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MAKING AN INTEGRATED DECISION IN A THREE-STAGE SUPPLY CHAIN
ALONG WITH CELLULAR MANUFACTURING UNDER UNCERTAIN

ENVIRONMENTS: A QUEUEING-BASED ANALYSIS *

Bahman Esmailnezhad1 and Mohammad Saidi-mehrabad2,3,*

Abstract. Today’s complicated business environment has underscored the importance of integrated
decision-making in supply chains. In this paper, a novel mixed-integer nonlinear mathematical model
is proposed to integrate cellular manufacturing systems into a three-stage supply chain to deal with
customers’ changing demands, which has been little explored in the literature. This model determines
the types of vehicles to transport raw materials and final parts, the suppliers to procure, the priorities
of parts to be processed, and the cell formation to configure work centers. In addition, queueing theory
is used to formulate the uncertainties in demands, processing times, and transportation times in the
model more realistically. A linearization method is employed to facilitate the tractability of the model.
A genetic algorithm is also developed to deal with the NP-hardness of the problem. Numerous instances
are used to validate the effectiveness of the modeling and the efficiency of solution procedures. Finally,
a sensitivity analysis and a real case study are discussed to provide important management insights
and evaluate the applicability of the proposed model.
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1. Introduction

Today, the intensifying competitive pressures in the marketplace mean that companies must meticulously
consider all stages of the production process, from the procurement of raw materials to the delivery of finished
products, in order to survive. Managing the material flow from suppliers to customers as a unified system rather
than a sequence of independent actions is the fundamental philosophy of supply chain management [11]. The
goal is to link procurement activities, manufacturing processes, distribution networks, and the marketplace. As a
result, customers are served at a higher level and a lower cost, and manufacturers gain a competitive advantage
through cost reduction and product augmentation [12, 48]. In practical terms, integrated decision-making is
significant in industries such as automobile, electronics, and aviation because the production activities in these
industries are decentralized [56]. In general, integrated decision-making across suppliers, shipping fleets, and
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manufacturer leads to customer satisfaction and can be achieved through selecting right supplier and shipping
fleet to cooperate along with choosing a rational approach to production.

One of the important components of the supply chain management is choosing the right supplier. This is
because the cost of raw materials constitutes a major part of the cost of finished products. At a glance in the
related literature shows that supplier selection has been widely discussed [10, 18, 22, 25, 26, 38]. Thus, supplier
selection is considered one of the most important measures for manufacturers to preserve a strategic competitive
position. It causes the right quality of raw materials in the right quantity to be procured at the right time and
reasonable cost.

Another important component of supply chain management is selecting the right manufacturing approach.
The right manufacturing approach will help respond to changing customer requests and meet the challenges of
customers looking for high-quality, low-cost products. It will also cope with fluctuating demands by providing
adequate speed of adjustment and sufficient production of goods. Group technology has gained worldwide accep-
tance as a manufacturing system philosophy due to its flexibility and adaptability [16]. Cellular manufacturing
(CM) is the application of the concepts of group technology to shop floor layout design and reconfiguration
of a firm. CM provides flexibility in the manufacture of new products while effects on declining production
lead time [24, 60]. Manufacturers have replaced their traditional configurations like job shop and flow shop to
a new one such as CM. CM leverages the positive attributes of job shop and flow shop, namely flexibility and
variety, and efficiency and production volume, respectively [44, 52]. Moreover, CM does not necessarily force
manufacturers to invest in capital assets such as flexible manufacturing systems (FMS) to achieve flexibility.
CM involves manufacturing a group of similar parts on a collection of machines or manufacturing processes [27].
The use of CM results in numerous important benefits, including reductions in material handling cost, set-up
time, work-in-process inventory, throughput time, and increase in quality and scheduling simplicity [59,62]. Cell
formation and cell management should be taken into account in the successful design of CM. Cell formation
(CF) as a component of CM involves the process of grouping parts into part families, according to the similarity
in processing needs or design features, and assigning machines to machine cells [29]. Each part family should
be manufactured entirely in one machine cell. In reality, parts may be manufactured in more than one cell. Cell
management refers to planning issues such as scheduling and sequencing of operations. Scheduling deals to the
scheduling of each part within each cell [61], while sequencing considers the order of operations behind each
machine [33].

Manufacturers must focus their attention on uncertainty to improve the sustainability of their business in
today’s competitive marketplace. Managing uncertainty enables manufacturers to escalate their performance
efficiently and effectively [58]. Uncertainties throughout supply chain can relate to demand, shipping fleet transfer
time, supplier delivery time, material handling time, operating time on machines in the factory and so on. With
consideration of these uncertainties, manufacturers could be quite responsive to their customers.

This research aims to make an integrated decision throughout the supply chain under uncertainty owing
to the expected reduction of costs in procurement, delay, material handling, and delivery; by adopting an
integrated approach to decision-making, manufacturers can hope to gain a competitive edge. However, to fulfill
this purpose, the following three steps are considered simultaneously. First, the selection of suppliers for the
procurement of raw materials is done based on distance, raw material price, and delivery lead time, which
helps to reduce the costs of finished products and delay. Second, using CM as a manufacturing approach helps
reduce delay and material handling cost. In addition, improvements in CF and cell management, reduce material
handling time and resource consumption, respectively, which in turn affects delay cost. Finally, this centralized
decision improves the sustainability of decision considering demand, shipping fleet transfer time, and processing
time under uncertainty. Since each production plan is based on the demand of customers, these uncertainties
make the integrated decision more realistic. Future demand is partially known at best and totally unknown at
worst in most business environments [32]. Shipping fleet transfer time and processing time are uncertain due to
traffic congestion and machine breakdown, respectively. In addition to the items mentioned, they are uncertain
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because of some unexpected events. Consideration of these uncertainties is therefore essential to obtain a reliable
solution.

This paper is organized as follows: Section 2 presents a literature review on the most related studies, which are
CM into supply chain management and CF with operations scheduling. Section 3 discusses problem description,
model notation, model formulation, and linearization of the model. Section 4 describes the developed solution
procedure. Section 5 considers computational results, including some numerical results, a sensitivity analysis,
and an analysis for a spare parts manufacturer of automobiles to investigate the strength and performance of
the proposed mathematical model. Finally, conclusions are given in Section 6.

2. Literature review

2.1. CM into supply chain management

The first article considers the integration of CM and supply chain management, written by Rao and Mohanty
[47]. They integrated CM and supply chain design and used some examples to prove interrelationship between
CM and supply chain design. They also remarked, ignoring the CM in supply chain design boosts the entire
supply chain cost. Schaller [51] formulated an integration of facility location, the design of CM systems within
each facility, and allocation of market demands to facilities in a mixed-integer programming model. The objec-
tive function minimizes the sum of production and supply chain costs. He showed using an integrated approach,
total cost was considerably declined. Benhalla et al. [8] presented the problem of integrating multi-plant CM
design in supply chain design. The supply chain includes several plant facilities to produce a variety of parts
and various suppliers to supply raw materials of each part. Their nonlinear model minimized the total cost of a
multi-plant CM in a supply chain. Saxena and Jain [50] developed an integrated model of dynamic CM and sup-
ply chain system design. They considered several subjects, for instance, multiple markets, multi-plant locations,
reconfiguration, multi-time periods, etc. The objective function minimizes the sum of costs, including machine
procurement, machine maintenance overhead, machine repair, machine setup, tool consumption, machine oper-
ation, non-utilization of machines in breakdown, reconfiguration of machine installation, the reconfiguration of
machine removal, part intra-cell movement, part inter-cell movement, part holding, raw material outsourcing,
finished outsourcing, and external transportation. Paydar et al. [42] proposed a mixed-integer linear program-
ming model, considering some uncertain parameters such as machine capacities and customer demands for the
integration of design of CF and production planning, and procurement in a supply chain concurrently. The
objective function minimizes the whole costs consisting of inter-cell and intra-cell movement of parts, inven-
tory, the investment of machines, and procurement. Paydar and Saidi-Mehrabad [40] studied the integration
of procurement, production and distribution planning in a bi-objective possibilistic programming model. They
formulated a dynamic virtual CF problem in the production stage of the supply chain. A virtual CF problem
includes a group of machines devoted to producing a part family, but machines do not have to be near each other,
i.e., they can be in different places on the shop floor physically. In this model, uncertainty is due to machine
capacities and customer demands. The first objective function minimized the costs of procurement, production
and delivery activities and the second one maximized the grouping efficacy of finished parts in virtual cells.
Aalaei and Davoudpour [1] integrated a dynamic virtual CM system and supply chain design in a bi-objective
optimization model. Their model covered significant manufacturing features including multi plants and facil-
ity locations, multi-period production planning, multi-markets allocations with consideration of uncertainty in
capacities of resources and demand of products. The first objective function minimized the sum of costs con-
sisting of holding, outsourcing, fixed, maintenance and overhead of machines, and external transportation. The
second one minimized the entire number of exceptional elements, parts that require at least one spare operation
in another cell, and movements of workers between active plants. Paydar and Saidi-Mehrabad [41] described a
mathematical model for the integration of CF, production planning, machine layout design, and determining
the quantity of raw material purchased from qualified suppliers in dynamic virtual CM systems. The objective
function minimizes the sum of costs, including inter-cell material movement, raw materials, the maintenance and
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overhead of machines and inventory holding, purchase, and transportation. Aalaei and Davoudpour [2] investi-
gated a CM system into supply chain design with worker assignment under uncertain demand. They considered
significant manufacturing aspects, including multi-market allocation, multi-plant location, production planning,
several product mixes, and machine and worker capacity. The objective function minimizes the entire cost of
holding, intercellular movement, external transportation, machine and worker, and fixed cost for producing each
part in each plant. Liu et al. [36] designed a nonlinear integer programming model for dynamic CM systems
in a supply chain. They attempted to consider production planning and facility transfer by presuming multi-
skilled workers and multiple factories simultaneously. The objective function minimizes the sum of costs such as
material, facility transfer, inventory holding, and backorder. Soolaki and Arkat [55] presented a mixed-integer
linear programming model for integrating procurement, production, and distribution of products in a supply
chain. Their model could make decisions in terms of suppliers’ choice, the site of active plants, and the site of
active distribution centers. This model could also determine the product manufacturing process, the number
of machines required in each cell, and procurement in each plant. The objective function minimizes total costs
comprising the costs for the manufacturing of raw materials by the suppliers, the manufacturing of products,
distribution centers, the foundation of the facilities at the candidate locations, and machinery.

