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SOME DEGREE CONDITIONS FOR 𝒫≥𝑘-FACTOR COVERED GRAPHS

Guowei Dai1, Zan-Bo Zhang2, Yicheng Hang1 and Xiaoyan Zhang1,*

Abstract. A spanning subgraph of a graph 𝐺 is called a path-factor of 𝐺 if its each component is a
path. A path-factor is called a 𝒫≥𝑘-factor of 𝐺 if its each component admits at least 𝑘 vertices, where
𝑘 ≥ 2. (Zhang and Zhou, Discrete Math. 309 (2009) 2067–2076) defined the concept of 𝒫≥𝑘-factor
covered graphs, i.e., 𝐺 is called a 𝒫≥𝑘-factor covered graph if it has a 𝒫≥𝑘-factor covering 𝑒 for any
𝑒 ∈ 𝐸(𝐺). In this paper, we firstly obtain a minimum degree condition for a planar graph being a 𝒫≥2-
factor and 𝒫≥3-factor covered graph, respectively. Secondly, we investigate the relationship between
the maximum degree of any pairs of non-adjacent vertices and 𝒫≥𝑘-factor covered graphs, and obtain
a sufficient condition for the existence of 𝒫≥2-factor and 𝒫≥3-factor covered graphs, respectively.
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1. Introduction

The graphs considered here are finite and simple, unless explicitly stated. Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph.
We denote by 𝑉 (𝐺) and 𝐸(𝐺) the vertex set and the edge set of 𝐺, respectively. A spanning subgraph of 𝐺
is a subgraph 𝐻 of 𝐺 such that 𝑉 (𝐻) = 𝑉 (𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺). A subgraph 𝐻 of 𝐺 is called an induced
subgraph of 𝐺 if every pair of vertices in 𝐻 which are adjacent in 𝐺 are also adjacent in 𝐻. For 𝑣 ∈ 𝑉 (𝐺),
we use 𝑑𝐺(𝑣) and 𝑁𝐺(𝑣) to denote the degree of 𝑣 and the set of vertices adjacent to 𝑣 in 𝐺, respectively. For
𝑆 ⊆ 𝑉 (𝐺), we write 𝑁𝐺(𝑆) = ∪𝑣∈𝑆𝑁𝐺(𝑣). We use 𝛿(𝐺) to denote the minimum degree of a graph 𝐺. We refer
to [5] for the notation and terminologies not defined here.

For a family of connected graphs ℱ , a spanning subgraph of a graph 𝐺 is called an ℱ-factor of 𝐺 if its each
component is isomorphic to some graph in ℱ . In particular, an ℱ-factor is called a 𝒫≥𝑘-factor of 𝐺 if every
component in ℱ is a path of order at least 𝑘, where 𝑘 ≥ 2. A graph 𝐺 is called a 𝒫≥𝑘-factor covered graph if it
has a 𝒫≥𝑘-factor covering 𝑒 for any 𝑒 ∈ 𝐸(𝐺).

Since Tutte proposed the well known Tutte 1-factor theorem [15], there are many results on graph factors
[1,3,8,10,16] and 𝒫≥𝑘-factors in claw-free graphs and cubic graphs [4,12,13]. More results on graph factors can
be found in the survey papers and books in [1,14,19]. We use 𝜔(𝐺), 𝑖(𝐺) to denote the number of components
and isolated vertices of a graph 𝐺, respectively. For a subset 𝑋 ⊆ 𝑉 (𝐺), 𝐺−𝑋 denotes the graph obtained
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from 𝐺 by deleting all the vertices of 𝑋. Akiyama, Avis and Era [2] proved the following theorem, which is a
criterion for a graph to have a 𝒫≥2-factor.

Theorem 1.1. (Akiyama et al. [1]) A graph 𝐺 has a 𝒫≥2-factor if and only if 𝑖(𝐺−𝑋) ≤ 2|𝑋| for all 𝑋 ⊆
𝑉 (𝐺).

