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OPTIMIZING A BI-OBJECTIVE LOCATION-ALLOCATION-INVENTORY
PROBLEM IN A DUAL-CHANNEL SUPPLY CHAIN NETWORK WITH

STOCHASTIC DEMANDS

Aida Rezaei1, Tina Shahedi1, Amir Aghsami1,2,3 ,
Fariborz Jolai1,* and Hamidreza Feili3

Abstract. Integrating strategic and tactical decisions to location-allocation and green inventory plan-
ning by considering e-commerce features will pave the way for supply chain managers. Therefore, this
study provides an effective framework for making decisions related to different levels of the dual-channel
supply chain. We provide a bi-objective location-allocation-inventory optimization model to design a
dual-channel, multi-level supply chain network. The main objectives of this study are to minimize
total cost and environmental impacts while tactical and strategic decisions are integrated. Demand
uncertainty is also addressed using stochastic modeling, and inventory procedure is the periodic review
(𝑆, 𝑅). We consider many features in inventory modeling that play a very important role, such as lead
time, shortage, inflation, and quality of raw materials, to adapt the model to the real conditions. Since
a dual-channel supply chain is becoming more important for sustainable economic development and
resource recovery, we combine online and traditional sales channels to design a network. We generate
five test problems and solve them by using the augmented 𝜀-constraint method. Also, the Grasshopper
optimization algorithm was applied to solve the model in a reasonable time for a large size problem. In
order to provide managerial insights and investigate the sensitivity of variables and problem objectives
with respect to parameters, sensitivity analysis was performed.
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1. Introduction

In today’s competitive economic environment, making the right decisions at the strategic and operational
levels enables organizations to manage their logistics and supply activities more efficiently. Supply chain man-
agement emphasizes the integration of chain members; because to increase a supply chain’s productivity, its
decisions cannot be optimized separately. Supply chain networks are mainly recognized as an operating basis
for various industries. Appropriate design of this chain can reduce operating costs by 60% [29, 51]. Mainly in
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the conventional approach, supply chain design is done by considering strategic decisions and the purpose of
reducing costs and ignoring operational decisions such as the inventory system [66]. Today, companies must
pay close attention to updating their logistics systems and solve the problems of procurement of items, demand
uncertainty, warehouses, and retailers to gain significant market share and customer satisfaction. Therefore, one
of the key concerns of managers in supply chain management is the integration of operational and strategic
decisions [26]. Integrating location-allocation and inventory decisions is one of the approaches that, with proper
planning, can play a significant role in creating a competitive advantage and gaining more profit [48].

In addition, the Sustainable vision has encouraged industries and governments to boost environmental sustain-
ability by improving their activities. One of the most important roles in sustainability is controlling greenhouse
gas emissions. According to many studies, inventory management activities are the most important issues that
release a significant share of greenhouse gases [65]. Numerous research [13, 17, 71] have suggested the integra-
tion of inventory systems and environmental requirements because inventory optimization by creating a proper
balance in storage and transportation of items reduces greenhouse gas emissions [60]. Therefore, some factors
in achieving sustainable supply chains and coping with environmental degradation are the implementation of
green inventory management and green supply chain, which specifically focuses on designing an environmen-
tally friendly supply chain [39]. Green inventory management is defined by an economic focus on the costs and
attention to the environmental and sustainability considerations [35].

Apart from the environmental aspect, proper response to stochastic demand is necessary in designing an
efficient supply chain network [72]. According to Simangunsong et al.’s [62] paper, because of various factors
and conditions for each organization, demand uncertainty is divided into three categories, including internal
uncertainty of the organization, external uncertainty and uncertainty due to the supply chain. Numerous studies
have emphasized considering demand uncertainty in order to adapt to real conditions [23,69]. In addition, under
conditions of uncertainty and stochastic inventory, the combination of shortages occurs on the part of customers
[61, 67]. Some customers wait to receive the product (backorders) and others turn to other alternatives (lost
sales) [2]. Therefore, considering a combination of customer behaviors in the face of shortages can practical the
results of the problem. Also inventory is considered as an economic asset, which has been invested and affected
by inflation, like other assets of the organization. However, in the relevant literature, classic inventory models
do not take into account economic considerations such as inflation, while these considerations are important in
managerial decisions and affect the amount of economic order [44]. Therefore, expanding inventory models by
considering all these attributes and adding practical constraints such as shortage and inflation under uncertain
environments brings the model more accurately and closer to real-world conditions.

Moreover, advances in technology and the widespread use of the Internet have led to the use of online sales
channels in addition to traditional sales to sell companies’ products. Both sales channels (online and traditional)
sell the same products at favorable prices so that the manufacturer decides on the wholesale price of products
by examining the market share between traditional and online sellers [56]. Thus, considering the numerous
benefits of online sales such as better access, faster response, lower distribution costs and a positive effect on
environmental sustainability, the approach of combining online and traditional sales channels in supply chain
design has been considered [6, 30].

Accordingly, research questions are posed as follows:

(1) What effect will stochastic demand have on tactical and strategic supply chain decisions?
(2) Do considering green and e-commerce issues have a positive effect on location-allocation-inventory decisions?
(3) How can a periodic review policy be modeled and evaluated on a multi-period basis based on economic and

green objectives?

Thereby, we provide a bi-objective model to solve the location-allocation-inventory problem (LAIP) in a dual-
channel, multi-level supply chain. The main objectives of this model are to minimize total cost and environmental
impacts while tactical and strategic decisions are integrated simultaneously. This location-allocation-inventory
problem can be formulated as a mixed-integer non-linear programming (MINLP) model. We formulate this
model to analyze the expected order quantities and safety stock level for each distribution center.
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Based on the above descriptions, we summarize the main contributions of this study that differentiate it from
the other relevant research as follows. First, we investigate a location-allocation-inventory problem in a multi-
level supply chain under (𝑆, 𝑅) inventory policies, with considering stochastic demand and many important
Features such as shortage, inflation, quality of raw materials, and positive lead time, which were ignored in
most previous research. To the best of our knowledge, this is the first study to provide guidance on how to
optimize the location-allocation-inventory problem in a multi-level supply chain network under periodic review
inventory policies. Second, we combine online and traditional sales channels to design a dual-channel network.
By using online sales channels and e-commerce activities that have been considered in the strategic and tactical
decisions, we can develop a dual-channel supply chain and improve its sustainability. Then, we formulate a
mixed-integer nonlinear programming model for solving it. Third, for small-sized instances, we solve the models
using the augmented 𝜀-constraint method. Then, for large-sized problems, we solve the model in a reasonable
time by Grasshopper optimization algorithm.

The rest of the paper is structured in this way. In the next section, the literature review is described. Section 3
presents the development of the model, and Section 4 includes the solution approaches. The computational
experiment presents in Section 5. Sections 6 and 7 provide the results and discussion, and sensitivity analysis.
Finally, we summarized the study in Section 8 and presented suggestions for future studies.

2. Literature review

Considering the vast literature on inventory management, we review some studies in the concept of various
inventory problems. Farahani et al. [24] have reviewed the existing literature and its evolution in the field of
modeling the location-allocation problems (LAP) during the last three decades. Mousavi et al. [45] designed a
two-tier network, including distributer and retailer, to investigate the location-inventory problem (LIP) under
production constraints. Sadjadi et al. [58] considered a lead time and uncertain demand in the LIP model
to optimize decisions related to meet the demand. Hajipour et al. [28] studied location-allocation decisions
considering the three objective functions of minimizing total travel time, cost of launching facilities, and the
idle probability of the facilities. Mousavi et al. [47] examined the LIP issue in a two-tier network of manufacturers
and retailers to reducing purchase and inventory costs. Singha et al. [63] proposed a model to minimizing the
total cost and finding the optimal reorder point and reorder quantity. Also, inventory management policies,
including continuous and periodic reviews, as well as shortage have been considered. Vahdani et al. [66] studied
the LIP issue to minimize supply chain costs. In this study, shortages are allowed, and periodic review policy
has been used to manage inventory level. Puga and Tancrez [53] presented a LIP model to improve the supply
chain’s economic aspect. A periodic review system and uncertain demand have been considered in this study.
Diabat et al. [22] used a Markov chain to optimize the LIP model under uncertain demand and lead time to
minimize supply chain costs. Rafie-Majd et al. [55] studied the inventory-location routing problem (ILRP) in
the multi-level network. Araya-Sassi et al. [7] studied the periodic review policy in the LIP model to determine
warehouse location, reorder point and order size. Braglia et al. [14] presented a study to analyzing and optimizing
the new inventory models. In this study, inventory policies are periodic or continuous review, and stock out
costs, lead time, and lost sales have been considered as well. Behnamian et al. [10] discussed multiple cross-
dockings where the loads are transferred from origins to destinations through cross-docking facilities. Braglia
et al. [15] analyzed the (𝑄, 𝑟) policy for an inventory system to minimize the total cost under the conditions of
allowable shortages and uncertain demand. Khan and Dey [32] presented a mathematical model to achieve the
optimal review policy inventory levels in the review periods. The proposed model minimizes the cost of annual
inventory by considering uncertain demand. Araya-Sassi et al. [8] proposed the LIP by considering the policies
of continuous and periodic review. The developed model by them determines the re-order point, order size and
location of warehouses and minimizes system costs simultaneously. Dehghani et al. [21] studied the problem
of location-inventory by combining mathematical modeling and Markov process technique in a sustainable
supply chain. Dehghan et al. [20] studied the location-routing problem with the aim of minimizing location
and distribution costs under the risk of disruption. Amiri-Aref et al. [5] optimized multi-source location and
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inventory management decisions under stochastic demand and inventory policy (𝑠, 𝑆) by formulating a two-stage
profit maximization model. Ghasemi and Khalili-Damghani [27] optimized pre-event and post-event preparation
decisions by presenting a mathematical model of location-allocation and inventory. They used a combination
of mathematical optimization and simulation approaches to solve and estimate earthquake impact scenarios on
urban infrastructure. Masoumi et al. [36] proposed a mathematical model for multi-objective, multi-period and
multi-commodity and inventory routing problems in post-disaster conditions regarding the density of vehicles
carrying relief items at the entrance of the border warehouses. Fathi et al. [25] studied the problem of warehouse
location and inventory management based on stochastic demand and lead time and used the two-phase queuing-
stochastic approach. Mokhtarzadeh et al. [40] studied the location-allocation problem by minimizing the costs,
noise pollution, and inconvenience caused by the establishment, and developed a combination of clustering
and meta-heuristic algorithms to solve it. Nayeri et al. [50] studied a robust fuzzy stochastic model for the
responsive-resilient inventory-location problem.