2.2. CF with operations scheduling

Some of the most related research is presented that considers CF and operations scheduling problems together
are reviewed as follows. Arkat et al. [4] presented two mathematical models to investigate the design of a CM
system. First, the CF and cellular layout problems were solved simultaneously to minimize the total movement
costs due to optimizing cell configuration and the layout of the machines on the shop floor. Second, the cellular
scheduling problem was solved based on the found solution in the first model as a job shop scheduling problem.
The objective function is to minimize the total completion time of parts. They showed the influences of con-
sidering cellular scheduling on a CM system design. Pasupuleti [39] presented a methodology for the detailed
scheduling of all jobs in CM systems with given part families, the number of machines in each type of machine,
and machine cells. In this methodology, the processing sequences of jobs, processing and setup times, and due
dates were considered along with different dispatching rules, i.e., the shortest processing time, first-come first-
served, the earliest due date, the longest processing time and least slack. The methodology allocated jobs for each
type of machine in each cell, and produced the detailed schedules for each job. The considered dispatching rules
were evaluated by different performance measures such as mean flow time, makespan, mean tardiness, and mean
lateness. Arkat et al. [5] investigated three major decisions of CM, including CF, the layout of machines, and
the scheduling of operations concurrently. They proposed a multi-objective mathematical model that first and
second objective functions minimized the total transportation cost of parts and makespan, respectively. Kesen
and Gungor [30] discussed the job scheduling problem with a lot-streaming strategy in virtual manufacturing
cells. Each job had its processing sequences and there was a set of machines to process any operation of each job.
They developed a mixed-integer linear programming formulation that considers machine assignments, sub-lot
sizes, and the starting times of operations. The objective function minimizes makespan since machines were
distributed throughout the facility and traveling times between each pair of machines were taken into account.
Eguia et al. [15] investigated CF and the scheduling of part families. A mixed-integer linear programming model
has been presented in which the objective function minimizes production costs such as reconfigurable machine
tools between two sequential families and the under-utilization of machines’ resources. Solimanpur and Elmi [54]
proposed a mixed-integer linear programming model for a cell scheduling problem to minimize makespan. In
this model, they considered bottleneck machines and exceptional parts, processed parts in multiple cells because
duplicated machines decrease intercellular movements. Taouji Hassanpour et al. [57] explored the scheduling
problem of jobs in virtual CM systems. They also assumed that there were multiple jobs with different man-
ufacturing processing routes. The objective function minimizes the sum of two weighed objectives, including
tardiness and total travelling distance. Saravanan and Karthikeyan [49] addressed a scheduling optimization
problem of CM systems, which consisted of different manufacturing cells. First, the Rank Order Clustering
Method was used to identify and group cells for the optimization of schedules in various types of products in
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the job shop environment. Second, an optimization procedure has been presented for the scheduling problem
in machine cells. The objective function minimizes the penalty cost, i.e., due dates have not been met. Fahmy
[17] presented a mixed-integer linear programming model to integrate CF, group layout, and group scheduling
decision problem to design a CM system. The model considered intercellular and intracellular transportation
time and sequence-dependent setup time to determine optimal CF, candidate locations for machines within cells,
the distances between these locations and between cells to obtain the optimal group layout, and the schedule
of parts on machines concurrently. The objective function minimizes mean flow time in the system. Halat and
Bashirzadeh [21] studied the problem of operation scheduling with consideration of sequence-dependent family
setup time, exceptional elements, and intercellular transportation time in CM systems simultaneously. They pro-
posed an integer linear programming model that considered all aspects of the problem, with the minimization of
makespan. Liu and Wang [34] grouped multi-functional machines and multi-skilled workers and assigned them
to cells. They presented a nonlinear integer mathematical model, which simultaneously integrated CF and task
scheduling with a dual-resource constrained setting. The objective function minimizes makespan. Egilmez et al.
[14] studied family and job sequencing problems in CM, where splitting family into cells is allowed. Each job
has a specific due date, and each family requires setup before jobs in that family process. This created a conflict
between decreasing the total setup time and meeting the due dates of jobs. The objective functions minimize the
number of tardy jobs and total tardiness in a multi-objective mathematical model. Rafiei et al. [45] researched
into CF problem and group scheduling concurrently with consideration of sequence-dependent setups in a job
shop layout. They presented a mixed-integer nonlinear program to minimize the costs of operations and both
intercellular and intracellular movements simultaneously in a single-period setting. Liu et al. [35] investigated
a CM system under dual-resource constrained setting with consideration of CF and task scheduling concur-
rently. They presented a nonlinear 0-1 integer programming to minimize inter-cell material handling costs, the
fixed costs of machines and workers, and the operating costs of machines and workers by taking into consider-
ation multi-skilled machines and workers and operation sequence. Deliktas et al. [13] proposed four nonlinear
multi-objective models to handle a flexible job shop scheduling problem in a CM environment. They considered
intercellular movements, intercellular transportation times, exceptional parts, sequence-dependent family setup
times, and recirculation- a part may visit more than once in a machine or work center. The objective function
minimizes makespan as well. Feng et al. [19] discussed a dynamic cellular scheduling problem with machine
sharing, that is, a machine may belong to more than one cell, and flexible routes. Makespan and total workload
are minimized by the multi-objective mathematical model. In this model, machines are assigned to different
cells and the sequence of operations for each part is determined simultaneously.

Against this backdrop, this paper addresses the advantage of considering CM in the supply chain management
under uncertainty. A mathematical model is presented to formulate this integrated decision. Supply chain
management modeling approaches include economic, deterministic analytical, stochastic, and simulation models
[46]. Moreover, uncertainty can be classified according to the three approaches: stochastic programming, fuzzy
programming, and robust optimization. In this research, a stochastic supply chain management is presented
along with stochastic cell formation and cellular scheduling in the production stage. The interval between two
consecutive arrivals of demand, the processing time on machines, and vehicle transportation time are uncertain.
Queueing theory is used to formulate the uncertainties. This theory formulates simple models incorporating
randomness and using comparatively little data, while being a powerful analytical tool [37]. Moreover, a genetic
algorithm is proposed due to the discreteness of decision variables to deal with the complexity of the proposed
model.

According to the supply chain decision hierarchy, decisions are divided into four time horizons. Their sequence
from a longer horizon to a shorter horizon includes strategic planning, tactical planning, operational planning,
and operational execution planning. When moving from strategic planning to operational execution planning,
the horizon of decisions is shortened [53]. Moreover, this paper uses a queueing theory approach with a steady
state in modeling, and therefore the decision horizon is longer than in operational planning. Then, the decision
horizon in this research is tactical planning.
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Literature is summarized to highlight the filled gap by authors in Table 1. To the best of the authors’
knowledge, no three-stage supply chain has been presented in the literature along with cell formation and
cellular scheduling problem in the production stage under uncertainties formulated by queueing theory. The
main contributions of this paper are as follows:

(1) The problem considers CF problem, cellular scheduling problem, transportation between a manufacturer and
suppliers, transportation from the manufacturer to customers, and supplier selection in one mathematical
model.

(2) The processing time of each machine, the demand for parts, and the transportation time of vehicles are
uncertain.

(3) Cellular scheduling problem is usually studied individually while it impacts on CF, presented in the literature
review. In this research, they are formulated simultaneously.

(4) A genetic algorithm (GA) is presented to deal with the complexity of the model and solve the problem in
logical time.

3. Problem description

In this section, a nonlinear supply chain model with three stages is presented to make an integrated decision.
The first stage includes transportation and procurement. In this stage, vehicles transport raw materials at
different speeds. Suppliers also distributed in different geographical regions deliver raw materials with different
delivery times. In the second stage, i.e. in the factory, machines are grouped into cells and parts behind machines
are prioritized to be processed. In the third stage, the finished products are distributed to customers in different
geographic regions. Figure 1 illustrates the problem.

In this paper, four steps are performed to meet demands and queueing systems are used in each step. The
interval between two consecutive arrivals of demand is exponentially distributed, and the arrival rate is less than
the service rate in each queueing system. Then, the arrival rate is equivalent to the output rate for each queueing
system and the time between arrivals in the three remaining queueing systems are exponentially distributed.
So, queueing theory is used to formulate each step. The first step includes the interval of the ordering time of
each part by a customer to load raw materials from a supplier into the vehicle(s), using an M/M/∞ queueing
model (see Fig. 2). The demand is represented as a customer in this queueing system. It is worth noting that
the loading time is ignored. The second step is from a supplier to the manufacturer, for which the M/M/∞
queueing model is used. The raw materials of each part are considered as a customer (see Fig. 3). The third
step is considered as the interval in which the raw materials receive at the factory to manufacture the finished
parts. In this step, an M/M/1/∞/PR queueing model is considered (see Fig. 4), where each part as a customer
and each machine as a server are assumed. The last step is from the manufacturer to a customer. The queueing
system of this step is similar to the second step, where finished part are instead of raw materials as a customer.
Meanwhile, each vehicle is assumed to be a server in all M/M/∞ queueing models.

As mentioned earlier, the transportation component in the first and third stages is assumed to be an M/M/∞
queueing model. The first M stands for the inter-arrival time described by the exponential distribution, the
second M indicates the service time defined by the exponential distribution, and ∞ represents the number
of servers, which is infinite. The production stage is assumed to be an M/M/1/∞/PR queueing model. The
definition of the first three symbols is mentioned in the M/M/∞ queueing model. The fourth symbol indicates
that there is no limitation on the system capacity. PR, a type of queue disciplines, means that the customers
with the highest priorities are selected for service before the customers with lower priorities, regardless of
their arrival time in the system. There are two possible refinements in priority situations, i.e., preemption
and non-preemption. In this paper, non-preemption refinement is assumed. This means that there is no pause
in processing, and the highest-priority customer simply goes to the first place in the queue to wait its turn.
Meanwhile, each part as a customer and each machine as a server are considered that servers should serve
customers.
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Table 1. Summary of literature and comparison with this research.

