1,...,n (3.17)
L@:Z:Li-ym E=1,...,mr=1,...,n4 (3.18)
Bl <STR <Ly k=1,...mir=1,...,n (3.19)

ST0), PThr, Skr, Sijk, CTa, i, Tardis, By, L) > 0

N i=0,...,m;k=1,...,m;r=0,...,n5 (3.20)
Yir € {0,1}

Expression (3.1) shows the first objective function, which minimizes the weighted sum of completion times of
the incidents. The second objective function (3.2) minimizes the tardiness of the relief operations. Constraint
set (3.3) guarantees that only one incident must be assigned to each position. Constraint sets (3.4) and (3.5)
show that any relief team starts the relief operation from the depot (dummy incident 0), and each relief team
ends the relief operation at the dummy incident n + 1. Constraint set (3.6) indicates that the positions of
each relief team must be occupied in ascending order. The actual processing times of incidents are measured in
constraint set (3.7). Constraint set (3.8) measures the travel time between nodes ¢ and j for relief team k due
to damaged routes. Constraint sets (3.9)—(3.11) determine the required traveling time for relief team % incident
that is scheduled in position r. Constraint set (3.12) calculates the completion time of each incident on the
corresponding relief team. Constraint set (3.13) calculates the start time of the incident in positions r by relief
team k. Constraint set (3.14) indicates that relief team k is only assigned to incident ¢ if relief team k is capable
to serve it and allows assignments of the collaborative relief teams. Constraint set (3.15) shows the completion
time of incident 4. Constraint set (3.16) determines the tardiness of relief operation. Time window restrictions
are enforced by constraint sets (3.17)—(3.19). Finally, constraint set (3.20) defines the value range of variables.

Constraint sets (3.8), (3.12), and (3.13) are nonlinear. These expressions can be linearized through Property 1.

Property 3.1. Suppose C' = A x B is the multiplication of binary variable A and continuous variable B. The
following equations can be used to linearize the nonlinear terms, where BigM is a large positive number [24]:

C<B (3.21)
C < BigM-A (3.22)
C > B — BigM:(1 — A). (3.23)

In order to linearization of the constraint (3.12), we define Xf = STy, + PTy, and Lfr = Xf - Yigr. Thus,
according to the above property, we can linearize it as follows:

CTy > LY. (3.24)
LF < Xk (3.25)
LY > X} —BigM- (1 - Yig,). (3.27)
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Moreover, by defining STPy(,._1) = STyr—1) + PTy—1) + Sk(r—1) and TPTy, = STPy_y) - ZY“”” the

i=1
constraint set (3.13) is converted to the linear form as below:
STk, = TPTy, (3.28)
STPk(T,l) < TPTg, (3.29)
STPpi(—1) < BigM - > Vi, (3.30)
i=1
STP(,_1y > TPTy, — BigM (1 = Yk> (3.31)
i=1
Also, the constraint set (3.8) is nonlinear, this equation can be linearized as follows:
0 1 0 <1 (3.32)
Yo 0 OW(lf >\ij = O) .
Qij = Nij (3.33)
Qqj < BigM - \;; (3.34)
TT; 1 = SNijk : (1 - Q”) + [SNijk . (1 + L)‘ij) + tI‘ij] . Qij (335)

where @Q;; is an auxiliary binary variable that is equal to 1 if \;; gets a value between (0, 1).

4. SOLUTION FRAMEWORK

To solve the research problem, we have two main challenges. The first one is that the proposed model is a
bi-objective one, and the second challenge is the complexity of the research problem. To cope with the first
challenge, we have to employ one of the multiple-objective decision-making (MODM) methods to solve the
proposed bi-objective model. In this regard, we have applied the augmented e-constraint method is provided to
solve the small size test problems. The augmented e-constraint method is one of the efficient MODM approaches
that is widely used to solve multi-objective problems. On the other side, according to Wex et al. [67], allocation
and scheduling of the relief teams during disasters is an NP-hard problem. Hence, we should apply heuristic
or metaheuristic algorithms to solve the problem in a reasonable time. In this regard, we have employed two
metaheuristic algorithms known as NSGA-IT and MOPSO are applied to solve the small and large size test
problems. The main reasons for selecting these algorithms are as follows: (i) these algorithms showed good
performance to solve the problems that are similar to our work, (ii) these algorithms have simple concepts, easy
implementation, and quick convergence.

