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SOME DEGREE CONDITIONS FOR P>,-FACTOR COVERED GRAPHS

Guowel DAI!, ZAN-Bo ZHANG?, YICHENG HANG! AND XIAOYAN ZHANG*

Abstract. A spanning subgraph of a graph G is called a path-factor of G if its each component is a
path. A path-factor is called a P>-factor of G if its each component admits at least k vertices, where
k > 2. (Zhang and Zhou, Discrete Math. 309 (2009) 2067-2076) defined the concept of Pxk-factor
covered graphs, i.e., G is called a P>y-factor covered graph if it has a P>-factor covering e for any
e € E(G). In this paper, we firstly obtain a minimum degree condition for a planar graph being a P>o-
factor and Pss-factor covered graph, respectively. Secondly, we investigate the relationship between
the maximum degree of any pairs of non-adjacent vertices and Pxy-factor covered graphs, and obtain
a sufficient condition for the existence of Pxo-factor and P>s-factor covered graphs, respectively.
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1. INTRODUCTION

The graphs considered here are finite and simple, unless explicitly stated. Let G = (V(G), E(G)) be a graph.
We denote by V(G) and E(G) the vertex set and the edge set of G, respectively. A spanning subgraph of G
is a subgraph H of G such that V(H) = V(G) and E(H) C E(G). A subgraph H of G is called an induced
subgraph of G if every pair of vertices in H which are adjacent in G are also adjacent in H. For v € V(QG),
we use dg(v) and Ng(v) to denote the degree of v and the set of vertices adjacent to v in G, respectively. For
S CV(G), we write Ng(S) = UyesNg(v). We use 6(G) to denote the minimum degree of a graph G. We refer
to [5] for the notation and terminologies not defined here.

For a family of connected graphs F, a spanning subgraph of a graph G is called an F-factor of G if its each
component is isomorphic to some graph in F. In particular, an F-factor is called a P>j-factor of G if every
component in F is a path of order at least k, where k > 2. A graph G is called a P> -factor covered graph if it
has a Psp-factor covering e for any e € E(G).

Since Tutte proposed the well known Tutte 1-factor theorem [15], there are many results on graph factors
[1,3,8,10,16] and P>g-factors in claw-free graphs and cubic graphs [4,12,13]. More results on graph factors can
be found in the survey papers and books in [1,14,19]. We use w(G), i(G) to denote the number of components
and isolated vertices of a graph G, respectively. For a subset X C V(G), G—X denotes the graph obtained
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from G by deleting all the vertices of X. Akiyama, Avis and Era [2] proved the following theorem, which is a
criterion for a graph to have a P>a-factor.

Theorem 1.1. (Akiyama et al. [1]) A graph G has a P>q-factor if and only if i(G—X) < 2|X| for all X C
V(G).

By introducing the concept of a sun, Kaneko [9] gave a criterion for a graph with a P>s-factor. Recently, a
simpler proof for Kaneko’s theorem [9] was presented by Kano et al. [11].

A graph H is called factor-critical if H—{v} has a 1-factor for each v € V(H). Let H be a factor-critical graph
and V(H) = {v1,v2,...,v,}. By adding new vertices {uy, us, ..., u,} together with new edges {v;u; : 1 <i < n}
to H, the resulting graph is called a sun. Note that, according to Kaneko [9], we regard K; and K5 also as a
sun, respectively. Usually, the suns other than K; are called big suns. It is called a sun component of G—X if
the component of G—X is isomorphic to a sun. We denote by sun(G—X) the number of sun components in
G-X.

Theorem 1.2. (Kaneko [9]) A graph G has a P>g-factor if and only if sun(G—X) < 2|X| for all X CV(G).

Zhang and Zhou [20] proposed the concept of path-factor covered graph, which is a generalization of matching
cover. They also obtained a characterization for Pxo-factor and P>3-factor covered graphs, respectively.

Theorem 1.3. (Zhang and Zhou [20]) Let G be a connected graph. Then G is a Psa-factor covered graph if
and only if i(G—S) < 2|S|—1(S) for all S C V(G), where €1(S) is defined by

2 if S#0 and S is not an independent set;
£1(S) 1 if S is a nonempty independent set and there exists
1 =

a nontrivial component of G-S;
0 otherwise.

