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FORECASTING THE WIND POWER GENERATION IN CHINA BY SEASONAL
GREY FORECASTING MODEL BASED ON COLLABORATIVE OPTIMIZATION

Aobp1 Sut AND WUYONG QIAN®

Abstract. Renewable energy represented by wind energy plays an increasingly important role in
China’s national energy system. The accurate prediction of wind power generation is of great significance
to China’s energy planning and power grid dispatch. However, due to the late development of the
wind power industry in China and the lag of power enterprise information, there are little historical
data available at present. Therefore, the traditional large sample prediction method is difficult to be
applied to the forecasting of wind power generation in China. For this kind of small sample and poor
information problem, the grey prediction method can give a good solution. Thus, given the seasonal and
long memory characteristics of the seasonal wind power generation, this paper constructs a seasonal
discrete grey prediction model based on collaborative optimization. On the one hand, the model is
based on moving average filtering algorithm to realize the recognition of seasonal and trend features.
On the other hand, based on the optimization of fractional order and initial value, the collaborative
optimization of trend and season is realized. To verify the practicability and accuracy of the proposed
model, this paper uses the model to predict the quarterly wind power generation of China from 2012Q1
to 2020Q1, and compares the prediction results with the prediction results of the traditional GM(1,1)
model, SGM(1,1) model and Holt-Winters model. The results are shown that the proposed model has
a strong ability to capture the trend and seasonal fluctuation characteristics of wind power generation.
And the long-term forecasts are valid if the existing wind power expansion capacity policy is maintained
in the next four years. Based on the forecast of China’s wind power generation from 2021Q2 to 2024Q2
in the future, it is predicted that China’s wind power generation will reach 239.09 TWh in the future,
which will be beneficial to the realization of China’s energy-saving and emission reduction targets.
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1. INTRODUCTION

1.1. Background and motivation

In recent years, as a new type of energy, wind power has received widespread attention due to its good
environmental benefits. Wind power is regarded as an excellent alternative to traditional fossil energy [6].
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FIGURE 1. Installed capacity of power generation in China.

As shown in Figure 1 (https://data.stats.gov.cn/easyquery.htm?cn=A01), China’s installed wind power
generation capacity in 2018 was 184.26 million kilowatts, accounting for 10% of the total installed capacity of
generators. In the first eight months of 2018, meanwhile, China’s wind power generation growth rate was 20.5%,
and wind power generation accounted for 4.75% of China’s total power generation. As a result, wind power
has become an important part of China’s energy strategy. Although wind power has significant environmental
benefits, the intermittent and uncertain characteristics of wind power have limited the development of the wind
power industry [26,29]. Unexpected changes in wind farm production may increase the operating costs of the
power system and pose a potential risk to the reliability of the power supply [12]. Therefore, it is of great
significance to accurately forecast wind power generation in China and to clarify the long-term development
trend and seasonal characteristics of wind power generation. Accurate forecasting of wind power generation
can not only promote the realization of energy-saving and emission reduction targets, reduce power company
operating costs, improve energy efficiency, optimize grid design and energy allocation, but also have important
implications for energy structure adjustment and industrial structure optimization.

However, due to the short development time of the wind power industry in China and the low degree of
informatization of power companies in some regions, so we cannot obtain a large amount of historical data [24].
And the factors that affect wind power generation are complex. Therefore, the characteristics of small sample
sizes and poor information of China’s wind power generation limit the application of prediction methods based
on large sample sizes. Grey system theory is an effective method for modeling systems composed of small sample
sizes that contain a limited amount of information. This theory was proposed by Deng [25] in 1982 and has
been widely used in the energy field. Since the time response function of the traditional grey prediction model
(GM(1,1)) is an approximately exponential function, the GM(1,1) model can obtain satisfactory prediction
results when the data follows the law of quasi-exponent. However, the development trend of many things such
as wind energy, solar energy, and geothermal energy does not strictly follow the law of quasi grey exponent
but is accompanied by periodic disturbance (seasonal disturbance) [31] and irregular disturbance. Thus, the
direct application of the GM(1,1) model to predict wind power generation cannot achieve the desired prediction
results. Therefore, how to deal with the seasonal and long memory characteristics of the seasonal wind power
capacity and improve the forecasting performance of the grey forecasting model becomes a key issue. To solve
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this problem, a new seasonal discrete grey prediction model is proposed in this paper. On the one hand, based
on the moving average filtering algorithm, the proposed model realized the recognition of seasonal and trend
features. On the other hand, based on the optimization of fractional order and initial value, the collaborative
optimization of trend and season is realized. Therefore, compared with the traditional seasonal grey forecasting
model, this model not only captures seasonal characteristics of the seasonal wind power generation but also can
be applied to the data series of different periods.