Moreover, in some studies, the inventory model has been integrated with economic, environmental and e-
commerce considerations. Moghadam et al. [38] developed a closed-loop supply chain based on an e-commerce
platform. Dai et al. [18] introduced a LIP model for optimizing supply chain decisions under carbon emission
limitations. Wang et al. [68] addressed a two-stage stochastic model to control demand uncertainty and solve
the LIP of the green supply chain. Mousavi et al. [44] to minimize the present value of the inventory system
formulated a mathematical model under discount, inflation, and demand certainty conditions. The effects of
discount contracts and environmental regulation on pricing in a dual-channel supply network were studied by
Xu et al. [70]. Rabbani et al. [54] developed a joint inventory planning and pricing with adjustment costs under
differential inflation. Raza and Govindaluri [56] designed a two-level supply chain for the green product by
considering two channels (traditional and online). Amrouche and Yan [6] evaluated the profits from the creation
of traditional and online sales channels under discount conditions by designing pricing scenarios. Aziziankohan
et al. [9] studied a green supply chain management using the queuing theory to control congestion and reduce
energy consumption in a supply chain network. Jia and Li [30] studied online and self-run sales policy in the
closed-loop supply chain. Naserabadi et al. [49] examined the issue of inventory control under inflation and
shortage conditions to minimizing the present value of total costs. Bhunia et al. [12] addressed an inventory
model by proposing two different inventory policies under inflationary conditions and definite demand. Mousavi
et al. [46] examined the issue of inventory policy for a supply chain under the conditions of shortage and inflation.
Alikar et al. [3] developed a bi-objective model including minimizing inventory costs and maximizing system
reliability by considering inflation rate. Liao et al. [33] proposed a multi-objective model to optimize integrated
location-inventory-routing decisions in a dual-channel supply chain. Tirkolaee et al. [64] studied the green LAIP
to formulate a waste management system with the aim of improving the economic aspect. Malekkhouyan et al.
[34] studied a mixed-integer linear programming for an integrated vehicle routing and mixed-model robotic
disassembly sequence scheduling model on an e-waste management system. Kaoud et al. [31] evaluated the
integration of e-commerce in manufacture and recovery sites in a multi-period closed-loop network. Paul et al.
[52] addressed the green inventory management model by considering the impact of a carbon tax, variable
maintenance costs, change in cost based on green demand level, and maximizing retailer profit. Das et al.
[19] examined strategic location-routing-inventory decisions with the objectives of minimizing transportation,
inventory, and carbon emission costs, and minimizing transportation time.

In order to better show the structure of the problem literature and display the difference between the present
study and other researches, previous studies summarized in the gap table (i.e., Tab. 2). We present the codes of
this table in Table 1 and some papers categorized based on type of model, General features including inventory
policy, Shortage, uncertainty in demand, Economic factors, environmental issue, etc. in Table 2.

According to the research literature, the integration of LAIP issue in the multilevel supply chain network
under uncertainty conditions has been less studied by researchers. Also, the integration of features such as green
inventory, inflation, e-commerce activities, shortages and the quality of raw materials has not been considered
in such research issues simultaneously. Integrating strategic and tactical decisions with considering mentioned
characteristics will bring supply chain decisions closer to reality and pave the way for supply chain managers.
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Table 1. Literature structure codes.

Category Detail Code

Type of problem Inventory problem IP
Location-inventory problem LIP
Location-allocation-inventory problem LAIP

General features Periodic review Pr
Continuous review Cr
Lost sale Ls
Backlogged Bl
Deterministic D
Stochastic S
Economic factors Ef
Environmental issue Ei
Multi-period MP
Multi-product MPr
Multi-objective MO
Online marketplace OM
Dual channel Dch

Solving methods Classical and analytical CA
Heuristic and Meta-heuristic HMH

Therefore, we developed a bi-objective model to integrated LAIP in the multilevel supply chain, taking environ-
mental effects, economic factors, inventory shortages, stochastic demand and e-commerce activities into account
in a strategy of periodic review.

3. Problem explanation

This section aims to express the general modeling framework. For this purpose, first, the problem is described,
and then the assumptions and features of the model are presented. Finally, by defining the parameters and
variables of the problem, a bi-objective model is developed.

3.1. Problem definition

We study a dual-channel, multi-level supply chain to solve location-allocation-inventory problems. The ele-
ments of the supply chain consist of suppliers in the first level, plants in the second level, distribution centers
(DCs) in the third level and dual channels of sellers in the fourth level. The flow of materials first starts from
suppliers and is shipped to plants to produce the products. End products are transported to specific DCs and
stored to meet sellers’ demand. Finally, the products are sent to traditional and online sellers to trade-off in both
physical and e-commerce activities. We intend to integrate strategic and tactical decisions in this dual-channel
supply chain network. We develop an inventory model by considering shortages, inflation, and stochastic demand
under a periodic review policy (𝑆, 𝑅). In this inventory review policy, the stock status checked periodically at
equal time intervals (𝑅) and items ordered to achieve the highest inventory level (𝑆). Moreover, the sellers’
demand is stochastic, and the shortage occurs as a combination of lost sales and backlogging. The orders’ lead
times are considered constant and all costs include a fixed annual inflation rate. Thus, the proposed model
includes three different decisions: (1) the issue of the location of DCs and traditional sellers, (2) appropriate
allocation of sellers to DCs and (3) determining inventory decisions in opened DCs. The goals of our model
are to minimize total costs and environmental impacts simultaneously. Figure 1 exhibits the network under
consideration.
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Figure 1. Proposed multi-level structure of the supply chain.

3.2. Assumption

The key assumptions of this study are as below:

– A multi-level, multi-period model with one type of transportation vehicle and product is formulated.
– The capacity and number of potential DCs are limited.
– The inflation rate is considered in the model, and inventory shortage is allowed.
– Sellers are considered as traditional and online.
– There are fixed opening costs for DCs and traditional sellers.
– The opening of potential facilities and transportation has environmental impacts.
– Each seller (online or traditional) is assigned to a specific DC.
– Periodic review policy (𝑆, 𝑅) is defined as the inventory policy in DCs.
– In order to control and deal with demand fluctuations of sellers, safety stocks have been used in DCs.
– Sellers demand has a normal distribution with a known mean and variance.
– The quality of raw materials provided by suppliers is different and the cost of purchasing from them varies

according to their quality.
– There is a fixed shortage cost for both cases of shortage (lost sales and back ordered) [43].
– There is no time-dependent backorder cost [43].
– The backorders occur in very small amounts and the orders received are always enough to meet them [43].
– It is assumed that the related lead times are applied from the beginning of the period.

Figure 2 better illustrates some assumptions related to inventory policy. Figure 2 shows the inventory control
policy in the model. According to this figure, each planning horizon includes lead time and review interval so
that the lead time of each period is at the beginning of it. The consumption rate in during of review interval is
Dd𝑘𝑡 (𝑅𝑘) and during lead time is in accordance with Dd𝑘𝑡 (LTd𝑗𝑘𝑡). According to the periodic review policy,
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Figure 2. Diagram of inventory control policy in proposed model.

it is necessary to order a quantity of the product in each order so that the inventory level reaches the amount
of 𝑆.

3.3. Problem formulation

The notations below are used to model the problem if the aforementioned supply chain network.

3.3.1. Notations

Indices
𝐼 Set of suppliers indexed by 𝑖 ∈ 𝐼
𝑆 Set of sellers indexed by 𝑠, 𝑙 ∈ 𝑆
𝑆tr Set of traditional sellers indexed by 𝑠tr ∈ 𝑆tr, (𝑆tr ⊂ 𝑆)
𝑆on Set of online sellers indexed by 𝑠on ∈ 𝑆on, (𝑆on ⊂ 𝑆)
𝐾 Set of potential locations for DCs indexed by 𝑘 ∈ 𝐾
𝐽 Set of plants indexed by 𝑗 ∈ 𝐽
𝑇 Set of time indexed by 𝑡 ∈ 𝑇

Parameters
CS𝑖𝑡 Capacity of supplier 𝑖 in period 𝑡
CD𝑘𝑡 Capacity of distribution center 𝑘 in period 𝑡
CP𝑗𝑡 Capacity of plant 𝑗 in period 𝑡
Cap𝑠tr𝑡 Capacity of traditional seller 𝑠tr in period 𝑡
Cap′𝑠on𝑡 Capacity of online seller 𝑠on in period 𝑡
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𝜇𝑠𝑡 Average demand of seller 𝑠 in period 𝑡
𝜎2

𝑠𝑡 Variance in demand of seller 𝑠 in period 𝑡
FCd𝑘𝑡 Fixed cost of opening distribution center 𝑘 in period 𝑡
FCs𝑠tr𝑡 Fixed cost of opening traditional seller 𝑠tr in period 𝑡
HCp𝑗𝑡 Inventory holding cost per unit at plant 𝑗 in period 𝑡
HCd𝑘𝑡 Inventory holding cost per unit at distribution center 𝑘 in period 𝑡
HCst𝑠tr𝑡 Inventory holding cost per unit at traditional seller 𝑠tr in period 𝑡
HCso𝑠on𝑡 Inventory holding cost per unit at online seller 𝑠on in period 𝑡
FC𝑗𝑘𝑡 Fixed cost of a shipment between plant 𝑗 and distribution center 𝑘 in period 𝑡
TPfs𝑘𝑠𝑡 Fixed cost of a shipment between distribution center 𝑘 and seller 𝑠 in period 𝑡
UC𝑖𝑗𝑡 Purchase cost per unit from supplier 𝑖 in period 𝑡
LT𝑗𝑡 Maximum lead time from suppliers to plant 𝑗 in period 𝑡
LT′𝑠𝑡 Maximum lead time from DCs to seller 𝑠 in period 𝑡
LTd𝑗𝑘𝑡 Lead time from plant 𝑗 to distribution center 𝑘 in period 𝑡
LTp𝑖𝑗𝑡 Lead time from supplier 𝑖 to plant 𝑗 in period 𝑡
LTs𝑘𝑠𝑡 Lead time from distribution center 𝑘 to seller 𝑠 in period 𝑡
OCp𝑖𝑗𝑡 Fix ordering cost from supplier 𝑖 to plant 𝑗 in period 𝑡
OCd𝑗𝑘𝑡 Fix ordering cost from plant 𝑗 to distribution center 𝑘 in period 𝑡
TC𝑖𝑗𝑡 Shipping cost (volume-dependent) per unit raw material per each transmitted unit from

supplier 𝑖 to plant 𝑗 in period 𝑡
TPp𝑗𝑘𝑡 Shipping cost (volume-dependent) per unit from plant 𝑗 to distribution center 𝑘 in period 𝑡
TPd𝑘𝑠𝑡 Shipping cost (volume-dependent) per unit from distribution center 𝑘 to seller 𝑠 in period 𝑡
TPd𝑘𝑠tr𝑡 Shipping cost (volume-dependent) per unit from distribution center 𝑘 to traditional seller