By introducing the concept of a sun, Kaneko [9] gave a criterion for a graph with a 𝒫≥3-factor. Recently, a
simpler proof for Kaneko’s theorem [9] was presented by Kano et al. [11].

A graph 𝐻 is called factor-critical if 𝐻−{𝑣} has a 1-factor for each 𝑣 ∈ 𝑉 (𝐻). Let 𝐻 be a factor-critical graph
and 𝑉 (𝐻) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. By adding new vertices {𝑢1, 𝑢2, . . . , 𝑢𝑛} together with new edges {𝑣𝑖𝑢𝑖 : 1 ≤ 𝑖 ≤ 𝑛}
to 𝐻, the resulting graph is called a sun. Note that, according to Kaneko [9], we regard 𝐾1 and 𝐾2 also as a
sun, respectively. Usually, the suns other than 𝐾1 are called big suns. It is called a sun component of 𝐺−𝑋 if
the component of 𝐺−𝑋 is isomorphic to a sun. We denote by 𝑠𝑢𝑛(𝐺−𝑋) the number of sun components in
𝐺−𝑋.

Theorem 1.2. (Kaneko [9]) A graph 𝐺 has a 𝒫≥3-factor if and only if 𝑠𝑢𝑛(𝐺−𝑋) ≤ 2|𝑋| for all 𝑋 ⊆ 𝑉 (𝐺).

Zhang and Zhou [20] proposed the concept of path-factor covered graph, which is a generalization of matching
cover. They also obtained a characterization for 𝒫≥2-factor and 𝒫≥3-factor covered graphs, respectively.

Theorem 1.3. (Zhang and Zhou [20]) Let 𝐺 be a connected graph. Then 𝐺 is a 𝒫≥2-factor covered graph if
and only if 𝑖(𝐺−𝑆) ≤ 2|𝑆|−𝜀1(𝑆) for all 𝑆 ⊆ 𝑉 (𝐺), where 𝜀1(𝑆) is defined by

𝜀1(𝑆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 𝑖𝑓 𝑆 ̸= ∅ 𝑎𝑛𝑑 𝑆 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑠𝑒𝑡;
1 𝑖𝑓 𝑆 𝑖𝑠 𝑎 𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑠𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠

𝑎 𝑛𝑜𝑛𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 G-S;
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Theorem 1.4. (Zhang and Zhou [20]) Let 𝐺 be a connected graph. Then 𝐺 is a 𝒫≥3-factor covered graph if
and only if 𝑠𝑢𝑛(𝐺−𝑆) ≤ 2|𝑆|−𝜀2(𝑆) for all 𝑆 ⊆ 𝑉 (𝐺), where 𝜀2(𝑆) is defined by

𝜀2(𝑆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 𝑖𝑓 𝑆 ̸= ∅ 𝑎𝑛𝑑 𝑆 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑠𝑒𝑡;
1 𝑖𝑓 𝑆 𝑖𝑠 𝑎 𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑠𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎

non-sun 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 G-S;
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

For a connected graph 𝐺, its isolated toughness, denoted by 𝐼𝑡(𝐺), was first introduced by Yang et al. [18] as
follows. If 𝐺 is complete, then 𝐼𝑡(𝐺) = +∞; otherwise,

𝐼𝑡(𝐺) = min
{︂

|𝑆|
𝑖(𝐺−𝑆)

: 𝑆 ⊆ 𝑉 (𝐺), 𝑖(𝐺−𝑆) ≥ 2
}︂

.

The binding number is introduced by Woodall [17] and defined as

𝑏𝑖𝑛𝑑(𝐺) = min
{︂
|𝑁𝐺(𝑆)|
|𝑆|

: ∅ ≠ 𝑆 ⊆ 𝑉 (𝐺), 𝑁𝐺(𝑆) ̸= 𝑉 (𝐺)
}︂

.

Recently, Zhou [21] and Dai [7] obtained some classes of 𝒫≥2-factor covered graphs, respectively.