No. Authors
Supply
chain
stages

Scheduled
component

Uncertain
component

Objective function
Solving
method

T
h
e

C
M

in
to

su
p
p
ly

ch
a
in

m
a
n
a
g
em

en
t

1 Rao and
Mohanty

S & M Min C(PR + OP) –

2 Schaller M & C Min C(OP + TTD +
AC)

MM & TS

3 Benhalla
et al.

S & M Min C(OP + TTD) MM

4 Saxena
and Jain

S, M &
C

Min C(MMO + OP
+ RE + Inte + Intr
+ ST + OU + TTD)

MM,AIS & H(AIS)

5 Paydar
et al.

S & M M Min C(Inte + Intr +
ST + FI + PR)

MM

6 Paydar
and Saidi
Mehrabad

S, M &
C

M 1-Min C(PR + OP +
TTD) 2-Max GE

MM

7 Aalaei,
Davoud-
pour

M & C M 1-Min C(ST + OU +
MMO + FI + TTD)
2-Min Intr + MW

MM

8 Paydar
and Saidi
Mehrabad

S & M Min C(Inte + MMO
+ ST + PR + TTD)

H(GA & VNS)

9 Aalaei and
Davoud-
pour

M & C M Min C(ST + Inte +
TTD + FI + MMO
+ OP)

MM

10 Liu et al. S, M &
C

Min C(OP + TTD +
PR + TT + ST)

IBFA & H

11 Soolaki
and Arkat

S, M &
C

Min C(FI + PR +
TTD + Inte + OP +
RE + ED + EC)

MM, GA & HGALO

Notes. Dash (–) means two types of a problem have been investigated and stages were named based on Chopra and
Meindl [11]. Supplier: S, Manufacturer: M, Customer: C, Transportation: T, and Warehouse or Distributer: W. Objectives
have been numbered in multi-objective models and independent models individually. Functions used in the objectives
were named such as; weighed function: W(), cost function: C(), and mean function: M(). Moreover, terms in the objectives
named such as; makespan: Cmax, total workload: TW, intercellular movement: Inte, intracellular movement: Intr, fixed
costs: C(FI), costs of operations: C(OP), total tardiness: TT, the number of tardy jobs: NTJ, flow time: FT, tardiness of
each job: TJ, total travelling distance: TTD, mean lateness: M(LA), total completion time: TCT, storage cost: C(ST),
procurement cost: C(PR), amortized cost: C(AC), grouping efficacy of finished parts: GE, machine procurement cost:
C(MP), machine maintenance overhead cost: C(MMO), reconfiguration: RE, outsourcing cost: C(OU), movements of
the workers: MW, establishment cost of the plants: C(EC), establishment cost of distribution centers: C(ED). A hybrid
algorithm was shown as H() which algorithms have been put inside of parentheses. Solving method were named such
as; mathematical modelling: MM, genetic algorithm: GA, three-layer chromosome genetic algorithm: TCGA, discrete
bacteria foraging algorithm: DBFA, simulated annealing: SA, Particle Swarm Optimization: PSO, Tabu search algorithm:
TS, nested tabu search algorithm: NTS, proposed genetic algorithm: PGA, heuristic: H, artificial immune system: AIS,
Variable neighborhood search: VNS, integrated bacteria foraging algorithm: IBFA, hybrid genetic ant lion optimization:
HGALO.
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Table 1. continued.

No. Authors
Supply
chain
stages

Scheduled
component

Uncertain
component

Objective function
Solving
method

T
h
e

C
F

w
it

h
o
p
er

a
ti

o
n
s

sc
h
ed

u
li
n
g

12 Arkat
et al.

M M 1-Min C(Intr + Inte)
2-Min TCT

GA & MM

13 Pasupuleti M M 1-Min Cmax 2-Min
M(FT) 3-Min M(LA)
4-Min M(TJ)

H

14 Arkat
et al.

M M 1-Min C(Intr+Inte)
2-Min Cmax

PGA

15 Kesen and
Gungor

M M Min Cmax GA

16 Eguia
et al.

M M Min C(OP) TS

17 Solimanpur
and Elmi

M M Min Cmax NTS

18 Taouji
Hassanpour
et al.

M M Min W(TT + Intr +
Inte)

SA, GA & MM

19 Saravanan
and
Karthikeyan

M M Min C(TT) PSO & GA

20 Fahmy M M Min M(FT) MM
21 Halat and

Bashirzadeh
M M Min Cmax GA & MM

22 Liu and
Wang

Min Cmax H(SA)

23 Egilmez
et al.

M M 1-Min TT 2-Min
NTJ

MM & GA

24 Rafiei
et al.

M M Min C(OP + Inte +
Intr)

H(SA, GA) & MM

25 Liu et al. M M Min C(Inte + FI +
OP)

DBFA

26 Deliktas
et al.

M M Min Cmax MM

27 Feng et al. M M 1-Min Cmax 2-Min
TW

TCGA, MM & GA

This
paper

S, M &
C

M T & M Min C(TTD + PR +
Inte + TT)

PGA

The transportation component is assumed to be a queueing system where there is an unlimited service because
an infinite number of vehicles are available. This assumption is rational due to third-party companies providing
vehicles to factories. The number of vehicles is unlimited, whereas vehicle types are a certain number. Each
vehicle type has a constant speed. The demand for part 𝑖 arrives at rate 𝜆𝑖 according to a Poisson process,
where one of the vehicles picks up the raw materials from a supplier at rate 𝜇𝑣. The average waiting time in
the system is also 1

𝜇𝑣
. Meanwhile, the return route from a supplier to the manufacturer and the transportation

from the manufacturer to a customer are considered as the same queueing model. It should be mentioned that
each supplier only produces raw materials of a certain part.

In the production stage, the 𝑘th priority parts arrive at a single-channel queue according to a Poisson process
with rate 𝜆𝑘(1 ≤ 𝑘 ≤ 𝑁) and these parts wait within their respective priorities on a first-come, first-served basis.
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It should be noted that the smaller number of 𝑘 indicates a higher priority. Moreover, the distribution function
of processing time for the 𝑘th priority is exponential with mean 1

𝜇𝑘
. Meanwhile, the average waiting time in the

queue for the part with priority 𝑖 in the production stage defined as follows (for more details on the queueing
system in this section, see also [20]):

𝑊 (𝑖)
𝑞 =

∑︀𝑁
𝑘=1

𝜌𝑘

𝜇𝑘

(1− 𝜎𝑖−1)(1− 𝜎𝑖)
(3.1)

where 𝜌𝑘 = 𝜆𝑘

𝜇𝑘
1 ≤ 𝑘 ≤ 𝑁 is called the utilization factor, 𝜎𝑘 =

∑︀𝑘
𝑖=1 𝜌𝑖, 𝜎0 = 0, and the system is stationary for

𝜎𝑁 < 1.

Index
𝑖: Index for parts and customers 𝑖 = 1, 2, . . . , 𝑃
𝑗, 𝑢: Index for machines 𝑗, 𝑢 = 1, 2, . . . ,𝑀
𝑣: Index for types of vehicles 𝑣 = 1, 2, . . . , 𝑉
𝑠: Index of suppliers 𝑠 = 1, 2, . . . , 𝑆
𝑝, 𝑟: Index of priorities 𝑝, 𝑟 = 1, 2, . . . , 𝑁
𝑜: Index of operations 𝑜 = 1, 2, . . . , 𝑂𝑖

𝑘: Index of cells 𝑘 = 1, 2, . . . , 𝐶

Parameters
𝑅𝑖𝑠: Delivery lead time of supplier 𝑠 for part 𝑖
𝜆𝑖: Demand rate of part 𝑖 for a given planning horizon
𝜇𝑗𝑖: Service rate of machine 𝑗 for part 𝑖 in a given planning horizon
𝜇′𝑣𝑠: Service rate of vehicle 𝑣 for supplier 𝑠 in a given planning horizon
𝜇′′𝑣𝑖: Service rate of vehicle 𝑣 for customer 𝑖 in a given planning horizon
𝐿: A sufficiently large number
𝑂𝑖: The number of operations for part 𝑖
𝑀max: The largest number of machines permitted for each cell
𝑑𝑖: The due date of part 𝑖
𝑎𝑖𝑜𝑗 : 1 if operation 𝑜 of part 𝑖 is processed on machine 𝑗 and 0 otherwise
𝜏𝑘𝑘′ : Inter-cell movement time of each part from cell 𝑘 to cell 𝑘′ in order to process on required machines
CO𝑣: The cost of vehicle 𝑣 per unit time
CS𝑠𝑖: The raw material price of part 𝑖 offered by supplier 𝑠
CV𝑘𝑘′ : Inter-cell movement cost from cell 𝑘 to cell 𝑘′

CD𝑖: The delay cost of part 𝑖 per unit time

Decision variables
𝑐1𝑖: Mean completion time of raw materials for part 𝑖, the interval between the order time of

part 𝑖 by a customer and loaded vehicle(s) ready to carry raw materials (the first component
of the first stage)

𝑐2𝑖: Mean procurement time of raw materials for part 𝑖, from the order time of part 𝑖 by a
customer to arrival time in the manufacturer (first stage)

𝑐3𝑖: Mean completion time of part 𝑖, from the order time of part 𝑖 to the production of finished
part 𝑖

𝑐4𝑖 : Mean completion time of part 𝑖, the interval between the order time of part 𝑖 and the delivery
of finished part 𝑖 to a relevant customer

SU𝑠𝑖: 1 if part 𝑖 is supplied by supplier 𝑠 and 0 otherwise
𝐺𝑣𝑖: 1 if part 𝑖 is picked up by vehicle 𝑣 from a supplier and 0 otherwise
PR𝑖𝑝: 1 if part 𝑖 assigned to priority 𝑝 and 0 otherwise
𝑦𝑗𝑘: 1 if machine 𝑗 assigned to cell 𝑘 and 0 otherwise
𝐺′𝑣𝑖: 1 if part 𝑖 is transported by vehicle 𝑣 from the manufacturer to customer 𝑖 and 0 otherwise
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Figure 1. Illustration of the proposed problem.