In recent years, the multi-objective parallel machines scheduling problems are studied by many researchers.
A large variety of metaheuristic algorithms such as NSGA-II and MOPSO are used to solve the problem, and
the results showed the superiority of these algorithms in a reasonable time (see [3,49,57,71]).

4.1. Augmented e-constraint method

e-constraint is one of the classic methods which is used to handle the multi-objective problems. In this method,
one objective is considered as the main objective function, and other objectives are considered as constraints,
and they are bounded by their lower or upper limits . By using this method, we can convert the multi-objective
problem into a single one as follows:
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min f;(z) reX
fa(z) <eo (4.1)

'f.n'(:v) <en.

Mavrotas [31] developed this method and proposed an improved version namely the augmented e-constraint
method (AUGMECON). In this method, lexicographic optimization is performed to construct the payoff table.
Afterward, other objective functions are moved to constraints and appropriate slack and surplus variables are
also added. By considering the payoff table, the range of right-hand-side (RHS) parameters are obtained, and
RHS of these constraints to be changed. These iterations give Pareto solutions. It is noteworthy that the smaller
changes in the RHS value in each iteration give more exact Pareto solutions. Augmented e-constraint formula is
presented as below, where s; represents the slack/surplus variables, and eps is usually between 10~3 and 10~6:

Min (fi(z) —eps x (s2 + 53+ ...5p)
s.t.

fo(z) + 82 = &9

fo(@) +8p =¢p
r€X,se€RT.

In order to prevent any scaling problems, it is better to replace s; with s;/r;, in which r; shows the range of
the ith objective function. The normalization of the above formula is as follow:

Min(f1(z) — eps X (s2/ra + s3/r3 + ... 8p/Tp). (4.3)

4.2. Non-dominated sorting genetic algorithm (NSGA-II)

The NSGA-II [19] is one of the useful and well-known multi-objective evolutionary algorithms for solving
NP-hard problems. It is one of the efficient algorithms to obtain the Pareto solutions. The earlier version of
NSGA could find multiple Pareto-optimal solutions in one simulation run. However, NSGA-IT includes a second-
order sorting criterion into the algorithm, which helps to overcome the issues of computational complexity and
makes NSGA-II more reliable and faster than NSGA. This version considers the crowded distance calculation,
which has proper extension in the changes area of the objective functions and gives the freedom to select
its considered design among optimized designs to the designer [19]. In this algorithm, at first, a population
of chromosomes is generated, and then the fitness function of each chromosome is calculated. Afterward, by
applying some strategies such as the roulette wheel, parents are selected and by employing operators (i.e.,
crossover and mutation) new population is reproduced. Then, the populations (with a bigger size) are assessed
and sorted based on their ranks and crowding distance.

4.2.1. Solution representation (Chromosome)

Designing an efficient structure for the chromosome is one of the most important steps in the NSGA-II
algorithm. The structure of the chromosome that is used in this research, is made in three steps. These steps
are illustrated by an example below.

Suppose that there are six incidents (i = 6) and three relief teams (k = 3). Moreover, the capabilities matrix
of relief teams is as follows. This matrix shows the ability of the relief teams to process the incidents. For
example, based on the following matrix, relief team 1 can process incidents 1, 4, and 5, relief team 2 can process
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incidents 2, 4, and 6, and eventually relief team 3 can process incidents 3, 5, and 6.
(1007
010
001
Cap;, = 110
101
011

Step 1: First, a ¢ X k matrix is randomly created that determines the allocation and sequence of incidents
on relief teams. For example, according to matrix “A”, incidents 2, 6, 1, 5, 4, and 3 are respectively
allocated to relief team 1, incidents 1, 2, 5, 3, 4, and 6 are assigned to relief team 2, and finally,
incidents 6, 1, 2, 4, 3, and 5 are allocated to relief team 3. Note that this is an initial allocation
matrix that should be amended in the next steps.

261543
A= 125346
612435

Step 2: The matrix is converted to a vector as below:

Ee1543
=si253456
612433}

(ENENENENENEN * T2 5 = T* [ O]
T T T

Step 3: The vector has been revised according to Cap;, matrix:
For each cell
if Cap;, =0 — The Cellis deleted.

The way of constructing the final form of a chromosome is shown in Figure 4. As shown in Figure 4, incidents
1, 5, and 4 have been relieved by relief team 1. Incidents 2, 4, and 6 are assigned to relief team 2 and relief team
3 relieves incidents 6, 3, and 5. It is clear that the co-allocation takes place for incidents 4, 5, and 6. To better
understand, the values of the binary variables in Figure 4 are as: Y111 = 1, Y510 = 1, Y413 = 1, Y221 = 1, Y400 =
1,Y623 = 1,Yg31 = 1, Y330 = 1, Y533 = 1.