Theorem 1.5. (Zhou [21]) Let 𝐺 be a connected graph. Then 𝐺 is a 𝒫≥2-factor covered graph if 𝑏𝑖𝑛𝑑(𝐺) > 2/3.

Theorem 1.6. (Dai [7]) Let 𝐺 be a connected graph of order at least two. Then 𝐺 is a 𝒫≥2-factor covered
graph if one the following holds: (i) 𝐺 is claw-free and 𝛿(𝐺) ≥ 2; (ii) 𝐼𝑡(𝐺) > 2/3.
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For a connected graph 𝐺, its toughness, denoted by 𝑡(𝐺), was first introduced by Chv𝑎́tal [6] as follows. If 𝐺
is complete, then 𝑡(𝐺) = +∞; otherwise,

𝑡(𝐺) = min
{︂

|𝑆|
𝜔(𝐺−𝑆)

: 𝑆 ⊆ 𝑉 (𝐺), 𝜔(𝐺−𝑆) ≥ 2
}︂

.

Using Theorem 1.4, Zhou et al. [22] and Dai [7] obtained some classes of 𝒫≥3-factor covered graphs, respec-
tively.

Theorem 1.7. (Zhou et al. [22], Zhou [21]) Let 𝐺 be a connected graph of order at least three. Then 𝐺 is a
𝒫≥3-factor covered graph if one the following holds: (i) 𝑏𝑖𝑛𝑑(𝐺) ≥ 3/2; (ii) 𝑡(𝐺) > 2/3; (iii) 𝐼𝑡(𝐺) > 5/3; (iv)
𝐺 is 𝑟-regular where 𝑟 ≥ 2.

Theorem 1.8. (Dai [7]) Let 𝐺 be a connected graph of order at least three. Then 𝐺 is a 𝒫≥3-factor covered
graph if one the following holds: (i) 𝐺 is claw-free and 𝛿(𝐺) ≥ 3; (ii) 𝐺 is a 3-connected planar graph.

In this paper, we proceed to investigate 𝒫≥𝑘-factor covered graphs. We respectively obtain two special classes
of 𝒫≥2-factor covered graphs and 𝒫≥3-factor covered graphs. Our main results will be shown in Sections 2 and 3,
respectively.

2. Minimum degree for 𝒫≥𝑘-factor covered planar graphs

In this section, we study the relationship between planar graphs and 𝒫≥𝑘-factor covered graphs, and obtain
a minimum degree condition for a planar graph being a 𝒫≥2-factor and 𝒫≥3-factor covered graph, respectively.

To prove our results, we will use an important lemma as following.

Lemma 2.1. [5] Let 𝐺 be a connected planar graph with at least three vertices. If 𝐺 does not contain triangles,
then |𝐸(𝐺)| ≤ 2|𝐺| − 4.

Theorem 2.2. Let 𝐺 be a connected planar graph of order at least two. If 𝛿(𝐺) ≥ 3, then 𝐺 is a 𝒫≥2-factor
covered graph.

Proof. Suppose 𝐺 is not a 𝒫≥2-factor covered graph. By Theorem 1.3, there exists a subset 𝑆 ⊆ 𝑉 (𝐺) such that
𝑖(𝐺−𝑆) > 2|𝑆|−𝜀1(𝑆). According to the integrality of 𝑖(𝐺−𝑆), we obtain that 𝑖(𝐺−𝑆) ≥ 2|𝑆|−𝜀1(𝑆) + 1.

Claim 2.3. 𝑆 ̸= ∅.

Proof. Suppose 𝑆 = ∅, by the definition of 𝜀1(𝑆), we have 𝜀1(𝑆) = 0. Then 𝑖(𝐺) = 𝑖(𝐺−𝑆) ≥ 2|𝑆|−𝜀1(𝑆)+1 = 1.
On the other hand, 𝑖(𝐺) ≤ 𝜔(𝐺) = 1 since 𝐺 is a connected graph. So, we obtain that 𝐺 is an isolated vertex,
a contradiction. This completes the proof of Claim 2.3. �

By Claim 2.3, 𝑆 ̸= ∅. Then by the definition of 𝜀1(𝑆), we obtain 𝜀1(𝑆) ≤ 2. It follows immediately that

𝑖(𝐺−𝑆) ≥ 2|𝑆|−𝜀1(𝑆) + 1 ≥ 2|𝑆| − 1.