Figure 2. Queueing system for the first step.
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Figure 3. Queueing system for the second step.

Figure 4. Queueing system for the third step.

3.1. Model formulation

The queueing system at the manufacturer must be stable, i.e., the service rate has to be necessarily larger than
the arrival rate. Therefore, the amounts of used parameters in the mathematical model consider the stability
condition of queueing system related to the manufacturer. The stabilizing equation (3.2) is elaborated in this
subsection. The following equation avoids the infinite queue length behind each machine:

𝑃∑︁
𝑖=1

𝜆𝑖

∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖
< 1 ∀𝑗. (3.2)

The mathematical model is formulated as below:

Min 𝑍 =
𝑃∑︁

𝑖=1

𝑉∑︁
𝑣=1

(CO𝑣 ×𝐺𝑣𝑖 × 𝑐2𝑖) +
𝑆∑︁

𝑠=1

𝑃∑︁
𝑖=1

(CS𝑠𝑖 × SU𝑠𝑖)

+
𝑃∑︁

𝑖=1

𝑀∑︁
𝑗=1
𝑗 ̸=𝑢

𝑀∑︁
𝑢=1

𝐶∑︁
𝑘=1

𝐶∑︁
𝑘′=1
𝑘 ̸=𝑘′

∑︁
𝑜=1

(︀
CV𝑘𝑘′

(︀
(𝑎𝑖𝑜𝑗𝑦𝑗𝑘)

(︀
𝑎𝑖(𝑜+1)𝑢𝑦𝑢𝑘′

)︀)︀)︀

+
𝑉∑︁

𝑣=1

𝑃∑︁
𝑖=1

(CO𝑣 ×𝐺′𝑣𝑖 × (𝑐4𝑖 − 𝑐3𝑖)) +
𝑃∑︁

𝑖=1

(CD𝑖 ×max{0, 𝑐4𝑖 − 𝑑𝑖}) (3.3)
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s.t.
𝑆∑︁

𝑠=1

SU𝑠𝑖 = 1 ∀𝑖 (3.4)

SU𝑠𝑖 ≤ 𝐿×𝑅𝑖𝑠 ∀𝑠, 𝑖 (3.5)
𝑉∑︁

𝑣=1

𝐺𝑣𝑖 = 1 ∀𝑖 (3.6)

𝑐1𝑖 ≥
𝑆∑︁

𝑠=1

𝑉∑︁
𝑣=1

1
𝜇′𝑣𝑠

SU𝑠𝑖𝐺𝑣𝑖 ∀𝑖 (3.7)

𝑐1𝑖 ≥
𝑆∑︁

𝑠=1

𝑅𝑖𝑠SU𝑠𝑖 ∀𝑖 (3.8)

𝑐2𝑖 ≥ 𝑐1𝑖 +
𝑆∑︁

𝑠=1

𝑉∑︁
𝑣=1

1
𝜇′𝑣𝑠

𝐺𝑣𝑖SU𝑠𝑖 ∀𝑖 (3.9)

𝑃∑︁
𝑖=1

PR𝑖𝑝 = 1 ∀𝑝 (3.10)

𝑁∑︁
𝑝=1

PR𝑖𝑝 = 1 ∀𝑖 (3.11)

𝐶∑︁
𝑘=1

𝑦𝑗𝑘 = 1 ∀𝑗 (3.12)

𝑀∑︁
𝑗=1

𝑦𝑗𝑘 ≤ 𝑀max ∀𝑘 (3.13)

𝑐3𝑖 ≥ 𝑐2𝑖

+
𝑀∑︁

𝑗=1

𝑁∑︁
𝑝=1

⎛⎜⎜⎝
∑︀𝑝

𝑖=1
𝜆𝑖
∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

(𝜇𝑗𝑖)
2(︂

1−
∑︀𝑃

𝑖=1

[︂
𝜆𝑖
∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

]︂(︁∑︀(𝑝−1)
𝑟=1 PR𝑖𝑟

)︁)︂(︂
1−

∑︀𝑃
𝑖=1

[︂
𝜆𝑖
∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

]︂
(
∑︀𝑝

𝑟=1 PR𝑖𝑟)
)︂

+
𝑃∑︁

𝑖=1

PR𝑖𝑝

∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

⎞⎟⎟⎠PR𝑖𝑝 +
𝑀∑︁

𝑗=1

𝑀∑︁
𝑢=1
𝑢̸=𝑗

𝐶∑︁
𝑘=1

𝐶∑︁
𝑘′=1
𝑘 ̸=𝑘′

(𝑂𝑖−1)∑︁
𝑜=1

𝜏𝑘𝑘′(𝑎𝑖𝑜𝑗𝑦𝑗𝑘)
(︀
𝑎𝑖(𝑜+1)𝑢𝑦𝑢𝑘′

)︀
∀𝑖 (3.14)

𝑉∑︁
𝑣=1

𝐺′𝑣𝑖 = 1 ∀𝑖 (3.15)

𝑐4𝑖 ≥ 𝑐3𝑖 +
𝑉∑︁

𝑣=1

1
𝜇′′𝑣𝑖

𝐺′𝑣𝑖 ∀𝑖 (3.16)

SU𝑠𝑖, 𝐺𝑣𝑖, 𝐺
′
𝑣𝑖, PR𝑖𝑝, 𝑦𝑗𝑘 ∈ {0, 1}, 𝑐1𝑖, 𝑐2𝑖, 𝑐3𝑖, 𝑐4𝑖 ≥ 0 ∀𝑠, 𝑖, 𝑣, 𝑝, 𝑗, 𝑘, 𝑜. (3.17)

Objective function (3.3) minimizes the total cost, including the procurement and its transfer cost to the man-
ufacturer, inter-cell movement cost, the transfer cost of finished parts, and the delay cost of finished parts.
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Inter-cell movement costs minimize the movement of parts between cells. It leads to processing more parts
within each cell. Constraint (3.4) guarantees that each part must be assigned to one supplier. Constraint (3.5)
causes one supplier to be selected among suppliers with the production capability of raw materials for part 𝑖
(i.e., 𝑅𝑖𝑠 > 0). Constraint (3.6) ensures that each part is assigned to one vehicle type. As mentioned above, the
waiting time in the system for the M/M/∞ queueing system is the mean service time. Then, constraint (3.7)
shows that the mean completion time of raw materials for each part in a relevant supplier (i.e., 𝑐1𝑖) is at least
equal to the mean service time of the vehicle. Constraint (3.8) makes sure that the mean completion time of
raw materials in a supplier for each part is bigger than the delivery lead time of the same supplier. Constraint
(3.9) guarantees that the mean procurement time of raw materials is larger than the mean completion time
of raw materials in a supplier plus mean transportation time from the same supplier to the manufacturer for
each part. Constraints (3.10) and (3.11) assign each priority to one part. Constraint (3.12) makes sure that
each machine is assigned only to one cell. Constraint (3.13) ensures that the maximum number of machines
does not exceed the certain amount 𝑀max. Constraint (3.14) specifies the mean completion time of part 𝑖
from the order time of part 𝑖 to the production of finished part 𝑖 (i.e., 𝑐3𝑖), which is the sum of three terms.
They are the mean procurement time of raw materials for part 𝑖 (i.e., 𝑐2𝑖), the mean waiting time of part 𝑖 in
the manufacturing stage, and the inter-cell movement time of part 𝑖. The mean waiting time of each part in
the manufacturing stage comprises two terms. The first term in parentheses indicates the mean waiting time

of the 𝑝-priority part in the queue behind machine 𝑗. Term
[︂

𝜆𝑖
∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

]︂
represents the utilization factor of

machine 𝑗 to process part 𝑖, where term
∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗 indicates the number of operations of part 𝑖 on machine 𝑗. The

utilization factor of machine 𝑗 to process the part with priority 𝑟 is obtained via multiplying term
[︂

𝜆𝑖
∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

]︂
by PR𝑖𝑟 and the result is

∑︀𝑃
𝑖=1

(︂[︂
𝜆𝑖
∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

]︂
× PR𝑖𝑟

)︂
. Therefore, term 𝜎𝑝−1 in equation (3.1) is equal to∑︀(𝑝−1)

𝑟=1

(︂∑︀𝑃
𝑖=1

(︂[︂
𝜆𝑖
∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

]︂
× PR𝑖𝑟

)︂)︂
, and is rewritten to term

∑︀𝑃
𝑖=1

[︂
𝜆𝑖
∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

]︂(︁∑︀(𝑝−1)
𝑟=1 PR𝑖𝑟

)︁
in con-

straint (3.14). The second term in parentheses of the mean waiting time of each part in the manufacturing stage
is the mean processing time for 𝑝-priority part on machine 𝑗. Finally, the sum of the two terms in parentheses is
multiplied by PR𝑖𝑝 to obtain the mean waiting time of part 𝑖 to be processed on machine 𝑗. The third term of
constraint (3.14) means that when the next operation of a certain part is processed in another cell, it causes the
inter-cell movement of the same part. It should be noted that intra-cell movement time is neglected. Constraint
(3.15) ensures that each part is assigned to one vehicle type to transport the final part from the manufacturer
to a respective customer. Constraint (3.16) indicates that the sum of completion time from the order time until
the production of finished part (i.e., 𝑐3𝑖) and mean transportation time from the manufacturer to a respective
customer will not exceed the mean completion time from the order time until the delivery of finished part (i.e.,
𝑐4𝑖). Constraint (3.17) defines the ranges of the decision variables. Finally, the utilization factor of each machine
in the manufacturing stage must be less than 1 to avoid the instability of the queueing system. The utilization
factor of machine 𝑗, 𝜌𝑗 , is equal to the arrival rate divided by the service rate. Moreover, the part arrival rate of
machine 𝑗 is

∑︀
𝑖 𝜆𝑖, because the part arrival time to be processed on machine 𝑗 is equal to the most minimization

of the arrival time of the parts that need to be processed on machine 𝑗. The inter-arrival time between two
consecutive parts has an exponential distribution, then the most minimization of the part arrival time to be

processed has an exponential distribution with parameter
∑︀

𝑖 𝜆𝑖. Finally, 𝜌𝑗 =
∑︀𝐶

𝑘=1

∑︀𝑃
𝑖=1
∑︀𝑂𝑖

𝑜=1 𝜆𝑖𝑎𝑖𝑜𝑗𝑦𝑗𝑘

𝜇𝑗𝑖
∀𝑗 is

rewritten using equation (3.12),
∑︀𝐶

𝑘=1 𝑦𝑗𝑘 = 1∀𝑗, to find equation (3.2).