𝑠tr in period 𝑡
TPd′𝑘𝑠on𝑡 Shipping cost (volume-dependent) per unit from distribution center 𝑘 to online seller 𝑠on in

period 𝑡
𝑍𝑘(𝑅𝑘) The accumulated standard normal distribution value such that 𝑃 (𝑍 ≤ 𝑍𝑘 (𝑅𝑘)) = 𝛼 is the

service level at distribution center 𝑘
𝜋𝑘𝑡 Fixed shortage cost per unit short at distribution center 𝑘 in period 𝑡
𝜋0𝑘𝑡 Unit selling price at distribution center 𝑘 in period 𝑡
𝑅𝑘 Review interval at distribution center 𝑘
𝜌𝑠𝑙𝑡 Correlation coefficient between demands at seller 𝑠 and at seller 𝑙 in period 𝑡
EIS𝑖𝑗𝑡 Environmental impacts per each transmitted unit from supplier 𝑖 to plant 𝑗 in period 𝑡
EIP𝑗𝑘𝑡 Environmental impacts per each transmitted unit from the plant 𝑗 to distribution center 𝑘

in period 𝑡
EId𝑘𝑠tr𝑡 Environmental impacts per each transmitted unit from distribution center 𝑘 to traditional

seller 𝑠tr in period 𝑡
EIds𝑘𝑠on𝑡 Environmental impacts per each transmitted unit from distribution center 𝑘 to online seller

𝑠on in period 𝑡
EIod𝑘𝑡 Environmental impacts related to opening distribution center 𝑘 in period 𝑡
EIos𝑠tr𝑡 Environmental impacts related to opening traditional seller 𝑠tr in period 𝑡
𝜃𝑖 Defective probability of raw material provided from supplier 𝑖
𝑒𝑡 Inflation rate in period 𝑡
𝑌𝑡 Number of DCs that can be opened in period 𝑡
𝜆 Conversion coefficient of raw material to product
𝑀 A big number
𝐺 Set of permissible review intervals
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Auxiliary variables

𝜇𝑝𝑗𝑡 Mean demand allocated to plant 𝑗 in period 𝑡
𝜇𝑑𝑘𝑡 Mean demand allocated to distribution center 𝑘 in period 𝑡
𝜎2𝑝𝑗𝑡 Variance in demand allocated to plant 𝑗 in period 𝑡
𝜎2𝑑𝑘𝑡 Variance in demand allocated to distribution center 𝑘 in period 𝑡
𝐼𝑗𝑡 End of period inventory of plant 𝑗 in period 𝑡
𝐵𝑘𝑡 End of period inventory of distribution center 𝑘 in period 𝑡
𝐻𝑠tr𝑡 End of period inventory of traditional seller 𝑠tr in period 𝑡
𝐻 ′

𝑠on𝑡 End of period inventory of online seller 𝑠on in period 𝑡
Ld𝑘 Order lead-time at distribution center 𝑘
Lp𝑗 Order lead-time at plant 𝑗
Ls𝑠 Order lead-time at seller 𝑠
ss𝑘𝑡 Level of safety stock at distribution center 𝑘 in period 𝑡

Decision variables

𝑟𝑖𝑗𝑡 The binary variable that specifies the service of supplier 𝑖 to plant 𝑗 in period 𝑡
𝑧𝑗𝑘𝑡 1 if plant 𝑗 serves distribution center 𝑘 in period 𝑡; 0 otherwise
𝑤𝑘𝑠𝑡 1 if distribution center 𝑘 serves seller 𝑠 in period 𝑡; 0 otherwise
𝑦𝑘𝑡 1 if distribution center 𝑘 is open in period 𝑡; 0 otherwise
𝑥𝑠tr𝑡 1 if traditional seller 𝑠tr open in period 𝑡; 0 otherwise
𝑣𝑠on𝑡 1 if online seller 𝑠on select in period 𝑡; 0 otherwise
𝑏𝑘𝑡 Percentage of demand back-ordered during shortage in period 𝑡 at distribution center 𝑘
𝛽𝑖𝑗𝑡 Number of raw material units developed by supplier 𝑖 and sent to plant 𝑗 in period 𝑡
𝐹𝑗𝑘𝑡 Number of product that plant 𝑗 sent to distribution center 𝑘 in period 𝑡
𝑄𝑘𝑠tr𝑡 Number of product that distribution center 𝑘 sent to traditional seller 𝑠tr in period 𝑡
𝑄′𝑘𝑠on𝑡 Number of product that distribution center 𝑘 sent to online seller 𝑠on in period 𝑡

3.3.2. Inventory policy in the distribution center

As we have noted earlier in assumptions, the inventory review policy (𝑆, 𝑅) in our study is only regarded for
DCs. The purpose of the inventory policy (𝑆, 𝑅) is to achieve the optimal values of 𝑆 and 𝑅 so that system
costs are minimized. According to this strategy, the inventory level is reviewed at fixed intervals (𝑅), and we
are obliged to bring the inventory status to its highest level (i.e., 𝑆). Therefore, order quantities depend on
inventory level check intervals. In this study, we tend to specify the optimal value of 𝑆 while assuming the
value of 𝑅 is known. The inventory policy (𝑆𝑘, 𝑅𝑘) shows the inventory system in the distribution center 𝑘,
so that 𝑆𝑘 and 𝑅𝑘 represents the order-up-to-level and the review intervals, respectively. The demand in the
distribution center 𝑘 (Dd𝑘𝑡) has a multivariate normal distribution with the mean value of 𝜇𝑑𝑘𝑡 =

∑︀
𝑠 𝜇𝑠𝑡𝑤𝑘𝑠𝑡

and the variance of 𝜎2𝑑𝑘𝑡 =
∑︀

𝑠

∑︀
𝑙 𝜌𝑠𝑙𝑡𝜎𝑠𝑡𝜎𝑙𝑡𝑤𝑘𝑠𝑡𝑤𝑘𝑙𝑡 for each period. Similarly, The demand of the plant 𝑗

(Dp𝑗𝑡) has a multivariate normal distribution with a mean value of 𝜇𝑝𝑗𝑡 =
∑︀

𝑘 𝜇𝑑𝑘𝑡 · 𝑧𝑗𝑘𝑡 and the variance of
𝜎2𝑝𝑗𝑡 for each period. Also, the Dd𝑘 (𝜏) and Dp𝑗 (𝜏) , respectively, indicates the demand of the time interval
𝜏 with the cumulative distribution function Fd𝑘 (.; 𝜏) and 𝐹𝑝𝑗 (.; 𝜏). The equations Ld𝑘𝑡 =

∑︀
𝑗 LTd𝑗𝑘𝑡𝑧𝑗𝑘𝑡,

Lp𝑗𝑡 =
∑︀

𝑖 LTp𝑖𝑗𝑡𝑟𝑖𝑗𝑡 and Ls𝑠𝑡 =
∑︀

𝑘 LTs𝑠𝑘𝑡𝑤𝑠𝑘𝑡 calculated the order lead-time at the distribution center 𝑘, the
plant 𝑗 and seller 𝑠, respectively for each period. In addition, Dd𝑘𝑡 (𝑅𝑘+Ld𝑘𝑡) indicates a demand of distribution
center 𝑘 during the lead-time and review interval so that it has normal distribution with average 𝜇𝑑𝑘𝑡 (𝑅𝑘+Ld𝑘𝑡)
and variance 𝜎2𝑑𝑘𝑡 (𝑅𝑘+Ld𝑘𝑡). Moreover, Dp𝑗𝑡

(︀
Lp𝑗𝑡

)︀
indicates the demand of plant 𝑗 during the lead-time so

that has a normal distribution with average 𝜇𝑝𝑗𝑡

(︀
Lp𝑗𝑡

)︀
and variance 𝜎2𝑝𝑗𝑡

(︀
Lp𝑗𝑡

)︀
[66]. We supposed that the

shortage was a combination of backlog and lost sale. Thus, a portion of the shortage is backlogged and the
remaining share is lost. In fact, this is derived from the classic model in which for a lost sale 𝑏𝑘𝑡 = 0 and for the
backordering, 𝑏𝑘𝑡 = 1 [43].
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The costs related to the DC in equation (3.1), is formulated according to the papers of Montgomery et al.
[43] and Vahdani et al. [66].

𝐶𝑘(𝑆𝑘) = 𝐹𝑗𝑘𝑡TPp𝑗𝑘𝑡 +
OCd𝑗𝑘𝑡 + FC𝑗𝑘𝑡

𝑅𝑘
+ HCd𝑘𝑡

[︂
𝑅𝑘Dd𝑘𝑡

2
+ 𝑆𝑘 −Dd𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡)

]︂
+

[︂
HCd𝑘𝑡 (1− 𝑏𝑘𝑡) +

𝜋𝑘𝑡 + (1− 𝑏𝑘𝑡) [𝑅𝑘 + 𝜋0𝑘𝑡 − TPd𝑘𝑠𝑡]
𝑅𝑘

]︂
𝛾(Dd𝑘𝑡). (3.1)

According to equation (3.1), ordering and shipping costs are presented in the first and second terms. The
approximate average cost of inventory and cost of shortages are formulated in the third and fourth terms,
respectively. Also 𝑆𝑘 is order-up-to-level and 𝛾 (Dd𝑘𝑡) = 𝐸 [Dd𝑘𝑡 (𝑅𝑘 + LTD𝑗𝑘𝑡)− 𝑆𝑘]+ is the estimated amount
of demands short per review period. Then, by considering the unit overage cost 𝐶𝑜𝑘 (𝑅𝑘) = HCd𝑘𝑡𝑅𝑘 and unit
underage cost 𝐶𝑢𝑘 (𝑅𝑘) = 𝜋𝑘𝑡 + (1− 𝑏𝑘𝑡) (𝜋𝑜𝑘𝑡 − TPd𝑘𝑠𝑡) − 𝑏𝑘𝑡HCd𝑘𝑡𝑅𝑘, equation (3.1), written as equation
(3.2):

𝐶𝑘(𝑆𝑘) = 𝐹𝑗𝑘𝑡TPp𝑗𝑘𝑡 +
OCd𝑗𝑘𝑡 + FC𝑗𝑘𝑡

𝑅𝑘
+ HCd𝑘𝑡

[︂
𝑅𝑘Dd𝑘𝑡

2
+ 𝑆𝑘 −Dd𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡)

]︂
+

[︂
𝐶𝑜𝑘(𝑅𝑘) + 𝐶𝑢𝑘(𝑅𝑘)

𝑅𝑘

]︂
𝐸 [Dd𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡)− 𝑆𝑘]+ . (3.2)