Set |𝑆| = 𝑠. We denote by 𝐼(𝐺−𝑆) the set of isolated vertices in 𝐺−𝑆. Then we construct a simple bipartite
graph 𝐻 = 𝐻[𝑋, 𝑌 ] as follows. Let 𝑋 = 𝑆 and 𝑌 ⊆ 𝐼(𝐺−𝑆) such that |𝑌 | = 2𝑠−1. For any 𝑠 ∈ 𝑋 and 𝑦 ∈ 𝑌 ,
𝑠𝑦 ∈ 𝐸(𝐻) if and only if 𝑠𝑦 ∈ 𝐸(𝐺). Since 𝛿(𝐺) ≥ 3, it is clear that for each 𝑦 ∈ 𝑌 , we have |𝑁𝐻(𝑦)| ≥ 3.
Hence, |𝐻| ≥ 𝑠 + (2𝑠−1) = 3𝑠−1 ≥ 5 and

|𝐸(𝐻)| ≥ 3× (2𝑠−1) = 6𝑠−3. (2.1)

As 𝐺 is a connected planar graph, it is easy to see that 𝐻 is also a connected planar graph. According to
the fact that a bipartite graph does not contain any odd cycles, Lemma 2.1 implies that |𝐸(𝐻)| ≤ 2|𝐻|−4 =
2× (3𝑠−1)−4 = 6𝑠−6, which is a contradiction to (2.1). This completes the proof of Theorem 2.2. �
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It is not hard to find that the conditions in Theorem 2.2 is not sufficient for a graph to be a 𝒫≥3-factor
covered graph. However, if we strengthen the conditions on connectivity and minimum degree, then we could
obtain a minimum degree condition for the existence of 𝒫≥3-factor covered planar graphs.

Theorem 2.4. Let 𝐺 be a connected planar graph. If 𝛿(𝐺) ≥ 4, then 𝐺 is a 𝒫≥3-factor covered graph.

Proof. Suppose 𝐺 is not a 𝒫≥3-factor covered graph. By Theorem 1.4, there exists a subset 𝑆 ⊆ 𝑉 (𝐺) such that
𝑠𝑢𝑛(𝐺−𝑆) > 2|𝑆|−𝜀2(𝑆). According to the integrality of 𝑠𝑢𝑛(𝐺−𝑆), we obtain that 𝑠𝑢𝑛(𝐺−𝑆) ≥ 2|𝑆|−𝜀2(𝑆)+
1. We distinguish three cases below to show that 𝐺 is a 𝒫≥3-factor covered graph.

Case 1. 𝑆 = ∅.

In this case, by the definition of 𝜀2(𝑆), we have 𝜀2(𝑆) = 0. Since 𝐺 is a connected graph, 𝑠𝑢𝑛(𝐺) ≤ 𝜔(𝐺) = 1.
On the other hand, we obtain that

𝑠𝑢𝑛(𝐺) = 𝑠𝑢𝑛(𝐺−𝑆) ≥ 2|𝑆|−𝜀2(𝑆) + 1 = 1.

It follows easily that 𝑠𝑢𝑛(𝐺) = 1, i.e., 𝐺 is a big sun. By the definition of sun, it contradicts the fact that
𝛿(𝐺) ≥ 4. This completes the proof of Case 1.

Case 2. |𝑆| = 1.

In this case, we obtain 𝜀2(𝑆) ≤ 1 by the definition of 𝜀2(𝑆). It follows immediately that

𝑠𝑢𝑛(𝐺−𝑆) ≥ 2|𝑆|−𝜀2(𝑆) + 1 ≥ 2.