3.2. Linearization

The proposed model is a nonlinear mathematical model. Hence, three steps are used to linearize the proposed
model. In the first step, objective function (3.3) is linearized with defining four new variables 𝐺𝑐𝑣𝑖 ≥ 0, 𝑡𝑦𝑗𝑢𝑘𝑘′ ∈
{0, 1}, 𝐺𝑐𝑝𝑣𝑖 ≥ 0, and CDI𝑖 ≥ 0, which are respectively equal to 𝐺𝑣𝑖 × 𝑐2𝑖, 𝑦𝑗𝑘 × 𝑦𝑢𝑘′ , 𝐺′𝑣𝑖 × (𝑐4𝑖 − 𝑐3𝑖), and
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max𝑖{0, 𝑐4𝑖 − 𝑑𝑖}. The following constraints should be added to the proposed model for the linearization of the
first term of objective function (3.3):

𝐺𝑐𝑣𝑖 ≤ 𝐿×𝐺𝑣𝑖 ∀𝑣, 𝑖 (3.18)
𝐺𝑐𝑣𝑖 ≤ 𝑐2𝑖 ∀𝑣, 𝑖 (3.19)
𝐺𝑐𝑣𝑖 ≥ 𝑐2𝑖 − (1−𝐺𝑣𝑖)× 𝐿 ∀𝑣, 𝑖. (3.20)

The third term of objective function (3.3) and the third term of constraint (3.14) are linearized by adding the
following constraints:

𝑡𝑦𝑗𝑢𝑘𝑘′ − 𝑦𝑗𝑘 − 𝑦𝑢𝑘′ + 1.5 ≥ 0 ∀𝑢, 𝑗, 𝑘, 𝑘′, 𝑢 ̸= 𝑗, 𝑘 ̸= 𝑘′ (3.21)
1.5𝑡𝑦𝑗𝑢𝑘𝑘′ − 𝑦𝑗𝑘 − 𝑦𝑢𝑘′ ≤ 0 ∀𝑢, 𝑗, 𝑘, 𝑘′, 𝑢 ̸= 𝑗, 𝑘 ̸= 𝑘′. (3.22)

The following constraints should be added to the proposed model to linearize the fourth term of objective
function (3.3) considering 𝑐4𝑖 − 𝑐3𝑖 > 0:

𝐺𝑐𝑝𝑣𝑖 ≤ 𝐿×𝐺′𝑣𝑖 ∀𝑣, 𝑖 (3.23)
𝐺𝑐𝑝𝑣𝑖 ≤ (𝑐4𝑖 − 𝑐3𝑖) ∀𝑣, 𝑖 (3.24)
𝐺𝑐𝑝𝑣𝑖 ≥ (𝑐4𝑖 − 𝑐3𝑖)− (1−𝐺′𝑣𝑖)× 𝐿 ∀𝑣, 𝑖. (3.25)

The last term of objective function (3.3) is linearized by adding two following constraints:

CDI𝑖 ≥ 0 ∀𝑖 (3.26)
CDI𝑖 ≥ 𝑐4𝑖 − 𝑑𝑖 ∀𝑖. (3.27)

In the second step, constraints (3.7) and (3.9) are linearized by defining a new binary variable SU𝐺𝑠𝑣𝑖, which
is equal to SU𝑠𝑖 ×𝐺𝑣𝑖∀𝑠, 𝑣, 𝑖. Two following constraints are also added to the proposed model:

SU𝐺𝑠𝑣𝑖 − SU𝑠𝑖 −𝐺𝑣𝑖 + 1.5 ≥ 0 ∀𝑠, 𝑣, 𝑖 (3.28)
1.5SU𝐺𝑠𝑣𝑖 − SU𝑠𝑖 −𝐺𝑣𝑖 ≤ 0 ∀𝑠, 𝑣, 𝑖. (3.29)

In the third step, constraint (3.14) is linearized through considering new variables. First, the mean waiting time
of the 𝑝-priority part in the queue behind the machine 𝑗 is linearized by introducing variable WT𝑗𝑝 ≥ 0 which
is equal to:

WT𝑗𝑝 =

∑︀𝑃
𝑖=1

𝜆𝑖
∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

(𝜇𝑗𝑖)
2(︂

1−
∑︀𝑃

𝑖=1

[︂
𝜆𝑖

∑︀𝑂𝑖
𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

]︂(︁∑︀(𝑝−1)
𝑟=1 PR𝑖𝑟

)︁)︂(︂
1−

∑︀𝑃
𝑖=1

[︂
𝜆𝑖

∑︀𝑂𝑖
𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

]︂
(
∑︀𝑝

𝑟=1 PR𝑖𝑟)
)︂ ∀𝑗, 𝑝. (3.30)

The new auxiliary variables 𝑄𝑗𝑝𝑖𝑟 ≥ 0, DPR𝑖(𝑞𝑞)(𝑡𝑡) ∈ {0, 1}, WPR𝑗𝑝𝑖(𝑞𝑞)(𝑡𝑡) ≥ 0, TPR𝑞𝑡𝑟′𝑟′′ ∈ {0, 1},
WTPR𝑗𝑝𝑞𝑡𝑟′𝑟′′ ≥ 0, WR𝑗𝑝𝑖 ≥ 0, SPR𝑖′𝑖′′𝑝𝑟 ∈ {0, 1}, and WSPR𝑗𝑝𝑖′𝑖′′𝑟 ≥ 0 are presented to linearize equa-
tion (3.30). Moreover, the relevant constraints should be added to the proposed model, which are presented
below.

WT𝑗𝑝 − 2
𝑃∑︁

𝑖=1

(︃(︃
𝜆𝑖

∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

)︃(︃
𝑝∑︁

𝑟=1

𝑄𝑗𝑝𝑖𝑟

)︃)︃

+
𝑃∑︁

𝑖=1

⎛⎝(︃𝜆𝑖

∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

)︃2(︃ 𝑝∑︁
𝑟=1

𝑄𝑗𝑝𝑖𝑟 + 2
𝑝∑︁

𝑡𝑡=1

𝑡𝑡−1∑︁
𝑞𝑞=1

WPR𝑗𝑝𝑖(𝑞𝑞)(𝑡𝑡)

)︃⎞⎠
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+ 2
𝑃∑︁

𝑡=1

𝑡−1∑︁
𝑞=1

(︃(︃
𝜆𝑞

∑︀𝑂𝑖

𝑜=1 𝑎𝑞𝑜𝑗

𝜇𝑗𝑞

)︃(︃
𝜆𝑡

∑︀𝑂𝑖

𝑜=1 𝑎𝑡𝑜𝑗

𝜇𝑗𝑡

)︃
𝑃∑︁

𝑟′=1

𝑃∑︁
𝑟′′=1

WTPR𝑗𝑝𝑞𝑡𝑟′𝑟′′

)︃

+
𝑃∑︁

𝑖=1

(︃
𝜆𝑖

∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

𝜇𝑗𝑖

)︃
WR𝑗𝑝𝑖 −

𝑃∑︁
𝑖′=1

𝑃∑︁
𝑖′′=1

(︃(︃
𝜆𝑖′
∑︀𝑂𝑖

𝑜=1 𝑎𝑖′𝑜𝑗

𝜇𝑗𝑖′

)︃(︃
𝜆𝑖′′
∑︀𝑂𝑖

𝑜=1 𝑎𝑖′′𝑜𝑗

𝜇𝑗𝑖′′

)︃
𝑝∑︁

𝑟=1

WSPR𝑗𝑝𝑖′𝑖′′𝑟

)︃

=
𝑃∑︁

𝑖=1

𝜆𝑖

∑︀𝑂𝑖

𝑜=1 𝑎𝑖𝑜𝑗

(𝜇𝑗𝑖)
2 ∀𝑗, 𝑝 (3.31)

𝑄𝑗𝑝𝑖𝑟 = WT𝑗𝑝 × PR𝑖𝑟 ∀𝑗, 𝑝, 𝑖; 𝑟 = 1, 2, . . . , 𝑝

𝑄𝑗𝑝𝑖𝑟 ≤ 𝐿× PR𝑖𝑟 ∀𝑗, 𝑝, 𝑖, 𝑟 (3.32)
𝑄𝑗𝑝𝑖𝑟 ≤ WT𝑗𝑝 ∀𝑗, 𝑝, 𝑖, 𝑟 (3.33)
𝑄𝑗𝑝𝑖𝑟 ≥ WT𝑗𝑝 − (1− PR𝑖𝑟)× 𝐿 ∀𝑗, 𝑝, 𝑖, 𝑟 (3.34)
DPR𝑖(𝑞𝑞)(𝑡𝑡) = PR𝑖(𝑞𝑞) × PR𝑖(𝑡𝑡) ∀𝑖; 𝑞𝑞 = 1, 2, . . . , (𝑡𝑡− 1); 𝑡𝑡 = 1, 2, . . . , 𝑝