4.2.2. Crossover operator

In the crossover operator, two strings are selected with a probability of P, as the parents and are produced by
two new offsprings. In the proposed crossover operator in this study, the first two parents are selected and the
cut point is determined. Then, the first segment of parent 1 is combined with the second segment of parent 2, to
generate a primary offspring 1. Also, the first segment of parent 2 combined with the second segment of parent 1,
for creating primary offspring 2. Due to the elements before and after the cut point is maybe repetitive elements,
the primary offsprings are revised by removing the repetitive elements and substituting necessary elements. The
crossover operator applied in this study is illustrated in Figure 5. Note that this operator is done in matrix “A”
in Section 4.2.1. Then, to prevent from infeasibility of offsprings, step 2 and step 3 of Section 4.2.1 are done on
offsprings after mutation operation.

4.2.3. Mutation operator

The mutation operator encourages genetic diversity amongst the solutions and attempts to prevent the
algorithm converging to a local optimum. For this purpose, two incidents from the schedule list of each relief
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Cap,1 = 0
Capg: = 0
Cap31 =0 A 4
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FIGURE 4. Solution representation.

2 6 1|5 4 3] 5 3 2|1 4 6

Parent 1 1 2 5|3 4 6 Parent 2 6 5 1|12 3 4
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'261%4@ Primarv 5325 4@
Feorine | 1 25 3 4 offipring 2 6 5 1 3 4 (
. 6 1 2 65 @ i 31 4 @@ S
| | 2 6 1 3 4 § Hod 5 3 2 1 4 6]
Final offspring 1 1 6 3 4 - 6 5 1 3 4 6
6 1 2 3 5 4 = 3 1 4 2 6 5l

F1GURE 5. Crossover operator.

team are selected randomly. Then, the positions of two selected incidents from each relief team are substituted
in the solution matrix. The mutation operator is depicted in Figure 6.

4.3. Multi-objective particle swarm optimization (MOPSO)

The MOPSO algorithm is a multi-objective metaheuristic algorithm to solve the multi-objective programming
problems in a reasonable time. MOPSO is an extended form of PSO algorithm, which is introduced by Eberhart
and Kennedy [20] that is a common population-based evolutional algorithm to solve continuous optimization
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2 6 1 5 4 3 2 4 1 5 6 3
1 2 5 3 4 6 3 2 5 1 4 6
6 7 2 4 3 5 6 7 5 4 3 2
FIGURE 6. Mutation operator.
1) 2)
0.34 0.75 0.39 0.21 0.68 0.25 1 23 45 6
0.45 0.80 0.15 035 026 0.66 1 23 45 6
0.62 0.12 025 048 0.32 0.59 1 2 3 45 6
Matrix of random numbers € [0 1] Matrix of position of random numbers
3) 4)
0.21 0.25 034 0.39 0.68 0.75 4 6 1 3 5 2
0.15 0.26 035 045 0.66 0.80 35416 2
0.12 0.25 032 048 0.59 0.62 2 3 5 4 6 1
Sorted matrix Position of elements after sorting

FIGURE 7. An example of the RK technique.

problems. It uses the concept of Pareto dominance to find solutions for multi-objective problems. It also employs
a secondary population or external archive to store non-dominated solutions and guides the search of future
generations. The MOPSO and PSO algorithms update the particle velocity and location in the same way. In this
algorithm, by considering the population as a swarm and the solution as a particle, the position and velocity
vectors of the particles are updated in each iteration according to equations (4.4) and (4.5):

Z’Z(k’ + 1) = (L‘Z(k) + Uz(k‘ + 1) (44)
vi(k+1) =w-vi(k) + ¢ -1 - (pbest; — z;(k)) + ca - 72 - (gbest — z;(k)) (4.5)

where X; (k) and v;(k) show the position and velocity vectors of particle 7 in iteration k, respectively. pbest, is
the best position of particle i, and gbest is the best position vector in the population. w shows inertia weight
and ¢; and ¢y are called acceleration coefficients. r; and 74 are two random numbers generated in the interval [0,
1]. The MOPSO and PSO algorithms also differ in several respects: first, the update and selection methods of
the individual and global guides are different. In addition, the solution obtained by the MOPSO algorithm is a
Pareto optimal solution set. Moreover, the MOPSO algorithm requires a storage set for storing the non-inferior
solutions found by the population to be established.