Let 𝐶 be sun component of 𝐺−𝑆 and 𝑥 a vertex of 𝑉 (𝐶) such that 𝑑𝐶(𝑥) ≤ 1. Since 𝛿(𝐺) ≥ 4, we have

|𝑆| ≥ 𝑑𝐺(𝑥)−𝑑𝐶(𝑥) ≥ 𝛿(𝐺)−1 ≥ 3.

This contradiction completes the proof of Case 2.

Case 3. |𝑆| ≥ 2.

In this case, we obtain 𝜀2(𝑆) ≤ 2 by the definition of 𝜀2(𝑆). It follows immediately that

𝑠𝑢𝑛(𝐺−𝑆) ≥ 2|𝑆|−𝜀2(𝑆) + 1 ≥ 2|𝑆|−1.

Set |𝑆| = 𝑠. We denote by 𝑆𝑢𝑛(𝐺−𝑆) the set of sun components in 𝐺−𝑆. Since 𝑠𝑢𝑛(𝐺−𝑆) ≥ 2|𝑆|−1, let
𝐶1, 𝐶2, . . . , 𝐶2𝑠−1 be 2𝑠−1 distinct sun components where 𝐶𝑖 ∈ 𝑆𝑢𝑛(𝐺−𝑆) for any 1 ≤ 𝑖 ≤ 2𝑠−1.

Then we construct a simple bipartite graph 𝐻 = 𝐻[𝑋, 𝑌 ] as follows. For each 𝑖 ∈ [1, 2𝑠−1], choose vertex
𝑐𝑖 ∈ 𝑉 (𝐶𝑖) such that 𝑑𝐶𝑖

(𝑐𝑖) ≤ 1. Let 𝑋 = 𝑆 and 𝑌 = {𝑐1, 𝑐2, . . . , 𝑐2𝑠−1}. For any 𝑠 ∈ 𝑋 and 𝑐𝑖 ∈ 𝑌 , 𝑠𝑐𝑖 ∈ 𝐸(𝐻)
if and only if 𝑠𝑐𝑖 ∈ 𝐸(𝐺). Since 𝛿(𝐺) ≥ 4, it is clear that for each 1 ≤ 𝑖 ≤ 2𝑠−1, we have |𝑁𝐻(𝑐𝑖)| ≥ 3. Hence,
|𝐻| = 𝑠 + (2𝑠−1) = 3𝑠−1 ≥ 5 and

|𝐸(𝐻)| ≥ 3× (2𝑠−1) = 6𝑠−3. (2.2)

As 𝐺 is a connected planar graph, it is easy to see that 𝐻 is also a connected planar graph. According to the
fact that a bipartite graph does not contain any odd cycles, Lemma 2.1 implies that

|𝐸(𝐻)| ≤ 2|𝐻|−4 = 2× (3𝑠−1)−4 = 6𝑠−6,

which is a contradiction to (2.2). This completes the proof of Case 3.
Combining Case 1–3, Theorem 2.4 is proved. �
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3. Degree conditions for 𝒫≥𝑘-factor covered graphs

In this section, we mainly investigate the relationship between the maximum degree of any pairs of non-
adjacent vertices and 𝒫≥𝑘-factor covered graph, and obtain a degree condition for the existence of 𝒫≥2-factor
and 𝒫≥2-factor covered graphs, respectively.

Theorem 3.1. Let 𝐺 be a connected graph of order at least two. If

max{𝑑𝐺(𝑢), 𝑑𝐺(𝑣)} >

⌈︂
𝑛 + 1

3

⌉︂
for all pairs of non-adjacent vertices 𝑢 and 𝑣 of 𝐺, then 𝐺 is a 𝒫≥2-factor covered graph.