Theorem 1.4. (Zhang and Zhou [20]) Let G be a connected graph. Then G is a Pss-factor covered graph if
and only if sun(G—S) < 2|S|—e5(S) for all S C V(Q), where 5(S) is defined by

2 if S# 0 and S is not an independent set;
£s(S) 1 if S is a nonempty independent set and there exists a
2 =

non-sun component of G-S;
0 otherwise.

For a connected graph G, its isolated toughness, denoted by I;(G), was first introduced by Yang et al. [18] as
follows. If G is complete, then I;(G) = +oo; otherwise,

I(G) = min{i(ﬁs) . S CV(G),i(G—S) > 2} .

The binding number is introduced by Woodall [17] and defined as

bind(G) = min { |N|Cfg(|5)| 04 S CV(G), Ne(S) 4 V(G)} .

Recently, Zhou [21] and Dai [7] obtained some classes of P>s-factor covered graphs, respectively.
Theorem 1.5. (Zhou [21]) Let G be a connected graph. Then G is a P>2-factor covered graph if bind(G) > 2/3.

Theorem 1.6. (Dai [7]) Let G be a connected graph of order at least two. Then G is a Psao-factor covered
graph if one the following holds: (1) G is claw-free and §(G) > 2; (i) I(G) > 2/3.
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For a connected graph G, its toughness, denoted by t(G), was first introduced by Chvdtal [6] as follows. If G
is complete, then ¢(G) = +00; otherwise,

t(G) = min{w(gsls) S CV(G),w(G-S) > 2}.

Using Theorem 1.4, Zhou et al. [22] and Dai [7] obtained some classes of P>g-factor covered graphs, respec-
tively.

Theorem 1.7. (Zhou et al. [22], Zhou [21]) Let G be a connected graph of order at least three. Then G is a

P>s-factor covered graph if one the following holds: (i) bind(G) > 3/2; (ii) t(G) > 2/3; (iil) I(G) > 5/3; (iv)
G is r-reqular where r > 2.

Theorem 1.8. (Dai [7]) Let G be a connected graph of order at least three. Then G is a P>s-factor covered
graph if one the following holds: (1) G is claw-free and §(G) > 3; (ii) G is a 3-connected planar graph.

In this paper, we proceed to investigate P> ;-factor covered graphs. We respectively obtain two special classes
of P>q-factor covered graphs and P>s-factor covered graphs. Our main results will be shown in Sections 2 and 3,
respectively.

2. MINIMUM DEGREE FOR P>j-FACTOR COVERED PLANAR GRAPHS

In this section, we study the relationship between planar graphs and P> p-factor covered graphs, and obtain
a minimum degree condition for a planar graph being a P>q-factor and P>s-factor covered graph, respectively.
To prove our results, we will use an important lemma as following.

Lemma 2.1. [5] Let G be a connected planar graph with at least three vertices. If G does not contain triangles,
then |E(G)| < 2|G| — 4.

Theorem 2.2. Let G be a connected planar graph of order at least two. If 6(G) > 3, then G is a P>o-factor
covered graph.

Proof. Suppose G is not a P>o-factor covered graph. By Theorem 1.3, there exists a subset S C V(&) such that
i(G—=S5) > 2|S|—1(5). According to the integrality of i(G—S), we obtain that i(G—S) > 2|S|—e1(5) + 1.

Claim 2.3. S # 0.

Proof. Suppose S = (), by the definition of €1 (S), we have £1(S) = 0. Then i(G) = i(G—S) > 2|S|—¢1(S)+1 = 1.
On the other hand, i(G) < w(G) = 1 since G is a connected graph. So, we obtain that G is an isolated vertex,
a contradiction. This completes the proof of Claim 2.3. (]

By Claim 2.3, S # (). Then by the definition of €1(S), we obtain £1(S) < 2. It follows immediately that
i(G-S) > 2|S|—e1(S)+1>2|S| —1.