4.3.1. Initial population generation

In this paper, we use a Random-Key (RK) technique to generate the initial population in the MOPSO
algorithm. At first, a random matrix (i x k) is created in which the random numbers are generated in the
interval [0, 1]. Then, a position number is assigned to each random number. The random numbers are sorted in
the ascending order with respect to their positions. Figure 7 illustrates the procedure of random-key technique
to generate a feasible solution for a problem with six incidents and three relief teams. The allocation of the
incidents to the relief teams is similar to the one mentioned for the NSGA-II in Section 4.2.1. It should be noted
that the fourth part of Figure 7 shows the position border of the particles.
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4.3.2. Local search

In this research, a local search is also provided to improve the performance of the MOPSO algorithm. For
this purpose, the procedure that is explained in Section 4.2.3 is implemented on matrix that is obtained in step
4 in Section 4.2.1.

4.8.8. Time window consideration

It should be noted that for both the NSGA-IT and MOPSO, the penalty function is defined to prevent the
infeasible solution due to time windows of the incidents. It means that the objective function is extremely
penalized if the time window constraint is not satisfied. As a result, the infeasible solution is not considered in
the proposed algorithms.

5. COMPUTATIONAL EXPERIMENTS

In this section, the obtained results from solving the model by NSGA-II and MOPSO algorithms are analyzed.
First, the performance metrics to compare the algorithms are described. Then, the outputs of the algorithms
are investigated with random test problems.

5.1. Performance metrics

In this paper, three metrics are used to evaluate the performances of the two metaheuristic algorithms. These
metrics are defined as follows [75].
5.1.1. Number of the Pareto solutions (NPS)

NPS represents the number of local Pareto solutions which are found by the algorithms. The higher value of
the NPS corresponds to the better exploration of the solution space and a more diverse search direction.
5.1.2. Diversity metric (D)

The diversity metric calculates the diversification of the achieved solutions in the solution space, which is
calculated as:

D= max(|4, - B, 4, B € Q) (5.1)

i=1

where A; and B; are the value of ith objective function for the corresponding Pareto solution. () and n are
the practical (estimated) trade-off surface and its respective dimension, respectively. The higher value for this
metric shows the appropriate performance of the algorithm.

5.1.3. Spacing metric (S)

This metric measures the uniformity of the obtained solutions in the estimated trade-off surface. The small
value for this metric is suitable. It is defined as below:

N-1 B
; |d; — d|
K 52

where, d; denotes the euclidean distance in objective function space between individual and z; and the nearest
member in the Pareto front. d is the average value of d;, and N is the number of individuals in the approximation
front. It is obvious that the lower value shows better performance.
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5.2. Data generation

In this study, n vary from 6 to 15, and m varies from 2 to 7 for the small size test problems and n vary from
20 to 50, and m varies from 10 to 20 for large size test problems. According to [67], the processing times of the
incident and travel time are generated by N (20, 10)? and N(1,0.3), respectively.

Furthermore, the destruction factor denotes the severity of the incident. Regarding the United States Depart-
ment of Homeland Security (2008), five severity levels are introduced for an incident as (1) low, (2) guarded,
(3) elevated, (4) high, and (5) severe harm. Thus, a discrete uniform distribution is considered for the severity
levels in the range [1, 5]. Furthermore, we suppose that the due date is dependent on the destruction factor and
the incident with a higher destruction factor has an earlier due date to start the relief operations. The necessary
time to repair the routes is generated by uniform distribution between [1, 3]. As mentioned in the paper, the
concept and formulation of the fatigue effect were inspired by a known concept in scheduling problems named
the learning effect in this research. In this way, in the scheduling problems with the learning effect, the value
of this parameter was considered in the range of [0.2, 0.4] (many papers considered it equal to 0.3). Hence, in
this study, we have considered the value of the fatigue index equal to 0.3. Moreover, five relief teams, named
policemen, fire brigades, paramedics, search and relief teams, and special casualty access teams, are considered
in this paper.