1.2. Literature review

1.2.1. Research progress on forecasting wind power generation

The prediction of renewable energy has always been the focus of scholars’ research. In the past, according
to the different forecasting principles, the methods of wind power forecasting mainly included physical models
[45], statistical models, and machine learning. For example, Based on the hub-height measurements collected
from a fleet of turbines, Aziz Ezzat [11] made predictions about the short-term wind speed and power of a
turbine-specific. Jacondino and Nascimento et al. studied the impact of different physical parameterizations in
forecasting wind speeds at two onshore wind farms using the Weather Research and Forecasting (WRF') model
[20]. Given the problem that Numerical Weather Prediction models are not applicable to heterogeneous terrain,
by combining WRF mesoscale model and HDWind microscale model, Prieto-Herrdez et al. [44] proposed a
dynamic downscaling method to improve the local accuracy of wind speed prediction. However, the physical
method is not suitable for short-term prediction because it requires a long time to run [64].

The statistical model mainly uses regression analysis and time series analysis methods. Commonly used
models are ARMA, ARIMA, ARMAX, and ARX [10, 26]. For example, considering the changes in Spatio-
temporal wind power dynamics that are related to factors such as seasons or wind farm setup changes, Messner
and Pinson proposed a time-adaptive lasso estimator and an effective coordinate descent algorithm to update the
parameters of vector autoregression (VAR) model recursively and effectively track and simulate the dynamic
changes of multivariate time series [39]. Compared with physical models, statistical models do not require
extensive information to build models and are suitable for short-term forecasting. However, these models are
difficult to deal with the nonlinear and uncertain characteristics of wind power.

Since Machine learning [4,7] and data mining [28] can better capture the nonlinear characteristics of wind
power, these models have become the common methods at the moment. Abhinav et al. propose a small wavelet
neural network prediction model, which has strong robustness. The model can predict the short-term changes in
wind power and has high prediction accuracy [2]. Machine learning and data mining, while showing advantages
over traditional statistical techniques, also have their drawbacks, such as the ANN model sometimes being
caught up in the dilemma of local minimum and overfitting, and are sensitive to parameter selection [18].
The selection of error penalty factors and kernel parameters significantly affects the prediction accuracy of the
support vector machine model [40]. Considering the problems of machine learning models, scholars have also
improved the methods from different perspectives. For example, given the problem that the hyperparameters
and architecture optimization of deep neural networks (DNNs) leaned on experience, Jalali et al. adopted the
enhanced version of the grasshopper optimization algorithm to optimize the architecture of deep long short-term
memory (LSTM) neural network, so as to predict the wind speed [21]. And an extended fuzzy wavelet neural
network (FWNN) is also extended for wind power forecasting [13].