According to Vahdani et al. [66] the optimum order-up-to-level in the distribution center 𝑘 is achieved by
differentiating 𝜕𝐶𝑘(𝑆𝑘)/𝜕𝑆𝑘 = 0. Thus, 𝑆*𝑘 and safety stock at distribution center 𝑘, denoted by the following
equations:

𝑆*𝑘 = Dd𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡) + 𝑍𝑘(𝑅𝑘)
√︁

𝜎2
𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡) (3.3)

ss𝑘𝑡 = 𝑍𝑘(𝑅𝑘)
√︁

𝜎2
𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡) = 𝑍𝑘(𝑅𝑘)

√︃∑︁
𝑠∈𝑆

∑︁
𝑙∈𝑆

𝜌𝑠𝑙𝑡𝜎𝑠𝑡𝜎𝑙𝑡𝑤𝑘𝑠𝑡𝑤𝑘𝑙𝑡

∑︁
𝑗∈𝐽

(𝑅𝑘 + LTd𝑗𝑘𝑡) 𝑧𝑗𝑘𝑡. (3.4)

Also demand of the distribution center 𝑘 during the lead-time and review interval i.e. Dd𝑘𝑡 (𝑅𝑘 + LTD𝑗𝑘𝑡) has
a normal distribution with average value 𝜇𝑘𝑡 (𝑅𝑘 + LTD𝑗𝑘𝑡) and variance 𝜎2

𝑘𝑡 (𝑅𝑘 + LTD𝑗𝑘𝑡). Therefore, the
following equation is achieved [66]:

𝐸 [Dd𝑘𝑡(𝑅𝑘 + LTD𝑗𝑘𝑡)− 𝑦]+ =
√︁

𝜎2
𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡)𝐸(𝑍 − 𝜔)+ (3.5)

where 𝑍 denotes a standard normal random variable and 𝑦 = 𝜇𝑘𝑡 (𝑅𝑘 + LTD𝑗𝑘𝑡) + 𝜔
√︀

𝜎2
𝑘𝑡 (𝑅𝑘 + LTD𝑗𝑘𝑡). Also

according to Berman et al. [11], 𝐸 (𝑍 − 𝜔)+ = ∅ (𝜔) − 𝜔 [1− 𝜙 (𝜔)] and 𝜙 [𝑍𝑘 (𝑅𝑘)] = 𝐶𝑢𝑘 (𝑅𝑘) /𝐶𝑜𝑘(𝑅𝑘) +
𝐶𝑢𝑘 (𝑅𝑘). Accordingly, by putting the equation (3.3) at equation (3.2), we can ignore 𝑆𝑘 as a decision variable
in the proposed model. Therefore, the following equation is gained:

𝐶𝑘(𝑆*𝑘) = 𝐹𝑗𝑘𝑡TPp𝑗𝑘𝑡 +
OCd𝑗𝑘𝑡 + FC𝑗𝑘𝑡

𝑅𝑘
+ HCd𝑘𝑡

[︂
𝑅𝑘Dd𝑘𝑡

2
+ 𝑍𝑘(𝑅𝑘)

√︁
𝜎2

𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡)
]︂

+
[︂
𝐶𝑜𝑘(𝑅𝑘) + 𝐶𝑢𝑘(𝑅𝑘)

𝑅𝑘

]︂ [︂√︁
𝜎2

𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡)𝐸 (𝑍 − 𝑍𝑘(𝑅𝑘))+
]︂

= 𝐹𝑗𝑘𝑡TPp𝑗𝑘𝑡 +
OCd𝑗𝑘𝑡 + FC𝑗𝑘𝑡

𝑅𝑘
+

HCd𝑘𝑡𝑅𝑘Dd𝑘𝑡

2

+
[︂
HCd𝑘𝑡𝑍𝑘(𝑅𝑘) +

[︂
𝐶𝑜𝑘(𝑅𝑘) + 𝐶𝑢𝑘(𝑅𝑘)

𝑅𝑘

]︂
(∅ [𝑍𝑘(𝑅𝑘)]− 𝑍𝑘(𝑅𝑘) [1− 𝜙 [𝑍𝑘(𝑅𝑘)]])

]︂
×

√︁
𝜎2

𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡)
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= 𝐹𝑗𝑘𝑡TPp𝑗𝑘𝑡 +
OCd𝑗𝑘𝑡 + FC𝑗𝑘𝑡

𝑅𝑘
+

HCd𝑘𝑡𝑅𝑘Dd𝑘𝑡

2
+

[︂
HCd𝑘𝑡𝑍𝑘(𝑅𝑘) +

[︂
𝐶𝑜𝑘(𝑅𝑘) + 𝐶𝑢𝑘(𝑅𝑘)

𝑅𝑘

]︂
∅ [𝑍𝑘(𝑅𝑘)]− 𝑍𝑘(𝑅𝑘)𝐶𝑜𝑘(𝑅𝑘)

𝑅𝑘

]︂
×

√︁
𝜎2

𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡)

= 𝐹𝑗𝑘𝑡TPp𝑗𝑘𝑡 +
OCd𝑗𝑘𝑡 + FC𝑗𝑘𝑡

𝑅𝑘
+

HCd𝑘𝑡𝑅𝑘Dd𝑘𝑡

2
+

[︂
𝐶𝑜𝑘(𝑅𝑘) + 𝐶𝑢𝑘(𝑅𝑘)

𝑅𝑘

]︂
∅ [𝑍𝑘(𝑅𝑘)]

√︁
𝜎2

𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡). (3.6)

Therefore, the costs of distribution center 𝑘 are represented by equation (3.7).

𝐶(𝑋, 𝑌, 𝑅) =
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑗∈𝐽

𝐹𝑗𝑘𝑡TPp𝑗𝑘𝑡 +
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑗∈𝐽

OCd𝑗𝑘𝑡 + FC𝑗𝑘𝑡

𝑅𝑘
+

∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

HCd𝑘𝑡

(︂
𝑅𝑘𝜇𝑑𝑘𝑡

2

)︂

+
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑗∈𝐽

[︃
𝜋𝑘𝑡 + (1− 𝑏𝑘𝑡)

[︀
HCd𝑘𝑡𝑅𝑘 + 𝜋0𝑘𝑡 −

∑︀
𝑠∈𝑆 TPd𝑘𝑠𝑡

]︀
𝑅𝑘

]︃
𝜑 [𝑍𝑘(𝑅𝑘)]

×
√︃∑︁

𝑠∈𝑆

∑︁
𝑙∈𝑆

𝜌𝑠𝑙𝑡𝜎𝑠𝑡𝜎𝑙𝑡𝑤𝑘𝑠𝑡𝑤𝑘𝑙𝑡

∑︁
𝑗∈𝐽

(𝑅𝑘 + LTd𝑗𝑘𝑡) 𝑧𝑗𝑘𝑡. (3.7)

According to Montgomery et al. [43], the end of period inventory of distribution center 𝑘 can be formulated as
equation (3.8) that applied in constraint (3.25):

𝐵𝑘𝑡 = 𝐹𝑗𝑘𝑡𝑧𝑗𝑘𝑡 + 𝐵𝑘𝑡−1 + ss𝑘𝑡 −Dd𝑘𝑡 (𝑅𝑘 + LTd𝑗𝑘𝑡) + (1− 𝑏𝑘𝑡)𝛾(Dd𝑘𝑡)

→ 𝐵𝑘𝑡 =

⎛⎜⎜⎜⎜⎝
∑︀

𝑗∈𝐽 𝐹𝑗𝑘𝑡𝑧𝑗𝑘𝑡 + 𝐵𝑘𝑡−1 − 𝜇𝑑𝑘𝑡

(︂
𝑅𝑘 + Max

𝑗
(LTd𝑗𝑘𝑡)

)︂
+

(︁
𝑍𝑘(𝑅𝑘) + (1− 𝑏𝑘𝑡)

(︁
𝜑 [𝑍𝑘(𝑅𝑘)]− 𝑍𝑘(𝑅𝑘) 𝐶𝑜𝑘

𝐶𝑢𝑘+𝐶𝑜𝑘

)︁)︁
×

√︁∑︀
𝑠∈𝑆

∑︀
𝑙∈𝑆 𝜌𝑠𝑙𝑡𝜎𝑠𝑡𝜎𝑙𝑡𝑤𝑘𝑠𝑡𝑤𝑘𝑙𝑡

∑︀
𝑗∈𝐽 (𝑅𝑘 + LTd𝑗𝑘𝑡) 𝑧𝑗𝑘𝑡

⎞⎟⎟⎟⎟⎠ ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇. (3.8)

3.3.3. Objective function

In terms of the above notation and equation (3.7) the model presented as:

Min 𝑍1 =
∑︁
𝑡∈𝑇

∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

TC𝑖𝑗𝑡𝛽𝑖𝑗𝑡(1 + 𝑒𝑡) +
∑︁
𝑡∈𝑇

∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

OCp𝑖𝑗𝑡𝑟𝑖𝑗𝑡(1 + 𝑒𝑡) +
∑︁
𝑡∈𝑇

∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

UC𝑖𝑗𝑡𝛽𝑖𝑗𝑡(1− 𝜃𝑖)(1 + 𝑒𝑡)

+
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

FCd𝑘𝑡𝑦𝑘𝑡(1 + 𝑒𝑡) +
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑗∈𝐽

OCd𝑗𝑘𝑡 + FC𝑗𝑘𝑡

𝑅𝑘
𝑧𝑗𝑘𝑡(1 + 𝑒𝑡)

+
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑗∈𝐽

𝐹𝑗𝑘𝑡TPp𝑗𝑘𝑡𝑧𝑗𝑘𝑡(1 + 𝑒𝑡) +
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑗∈𝐽

HCp𝑗𝑡𝐼𝑗𝑡𝑧𝑗𝑘𝑡(1 + 𝑒𝑡)

+
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

HCd𝑘𝑡

(︂
𝑅𝑘𝜇𝑑𝑘𝑡

2

)︂
(1 + 𝑒𝑡) +

∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

HCd𝑘𝑡𝑍𝑘(𝑅𝑘)

×
√︃∑︁

𝑠∈𝑆

∑︁
𝑙∈𝑆

𝜌𝑠𝑙𝑡𝜎𝑠𝑡𝜎𝑙𝑡𝑤𝑘𝑠𝑡𝑤𝑘𝑙𝑡

∑︁
𝑗∈𝐽

(𝑅𝑘 + LTd𝑗𝑘𝑡) 𝑧𝑗𝑘𝑡(1 + 𝑒𝑡)

+
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑗∈𝐽

[︃
𝜋𝑘𝑡 + (1− 𝑏𝑘𝑡)