5.3. Parameter setting

Undoubtedly, the appropriate tuning of the parameters can lead to improving the overall performance of
the metaheuristic algorithms. The Taguchi method [55] is applied to tune the parameters of the proposed
metaheuristic algorithms. Regarding the type of the response, there are three main groups to calculate the
variation in the Taguchi approach: (1) smaller-the-better type, (2) nominal-is-best type, and (3) larger-the-
better type [37]. By considering the objective functions of the proposed model, we use the smaller-the-better
type of the response in this research, in which Signal to Noise (S/N) of this type of response is calculated as
follows:

S/n = —10 - Log (252) (5.3)

where Y shows the response (i.e., the criteria that are considered for conducting experiments such as objective
function or diversity) and n represents the number of orthogonal arrays [40].

As mentioned above, the lowest and largest values for the spacing and diversity metric are preferred for the
multi-objective algorithms. Therefore, we propose response (Y') as follow:

_ Spacing (5.4)
Diversity ’

With respect to equation (5.4), two metrics are considered to analyze the performance of the algorithms,
simultaneously.

Four parameters with three levels involving maximum of iterations (Maxy;), number of population (Npep),
crossover rate (P.), and mutation rate (Py,) are considered to tune the NSGA-II algorithm. Moreover, to tune
the parameters of the MOPSO algorithm, five parameters with three levels, Maxy;, swarm size, w, C, and Cs
are considered. Table 2 shows the parameters and their levels for the Taguchi design.

As a result, the effect plot for S/N ratio is illustrated in Figure 8, for each algorithm.

If a parameter has the highest level of S/N ratio, it is denoted as the best level of the parameter. According
to Figure 8, the best parameters for the algorithms are summarized in Table 3.

2Normal distribution.
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TABLE 2. The parameters levels of the NSGA-IT and MOPSO algorithms.

Algorithm  Parameter Level
1 2 3
NSGA-II Maxrg 300 400 500
Npop 50 60 70
P 0.6 0.7 08
P 0.1 02 03
MOPSO Maxs 300 400 500
Swarm-size 50 60 70
Ch 1 1.5 2
Co 1 1.2 2
W 04 09 12

Main Effects Plot for SN ratios (NSGA-II)

Data Means
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FIGURE 8. S/N ratio for the proposed algorithms.
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TABLE 3. The best values of the parameters.

Algorithm  Parameter  Best Level Value

NSGA-II Maxrg 1 300
Noop 1 50
P. 1 0.6
P 1 0.1

MOPSO Maxr 1 300
Swarm-size 2 60
Ci 3 2
Cso 3 2
w 3 1.2

TABLE 4. Characteristics of the small and large size test problems.

Test problem  Number of incidents Number of relief teams

Small size Ul6, 15] Ul[2,7]
Large size U|20, 70] U[10, 30]

5.4. Analysis of the results

In this section, two series of test problems in small and large-size, are conducted to examine the performance
of the proposed approaches. For this purpose, 10 test problems in small-size are generated and solved by the
augmented e-constraint method in GAMS software, and the obtained results are compared with the proposed
metaheuristic algorithms. Furthermore, 20 large-size test problems are generated and solved by the proposed
algorithms. Characteristics of the small and large-size test problems are summarized in Table 3.

Afterward, the performance metrics are used to compare the obtained results by the proposed algorithms.
All the proposed algorithms are implemented in MATLAB software on a Core i7 and 4GB RAM computer.
It should be noted that for the augmented e-constraint method, the second objective function has become a
constraint. Figure 9 shows the procedures that generate the Pareto optimal curve by AUGMECON.

The obtained results for the small size test problems are shown in Table 5; where NPS is the number of Pareto
solutions and CPU time is the time consumed to find the Pareto solutions. Obviously, more NPS and less CPU
time correspond to the excellency of each approach. The best objectives value obtained over 10 runs are reported
for each test problem in Table 4. Also, the gap between the e-constraint and proposed metaheuristic algorithms
is presented in Table 4. Due to the multi-objective nature of the considered problem, the gap is calculated as the
average gaps of the objective functions. The gap for each objective is as: |f — f’|, where f is the objective value
from the e-constraint and f” is the objective value of the metaheuristic algorithm [32]. Regarding Table 5, it can
be concluded that the metaheuristic algorithms can achieve the proper solutions with small gaps. Also, Figure
10 illustrates the Pareto frontiers achieved by the e-constraint and metaheuristic algorithms for test problem 5.