Considering the advantages of these models, how to make full use of the advantages of each model to achieve
the ideal prediction of wind power has become a hot research topic. For example, Lin et al. designed input
features based on the physical process of offshore wind turbines, and further studied their linear and non-
linear correlations with wind power through deep learning algorithms [35]. Higashiyama et al. [16] used a
three-dimensional convolutional neural network to extract spatiotemporal features of NWP data. Wang et al.
realized the combination of Back Propagation Neural Network (BPNN), Radial Basis Function Neural Network
(RBFNN), and Support Vector Machine (SVM) through integrated learning, which effectively improved the
reliability of the model. In addition, the use of the Bayesian Model Average (BMA) also effectively reduces the
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uncertainty of a single model and prevents the overfitting of the trained model [54]. Kisvari et al. proposed a
novel data-driven method based on the integration of data pre-processing & re-sampling, anomalies detection
& treatment, feature engineering, and hyperparameter tuning [27]. Besides, the complex quarterly fluctuation
problem can be decomposed into sub-problems, and different models are used to predict each unobservable part
separately. Because they exhibit more predictable dynamic behavior, some scholars use seasonal decomposition
techniques to deal with the seasonal effects of data [5]. For example, Wang et al. decomposed the wind power
sequence into trend sequence, harmonic sequence, and noise sequence through singular spectrum analysis, and
combined the decomposed sequence with a new Laguerre neural network to predict, and obtained a relatively
ideal result [55]. Nail et al. [42] combines the variational mode decomposition (VMD) and low-rank multi-kernel
ridge regression (MKRR) to effectively predict the change interval of wind energy and wind speed. And the
mixed model has better prediction performance than low-rank multi-kernel ridge regression based on empirical
mode decomposition (EMD). Dhiman et al. proposed a hybrid machine intelligent wind forecasting model based
on wavelet transform and Support Vector Regression [8]. And Abedinia et al. realized the prediction of wind
power by inputting the signal decomposed by improved empirical mode decomposition (IEMD) into a hybrid
model based on bagging neural network combined with K-means clustering [1]. Yildiz et al. developed a novel
residual-based convolutional neural network model for wind power forecasting based on VMD [63].

As we have seen, these methods have excellent performance in predicting short-term wind power. However,
several limitations of machine learning approaches concern the large number of observations that are required
to calibrate model parameters and the challenge of an internal structure that is unknown [60]. Moreover, most
of the above works focus on the short-term forecasting of wind power, while the mid-to-long term prediction
of wind power is also of great significance to the grid balance, the adjustment of energy structure, and the
formulation of energy policy. In China, the government only counts the monthly wind power generation from
September 2009 to now, and the solar power generation only counts the monthly data from May 2016 to the
present. Thus, concerning the mid-to-long term prediction of wind power in China, the available data seem to
be insufficient for some machine learning approaches whereas the grey forecasting theory can effectively address
problems with limited samples.

1.2.2. Application of grey model in energy prediction

The grey system theory is a method for solving the modeling of small sample data proposed by Deng [25]
in 1982. Tt makes full use of existing information by mining and generating limited information. The GM(1,1)
model is a classic model for predicting small sample data with insufficient information. When we are unable
to obtain sufficient data or only understand part of the internal information of the system, the grey prediction
model can often achieve the desired effect. Therefore, at present, the grey prediction model has been widely
used in the field of energy prediction [43,59]. For example, Liu et al. predicted the primary energy consumption
of Spain by establishing a grey neural network and input-output combined forecasting model, which realized
the series combination of the grey prediction model and neural network model by taking the prediction results
of the grey prediction model as the input of the neural network model [37]. Zhou et al. proposed a new discrete
grey model, taking into account the nonlinear and volatility, and predicted the natural gas consumption in
Jiangsu Province, China [67]. Jia et al. used the Markov chain forecasting method to revise the forecast value
of the GM(1,1) model to predict coal consumption in Gansu, China [23]. Guefano et al. proposed a new hybrid
GM(1,1)-VAR(p) model based on the Grey and Vector autoregressive methods [14]. And Sahin proposed a novel
optimized fractional nonlinear grey Bernoulli model by optimizing background value, power index value, and
fractional order value with the genetic algorithm method [48]. Javed et al. improved the existing grey model by
optimizing fractional-order value and background value [22]. Moreover, Moonchai et al. developed a modified
grey model with a Kalman filter and applied the model to renewable energy consumption [41].