[︀
HCd𝑘𝑡𝑅𝑘 + 𝜋0𝑘𝑡 −

∑︀
𝑠∈𝑆 TPd𝑘𝑠𝑡

]︀
𝑅𝑘

]︃
𝜑 [𝑍𝑘(𝑅𝑘)]

×
√︃∑︁

𝑠∈𝑆

∑︁
𝑙∈𝑆

𝜌𝑠𝑙𝑡𝜎𝑠𝑡𝜎𝑙𝑡𝑤𝑘𝑠𝑡𝑤𝑘𝑙𝑡

∑︁
𝑗∈𝐽

(𝑅𝑘 + LTd𝑗𝑘𝑡) 𝑧𝑗𝑘𝑡(1 + 𝑒𝑡) +
∑︁
𝑡∈𝑇

∑︁
𝑠tr∈𝑆tr

FCs𝑠tr𝑡𝑥𝑠tr𝑡(1 + 𝑒𝑡)
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+
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑠tr∈𝑆tr

TPd𝑘𝑠tr𝑡𝑄𝑘𝑠tr𝑡(1 + 𝑒𝑡) +
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑠on∈𝑆on

TPd′𝑘𝑠on𝑡𝑄
′
𝑘𝑠on𝑡(1 + 𝑒𝑡)

+
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑠tr∈𝑆tr

HCst𝑠tr𝑡𝐻𝑠tr𝑡𝑤𝑘𝑠𝑡(1 + 𝑒𝑡) +
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑠on∈𝑆on

HCso𝑠on𝑡𝐻
′
𝑠on𝑡𝑤𝑘𝑠𝑡(1 + 𝑒𝑡). (3.9)

The first objective function developed in equation (3.9) minimizes total costs. The first term is transportation
costs from each supplier to each plant. The second and third terms refer to the fixed ordering cost from each
supplier to each factory and the purchase cost, respectively. Fixed costs of establishment of DCs are presented
in the fourth term. Variable ordering costs and transportation costs from each plant to DCs are shown in the
fifth and sixth terms, respectively. Holding costs and safety stocks are presented in the seventh to ninth terms.
The cost of inventory shortages is formulated in the tenth term. The eleventh term is related to the fixed costs
of opening traditional seller. The twelfth and thirteenth terms are the cost of transportation from each DC to
traditional and online sellers. The final terms refer to the holding costs in each seller.

The second objective function is presented in (3.10).

Min 𝑍2 =
∑︁
𝑡∈𝑇

∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

EIS𝑖𝑗𝑡𝛽𝑖𝑗𝑡 +
∑︁
𝑡∈𝑇

∑︁
𝑗∈𝐽

∑︁
𝑘∈𝐾

EIP𝑗𝑘𝑡𝐹𝑗𝑘𝑡 +
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

EIod𝑘𝑡𝑦𝑘𝑡

+
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑠tr∈𝑆tr

EId𝑘𝑠tr𝑡𝑄𝑘𝑠tr𝑡 +
∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

∑︁
𝑠on∈𝑆on

EIds𝑘𝑠on𝑡𝑄
′
𝑘𝑠on𝑡 +

∑︁
𝑡∈𝑇

∑︁
𝑘∈𝐾

EIos𝑠tr𝑡𝑥𝑠tr𝑡. (3.10)

The environmental impacts of the network are minimized according to equation (3.10). The first term denotes
the environmental effects of the transfer of raw materials purchased from suppliers. The second and third terms
are related to the environmental impacts resulting from the transfer from plants to DCs and the opening of
DCs, respectively. The environmental effects of transferring items from DCs to each seller and opening the
traditional sellers are presented in the rest of the terms, respectively. The entire model is subject to constraints
(3.11)–(3.35).

3.3.4. Constraints

The constraints are presented below.∑︁
𝑘∈𝐾

𝑤𝑘𝑠𝑡 = 1 ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (3.11)∑︁
𝑘∈𝐾

𝑤𝑘𝑠tr𝑡 ≤ 𝑥𝑠tr𝑡 ∀𝑠tr ∈ 𝑆tr, 𝑡 ∈ 𝑇 (3.12)∑︁
𝑘∈𝐾

𝑤𝑘𝑠on𝑡 ≤ 𝑣𝑠on𝑡 ∀𝑠on ∈ 𝑆on, 𝑡 ∈ 𝑇 (3.13)

𝐻𝑠tr𝑡 =
∑︁
𝑘∈𝐾

𝑄𝑘𝑠tr𝑡 + 𝐻𝑠tr𝑡−1 − 𝜇𝑠tr𝑡 ∀𝑠tr ∈ 𝑆tr, 𝑡 ∈ 𝑇 (3.14)

𝐻 ′
𝑠on𝑡 =

∑︁
𝑘∈𝐾

𝑄′𝑘𝑠on𝑡 + 𝐻 ′
𝑠on𝑡−1 − 𝜇𝑠on𝑡 ∀𝑠on ∈ 𝑆on, 𝑡 ∈ 𝑇 (3.15)∑︁

𝑘∈𝐾

𝑄𝑘𝑠tr𝑡 + 𝐻𝑠tr𝑡−1 ≤ Cap𝑠tr𝑡𝑥𝑠tr𝑡 ∀𝑠tr ∈ 𝑆tr, 𝑡 ∈ 𝑇 (3.16)∑︁
𝑘∈𝐾

𝑄′𝑘𝑠on𝑡 + 𝐻 ′
𝑠on𝑡−1 ≤ Cap′𝑠on𝑡𝑣𝑠on𝑡 ∀𝑠on ∈ 𝑆on, 𝑡 ∈ 𝑇 (3.17)∑︁

𝑠∈𝑆

𝜇𝑠𝑡𝑤𝑘𝑠𝑡 = 𝜇𝑑𝑘𝑡 ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3.18)∑︁
𝑠∈𝑆

𝜎2
𝑠𝑡𝑤𝑘𝑠𝑡 = 𝜎2𝑑𝑘𝑡 ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3.19)
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𝑘∈𝐾

𝜇𝑑𝑘𝑡𝑧𝑗𝑘𝑡 = 𝜇𝑝𝑗𝑡 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (3.20)∑︁
𝑘∈𝐾

𝜎2𝑑𝑘𝑡𝑧𝑗𝑘𝑡 = 𝜎2𝑝𝑗𝑡 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (3.21)∑︁
𝑠∈𝑆

𝑤𝑘𝑠𝑡 ≤
∑︁
𝑗∈𝐽

𝑧𝑗𝑘𝑡 ≤ 𝑦𝑘𝑡 ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3.22)

∑︁
𝑘∈𝐾

𝑦𝑘𝑡 ≤ 𝑌𝑡 ∀𝑡 ∈ 𝑇 (3.23)

𝐼𝑗𝑡 =
∑︁
𝑖∈𝐼

𝛽𝑖𝑗𝑡(1− 𝜃𝑖)𝜆+𝐼𝑗𝑡−1 − 𝜇𝑝𝑗𝑡 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (3.24)

𝐵𝑘𝑡 =

⎛⎜⎜⎜⎜⎝
∑︀

𝑗∈𝐽 𝐹𝑗𝑘𝑡𝑧𝑗𝑘𝑡 + 𝐵𝑘𝑡−1 − 𝜇𝑑𝑘𝑡

(︂
𝑅𝑘 + Max

𝑗
(LTd𝑗𝑘𝑡)

)︂
+

(︁
𝑍𝑘(𝑅𝑘) + (1− 𝑏𝑘𝑡)

(︁
𝜑 [𝑍𝑘(𝑅𝑘)]− 𝑍𝑘(𝑅𝑘) 𝐶𝑜𝑘

𝐶𝑢𝑘+𝐶𝑜𝑘

)︁)︁
×

√︁∑︀
𝑠∈𝑆

∑︀
𝑙∈𝑆 𝜌𝑠𝑙𝑡𝜎𝑠𝑡𝜎𝑙𝑡𝑤𝑘𝑠𝑡𝑤𝑘𝑙𝑡

∑︀
𝑗∈𝐽 (𝑅𝑘 + LTd𝑗𝑘𝑡) 𝑧𝑗𝑘𝑡

⎞⎟⎟⎟⎟⎠ ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3.25)

∑︁
𝑖∈𝐼

𝛽𝑖𝑗𝑡(1− 𝜃𝑖)𝜆 + 𝐼𝑗𝑡−1 ≤ CP𝑗𝑡 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (3.26)∑︁
𝑗∈𝐽

𝛽𝑖𝑗𝑡 ≤ CS𝑖𝑡 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (3.27)

𝛽𝑖𝑗𝑡 ≤ 𝑟𝑖𝑗𝑡 ×𝑀 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (3.28)∑︁
𝑖∈𝐼

LTp𝑖𝑗𝑡𝑟𝑖𝑗𝑡 ≤ LT𝑗𝑡 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (3.29)

∑︁
𝑘∈𝐾

⎛⎝∑︁
𝑗∈𝐽

LTd𝑗𝑘𝑡𝑧𝑗𝑘𝑡 + LTs𝑘𝑠𝑡

⎞⎠𝑤𝑘𝑠𝑡 ≤ LT′𝑠𝑡 ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (3.30)

𝑍𝑘(𝑅𝑘)
√︃∑︁

𝑠∈𝑆

∑︁
𝑙∈𝑆

𝜌𝑠𝑙𝑡𝜎𝑠𝑡𝜎𝑙𝑡𝑤𝑘𝑠𝑡𝑤𝑘𝑙𝑡

∑︁
𝑗∈𝐽

(𝑅𝑘 + LTd𝑗𝑘𝑡) 𝑧𝑗𝑘𝑡

+
∑︁
𝑗∈𝐽

𝐹𝑗𝑘𝑡𝑧𝑗𝑘𝑡 + 𝐵𝑘𝑡−1 ≤ CD𝑘𝑡𝑦𝑘𝑡 ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3.31)

𝛽𝑖𝑗𝑡, 𝜇𝑝𝑗𝑡, 𝜇𝑑𝑘𝑡, 𝜎
2𝑑𝑘𝑡, 𝜎

2𝑝𝑗𝑡, 𝐹𝑗𝑘𝑡, 𝑄𝑘𝑠tr𝑡, 𝑄
′
𝑘𝑠on𝑡, 𝐼𝑗𝑡, 𝐵𝑘𝑡 ∈ 𝑍+ ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

(3.32)
𝑟𝑖𝑗𝑡, 𝑦𝑘𝑡, 𝑧𝑗𝑘𝑡, 𝑤𝑘𝑠𝑡, 𝑥𝑠tr𝑡, 𝑣𝑠on𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇

(3.33)
0 ≤ 𝑏𝑘𝑡 ≤ 1 ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3.34)
𝑅𝑘 ∈ 𝐺 ∀𝑘 ∈ 𝐾. (3.35)

Constraint (3.11) is the sourcing strategy assumption for each seller which means each seller is allocated to
one DC. Constraints (3.12) and (3.13) confirm that DCs are allocated to sellers when they are selected and
established. Constraints (3.14) and (3.15) formulated the end-of-period inventory of each seller. Constraints
(3.16) and (3.17) show the capacity of traditional and online sellers, respectively. The mean and variance of
the demand of the assigned sellers to the DCs are presented in equations (3.18) and (3.19) and similarly,
the mean and variance of the demand of the DCs assigned to each plant are shown in equations (3.20) and
(3.21) respectively. Constraint (3.22) indicates that allocation to plants and sellers will be possible if a DC is
established. Constraint (3.23) shows the upper bound of the number of established DCs. Constraints (3.24) and
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(3.25) formulated each plant’s end of period inventory and distribution center, respectively. The constraint for
capacity of plants is given by (3.26). Constraint (3.27) ensures that the total raw materials do not surpass the
capacity of the supplier. Constraint (3.28) ensures that raw materials are shipped to plants when a supplier
is selected. Constraints (3.29) and (3.30) calculate the maximum lead time for plants and sellers, respectively.
Constraint (3.31) controls the capacity in each DC. Finally, the nature of the problem variables is presented in
constraints (3.32)–(3.34). Constraint (3.35) indicates the set of allowable intervals for inventory review at each
DC.