DPR𝑖(𝑞𝑞)(𝑡𝑡) − PR𝑖(𝑞𝑞) − PR𝑖(𝑡𝑡) + 1.5 ≥ 0 ∀𝑖; 𝑞𝑞 = 1, 2, . . . , (𝑡𝑡− 1); 𝑡𝑡 = 1, 2, . . . , 𝑝 (3.35)
1.5DPR𝑖(𝑞𝑞)(𝑡𝑡) − PR𝑖(𝑞𝑞) − PR𝑖(𝑡𝑡) ≤ 0 ∀𝑖; 𝑞𝑞 = 1, 2, . . . , (𝑡𝑡− 1); 𝑡𝑡 = 1, 2, . . . , 𝑝 (3.36)
WPR𝑗𝑝𝑖(𝑞𝑞)(𝑡𝑡) = WT𝑗𝑝 ×DPR𝑖(𝑞𝑞)(𝑡𝑡) ∀𝑗, 𝑝, 𝑖; 𝑞𝑞 = 1, 2, . . . , (𝑡𝑡− 1); 𝑡𝑡 = 1, 2, . . . , 𝑝

WPR𝑗𝑝𝑖(𝑞𝑞)(𝑡𝑡) ≤ 𝐿×DPR𝑖(𝑞𝑞)(𝑡𝑡) ∀𝑖; 𝑞𝑞 = 1, 2, . . . , (𝑡𝑡− 1); 𝑡𝑡 = 1, 2, . . . , 𝑝 (3.37)
WPR𝑗𝑝𝑖(𝑞𝑞)(𝑡𝑡) ≤ WT𝑗𝑝 ∀𝑖; 𝑞𝑞 = 1, 2, . . . , (𝑡𝑡− 1); 𝑡𝑡 = 1, 2, . . . , 𝑝 (3.38)
WPR𝑗𝑝𝑖(𝑞𝑞)(𝑡𝑡) ≥ WT𝑗𝑝 −

(︀
1−DPR𝑖(𝑞𝑞)(𝑡𝑡)

)︀
× 𝐿 ∀𝑖; 𝑞𝑞 = 1, 2, . . . , (𝑡𝑡− 1); 𝑡𝑡 = 1, 2, . . . , 𝑝 (3.39)

TPR𝑞𝑡𝑟′𝑟′′ = PR𝑞𝑟′ × PR𝑡𝑟′′ ∀𝑟′, 𝑟′′; 𝑡 = 1, 2, . . . , 𝑃 ; 𝑞 = 1, 2, . . . , (𝑡− 1)
TPR𝑞𝑡𝑟′𝑟′′ = PR𝑞𝑟′ − PR𝑡𝑟′′ + 1.5 ≥ 0 ∀𝑟′, 𝑟′′; 𝑡 = 1, 2, . . . , 𝑃 ; 𝑞 = 1, 2, . . . , (𝑡− 1) (3.40)
1.5TPR𝑞𝑡𝑟′𝑟′′ − PR𝑞𝑟′ − PR𝑡𝑟′′ ≤ 0 ∀𝑟′, 𝑟′′; 𝑡 = 1, 2, . . . , 𝑃 ; 𝑞 = 1, 2, . . . , (𝑡− 1) (3.41)
WTPR𝑗𝑝𝑞𝑡𝑟′𝑟′′ = WT𝑗𝑝 × TPR𝑞𝑡𝑟′𝑟′′ ∀𝑟′, 𝑟 = 1, 2, . . . , 𝑝; ∀𝑡 = 1, 2, . . . , 𝑃 ;

∀𝑞 = 1, 2, . . . , (𝑡− 1); ∀𝑞, 𝑝
WTPR𝑗𝑝𝑞𝑡𝑟′𝑟′′ ≤ 𝐿× TPR𝑞𝑡𝑟′𝑟′′ ∀𝑗; 𝑝; 𝑞; 𝑡; 𝑟′; 𝑟′′ (3.42)
WTPR𝑗𝑝𝑞𝑡𝑟′𝑟′′ ≤ WT𝑗𝑝 ∀𝑗; 𝑝; 𝑞; 𝑡; 𝑟′; 𝑟′′ (3.43)
WTPR𝑗𝑝𝑞𝑡𝑟′𝑟′′ ≥ WT𝑗𝑝 − (1− TPR𝑞𝑡𝑟′𝑟′′)× 𝐿 ∀𝑗; 𝑝; 𝑞; 𝑡; 𝑟′; 𝑟′′ (3.44)
WR𝑗𝑝𝑖 = WT𝑗𝑝 × PR𝑖𝑝 ∀𝑗; 𝑝; 𝑖

WR𝑗𝑝𝑖 ≤ 𝐿× PR𝑖𝑝 ∀𝑗; 𝑝; 𝑖 (3.45)
WR𝑗𝑝𝑖 ≤ WT𝑗𝑝 ∀𝑗; 𝑝; 𝑖 (3.46)
WR𝑗𝑝𝑖 ≤ WT𝑗𝑝 − (1− PR𝑖𝑝)× 𝐿 ∀𝑗; 𝑝; 𝑖 (3.47)
SPR𝑖′𝑖′′𝑝𝑟 = PR𝑖′𝑝 × PR𝑖′′𝑟 ∀𝑖′, 𝑖′′ = 1, 2, . . . , 𝑃 ; ∀𝑝; ∀𝑟 = 1, 2, . . . , 𝑝

SPR𝑖′𝑖′′𝑝𝑟 − PR𝑖′𝑝 − PR𝑖′′𝑟 + 1.5 ≥ 0 ∀𝑖′, 𝑖′′ = 1, 2, . . . , 𝑃 ; ∀𝑝; ∀𝑟 = 1, 2, . . . , 𝑝 (3.48)
1.5SPR𝑖′𝑖′′𝑝𝑟 − PR𝑖′𝑝 − PR𝑖′′𝑟 ≤ 0 ∀𝑖′, 𝑖′′ = 1, 2, . . . , 𝑃 ; ∀𝑝; ∀𝑟 = 1, 2, . . . , 𝑝 (3.49)
WSPR𝑗𝑝𝑖′𝑖′′𝑟 = WT𝑗,𝑝 × SPR𝑖′𝑖′′𝑝𝑟 ∀𝑗; 𝑝; ∀𝑖′, 𝑖′′ = 1, 2, . . . , 𝑃

WSPR𝑗𝑝𝑖′𝑖′′𝑟 ≤ 𝐿× SPR𝑖′𝑖′′𝑝𝑟 ∀𝑗; 𝑝; ∀𝑖′, 𝑖′′ = 1, 2, . . . , 𝑃 (3.50)
WSPR𝑗𝑝𝑖′𝑖′′𝑟 ≤ WT𝑗𝑝 ∀𝑗; 𝑝; ∀𝑖′, 𝑖′′ = 1, 2, . . . , 𝑃 (3.51)
WSPR𝑗𝑝𝑖′𝑖′′𝑟 ≥ WT𝑗𝑝 − (1− SPR𝑖′𝑖′′𝑝𝑟)× 𝐿 ∀𝑗; 𝑝; ∀𝑖′, 𝑖′′ = 1, 2, . . . , 𝑃. (3.52)

Second, the mean processing time for part 𝑖 on machine 𝑗 is obtained via multiplying the mean processing time
for the 𝑝-priority part on machine 𝑗 by PR𝑖𝑝. It is linearized by defining a new variable MPR𝑖′𝑖𝑝 ∈ {0, 1}, which
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is equal to PR𝑖′𝑝 × PR𝑖𝑝 and adding the following constraints in the proposed model.

MPR𝑖′𝑖𝑝 − PR𝑖′𝑝 − PR𝑖𝑝 + 1.5 ≥ 0 ∀𝑖, 𝑖′ = 1, 2, . . . , 𝑃 ; ∀𝑝 = 1, 2, . . . , 𝑁 ; (3.53)
1.5MPR𝑖′𝑖𝑝 − PR𝑖′𝑝 − PR𝑖𝑝 ≤ 0 ∀𝑖, 𝑖′ = 1, 2, . . . , 𝑃 ; ∀𝑝 = 1, 2, . . . , 𝑁. (3.54)

Finally, the following linearized version is used instead of constraint (3.14).

𝑐3𝑖 ≥ 𝑐2𝑖 +
𝑀∑︁

𝑗=1

𝑁∑︁
𝑝=1

(︃
WR𝑗𝑝𝑖 +

𝑃∑︁
𝑖′=1

MPR𝑖′𝑖𝑝

∑︀𝑂𝑖

𝑜=1 𝑎𝑖′𝑜𝑗

𝜇𝑗𝑖′

)︃
+

𝑀∑︁
𝑗=1

𝑀∑︁
𝑢=1
𝑢̸=𝑗

𝐶∑︁
𝑘=1

𝐶∑︁
𝑘′=1
𝑘=𝑘′

(𝑂𝑖−1)∑︁
𝑜=1

𝜏𝑘𝑘′𝑎𝑖𝑜𝑗𝑎𝑖(𝑜+1)𝑢𝑡𝑦𝑗𝑢𝑘𝑘′ ∀𝑖.

(3.55)

4. Solution procedure

The NP-hardness of the CF problem has been shown by some researchers [6, 7, 31]. Therefore, our more
general problem is also NP-hard. Moreover, the discreteness of the decision variables convinces us to choose the
genetic algorithm among meta-heuristic algorithms to solve the stated problem.

GAs are based on population and random search that follow the basic laws of biological evolution, natural
choice, and gene recombination [43]. GA begins from a pool of usually randomly generated chromosomes (i.e.,
solutions). A fitness function value selects between chromosomes. Crossover and mutation are used to generate
a new generation for each new iteration of the algorithm. The outcome is also a population of chromosomes
because a population of chromosomes is processed in each iteration of GA. If an optimization problem has a
global optimum, then all chromosomes can be expected to converge to it [28]. An overview of our framework is
illustrated in Figure 5.

The first step is to define the structure for a solution or chromosome. In this paper, a solution representation
has the form of a matrix with 1 row and 4×𝑃 +𝑀 (𝑀 is the number of machines and 𝑃 is the number of parts)
columns. The structure of the solution matrix is shown in Figure 6. The first 𝑃 arrays of the matrix are filled
with the assigned vehicle types to pick up the raw materials from a supplier to the manufacturer. The second
𝑃 arrays of the matrix select the suppliers that produce the raw materials of parts. The third segment, i.e.,
𝑀 positions of the matrix is filled with the assigned cell number so that each machine is in only one cell. The
fourth segment, i.e., 𝑃 arrays of the matrix, is the assigned vehicle types to transport from the manufacturer
to a customer. The last 𝑃 arrays of the matrix are the priorities of parts, where each part is assigned to only
one priority.