Since the traditional GM(1,1) model is suitable for predicting stable sequences of single growth trends, the
accuracy of the prediction of time series with quarterly fluctuations is significantly decreasing. To eliminate
seasonal fluctuations, scholars have adopted several methods to make improvements. For example, Xiao et al.
proposed a seasonal grey model based on periodic truncate cumulative generation operations [61]. Qian and Dang
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transformed the non-monotonic oscillation sequence into a monotonic sequence by accelerating the translation
transformation of the original data, thereby improving the prediction accuracy [46]. By using HP filter to separate
the trend component and seasonal component of the original time series, Qian and Wang used GM(1,1) model to
predict the trend component, and then calculated the seasonal index to adjust the predicted value of the trend,
thus realizing the prediction of China’s wind power generation [47]. Based on the GM(1,1) model, Wang et al.
introduced the concept of seasonal fluctuations and established the SFGM(1,1) model [49]. Considering that
the traditional GM(1,1) model is only suitable for time series with small fluctuations, Wang et al. established
a DGGM(1,1) model based on data grouping to predict quarterly hydropower production in China [50]. And
Wang et al. proposed a grey predictive model based on data grouping operators. The models are grouped by
month (quarter) and buffered separately to handle the prediction errors caused by seasonal fluctuations [52].
To accurately forecast the seasonal change of electricity consumption in the major economic sector, Wang et al.
proposed a seasonal grey model based on the accumulation operations generated by seasonal factors [51]. Then,
Wang et al. considered that the seasonal adjustment factors of the model are static, so he proposed a seasonal
grey model based on dynamic seasonal adjustment factors [53]. In addition, the methods of integrating annual
trends and monthly seasonal characteristics of data series [32] and improving the adaptation to seasonal time
series from the perspective of model structure [9] are the latest new methods. In general, these methods focus
on the seasonal adjustment of the original data and the optimization of the grey forecast model. The former
enhances the stability of data, while the latter flexibly reflect the characteristics of seasonal fluctuations.

Grey forecasting technology has a good application prospect in the field of energy forecasting, and it provides
a valuable decision basis for energy planning. Also, the development and extension of the grey prediction model
are conducive to the prediction of other things with similar characteristics. Nevertheless, the grey prediction
model for seasonal time series still has some shortcomings. Firstly, most seasonal grey prediction models use the
seasonal index to adjust the seasonality of time series, but the calculation method of the seasonal index is not
suitable for time series with the long-term trend. Secondly, the seasonal grey prediction model tends to adopt
the traditional GM(1,1) model as the basic model of the new seasonal model, but the problem of background
value, initial value, and jump between parameter estimation and prediction formula of traditional GM(1,1)
model is ignored. Thirdly, it is difficult to describe the long memory character of time series and to satisfy the
criterion of new information priority only by using traditional GM(1,1). Finally, although most of the seasonal
grey prediction models have been improved in capturing the seasonal and trend characteristics, the optimization
of the seasonal grey prediction model, such as the selection of fractional order and the optimization of GM(1,1)
model, lacks the comprehensive consideration of the seasonal and trend characteristics of the time series.

To solve these problems, based on the seasonal and long memory characteristics of the seasonal wind power
generation series, this paper adopts the moving average filtering algorithm and the Particle swarm optimization
to establish the seasonal grey prediction model based on collaborative optimization (COSGM). On the one hand,
the model is based on moving average filtering algorithm to realize the recognition of seasonal and trend features.
On the other hand, based on the optimization of fractional order and initial value, the collaborative optimization
of trend and season is realized. In addition, the introduction of the discrete grey prediction model also solves
the problem of the traditional grey prediction model hopping between the discrete forms with continuous forms
and improves the applicability and scope of the model.

The rest of the paper is arranged as follows: Section 2 introduces the proposed model. Section 3 makes an
empirical analysis based on China’s seasonal wind power generation data from 2012Q1 to 2020Q1, and further
uses the proposed model to forecast the seasonal wind power generation from 2021 to 2024. Conclusions and
discussions are drawn in Section 4.