4. Solution method

In this study, we delineate a medium-sized problem and solve this by the augmented 𝜀-constraint method. The
model is calculated in the GAMS software 25.1.3 using the BARON solver.Moreover, Grasshopper optimization
Algorithm (GOA) method is employed for solving our model in large size.

4.1. Multi-objective methods

Different approaches developed to solve multi-objective decision making (MODM), including the Weighted
Sum Approach (WSA), Epsilon Constraint (EC), Augmented Epsilon Constraint (AEC) Lexicography (Lex),
Goal Programming (GP), Lp-metrics methods and more. In comparison to other multi-objective problem solving
methods, the EC method has undeniable advantages.

The advanced version of the EC method is the AEC method, which improves the weaknesses of the classical
EC method and modifies the generation process of the Pareto front and ensures its optimality. In the AEC
method, the first objective is considered as the main objective, and the other objectives are constrained as the
upper bound of epsilon [16], and the following model is replaced in which 𝑠𝑖 are the nonnegative variables for the
slack, and the parameter 𝜙𝑖 = 𝑅 (𝑓1) /𝑅 (𝑓𝑖) is considered for normalizing the first objective function relative to
the objective 𝑖. In order to better implement the AEC method, the acceptable range of epsilons can be obtained
using the lexicographic method [37].

Min 𝑓1(𝑥)−
𝑛∑︁

𝑖=2

𝜑𝑖𝑠𝑖

s.t.

𝑓𝑖(𝑥) + 𝑠𝑖 = 𝜀𝑙
𝑖 ∀𝑖 = 2, 3, . . . , 𝑛

𝑥 ∈ 𝑋

𝑠𝑖 ≥ 0. (4.1)

In the offered model the objective function of cost is expressed as the function 𝑓1 (𝑥) = obj1 and environmental
function is demonstrated as constraint under the equation obj2 + 𝑠2 = 𝜀𝑙

2 [37].
In order to calculate the vector 𝜀𝑙

𝑖, the lowest and highest values of the 𝑘th objective achieved using the payoff
table and are displayed as 𝑓min

𝑘 and 𝑓max
𝑘 . Then, the distance between the values of the 𝑘th objective and the

value of 𝜀𝑙
𝑘 can be obtained as follows:

𝑟𝑘 = 𝑓max
𝑘 − 𝑓min

𝑘 ; 𝜀𝑙
𝑘 = 𝑓max

𝑘 − 𝑟𝑘

𝑞𝑘
× 𝑙; ∀𝑘 ̸= 𝑖, 𝑙 = 0, . . . , 𝑞𝑘. (4.2)

Based on the explanations provided in the proposed model, the first objective function, i.e. cost minimization,
is considered as the main objective function and the second objective function, i.e. environmental effects, is
limited to the amount of epsilon and placed in the constraints (see Eq. (4.3)). The amount of epsilon changes to
six values based on the distance between the changes of the worst and the best value and the decision maker’s
opinion, and the result is the creation of six points on the Pareto front.
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Min 𝑍1 − 𝜑2𝑠2

s.t.

𝑍2 + 𝑠2 = 𝜀𝑙
2

𝑥 ∈ 𝑋

𝑠2 ≥ 0. (4.3)

4.2. Grasshopper optimization algorithm (GOA)

The Grasshopper optimization algorithm (GOA) was addressed by Saremi et al. [59] by mimicking the mass
interactions of grasshoppers in nature. Three characteristics of gravity (𝐺𝑖), wind advection (𝐴𝑖) and social
interaction (𝑆𝑖) affect the flight route of grasshopper in a crowd, so that the component of social interaction as
the main search mechanism is calculated by equation (4.4):

𝑆𝑖 =
𝑁∑︁

𝑗=1,𝑗 ̸=𝑖

𝑠(𝑑𝑖𝑗)𝑑𝑖𝑗 . (4.4)

In this equation, 𝑑𝑖𝑗 calculates the distance between grasshoppers by equation 𝑑𝑖𝑗 = |𝑥𝑗 − 𝑥𝑖|. Also, 𝑠 is a
function to determining the power of social forces and 𝑑𝑖𝑗 = 𝑥𝑗−𝑥𝑖/𝑑𝑖𝑗 . In this equation, function 𝑠 is considered
as the main part of the social interaction function, which defines the direction of movement of the grasshopper
in the group as follows:

𝑠(𝑟) = 𝑓𝑒
−𝑟
𝑙 − 𝑒−𝑟. (4.5)

In the above equation, the power of attraction with parameter 𝑓 and the attractive distance scale with
parameter 𝑙 are shown. This function leads to the creation of attraction and repulsion forces between the
grasshoppers, so that changing the parameters of function 𝑠 significantly affects the swarm behavior. Therefore,
Saremi et al. [59] adjusted the following model to design an optimization algorithm:

𝑋𝑑
𝑖 = 𝑐

⎛⎝ 𝑁∑︁
𝑗=1,𝑗 ̸=𝑖

𝑐
𝑢𝑏𝑑 − 𝑙𝑏𝑑

𝑠
𝑠
(︀⃒⃒

𝑥𝑑
𝑗 − 𝑥𝑑

𝑖

⃒⃒)︀ 𝑥𝑗 − 𝑥𝑖

𝑑𝑖𝑗

⎞⎠ + 𝑇𝑑 (4.6)

𝑢𝑏𝑑 and 𝑙𝑏𝑑 are the upper and lower bound of the 𝑑-th dimension, respectively. The parameters 𝑇𝑑 and 𝑐 are
considered as controller parameters in achieving to the goal. Grasshoppers’ interactions and goal pursuit lead
to update the best solution, and parameter 𝑐 is the main controller parameter, which is calculated by equation
(4.7):

𝑐 = 𝑐max − 𝑙
𝑐max − 𝑐min

𝐿
(4.7)

𝐿 and 𝑙 show the maximum number of iteration and the current iteration respectively. The value of 𝑐max is 1
and 𝑐min is 0.00001.

This algorithm continuously generates initial solutions to generate discrete variables and then changes them
to discrete [1, 41, 59]. Figure 3 shows how to create a binary variable 𝑦𝑘𝑡 for 6 potential DCs. This variable
is used as a discrete variable to determine the number of potential DCs, and the algorithm for generating it
first creates a continuous vector between zero and one. After creating this vector, it arranges its elements in
ascending order and thus creates a new vector. Since the maximum number of DCs allowed to be established is
known, another random number is created between one and the number of allowable DCs, and the distribution
centers are randomly selected in each iteration.

Despite its simplicity, this algorithm can solve complex models and effectively finds optimal solutions for
complex problems [4, 57, 59]. The number of algorithm parameters for adjustment is low and due to the use of
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A random continuous vector

654321DCs

0.60.40.30.50.70.2UNIF(0,1)

↓

Sorted vector

263541DCs

0.70.60.50.40.30.2UNIF(0,1)

↓

A random permutation of DCs

263541

Figure 3. Solution representation for the GOA [1].

Table 3. Test problems’ sizes.

Test
problems
No.

No. of
suppliers
(𝐼)

No. of
sellers
(𝑆)

No. of
traditional
sellers (𝑆tr)

No. of
online
sellers (𝑆on)

No. of
potential DCs
(𝐾)

No. of
plants
(𝐽)

No. of time
period (𝑇 )

1 2 3 2 1 2 2 2
2 2 4 2 2 3 3 2
3 3 4 2 2 4 3 3
4 3 5 3 2 4 4 3
5 3 5 3 3 4 4 3
6 3 6 4 3 4 4 4
7 4 6 4 4 5 4 5

vectors in this algorithm, the dimensions can be extended to any dimension. Therefore, it has been used in the
present study. In order to solve the model using this algorithm, the payoff table for objectives is created and by
changing the values to the right of the second constrained objective function, the Pareto front is obtained.

5. Numerical examples

5.1. Computational experiment

In this section, the test problems are produced to examine the application of the model. The values of each
test problem are presented in Table 3. The range of model parameters is also shown in Table 4. The results of
model solving based on each of the test problems are presented in the results section.

5.2. Parameters tuning

Taguchi technique is a suitable approach for designing experiments to parameters tuning of meta-heuristic
methods. This technique works by designing a number of experiments based on the algorithm’s parameters and
determines the appropriate value for each parameter. The effective parameters in GOA, such iteration and npop
(the number of grasshoppers) are presented in Table 5.

Based on the number of parameters (factors) and their status, 9 experiments are designed in Minitab software.
These experiments and their results are calculated and reviewed by the software, and the results are illustrated
in Figure 4. According to this figure, the appropriate parameters are iteration = 100 and npop = 50.

5.3. Model verification

We examined the achievement of logical results to validate the mathematical model of the supply chain,
including 3 suppliers, 5 sellers (3 traditional sellers and 2 online sellers), 4 DCs, 4 plants and three time periods
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Table 4. The ranges of parameters of the test problems.