4.1. Population initialization

A set of feasible solutions is generated as an initial population. The steps of initial solutions are shown in
Figure 7.

4.2. Fitness function

A fitness function measures chromosomes in a population. Some or all of the better chromosomes are selected
for the next iteration generation. In this study, the objective function of the proposed model is the fitness
function. It should be noted, the new generation is called offspring or children in the GA and each chromosome
respects all the constraints of the proposed model.

4.3. Selection method

Tournament selection is a selection strategy used in the proposed algorithm. It selects suitable chromosomes
from the current generation to be used in the next generation. First, a certain number of chromosomes is
randomly selected. Second, the selection strategy runs a tournament between them based on a fitness function.
Finally, the best one is selected to be used in the crossover operator. When the tournament size is large,
chromosomes with weak fitness functions may compete with stronger ones.
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Figure 5. The proposed genetic algorithm framework.

Figure 6. A sample solution representation.

4.4. Crossover operator

A crossover operator replaces the data from two parents and generates children from them. These children
inherit some segments from their parents. In this paper, the one-point crossover is chosen among crossover
mechanisms to generate children from the result of the tournament selection. An example is shown in Figure 8
to clarify the one-point crossover mechanism. It should be noted, the last segment of the chromosome, the
priorities of parts, is not considered for the crossover mechanism. In the one-point crossover, genes of parents
are replaced with each other to generate children from both parents.
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Figure 7. Steps for generating the initial population.

4.5. Mutation operator

Mutation keeps one or more genes from the current generation to the next. In this study, a single point
mutation operator is used. A random number between 1 to 4×𝑃 +𝑀 is generated for the mutation operator. If
the number is between 1 to 3× 𝑃 + 𝑀 , the selected gene is changed by another one with relative features. For
example, if the number is less than 𝑃 , then the selected vehicle is replaced with another type. As mentioned
earlier, the chromosome has 5 segments. The last segment is a permutation of parts. So, if the number is larger
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Figure 8. The offspring resulted from a crossover between parent 1 and parent 2.

Figure 9. A mutated solution resulted from the application of mutation 2.

than 3×𝑃 + 𝑀 , then another gene in this segment is randomly selected to swap places. Figure 9 illustrates the
mechanism of the single point mutation.

5. Computational results

Twelve test problems that are presented in Table 3 are considered to evaluate the merits of the model and
the performance of the proposed genetic algorithm (PGA). The small and very large-scale test problems have
been selected from the literature [3, 4, 9, 23], and the rest of test problems have been randomly generated. The
proposed model and PGA have been respectively coded in the Lingo 12.0 and MATLAB 2013a. They were
solved on a computer with 2.99 GB RAM, core i5, and 2.50 GHz processor. The proposed model and PGA were
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Table 2. The candidates and obtained values for the PGA parameters.

Factor Problem scale

Small Medium Large Very large

Candidates Obtained Candidates Obtained Candidates Obtained Candidates Obtained

Maximum

iteration

{70, 80, 90, 100} 100 {500, 550, 600, 650} 500 {700, 750, 800, 850} 750 {850, 900, 950, 1000} 1000

Population size {80, 90, 100, 110} 100 {300, 350, 400, 450} 450 {400, 450, 500, 550} 500 {400, 450, 500, 550} 550

Mutation

probability

{0.2, 0.3, 0.4, 0.5} 0.2 {0.3, 0.4, 0.5, 0.6} 0.4 {0.2, 0.3, 0.4, 0.5} 0.3 {0.2, 0.3, 0.4, 0.5} 0.3

Tournament

size

{2, 3} 3 {2, 3} 3 {2, 3} 3 {2, 3} 2

Crossover

probability

{0.2, 0.3, 0.4, 0.5} 0.4 {0.4, 0.5, 0.6, 0.7} 0.4 {0.3, 0.4, 0.5, 0.6} 0.5 {0.4, 0.5, 0.6, 0.7} 0.7

Table 3. Comparison of the B&B of the Lingo software and the PGA runs.

B&B PGA

Problem

No.

No. of

parts

No. of

machines

No. of

cells

𝑀max No. of

vehicles

No. of

suppliers

𝐹best 𝐹bound TB&B (s) 𝑍ave 𝑍best TGA (s) 𝐺ave (%) 𝐺best (%)

1 4 3 2 2 3 12 4620.66 4620.66 16 4620.66 4620.66 3 0.00 0.00

2 4 4 2 3 3 12 3390.95 3390.95 17 3390.95 3390.95 3 0.00 0.00

3 5 5 2 3 7 15 3777.37 3777.37 212 3777.37 3777.37 3 0.00 0.00

4 5 11 3 4 5 15 5751.55 5751.55 2038 5787 5751.7 76 0.62 0.00

5 5 12 4 4 8 15 5326.91 5326.91 3099 5336.3 5327.4 89 0.18 0.01

6 5 14 3 8 5 15 6346.5 6346.5 4337 6346.5 6346.5 99 0.00 0.00

7 5 18 7 3 8 15 19 848.5 13 665.5 5400 18 310.3 17 821 58 −7.75 −10.21

8 5 20 5 5 7 15 10 801.3 2705.79 5400 5736.5 5554.3 132 −46.89 −48.58

9 5 21 6 4 6 15 4462.0 2040.2 5400 4140.9 3947.7 55 −7.19 −11.53

10 20 8 3 4 10 60 – – – 23 701.33 23 701 1360 – –

11 19 12 3 9 9 57 – – – 14 162 14 162 1427 – –

12 20 20 5 5 17 60 – – – 25 955 25 618 1663 – –

coded in Lingo 12.0 and MATLAB 2013a, respectively. Moreover, the design of experiments (DOEs) have been
performed to set the parameters, since the efficiency of the metaheuristics algorithms tightly depends on the
parameters.

The importance of each setting parameter and the interactions between them are estimated by the DOE. The
test problems are categorized into four groups, including small, medium, large, and very large-scale. The PGA
parameters are set using the Taguchi technique design. Test problems 2, 5, 8, and 11 of examples are selected
to cover different scales for the DOE. The setting parameters are summed up in Table 2.

The test problems are solved by branch and bound (B&B) of the Lingo software and PGA. Then, their results
are compared in Table 3. The large-scale test problems were allowed to run for 5400s. The very large-scale test
problems exceeded the allowable limitations of the Lingo software to produce any feasible solution, which means
the number of constraints and variables ran out of memory. Each test problem has been run 3 times by the PGA
and then the average of the solutions in 𝑍ave and the best solution in 𝑍best were reported. According to the Lingo
software tutorial, 𝐹best is the best amount of the objective function found so far and 𝐹bound is the objective
function of the dual model. When 𝐹bound is equal to 𝐹best, the objective function has reached the global optimal
solution. Moreover, for large-scale test problems if 𝑍ave or 𝑍best is between 𝐹bound and 𝐹best, it means that the
PGA has obtained a better solution than the B&B of Lingo software. Using these concepts, it is worth mentioning
that appropriate metrics are essential that can provide a base for comparing the results. For this purpose, two
formulas are used. 𝐺ave is equal to [(𝑍ave − 𝐹best)/𝐹best]×100 and 𝐺best = [(𝑍best − 𝐹best)/𝐹best]×100. If 𝐺ave

or 𝐺best is negative, it means the PGA has been able to obtain a better solution than the B&B of the Lingo
software and vice versa.
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Figure 10. Comparison of the performance of the PGA and the B&B of the Lingo software.

Figure 11. Convergence of the PGA for test problem 5.

The PGA results were compared with the B&B of Lingo software, as shown in Table 3. The results in Table 3
show that the B&B of the Lingo software and the PGA report the same results in the small-scale problems. They
also depict small differences for the medium-scale problems. The results show that the PGA can provide better
solutions for the large-scale problems (see Fig. 10), and the B&B of the Lingo software cannot find any feasible
solution for the very large-scale problems whereas the PGA achieves them. The B&B of the Lingo software
takes more computation time than the PGA. Figure 11 shows the minimizing process for the test problem 5 in
Table 3 using the PGA.

5.1. Sensitivity analysis

The test problem 4 is considered in the sensitivity analysis of the proposed model to investigate the effect
of the related parameters on the performance of the proposed model and to highlight important managerial
insights. Information about test problem 4 can be found in the supplementary data. The due date of part 5
is changed and kept the other parameters fixed to analyze the effect of the due date on the transfer cost of
finished parts, the delay cost of final parts, waiting time, and inter-cell movement time. It should be noted, the
vertical axes on the right-hand and left-hand show the delay cost and transfer cost of final part 5 in Figure 12,
respectively. Figure 12 shows the relation between the due date of finished part 5 and related delay cost. The
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Figure 12. The delay and transfer cost of finished part 5 in the presence of different due dates.

results show that, while the due date of finished part 5 decreases, the relevant delay cost increases, which is
predictable by the fifth term of the objective function. The first point of contact on the horizontal axis is where
𝑐4,5 is equal to 𝑑5, namely the delay cost of finished part 5 is zero. Besides, The transfer cost of finished part 5
goes up while the respective due date declines because the delay cost is larger than the transfer cost of finished
part 5 before 𝑐4,5 = 𝑑5 on lower due dates. In other words, the model attempts to use faster vehicles to meet the
deadline instead of accepting larger delay costs. Moreover, higher-speed vehicles are rented at a higher price.
The threshold of selected vehicle, while the due date of finished part 5 decreases, is the fastest vehicle with the
highest rental price.

As the due date of finished part 5 varies, it could influence on the type of vehicle to transport raw materials
to the manufacturer and the supply of raw materials from a supplier with lower distance, which in turn impacts
on the price of raw materials. But, when the due date of finished part 5 reduces, the procurement costs, which
are the first and second cost terms in the objective function, do not change. It can be explained by the following
reasons. If raw materials are transported in a vehicle with the highest speed instead of the current one, which
has the lowest speed, still the transfer cost of the selected vehicle plus the extra delay cost owing to the slowest
vehicle has a lower cost. Furthermore, the lowest raw material price with the shortest delivery lead time among
potential suppliers is chosen in the optimal solution. Therefore, when the due date of finished part 5 drops, the
procurement costs do not change.