Proof. Suppose 𝐺 is not a 𝒫≥2-factor covered graph. By Theorem 1.3, there exists a subset 𝑆 ⊆ 𝑉 (𝐺) such
that 𝑖(𝐺−𝑆) > 2|𝑆|−𝜀1(𝑆). Let 𝐼(𝐺−𝑆) be the set of isolated vertices of 𝐺−𝑆. According to the integrality of
𝑖(𝐺−𝑆), we obtain that

𝑖(𝐺−𝑆) ≥ 2|𝑆|−𝜀1(𝑆) + 1. (3.1)

Claim 3.2. |𝑆| ≥ 2.

Proof. If 𝑆 = ∅, then 𝜀1(𝑆) = 0. By (3.1), 𝑖(𝐺) = 𝑖(𝐺−𝑆) ≥ 1. On the other hand, 𝑖(𝐺) ≤ 𝜔(𝐺) = 1. So, we
obtain that 𝐺 is an isolated vertex, a contradiction.

Thus, we may assume |𝑆| = 1, then 𝜀1(𝑆) ≤ 1. By (3.1), we have that 𝑖(𝐺−𝑆) ≥ 2|𝑆|−𝜀1(𝑆) + 1 ≥ 2|𝑆| ≥ 2.
As 𝐼(𝐺−𝑆) is independent in 𝐺, there is a vertex 𝑥 ∈ 𝐼(𝐺−𝑆) such that 𝑑𝐺(𝑥) > ⌈𝑛+1

3 ⌉ ≥ 𝑛+1
3 . Then we have

that |𝑆| ≥ 𝑑𝐺(𝑥) > 𝑛+1
3 since 𝑁𝐺(𝑥) ⊆ 𝑆. It follows that 𝑖(𝐺−𝑆) ≥ 2|𝑆| > 2𝑛+2

3 and thus

𝑛 ≥ |𝑆|+ 𝑖(𝐺−𝑆) >
𝑛 + 1

3
+

2𝑛 + 2
3

= 𝑛 + 1,

a contradiction. This completes the proof of Claim 3.2. ⊓⊔

By Claim 3.2 and (3.1), we have 𝜀1(𝑆) ≤ 2 and

𝑖(𝐺−𝑆) ≥ 2|𝑆|−𝜀1(𝑆) + 1 ≥ 2|𝑆|−1 ≥ 3. (3.2)

Since 𝐼(𝐺−𝑆) is an independent set of 𝐺, there exists 𝑥 ∈ 𝐼(𝐺−𝑆) such that 𝑑𝐺(𝑥) > ⌈𝑛+1
3 ⌉ ≥ 𝑛+1

3 . Then we
have |𝑆| ≥ 𝑑𝐺(𝑥) > 𝑛+1

3 since 𝑁𝐺(𝑥) ⊆ 𝑆. It follows from (3.2) that 𝑖(𝐺−𝑆) ≥ 2|𝑆| − 1 > 2𝑛−1
3 and thus

𝑛 ≥ |𝑆|+ 𝑖(𝐺−𝑆) >
𝑛 + 1

3
+

2𝑛−1
3

= 𝑛.

This contradiction completes the proof of Theorem 3.1. �

Theorem 3.3. Let 𝐺 be a connected graph of order 𝑛 ≥ 7. Then 𝐺 is a 𝒫≥3-factor covered graph if

max{𝑑𝐺(𝑢), 𝑑𝐺(𝑣)} >

⌈︂
𝑛 + 2

3

⌉︂
for all pairs of non-adjacent vertices 𝑢 and 𝑣 of 𝐺.

Proof. Suppose 𝐺 is not a 𝒫≥3-factor covered graph. By Theorem 1.4, there exists a subset 𝑆 ⊆ 𝑉 (𝐺) such that
𝑠𝑢𝑛(𝐺−𝑆) > 2|𝑆| − 𝜀2(𝑆). According to the integrality of 𝑠𝑢𝑛(𝐺−𝑆), we obtain that

𝑠𝑢𝑛(𝐺−𝑆) ≥ 2|𝑆|−𝜀2(𝑆) + 1. (3.3)
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Claim 3.4. 𝑆 ̸= ∅.