Parameters Values Parameters Values Parameters Values

CS𝑖𝑡 𝑈(20, 22) TPfs𝑘𝑠𝑡 𝑈(2, 5) 𝜆 𝑈(0.2, 0.5)
CD𝑘𝑡 𝑈(80, 225) UC𝑖𝑗𝑡 𝑈(1, 2) 𝜋𝑘𝑡 𝑈(5, 6)
CP𝑗𝑡 𝑈(80, 225) LT𝑗𝑡 𝑈(8, 15) 𝜋0𝑘𝑡 𝑈(2, 3)
Cap𝑠tr𝑡 𝑈(22, 25) LT′𝑠𝑡 𝑈(8, 15) 𝑅𝑘 𝑈(1, 2)
Cap′𝑠on𝑡 𝑈(22, 25) LTd𝑗𝑘𝑡 𝑈(1, 2) 𝜌𝑠𝑙𝑡 𝑈(0, 1)
𝜇𝑠𝑡 𝑈(1, 6) LTp𝑖𝑗𝑡 𝑈(1, 2) EIS𝑖𝑗𝑡 𝑈(0.002, 0.005)
𝜎2

𝑠𝑡 𝑈(1, 2) LTs𝑘𝑠𝑡 𝑈(1, 2) EIP𝑗𝑘𝑡 𝑈(0.4, 0.5)
FCd𝑘𝑡 𝑈(2, 5) OCp𝑖𝑗𝑡 𝑈(1, 2) EId𝑘𝑠tr𝑡 𝑈(0.4, 0.5)
FCs𝑠tr𝑡 𝑈(2, 5) OCd𝑗𝑘𝑡 𝑈(2, 5) EIds𝑘𝑠on𝑡 𝑈(0.4, 0.5)
HCp𝑗𝑡 𝑈(3, 4.5) TC𝑖𝑗𝑡 𝑈(0.05, 0.1) EIod𝑘𝑡 𝑈(0.4, 0.5)
HCd𝑘𝑡 𝑈(3, 4.5) TPp𝑗𝑘𝑡 𝑈(0.05, 1) EIos𝑠tr𝑡 𝑈(0.4, 0.5)
HCst𝑠tr𝑡 𝑈(3, 4.5) TPd𝑘𝑠𝑡 𝑈(0.05, 1) 𝜃𝑖 𝑈(0.1, 0.5)
HCso𝑠on𝑡 𝑈(3, 5) TPd𝑘𝑠tr𝑡 𝑈(0.05, 1) 𝑒𝑡 𝑈(0.1, 0.5)
FC𝑗𝑘𝑡 𝑈(2, 5) TPd′𝑘𝑠on𝑡 𝑈(0.05, 1) 𝑌𝑡 𝑈(1, 3)

Table 5. State table and Taguchi analyze parameters.

Iteration npop

State 1 75 30
State 2 100 40
State 3 125 50

Figure 4. Taguchi’s result.

(fourth test problem). The results of running AEC method code in GAMS for each test problem are presented in
Figure 5, which displays the contrast between two objectives. Moreover, according to Figure 6, the performance
of the objective functions is balanced by considering different weights and the set of Pareto optimal solutions is
achieved. According to the policy and preferences proposed by decisionmakers, the best answer can be chosen
from the values of the results. Thus, we presented the achievement of logical results according to the different
values of the objective functions.
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Figure 5. Pareto’s Objective functions obtained through the AEC method.

Figure 6. Trade-off between two objective functions.

6. Result and discussion

6.1. Results

The results of Pareto-optimal solutions for each test problem by using AEC method shown in Table 6. Also,
computational time for each test problem shows in the second column of Table 6.

In the following, the Payoff table of the fourth test problem is presented in Table 7.
The results of Pareto-optimal solutions of fourth test problem by using the AEC method are presented in

Figure 7. Figure 7a shows the second Pareto solution (grid point) of the fourth test problem. The second supplier
is selected in the first period, and it is served all the factories. Also, in this period, the second factory hasn’t
shipped any product to any DCs, and the third DC is served the fifth seller (an online seller). In the second
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Table 6. The results for each test problem AEC method.

Test problems
No.

Time (s) Obj. function
values

Pareto-optimal solutions

1 2 3 4 5 6

1 4.44 Cost 122.146 128.19 128.308 128.642 141.307 157.188
EI 13.166 12.304 11.86 11.129 10.565 9.769

2 22.54 Cost 180.567 182.845 195.312 202.899 218.937 231.019
EI 15.17 14.707 14.243 13.78 13.316 12.852

3 34.71 Cost 409.543 413.131 435.371 444.555 448.854 455.306
EI 22.286 21.829 21.371 20.913 20.456 19.998

4 73.52 Cost 525.967 539.998 544.548 549.307 557.281 564.611
EI 25.581 25.496 25.097 24.699 24.3 23.901

5 113.12 Cost 599.604 606.315 613.485 678.015 680.474 682.416
EI 32.733 32.033 31.333 30.633 29.933 29.232

6 286.95 Cost 701.16 712.54 720.43 743.12 748.55 756.28
EI 35.12 34.85 34.202 33.56 33.018 32.73

7 371.28 Cost 782.65 793.57 800.35 811.37 840.22 849.44
EI 40.83 40.011 39.29 39.85 38.79 38.26

Table 7. Payoff table of the fourth test problem.

𝑍1 𝑍2

Min 𝑍1 518.915 25.683
Min 𝑍2 755.311 23.104

period, the second supplier is served the second factory, and it’s served the third DC, and it’s served all the
sellers. Also, in the third period, the first supplier is served the third factory, and it’s served the fourth DC, and
from it, the products are sent to all the sellers. Similarly, Figure 7b, which is the fifth Pareto’s solution from
the fourth test problem, can be interpreted.

6.2. Comparison of exact and metaheuristic methods

We solved the generated test problems using the GOA method and compared the results with GAMS to
confirm its validity for large size applications. As shown in Table 8, due to the acceptable difference between
the GOA method and GAMS results, the relevant algorithm can be applied to solve the model on a large scale.

The present model in small and medium sizes can be used in some areas of a zone, while by increasing the
dimensions of the model, the practical application of the model can be considered in covering the whole of the
zone. Thus, increasing the dimensions of the model can be used operationally in location-allocation-inventory
decisions on a greater level. We increased the dimensions of the model and listed the results of GOA in Table 8.
Also, the convergence diagram of the metaheuristic method is presented in Figure 8.

Moreover, the statistical analysis on the equality of the value of objective functions obtained by AEC and
the GOA algorithm is investigated. A medium-sized test problem has been run 25 times by the GOA and the
normality of this data is tested with Minitab software and is plotted in Figures 9 and 10 for the first and second
objective functions, respectively. Therefore, the assumption of a normal distribution for the data obtained by
the metaheuristic algorithm is logical.

According to Montgomery [42], the following assumptions are made for the ANOVA test:

𝐻0 : 𝜇𝑍GOA = 𝜇𝑍AEC
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Figure 7. Results of Pareto frontier and feasible solutions based on AEC method. (a) 1st
structure of the feasible result. (b) 2nd structure of the feasible result.
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Table 8. Solutions obtained by GOA and GAMS.

Test AEC GOA Gap (%)
problem 𝑍1 𝑍2 𝑍1 𝑍2 𝑍1 𝑍2

1 128.642 11.129 129.094 11.238 0.351 0.979
2 218.937 13.316 220.013 13.518 0.491 1.516
3 444.555 20.913 448.109 21.321 0.799 1.95
4 549.307 24.699 553.582 24.988 0.778 1.17
5 613.485 31.333 619.233 31.764 0.937 1.375
6 743.12 33.56 749.68 34.01 0.883 1.34
7 800.35 39.29 808.71 39.98 1.044 1.756
8 – – 1075.3059 52.622 – –
9 – – 1628.5187 77.190 – –

Figure 8. Convergence diagram of the model in large size.

𝐻1 : 𝜇𝑍GOA ̸= 𝜇𝑍AREC .

The null hypothesis indicates the equality of the mean of the results of the two approaches and the opposite
hypothesis indicates their inequality. The results of ANOVA statistical analysis are presented in Table 9.

Based on the results shown in Table 9, at a significance level of 0.05, all sample statistics are in the acceptance
area and null hypothesis cannot be rejected. Therefore, there is no significant difference between the results AEC
and GOA methods.

7. Sensitivity analysis

To evaluate the proposed model’s efficiency, the sensitivity analysis is presented. We consider different values
for the main parameters and assess the behavior of the objective functions and the value of decision variables.

7.1. The impact of seller’s demand and storage capacity of suppliers

We accomplished the sensitivity analysis in four categories. In the first category, we’ve increased the storage
capacity of suppliers by keeping the distribution functions of the seller’s demand constant. In the second category,
we examined the effect of reducing the storage capacity of suppliers while demand is constant. In the third
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Figure 9. Probability plot of first objective function.

Figure 10. Probability plot of the second objective function.

category, by keeping the supplier’s storage capacity stable, we’ve increased the demand for the sellers, and finally,
in the fourth category, we’ve examined the combined effect of increasing demand for sellers and increasing the
storage capacity of suppliers. The results of the first and second categories are shown in Figures 11a and 11b,
and the results from the third and fourth categories are depicted in Figures 12a and 12b.

Looking horizontally at Figure 8a, we find that with increasing the supplier’s storage capacity, the value of
𝑍1 and 𝑍2 in Pareto solutions behaves inversely. Increasing cost leads to reduced environmental impact and
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Table 9. ANOVA test output results.

Source of variation DF Sum of squares Mean square 𝐹 𝑃 -value

Response 1 545.757 545.757 2337.73 0.984
𝑍1 Error 48 11.206 0.233

Total 49 556.963
Response 1 6.5403 6.5403 175.51 0.957

𝑍2 Error 48 1.7887 0.0373
Total 49 8.3289

vice versa. The cause of these ups and downs can be explained by the amount that the Beta variable takes on.
Similarly, Figure 8b can be expressed in the case of decreasing the minimum capacity of the suppliers.

In Figure 11a, it is clear that as the demand of sellers increases, 𝑍1 and 𝑍2 at the Pareto solutions is
gradually increasing. According to Figure 11a, if the capacity of suppliers remains constant and the average
demand increases, the total costs and environmental impacts will increase. Increasing the shortage costs and
also the transportation of products in the network leads to an increase in both objective functions.

According to Figure 11b, it is clear that as the storage capacity of suppliers and the average seller’s demand
increases simultaneously, the objective functions behave is reverse, so that the increase of the first objective
function leads to a decrease in environmental impact and vice versa. According to Figure 12a, an increase in
demand leads to an increase in cost and environmental impact, while according to Figure 12b, an appropriate
adjustment can be made to the cost and environmental impact by increasing capacity.

7.2. The impact of inflation on lack of inventory and objective functions

The results of the sensitivity analysis of changes in the inflation rate are shown in Table 10. The results
show that as the inflation rate grows, the cost function increases due to the increase in the cost of back-
ordered demand and inventory shortages. This means that the rate of production throughout the supply chain
is declining, resulting in reduced environmental impact.

As shown in Figure 13, a rising inflation rate will lead to increased system costs and shortages, and conse-
quently, the cost of the whole supply chain will increase. Moreover, as the inflation rate and shortage increase,
the quantities produced and transmitted decrease, resulting in reduced environmental impacts. Moreover, the
effect of the inflation rate on the lack of inventory is presented in Figure 14. This figure illustrates that increas-
ing the inflation rate leads to increasing costs and decreasing the volume of orders and consequently, shortages
increase.