Table 6 summarizes the results of the proposed algorithms for large-size test problems. Regarding the NP-
hardness of the research problem, the e-constraint approach that ran in GAMS was not presented any solution
for the large test problems. Note that for the problem with 20 incidents and 10 relief teams, GAMS software
cannot find a feasible solution in 15,000 s. Table 6 depicts the obtained results of the NSGA-II and MOPSO
algorithm for the problems. As mentioned before, for large size test problems, the number of relief teams and
the number of incidents belong to the range [10, 30] and [20, 70], respectively. Note that, the best results are
presented as boldface.



DESIGNING A BI-OBJECTIVE DECISION SUPPORT MODEL FOR THE DISASTER MANAGEMENT

1. Generating payoff matrix by the lexicographic method:

- Optimizing the first objective function (Z1 = Z1%)

- Optimizing the second objective function (Z2) with the constraint
Z1x)=7Z1"

o

2. Determining the value of &:

- Determining the feasible solution range of each objective function
with the help of payoff matrix

- Dividing the feasible solution range into evenly distributed intervals

(&

~

J

€

. Generating Pareto frontier

- Considering the second objective function as a constraint and
optimizing the first objective function to obtain a set of Pareto
solutions.

- Generating Pareto frontier

~

FIGURE 9. Solution procedures of AUGMECON in this research.

TABLE 5. The obtained results for small-size test problems.

TP (n,m) e-constraint NSGA-II MOPSO
NPS AVP CPU time (s) NPS MA Gap CPU time (s) NPS MA Gap CPU time (s)

1 (6, 2) 3 546.85 4.38 3 549.29 0.004 29.56 4 549.93 0.006 44.81
2 (7, 3) 3 694.24 9.71 5 702.81 0.012 33.81 5 702.81 0.012 48.33
3 (8, 3) 4 734.91 28.24 6 742.82 0.011 32.9 7 741.95 0.010 47.96
4 (9,4) 7 832.33 193.56 9 841.75 0.011 40.34 10 844.26 0.014 56.47
5 (10, 4) 6 792.94 347.11 11 821.59 0.036 47.4 13 822.16 0.037 62.65
6 (12, 5) 4 916.72 826.29 10 938.95 0.024 55.52 12 940.72  0.026 70.26
7 (13, 5) 5 958.67 1574.36 12 984.26 0.027 53.12 13 981.93 0.024 68.17
8 (14, 6) 5 1015.18 3138.82 10 1054.66 0.039 61.49 10 1058.35 0.043 76.45
9 (15, 6) 7 1032.43 5024.9 14 1066.58 0.033 69.23 16 1070.18 0.037 84.38
10 (15, 7) 6 991.55 8437.68 12 1029.72 0.038 74.85 13 1027.68 0.036 88.51

Notes. AVP: Average of Pareto solutions, MA: Minimum average of all objective.
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FIGURE 10. Pareto solutions.
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TABLE 6. The obtained results for large size test problems.

TP  (n,m) NSGA-II MOPSO
NPS D S CPU time (s) NPS D S CPU time (s)

1 (20, 10) 11.4 456.15 0.62 98.46 13.2 488.74 0.71 112.24
2 (22, 10) 15.3 417.44 0.51 101.82 16.5 469.12  0.60 111.48
3 (22, 11) 10.8 408.23 0.68 100.17 12.3 443.59 0.75 114.74
4 (25, 12) 16.6 468.18 0.45 112.65 15.1 435.34 0.49 121.55
5 (25, 13) 14.5 443.04 0.78 111.34 15.7 489.83 0.75 120.96
6 (30, 13) 21.1 456.82 0.65 118.47 23.7 413.52 0.61 134.12
7 (30, 14) 24.7 435.72 0.51 120.82 26.3 477.46  0.58 138.44
8 (33, 14) 16.2 504.35 0.74 126.19 19.6 568.25 0.72 145.72
9 (33, 15) 20.6 469.86  0.75 129.54 18.7 431.91 0.74 145.89
10 (35, 15) 23.4 493.22 0.62 136.75 26.4 542.65 0.67 151.36
11 (37, 16) 18.7 523.36 0.47 141.22 21.5 518.72 0.52 158.17
12 (40, 16) 25.1 515.72 0.81 150.69 28.3 544.86 0.79 167.25
13 (40, 17) 23.4 423.83 0.80 155.32 25.1 467.15 0.85 166.51
14 (42, 17) 19.6 536.17 0.72 153.16 21.5 579.64 0.78 168.34
15 (42, 18) 21.5 498.25 0.78 156.88 21.8 513.57 0.76 171.33
16 (45, 18) 26.2 473.91 0.46 161.71 29.6 458.32 0.52 178.85
17 (45, 19) 29.6 504.28 0.55 163.55 31.1 533.85 0.53 182.46
18 (47, 19) 25.3 485.66 0.83 168.76 27.4 500.17 0.89 187.91
19 (47, 20) 27.7 522.18 1.02 171.23 29.3 507.68 0.96 191.63
20 (50, 20) 30.2 491.37  0.92 180.52 32.5 505.29 1.05 214.27
21 (53, 21) 33.5 491.86 0.96 187.74 32.8 488.75 1.1 222.84
22 (55, 22) 35.1 549.99 1.08 195.25 36.3 567.31 1.04 231.74
23 (58, 22) 34.6 553.84 0.91 203.06 36.1 589.48 0.97 241.02
24 (58, 23) 35.7 536.81 0.88 211.18 37.2 518.26 0.92 250.66
25 (60, 23) 38.5 493.88 0.96 219.63 39.6 505.73 0.93 260.69
26 (63, 24) 40.2 555.50 0.90 228.41 40 568.24 0.96 271.11
27 (65, 25) 42.8 549.91 0.93 237.55 43.6 527.63 0.99 281.96
28 (68, 25) 41.5 539.97 0.89 247.05 40.9 555.71 0.86 293.24
29 (70, 28) 45.7  498.24 0.97 256.93 45.5 482.66 1 304.9
30 (70, 30) 48.2 558.99 0.98 267.24 49.3 573.15 0.95 317.17
Average 27.257 495224 0.771 167.11 28.563 508.886  0.799 191.95