Set |S| = s. We denote by I(G—S) the set of isolated vertices in G—S. Then we construct a simple bipartite
graph H = H[X,Y] as follows. Let X =S and Y C I(G—S) such that |Y| =2s—1. For any s € X and y € Y,
sy € E(H) if and only if sy € E(G). Since §(G) > 3, it is clear that for each y € Y, we have |[Ng(y)| > 3.
Hence, |H| > s+ (2s—1) = 3s—1 > 5 and

|E(H)| > 3 x (25—1) = 65—3. (2.1)

As G is a connected planar graph, it is easy to see that H is also a connected planar graph. According to
the fact that a bipartite graph does not contain any odd cycles, Lemma 2.1 implies that |E(H)| < 2|H|—4 =
2 x (3s—1)—4 = 6s—6, which is a contradiction to (2.1). This completes the proof of Theorem 2.2. O
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It is not hard to find that the conditions in Theorem 2.2 is not sufficient for a graph to be a P>3-factor
covered graph. However, if we strengthen the conditions on connectivity and minimum degree, then we could
obtain a minimum degree condition for the existence of P>s-factor covered planar graphs.

Theorem 2.4. Let G be a connected planar graph. If 6(G) > 4, then G is a P>s-factor covered graph.

Proof. Suppose G is not a P>g-factor covered graph. By Theorem 1.4, there exists a subset S C V(&) such that
sun(G—S) > 2|S|—e2(S). According to the integrality of sun(G—S), we obtain that sun(G—=S) > 2|S|—e2(S) +
1. We distinguish three cases below to show that G is a P>s-factor covered graph.

Case 1. S = 0.

In this case, by the definition of £2(.5), we have £5(S) = 0. Since G is a connected graph, sun(G) < w(G) = 1.
On the other hand, we obtain that

sun(G) = sun(G—=S5) > 2|S|—e2(S) +1=1.
It follows easily that sun(G) = 1, i.e., G is a big sun. By the definition of sun, it contradicts the fact that
0(G) > 4. This completes the proof of Case 1.
Case 2. |S] =1.
In this case, we obtain €5(S) < 1 by the definition of €2(S). It follows immediately that

sun(G—S) > 2|S|—e2(S) +1 > 2.

Let C be sun component of G—S and x a vertex of V(C') such that do(z) < 1. Since §(G) > 4, we have
S| = dg(z)—dc(z) > 6(G)-1 = 3.

This contradiction completes the proof of Case 2.

Case 3. |S] > 2.
In this case, we obtain €5(S) < 2 by the definition of €2(S). It follows immediately that

sun(G—S) > 2|S|—e2(S) + 1 > 2|S|-1.

Set |S| = s. We denote by Sun(G—S) the set of sun components in G—S. Since sun(G—S) > 2|S|-1, let
Cy,C4,...,Co_1 be 25—1 distinct sun components where C; € Sun(G—S) for any 1 <i < 2s—1.
Then we construct a simple bipartite graph H = H[X,Y] as follows. For each ¢ € [1,2s—1], choose vertex
¢; € V(C;) such that de; (¢;) < 1.Let X = Sand Y = {c1,c,...,co5—1}. Forany s € X and ¢; €Y, s¢; € E(H)
if and only if s¢; € E(G). Since §(G) > 4, it is clear that for each 1 < ¢ < 2s—1, we have [Ny (c;)| > 3. Hence,
|H| = s+ (2s—1) =3s—1 > 5 and
|E(H)| > 3 x (25—1) = 6s—3. (2.2)

As G is a connected planar graph, it is easy to see that H is also a connected planar graph. According to the
fact that a bipartite graph does not contain any odd cycles, Lemma 2.1 implies that

|E(H)| < 2|H|-4 =2 x (35—1)—4 = 65—6,

which is a contradiction to (2.2). This completes the proof of Case 3.
Combining Case 1-3, Theorem 2.4 is proved. O
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3. DEGREE CONDITIONS FOR P>j-FACTOR COVERED GRAPHS

In this section, we mainly investigate the relationship between the maximum degree of any pairs of non-
adjacent vertices and P>j-factor covered graph, and obtain a degree condition for the existence of Px-factor
and Pxo-factor covered graphs, respectively.

Theorem 3.1. Let G be a connected graph of order at least two. If

max{dg(u), dg(v)} > FH 1]

3
for all pairs of non-adjacent vertices v and v of G, then G is a P>o-factor covered graph.