7.3. The impact of defective probability on lack of inventory, objective functions, and
safety stock

The results of the changes in the defective probability of the product are shown in Table 11 and
Figures 15 and 16. Based on these results, we find that the more defective products are produced, the cost
performance increases due to the increase in shortages and the preservation of higher safety stocks (see Fig. 16).
In addition, as defective probability increases, transfers at different levels of the chain to meet demand increase
and accordingly increased environmental impact.

7.4. The impact of fixed cost of opening DCs on the objective functions

According to the results of Table 12, it is clear that the higher the fixed costs of opening DCs, the less DCs
will be ready to serve, which will lead to a reduction in environmental impacts resulting from the opening of
these centers. This is clearly shown in Figure 17. Moreover, increasing the fixed cost of opening DCs leads to
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(a)

(b)

Figure 11. (a) The results of the first category. (b) The results of the second category.

an increase in the total cost. In this way, managers can have a good balance between environmental impact and
cost function by choosing the optimal number of DCs.

7.5. The impact of maximum lead time from DCs to sellers on the objective functions

The results of changes in the maximum lead time from DCs to sellers parameter in Figure 18 and Table 13
demonstrate that the longer the lead time, the lesser the value of both objective functions. This means that
transportation-related costs are reduced, and as a result, the total costs and environmental effects on the entire
network are reduced.

7.6. The impact of sellers and DCs capacity on the environmental impact

The effect of variations in the capacity of DCs and sellers (traditional and online) on the second objective
function, namely environmental impact, is investigated in Figures 19–21, respectively. As shown in Figure 19,
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(a)

(b)

Figure 12. (a) The results from the third category. (b) The results from the fourth category.

Table 10. Result of the first Pareto-solution of fourth test problem.

Inflation
rate

Objective function
Total lack
of inventoryCost

Environmental
impact

𝑈 (0.1, 0.2) 472.822 29.911 1.659
𝑈 (0.2, 0.3) 518.219 26.885 3.027
𝑈 (0.3, 0.4) 590.018 24.697 5.513
𝑈 (0.4, 0.5) 664.236 25.011 7.324
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Figure 13. The effect of Inflation rate on the objective functions.

Figure 14. The effect of the Inflation rate on the lack of inventory.

Table 11. Result of the first Pareto-solution of fourth test problem.

Defective
probability

Objective function
Safety
stock

Total lack
of inventoryCost

Environmental
impact

𝑈 (0.1, 0.2) 52.642 21.699 8.984 6.444
𝑈 (0.2, 0.3) 519.387 26.882 8.796 9.754
𝑈 (0.3, 0.4) 543.234 29.464 9.315 10.368
𝑈 (0.4, 0.5) 581.159 33.878 1.157 12.292



3272 AIDA REZAEI ET AL.

Figure 15. The effect of defective probability on the objective functions.

Figure 16. The effect of defective probability on the lack of inventory and safety stock.

Table 12. Result of the first Pareto-solution of fourth test problem

Fixed cost of opening DCs Cost Environmental impact

𝑈 (2, 5) 525.967 25.581
𝑈 (5, 8) 563.028 24.965
𝑈 (8, 11) 594.336 24.322
𝑈 (11, 14) 667.219 23.784
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Figure 17. The effect of fixed cost of opening DCs on the objective functions.

Table 13. Result of the first Pareto-solution of fourth test problem.

Lead time Objective function
Cost Environmental impact

𝑈 (8, 10) 573.902 25.429
𝑈 (10, 15) 537.038 25.878
𝑈 (15, 20) 511.739 24.502
𝑈 (20, 25) 483.586 24.760

Figure 18. The impact of maximum lead time from DCs to sellers on the objective functions.

increasing the capacity of DCs leads to a decreasing trend in the behavior of 𝑍2. This can be explained by
reducing the number of established DCs and changing the amounts sent to them, which leads to a reduction in
environmental impact.

Figures 20 and 21 indicate a rather descending trend in the performance of 𝑍2 with increasing sellers (tradi-
tional and online) capacity. These figures indicate that the second objective function is sensitive to fluctuations in
sellers’ capacity, and by determining the appropriate seller capacity; the environmental impact can be improved.
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Figure 19. The impact of DCs capacity on the second objective function.

Figure 20. The impact of traditional seller capacity on the second objective function.

7.7. Discussion and managerial insights

In this research, we studied the integrated optimization of LAIP by developing a bi-objective model under
uncertainty conditions. In this model, the characteristics of green inventory, inflation and quality of raw materials
are considered simultaneously. We also added e-commerce activities by introducing two traditional and online
channels for selling products. Moreover, we examined the inventory policy of multi-period periodic reviews under
a combination of shortages. To the best of our knowledge, previous studies are not included these features.
Vahdani et al. [66] studied the LIP issue in a three-level supply network to minimize supply chain costs. In this
study, shortages are allowed, and periodic review policy has been used to manage inventory level. Raza and
Govindaluri [56] examined a two-tier supply chain for the green product by considering two channels (traditional
and online). Mousavi et al. [48] studied LAIP issue in the two-tier supply network considering the continuous
periodic review policy and stochastic demand. Braglia et al. [15] analyzed the (𝑄, 𝑟) policy for an inventory
system to minimize the total cost under the conditions of allowable shortages and uncertain demand. Wang et al.
[68] addressed a stochastic model to control demand uncertainty and solve the LIP issue of the green supply
chain. Obviously, the researchers did not provide a model that considered the characteristics of this study.

We considered five test problems in different dimensions. Test problems 1–3 are considered as small-sized
problems, and test problems 4–7 are considered as medium-sized problems. The main results of the sensitivity
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Figure 21. The impact of online seller capacity on the second objective function.

analysis are provided in the before sections. According to the results of sensitivity analysis, important manage-
ment insights are classified into two general categories as follows:

(1) Environmental sustainability

The capacity of suppliers and the end levels of the chain play a key role in environmental impact. On the
one hand, allocating adequate capacity to suppliers enables the supply chain to increase the sustainability of
environmental issues in addition to the economic aspect; on the other hand, increasing the capacity of DCs has
a considerable effect on reducing environmental impact as well as increasing the capacity of the dual-channel,
but what leads to its further improvement is the capacity of DCs which is one of the important characteristics
that affect supply chain outcomes. These features become especially important during the time of increasing
demand. According to the results of sensitivity analysis, when only demand increases, it leads to a rising trend
in costs and environmental impacts. In fact, the simultaneous increase in demand and capacity controls their
rising trend. So, managers can make appropriate adjustments to costs and environmental effects in the face of
increasing demand by capacity increases.

Based on the results, the design of a dual-channel supply chain and the increase of defective probability of
products have positive and negative effects on the environment, respectively. As we can see in Figures 20 and 21,
delivering products through the sharing of supply between traditional and online channels has a significant role in
controlling environmental impacts. According to Figures 15 and 16, when the defective products are increasing,
the shortage increases. Therefore, managers are advised in addition to using e-commerce activities, to have more
comprehensive quality control over products and the status of production equipment with proper maintenance,
keep their performance at a high level, and minimize the production of defective products.

(2) Economic sustainability

Increasing lead time and the inflation rate are the parameters that reduce economic sustainability. As stated in
the sensitivity analysis results, an increase in the inflation rate leads to an increase in shortage and, consequently,
to a decline in economic sustainability. Contrary to the changes in the inflation rate, which affects supply chain
decisions and goals, the timely delivery of items and creating an online sales channel can improve supply chain
costs. Thus, managers are advised to special attention to increasing the level of service and reinforcing the
flexibility of supply chain members as a way to compensate for the shortage under conditions of the rising
inflation rate. Also, DCs are advised to the expansion of e-commerce activities and increase the share of online
sales by advertising and promotion. These subjects lead to a decrease in the total cost and consequently increase
the total income and economic sustainability.
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8. Conclusion

In the present study, a bi-objective model was formulated for the optimization of LAIP. The network under
study is integrated by suppliers, plants, DCs, and dual channels of sellers. The main aim of this study is
to improve the economic and environmental aspects of the supply network simultaneously while tactical and
strategic decisions are integrated. Demand uncertainty is also addressed using stochastic modeling. Features
such as lead time, shortage, inflation, quality of raw materials and associated demand in a periodic review
policy joined the model to adapt it to the real conditions. Moreover, the combination of online and traditional
sales channels to design a dual-channel network is studied in this research. This network effort to help managers
find suitable providers, proper DCs locations, and the optimal number of products shipped so that they are
in a favorable economic and environmental situation. We delineated medium-sized problems and solved them
by using the AEC approach. Also, the GOA method has been used to solve the model for large size problems.
The results of solving the model show that considering features such as inflation, shortage, dual-channel sales
and supplier quality of raw materials play a key role in location, inventory, and managers’ decisions in real
situations. Also, integrating stochastic demand with a mathematical model brings the results closer to the real
world. Moreover, considering the environmental aspects not only help companies improve the economic aspect,
but also avoid penalties by environmental officials and make them popular from the people’s perspective.

With the development and increase of competition between different manufacturing industries, updating the
logistics system and solving purchasing problems are the concerns of supply chain managers. Moreover, the
importance of sustainable development has encouraged industry and governments to increase environmental
sustainability by improving their activities. Appropriate and integrated decision-making at the strategic and
tactical levels of the supply chain will make a major contribution to reducing costs, increasing competitive
advantage, and moving towards sustainable development. Moreover, with the advancement of technology and
the expansion of the use of the Internet and e-commerce, the creation of online sales channels enables the supply
chain to reduce share of carbon emissions from transportation and the establishment of facilities. Therefore,
this research helps different industries to reduce costs and move towards sustainable development by optimizing
appropriate investment and proper planning at different levels of the supply chain. In addition, paying attention
to demand uncertainty in the proposed model not only provides a better decision for the decision-maker, but
also increases the speed of response to changes in demand. Industries of apparel and home textile, kitchen and
home appliances are industries that, due to the adaptation of their decisions to the framework of the present
research, can use the results for planning at tactical and strategic levels.

This study also had some limitations; for example, we rely on numerical examples to solve the proposed
model. Moreover, the lack of implementation in the real example due to the unavailability of a suitable case
study at the time of research is another limitation that can affect the performance of the results. The application
of some facilitator assumptions can also be considered as research limitations. In order to expand the present
study, it is suggested to future researchers to extend the model in a multi-product, multi-vehicle supply chain
with stochastic lead time. In addition, they can consider reverse logistics and add discount conditions, the
concept of resilience, and the time value of money in an infinite planning horizon.
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