Notes. The best results are presented as boldface.
TP: test problem, n: number of incidents, m: number of relief teams, NPS: number of Pareto solutions, D: diversity, S:
spacing, CPU time: computational time.

From Table 6, the CPU time of the NSGA-II is lower than the MOPSO in the entire test problems. Further-
more, Figure 11 shows the number of Pareto solutions achieved by the proposed algorithms. As can be seen in
Figure 11, the MOPSO has better performance in the NPS metric.

According to Table 6, the MOPSO algorithm shows better performance in the diversity metric, and the
NSGA-II algorithm performs better in the spacing metric.

We also compare the performance of the proposed algorithms based on RPD criteria, which is calculated as
follow:

ALGSOl — Bestsol

RPD = 5.5
Bestgo) (5.5)

where ALGy,) denotes the performance measure obtained by each algorithm and Bestge is the best performance
measure obtained by the entire algorithms. In this regard, the gap between NSGA-IT and MOPSO algorithms
in the NPS, Diversity, and Spacing metrics is given in Table 7. In this table, the less value shows the better
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TABLE 7. Gap between the performance of the algorithms in different metrics.

Problem GAP for NPS GAP for Diversity GAP for Spacing
NSGA-II MOPSO NSGA-IIT MOPSO NSGA-II MOPSO
1 0.136 0.000 0.067 0.000 0.000 0.145
2 0.073 0.000 0.110 0.000 0.000 0.176
3 0.122 0.000 0.080 0.000 0.000 0.103
4 0.000 0.090 0.000 0.070 0.000 0.089
5 0.076 0.000 0.096 0.000 0.040 0.000
6 0.110 0.000 0.000 0.095 0.066 0.000
7 0.061 0.000 0.087 0.000 0.000 0.137
8 0.173 0.000 0.112 0.000 0.028 0.000
9 0.000 0.092 0.000 0.081 0.014 0.000
10 0.114 0.000 0.091 0.000 0.000 0.081
11 0.130 0.000 0.000 0.009 0.000 0.106
12 0.113 0.000 0.053 0.000 0.025 0.000
13 0.068 0.000 0.093 0.000 0.000 0.062
14 0.088 0.000 0.075 0.000 0.000 0.083
15 0.014 0.000 0.030 0.000 0.026 0.000
16 0.115 0.000 0.000 0.033 0.000 0.130
17 0.048 0.000 0.055 0.000 0.038 0.000
18 0.077 0.000 0.029 0.000 0.000 0.072
19 0.055 0.000 0.000 0.028 0.063 0.000
20 0.071 0.000 0.028 0.000 0.000 0.141
21 0.000 0.021 0.000 0.006 0.000 0.146
22 0.033 0.000 0.031 0.000 0.038 0.000
23 0.042 0.000 0.060 0.000 0.000 0.066
24 0.040 0.000 0.000 0.035 0.000 0.045
25 0.028 0.000 0.023 0.000 0.032 0.000
26 0.000 0.005 0.022 0.000 0.000 0.067
27 0.018 0.000 0.000 0.041 0.000 0.065
28 0.000 0.014 0.028 0.000 0.035 0.000
29 0.000 0.004 0.000 0.031 0.000 0.031
30 0.022 0.000 0.025 0.000 0.032 0.000

performance of the algorithm in the corresponding metric. In order to validate the obtained results, statistically,
the means plot and least significant difference (LSD) intervals (at 95% confidence level) for the RPD value is
conducted for each performance measure. The results are illustrated in Figures 12-14.