2. METHODS

In this section, we introduce the underlying model and the overall process of modeling for the COSGM
model. Besides, the relevant background knowledge is described in detail. And the COSGM model proposed in
this paper is improved based on DGM(1,1) model, so one of the main contributions of the proposed model lies
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in effectively avoiding the structural weakness in transforming discrete data into continuous series to mitigate
the information distortion. In addition, the particle swarm optimization (PSO) algorithm is further applied to
optimize the introduced fractional-order and initial value simultaneously, which significantly improves the ability
to capture the trend features of time series. Moreover, the introduction of the moving average filtering algorithm
also makes the trend and seasonality clear, which lays a foundation for improving the seasonal adaptability of
the grey prediction model. The improvement process and the correlation among models are shown in Figure 2.
The modeling process of the proposed model is described in detail below.

2.1. The traditional GM(1,1) model

Grey system theory is an important method for modeling small sample sizes with insufficient information.
Through the mining of grey information, the theory can make full use of existing information. The GM(1,1)
model is the most classic in grey forecasting theory. The model weakens the randomness of the data sequence
by using the accumulative generating operator, thereby mining the long-term trend of the data sequence. The
modeling process of the model is as follows.

First, suppose X (¥= (2 (1),2(9(2),2®)(3),--- ,2(®(n)) is the original data series affected by the season.

Then, by applying the first-order accumulation generation (1-AGO) to the original data sequence, we can get

the first-order cumulative generating sequence X (V= (21 (1),21(2), 2 (3),- -+ ,2()(n)) where,
k
2W(k)=>"2004), k=12 n. (2.1)
i=1

Then, the mean series can be calculated:
W) =052 (1) + 052Vt —1), t=2,3,---,n. (2.2)

Based on the above sequence, we can establish a first-order univariate differential equation as a prediction
model, namely the GM(1,1) model. The standard form of the grey difference equation is:

O+ =b, t=2,3,--- ,n. (2.3)
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Then the corresponding whitening differential equation is:
dzM (¢
QTT() +azM(t) = b. (2.4)

The parameters a and b can be estimated by the following formula

P=la,b]" = (B"B)"'BTY (2.5)
—z(M(2 1 z(0(2)
—z(0(3) 1 z(0(3)
where, B = —z((4) Ll y= 20 (4)
—2CDm) 1 (O (n)
The time-response function of the GM(1,1) model is:
3 1)~ 2 emate- b
(k)= (2™(1)—— e +—-, k—-23,---,n (2.6)
a a

Finally, we can get the predicted value of the original sequence by the first-order inverse accumulation
generation operation (IAGO) (Eq. (2.7)). It can be seen from equation (2.7) that the traditional GM(1,1) model
has higher prediction accuracy for monotonically increasing or decreasing exponential sequences. If there are
constant disturbances and periodic disturbances in the data sequence, the traditional GM(1,1) model is difficult
to achieve the ideal prediction effect.

Ok +1) =Wk +1) -2V (k)
= (x<0>(1) — b) (1—eYe ™™ k=23, ,n. (2.7)

a

2.2. The basic DGM(1,1) model

The traditional GM(1,1) model uses a discrete equation to estimate the parameters, while the prediction
equation obtained from the continuous equation is used in forecasting. There are structural errors in forecasting.
Thus, Xie and Liu proposed a discrete grey forecasting model [62].

First, suppose X (V= (2 (1), 2(0(2), 2 (3),-- ,2(9(n)) is the original data series affected by the season.

Then, by applying the first-order accumulation generation (1-AGO) to the original data sequence, we can get
the first-order cumulative generating sequence XM=(z® (1), 2()(2),21)(3),-- 21 (n)) based on equation
(2.1).

Based on the X(1), the DGM(1,1) model is presented as:

W (k+1) = 12V (k) + Ba. (2.8)

The parameters 3; and B2 can be estimated by the following formula

P=1[6,0)" =(BT'B)"'BTY (2.9)
(M (2) 1 (M (2)
(M (3) 1 (M (3)
where, B = x(l)(‘l) 1 , Y = x(l)(‘l)

tMn—-1) 1 M (n)
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Then, by interating equation (2.8), the time response function can be reckoned as:

gDk +1) = pre@1) + Tgfﬁz. (2.10)
— Ml

Finally, we can get the predicted value of the original sequence by the first-order inverse accumulation
generation operation (IAGO) (Eq. (2.11)).