Proof. Suppose G is not a Pso-factor covered graph. By Theorem 1.3, there exists a subset S C V(G) such
that i(G—S) > 2|S|—e1(S). Let I(G—S) be the set of isolated vertices of G—S. According to the integrality of
i(G—S5), we obtain that

i(G—=S) > 2|S|—e1(S) + 1. (3.1)

Claim 3.2. |S| > 2.

Proof. If S = 0, then £1(S) = 0. By (3.1), i(G) = i(G—S) > 1. On the other hand, i(G) < w(G) = 1. So, we
obtain that G is an isolated vertex, a contradiction.

Thus, we may assume |S| = 1, then £1(S) < 1. By (3.1), we have that :(G—S) > 2|S|—¢1(S) +1 > 2|S| > 2.
As I(G—S) is independent in G, there is a vertex o € I(G—S) such that dg(x) > [2] > 2L Then we have

that [S| > dg(x) > 24+ since Ng(z) € S. It follows that i(G—S) > 2|S| > 22 and thus

n>|S|+i(G-S) > ";1 + 2";2 =n+1,
a contradiction. This completes the proof of Claim 3.2. O
By Claim 3.2 and (3.1), we have €1(S) < 2 and
i(G=S) > 2|S|—e1(S) +1>2|5|-1 > 3. (3.2)

Since I(G—S) is an independent set of G, there exists € I(G—5S) such that dg(z) > [%] > 25l Then we
have |S| > dg(z) > ™ since Ng(z) € S. It follows from (3.2) that i(G—S) > 2|S| — 1 > 221 and thus

n+1+2n71
=n.
3 3

n>|S|+i(G-S) >
This contradiction completes the proof of Theorem 3.1. (|

Theorem 3.3. Let G be a connected graph of order n > 7. Then G is a P>3-factor covered graph if

max{de(u), da(v)} > W+ﬂ

for all pairs of non-adjacent vertices u and v of G.

Proof. Suppose G is not a P>g-factor covered graph. By Theorem 1.4, there exists a subset S C V(&) such that
sun(G—=S) > 2|S| — 2(95). According to the integrality of sun(G—S), we obtain that

sun(G—S8) > 2|S|—e2(S) + 1. (3.3)
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Claim 3.4. S # 0.

Proof. Suppose S = {), then £2(S) = 0. By (3.3), sun(G) = sun(G—S) > 1. On the other hand, sun(G) <
w(G) = 1. So, we obtain that G is a big sun containing at least 7 vertices. It follows that there exist two vertices
of degree one, denoted by {u, v}, which contradicts that max{de(u),da(v)} > [%42] > 3. This completes the
proof of Claim 3.4. O

By Claim 3.4 and (3.3), we have |S| > 1. If |S| = 1, then e3(S) =1 and
sun(G—S) > 2|S|—e2(S) +1 > 2|S| > 2. (3.4)
If |S] = 1, then e5(S) = 2 and

sun(G—S) > 2|S|—e2(S) + 1 > 2|S|-1 > 3. (3.5)

Case 1. i(G—S) > 2.

Let {x,y} be two distinct isolated vertices of G—S. Since max{dg(z),da(y)} > [%+2] > ™2 and Ng(z) U
N¢g(y) C S, we have that
n+2

=

It follows from (3.4) and (3.5) that sun(G—S) > 2|S| — 1 > 2%t and thus

S| > max{de(z), da(y)} >

n+2 2n+1
+

> 1S G-S
n > |S| + sun( ) > 3 3

=n+1,

a contradiction.
Case 2. i(G—-S5) < 1.

In this case, by (3.4) and (3.5), there exist at least two suns of G—S, denoted by C1,Cs, ..., C; where t > 2. We
choose ¢; € V(C;) such that d¢,(¢;) < 1, where i = 1,2. Obviously, c1¢c2 ¢ E(G). Then max{dg(c1),dg(c2)} >
[242] > 242 Without of generality, we assume dg(c1) > 252, Since dg(c1) = dg(c1)—de, (¢1) > 221 = 2L,

we have that |S| > dg(c1) > 251, It follows from (3.4) and (3.5) that

sun(G—8) > 28| — 1> =2 _q,
and thus
n > |S| + 2 x sun(G-S5) — i(G-S)
>”T_1+2>< (2"3_2—1>—1
_ 5n?:5 3>
This contradiction completes the proof of Theorem 3.3. O
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