According to Figure 11, there is a significant difference between the proposed algorithms with respect to
the NPS. MOPSO algorithm has better performance in this metric. Also, we can conclude that the MOPSO
algorithm has better performance in diversity with respect to Figure 12. Furthermore, Fig. 13 illustrates that
NSGA-II outperforms the MOPSO regarding the spacing metric. Hence, the decision-makers can select the
proper algorithm according to their considered metric. For example, if the CPU time is the most important
metric for a decision-maker, he/she should select the NSGA-IT algorithm.

5.5. Sensitivity analysis

In order to analyze the impact of the fatigue effect and travel times on the objective functions, a test problem
with 25 incidents and 12 relief teams is conducted in different situations.
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FIGURE 12. Means plot and LSD intervals for algorithms based on RPD of NPS metric.

5.5.1. Sensitivity analysis of the fatigue effect

For analyzing the impact of the fatigue effect («) on the Pareto front, we solve the test problem with different
values for the fatigue effect (&« = 0.1, &« = 0.3 and « = 0.5), and the results are depicted in Figure 15. As shown
in Figure 15, the fatigue effect has a significant impact on both objective functions and the number of Pareto
solutions.

According to Figure 15, increasing in value of the fatigue factor from 0.3 to 0.5 leads to an increase of 16%
in the average of the first objective function and 13% in the average of the second objective function. Based
on these results, the physical power of the relief teams has an important role in the total time of the relief
operation and delays. In order to prevent the increasing of the total relief operations and delays, the strategy
of increasing the number of relief teams or improve the physical power of the current rescuers can be adopted.

5.5.2. Sensitivity analysis of the travel time

To consider the effect of the travel time on the results, we take into account two values for the average of
the travel time as N(1,(0.3)?) and N(3,(0.3)?). As a result, the new test problem is solved, and the obtained
results are represented in Figure 16.

According to Figure 16, by increasing the average of travel time from 1 to 3, the average of the first objective
function increases almost 7%, and the average of the second objective function also increases almost 20%. This
result shows that using better transportation vehicles can lead to the better performance for the relief team.
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FIGURE 16. Sensitivity of the Pareto frontier to the traveling time.

6. CONCLUSIONS AND FUTURE WORK

This research addresses the allocation and scheduling of relief teams which has a key role in the response
phase of the disasters. The limited resources and time pressure increased the complexity of planning to handle
the disasters. In this study, the disaster management problem is likened to the scheduling and routing problem.
Also, in this study, the physical power of the rescuers is considered as a fatigue effect. Due to the fatigue effect,
tiredness caused by relieving several incidents may lead to an increase in the necessary time to perform a job.
The time-windows for incidents and damaged routes are considered in the proposed model in order to bring the
issue closer to the real world. As a result, a BOMIP model is developed to minimizing the sum of the weighted
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completion times and tardiness of the relief operations. The problem is computationally intractable; thus two
metaheuristic algorithms (NSGA-IT and MOPSO) are proposed for the considered problem. The performance
of the metaheuristic algorithms are compared based on CPU time, the number of Pareto solutions, diversity,
and spacing. The results demonstrated that the NSGA-II outperforms MOPSO by considering the CPU time
and spacing metric, and the MOPSO outperforms NSGA-IT by considering the number of Pareto frontier and
diversity metric. Also, the sensitivity analysis of the problem regarding some parameters is conducted and some
managerial suggestions proposed to improve the allocation and scheduling of relief teams in disasters.

Suggestions for future studies are included considering uncertain processing time, travel time, and level of
severity, as well as investigation the problem in multi-depot mode. Considering the concept of deprivation costs
(see [12]) in allocation and scheduling of the relief teams could be another direction for future research.

Acknowledgements. The authors would like to thank the Editor-in-Chief, Associate Editor, and autonomous reviewers
for their helpful comments and suggestions, which significantly improved the presentation of this paper.
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