Proof. Suppose 𝑆 = ∅, then 𝜀2(𝑆) = 0. By (3.3), 𝑠𝑢𝑛(𝐺) = 𝑠𝑢𝑛(𝐺−𝑆) ≥ 1. On the other hand, 𝑠𝑢𝑛(𝐺) ≤
𝜔(𝐺) = 1. So, we obtain that 𝐺 is a big sun containing at least 7 vertices. It follows that there exist two vertices
of degree one, denoted by {𝑢, 𝑣}, which contradicts that max{𝑑𝐺(𝑢), 𝑑𝐺(𝑣)} >

⌈︀
𝑛+2

3

⌉︀
≥ 3. This completes the

proof of Claim 3.4. ⊓⊔

By Claim 3.4 and (3.3), we have |𝑆| ≥ 1. If |𝑆| = 1, then 𝜀2(𝑆) = 1 and

𝑠𝑢𝑛(𝐺−𝑆) ≥ 2|𝑆|−𝜀2(𝑆) + 1 ≥ 2|𝑆| ≥ 2. (3.4)

If |𝑆| = 1, then 𝜀2(𝑆) = 2 and

𝑠𝑢𝑛(𝐺−𝑆) ≥ 2|𝑆|−𝜀2(𝑆) + 1 ≥ 2|𝑆|−1 ≥ 3. (3.5)

Case 1. 𝑖(𝐺−𝑆) ≥ 2.

Let {𝑥, 𝑦} be two distinct isolated vertices of 𝐺−𝑆. Since max{𝑑𝐺(𝑥), 𝑑𝐺(𝑦)} > ⌈𝑛+2
3 ⌉ ≥ 𝑛+2

3 and 𝑁𝐺(𝑥) ∪
𝑁𝐺(𝑦) ⊆ 𝑆, we have that

|𝑆| ≥ max{𝑑𝐺(𝑥), 𝑑𝐺(𝑦)} >
𝑛 + 2

3
·

It follows from (3.4) and (3.5) that 𝑠𝑢𝑛(𝐺−𝑆) ≥ 2|𝑆| − 1 > 2𝑛+1
3 and thus

𝑛 ≥ |𝑆|+ 𝑠𝑢𝑛(𝐺−𝑆) >
𝑛 + 2

3
+

2𝑛 + 1
3

= 𝑛 + 1,

a contradiction.

Case 2. 𝑖(𝐺−𝑆) ≤ 1.

In this case, by (3.4) and (3.5), there exist at least two suns of 𝐺−𝑆, denoted by 𝐶1, 𝐶2, . . . , 𝐶𝑡 where 𝑡 ≥ 2. We
choose 𝑐𝑖 ∈ 𝑉 (𝐶𝑖) such that 𝑑𝐶𝑖(𝑐𝑖) ≤ 1, where 𝑖 = 1, 2. Obviously, 𝑐1𝑐2 /∈ 𝐸(𝐺). Then max{𝑑𝐺(𝑐1), 𝑑𝐺(𝑐2)} >
⌈𝑛+2

3 ⌉ ≥ 𝑛+2
3 . Without of generality, we assume 𝑑𝐺(𝑐1) > 𝑛+2

3 . Since 𝑑𝑆(𝑐1) = 𝑑𝐺(𝑐1)−𝑑𝐶1(𝑐1) > 𝑛+2
3 −1 = 𝑛−1

3 ,
we have that |𝑆| ≥ 𝑑𝑆(𝑐1) > 𝑛−1

3 . It follows from (3.4) and (3.5) that

𝑠𝑢𝑛(𝐺−𝑆) ≥ 2|𝑆| − 1 >
2𝑛−2

3
− 1,

and thus

𝑛 ≥ |𝑆|+ 2× 𝑠𝑢𝑛(𝐺−𝑆)− 𝑖(𝐺−𝑆)

>
𝑛−1

3
+ 2×

(︂
2𝑛−2

3
− 1

)︂
− 1

=
5𝑛−5

3
− 3 ≥ 𝑛.

This contradiction completes the proof of Theorem 3.3. �
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