How the waiting time and inter-cell movement behave for different sets of the due dates are depicted in
Figure 13. While the due date of finished part 5 decreases, so do the priority of part 5 and the mean waiting
time reduce. This is because the mean waiting time effects on the delay cost. Decreasing the due date of finished
part 5 not only influences the delay cost, but it also impacts on inter-cell movement cost. So, it reduces inter-cell
movement time by trying to assign all operations of each part in one cell.

The behavior of the model is investigated by increasing the cost coefficients for all indexes in the objective
function through multiplying them by the integer numbers (𝑋) and assuming the other parameters to be fixed.
Significant managerial insights were obtained by the investigation of this numerical example. The results are
explained in the rest of this section.

When CD𝑖 (the delay cost of part 𝑖) boosts, it could influence on vehicle type, inter-cell movement, waiting
time, and delay as mentioned above. However, it does not make the model to alter the optimal solution, since
the delay is zero in the optimal solution for all parts. But, if the delay is not zero for one part, this increase
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Figure 13. The mean waiting time and the inter-cell movement time of finished part 5 in the
presence of different due dates.

Figure 14. Behavior of transfer cost to the manufacturer and customer, and the delay cost
individually with varying CS𝑠𝑖∀𝑠, 𝑖.

could decrease inter-cell movement and waiting time and lead to the selection of a faster vehicle to drop the
delay cost.

As CV𝑘𝑘′ (inter-cell movement cost from cell 𝑘 to cell 𝑘′) goes up, the model attempts to assign all operations
of each part in a single cell to reduce inter-cell movements. The results show that all operations of each part
are processed in a single cell except operations 1 and 4 related to parts 2 and 5, respectively. Nevertheless, this
increase does not make the model to change the optimal solution. For part 5, all operations are done in a single
cell except operation 4 because the number of machines in the cell is equal to 𝑀max. Therefore, constrain (13)
avoids adding another machine. Likewise, the number of various machines to operate on part 2 is more than
𝑀max, so inter-cell movement is inevitable.

The sensitivity analysis of CS𝑠𝑖 (the raw material price of part 𝑖 offered by supplier 𝑠) is performed as shown
in Figure 14. Part 3 and part 4 did not achieve the lowest raw material price among suppliers in the optimal
solution. This is because the selected suppliers are in a shorter distance compared to those offering the lowest
raw material price. Therefore, they arrive at the manufacturer earlier with lower transportation costs. When
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Table 4. The assigned machines to cells.

Cell 1 Cell 2 Cell 3 Cell 4

Machines {5, 9, 16, 20, 21, 22, 23, 25} {1, 4, 6, 7, 10, 13, 15, 17} {18} {2, 3, 8, 11, 12, 14, 19, 24}

CS𝑠𝑖 increases, each term of the objective function changes except inter-cell movement cost, which provides
an insight that the inter-cell movement cost is not sensitive to the raw material price. The symbol 𝑝4𝑐1 in
the legend shows the change in the transfer cost to procure the raw material of part 4. The symbol 𝑝4 stands
for part 4, and 𝑐1 represents the first cost term in the objective function, which is the transfer cost to the
manufacturer. It should be noted, the vertical axis on the right side shows costs related to the transfer cost to
the manufacturer (𝑐1), and the delay cost of finished parts (𝑐5), individually. The vertical axis on the left side
illustrates the transfer cost of finished parts (𝑐4). When the parameter CS𝑠4 takes the value 214 × CS𝑠4 (i.e.,
replace initial value CS𝑠4 with 214 × CS𝑠4), supplier 10 in the initial optimal solution switches to supplier 14,
which offers the lowest raw material price for part 4. This change in the optimal solution causes further distance
for the transportation of raw materials, whereas it does not make any delay. In this solution, the difference in
transfer cost between suppliers 10 and 14 is less than (CS10,4 − CS14,4), i.e., the cheapest supplier is preferred
compared to the nearest supplier to the manufacturer. As CS𝑠𝑖 boosts through multiplying it by 𝑋, 𝑋 takes
the value 2132 (i.e., replace initial value CS𝑠3 with 2132×CS𝑠3), where supplier 8 in the initial optimal solution
switches to supplier 2, which offers the lowest raw material price for part 3. In this solution, the model achieves
the lowest raw material price for part 3 at the expense of increasing 𝑐1, 𝑐4, and 𝑐5. When 𝑋 is equal to 2132,
the sum of three differences that include the difference of 𝑐1, 𝑐4, and 𝑐5 between suppliers 8 and 2 is less than
(CS8,3 − CS2,3). This means the lowest raw material price forces the model to accept higher transfer and delay
cost. After attaining the lowest raw material price for all parts, the solution remains constant and is not affected
by increasing the raw material price.

To obtain useful insights, CO𝑣 (the cost of vehicle 𝑣 per unit time) is analyzed given that part 2 and part 4
do not achieve the lowest rental price in the initial optimal solution. CO𝑣 goes up, whereas the initial optimal
solution does not change. The reason is that the transfer costs in the first and fourth terms of the objective
function multiply CO𝑣 by the transfer time. So, when CO𝑣 increases for all vehicle types, it does not cause
the model to choose the vehicle with the lowest rental price because the selected vehicle in the initial optimal
solution has the lowest speed among all vehicle types. Therefore, it needs a lot of time to transport finished
parts to the relevant customer. All in all, the model is not sensitive to varying CO𝑣.

5.2. A case study

The model is employed for a spare parts manufacturer of automobiles to present that the proposed model can
be implemented in a real-world application. The case study will present meaningful insight about centralization
of decisions and how it leads to the reduction of costs in throughout the supply chain. The case information
can be found in the supplementary data.

It is common to make a decision separately in the production activities of automobile industries [56]. In this
factory, the decision was made for each component in the supply chain based on following rules: the lowest rental
price for vehicles to pick up raw materials, the lowest raw material price among suppliers, the lowest inter-cell
movement cost to assign machines to each cell, the earliest due date to prioritize parts behind each machine,
and the lowest rental price for vehicles to deliver finished parts. The total cost of this approach is 5018.23, while
the total cost of the proposed model is 3928.04. The global optimal solution of the proposed model is presented
as follows. Vehicle type 4 is assigned to transport the raw materials of all parts, and the raw materials of parts
1 to 4 are respectively supplied by suppliers 1, 7, 2, and 8. Besides, Table 4 shows the assigned machines to
cells, vehicle type 4 is assigned to deliver all final parts, and the priorities of parts 1 to 4 are in the order 3, 4,
2, and 1 to be processed on the respective machine.
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Figure 15. A detailed solution of the case study.
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In Figure 15, each row in each cell shows the queue of parts and their priority to be processed on the respective
machine based on the solution. There could be more than one type of part in each queue. However, it is avoided
in the figure because it looks cluttered. Each part type is shown by a certain shape. The process flow of each
part is illustrated in the figure. As seen in the figure, the number of inter-cell movements is less than intra-cell
movements, which proves the high performance of the proposed model. Machine 18 could not be located in
either cell 1 or 4 because 𝑀max avoids more than six machines in each cell. Therefore, it is assigned to cell 3.

6. Conclusion

In this study, a three-stage supply chain was studied. The first stage, supply, considered vehicles with various
speeds to transport raw materials and suppliers with different delivery lead times. In the second stage, produc-
tion, the assignment of machines to cells and the identification of priority for each part to be processed on the
relevant machine were investigated. In other words, the CF problem was studied along with the prioritization
of parts. The third stage, customer, considered vehicles with various speeds to deliver final parts and customers
with different due dates. In addition, the interval between two consecutive arrivals of demand, the processing
time of the machines, and the transportation time of the vehicles have an exponential distribution. A novel
mixed-integer nonlinear mathematical model was developed with the queueing theory framework. The objec-
tive function minimizes the total cost, including procurement cost, transfer cost to the manufacturer, inter-cell
movement cost, the transfer cost of finished parts, and delay costs. The nonlinear mathematical model was
linearized to find exact solutions. A GA was developed to deal with the NP-hardness of the problem. More-
over, the Taguchi experimental design method was used to set the appropriate values of the PGA parameters
to improve the performance. The performance of the PGA was tested by solving test problems with different
sizes. The PGA solved all the test problems within a very short computational time. However, the linearized
mathematical model, which has been coded using Lingo, could not provide an optimal solution to the large-scale
test problems within 1.5 h and any bound to the very large-scale test problems.

The significant managerial insights were found via the sensitivity analysis and case study. A reduction in due
dates increases transfer cost and minimizes waiting and material handling time. Transfer and delay costs boost
with a rise in the raw material price. It is also addressed that the centralization of decisions reduces the total cost.
Besides, the proposed mathematical model was implemented in a real case. The acquired results demonstrated
that the proposed model could find the best suppliers to procure, the vehicles to transport, the machines to
be assigned to cells, and the priority for each part to be processed on the relevant machine simultaneously.
For future research, it is recommended to consider vehicle capacity, routes for a fleet of vehicles, and inventory
models to better match the results to real-world needs and applications.
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[60] U. Wemmerlöv and N.L. Hyer, Cellular manufacturing in the US industry: a survey of users. Int. J. Prod. Res. 27 (1989)

1511–1530.
[61] X. Wu, C.-H. Chu, Y. Wang and D. Yue, Genetic algorithms for integrating cell formation with machine layout and scheduling.

Comput. Ind. Eng. 53 (2007) 277–289.
[62] G. Xue and O.F. Offodile, Integrated optimization of dynamic cell formation and hierarchical production planning problems.

Comput. Ind. Eng. 139 (2020) 106155.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Literature review
	CM into supply chain management
	CF with operations scheduling

	Problem description
	Index
	Parameters
	Decision variables

	Model formulation
	Linearization

	Solution procedure
	Population initialization
	Fitness function
	Selection method
	Crossover operator
	Mutation operator

	Computational results
	Sensitivity analysis
	A case study

	Conclusion
	References