O +1) =2V (k+1) — 20 (k)

=pr(1-5") <x(°)(1) Sy fQﬁl > (2.11)

Further, the growth rate of the estimated value can be calculated:

7O (k) = 70 (F — R
o(k) = (’;)(0)(k - (1’"; DI (2.12)

Equation (2.12) implies the forecasted results yielded by the DGM(1,1) model vary at a fixed rate, which
leads to high accuracy when applying the DGM(1,1) model to simulate the quasi-homogeneous exponential
sequences. If there are constant disturbances and periodic disturbances in the sequence, the DGM(1,1) model
is difficult to achieve the ideal prediction effect.

2.3. The seasonal GM(1,1) model

To enhance the forecasting ability of the grey forecast model for seasonal time series, Wang et al. introduced
seasonal factors into the accumulating generation process. By changing the internal mechanism of the grey model,
Wang established a grey prediction model based on the seasonal accumulation operator [51]. The modeling
process is as follows.

First, suppose X (@ = (20 (1),2®(2),2®(3),--- ,2(9(n)) is the original data series affected by the season.

By the sequence operator S, we can get the sequence Xél) =Xx0g= (:B(l) (1)s, 21 (2)s, - - - 7ﬂc(l)(n)s), where

k
W (k)s = Zx(o)(i)/fs(i), k=1,2,--- ,n. (2.13)

S is the first-order seasonal accumulating generation operator (1-SAGO). In equation (2.13), fs(¢) is the
seasonal adjustment factor at the ith time point, reflecting the degree to which the actual value deviates from
the average value of the trend due to seasonal influence. f4(i) can be calculated by equation (2.14).

70 (i)
(i) = =5 o (2.14)
.’L'MN 1

In equation (2.14), M and N respectively represent the number of seasonal cycles in a year and the year at

the ith time point. fg\(}) (i) is the quarterly average of the ith time point, and :Eg\g)N(i) is the total average of all

quarters.
Based on the above, the background value sequence can be calculated as follows:

20(k) =052 (k) + 0520 (k- 1), k=2,3,---,n (2.15)

S

the grey differential equation can be constructed as follows:

2 Ok)/ fo(k) + aszV (k) = by, k=2,3,-- ,n. (2.16)
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On this basis, we can get the whitening differential equation:

(1)
dzs () | o 204y = b,. (2.17)
dt
Then
s = (as,bs)" = (BTB,)"'BTY, (2.18)

we can get the values of parameters a; and bs.
And the prediction formula of the SGM(1,1) model is

bs1 _whon) . bs
2V (k) = {x<0>(1)/f3(1)a}e alh=l) . 2 k=23 n (2.19)

Qs

Finally, we can get the predicted value of the original sequence by the first-order inverse accumulation
generation operation (IAGO) (Eq. (2.22)).

FO0+1) = ok + 1) (20 (k+ 1) = 20(K)), k=23, ,n. (2.20)

From equation (2.14) we can see that when the time series data does not have obvious long-term trends and
cyclic fluctuations, the prediction accuracy of the SGM(1,1) model is better [36].

2.4. Moving average filtering algorithm

Generally, a complex time series is composed of many mutually influencing components, so it is difficult
to directly establish a forecast model for complex time series. At present, scholars widely use the method of
decomposing time series to separately establish forecasting models for time series [3,15]. For example, Qian and
Wang used GM(1,1) model to predict the trend component and then calculated the seasonal index to adjust the
predicted value of the trend, thus realized the prediction of China’s wind power generation [47]. Generally, it is
assumed that the time series is composed of four parts: trend component, cyclic component, periodic component,
and an irregular component. And the HP filter assumes that the time series consists of two parts: the trend
component and the cyclic component [17].

To further reveal the long-term trend and seasonal characteristics of wind power generation, this study
establishes a seasonal grey forecast model based on a moving average filter.

The principle of the moving average filter is that the original data sequence X; is transformed by a function,
that is, filtered by the moving average filter, some unwanted information can be eliminated and a new data
sequence Y; can be obtained. The essence of the moving average filter is to generate the value of the filtered
data sequence at time ¢ by using the weighted average results of N samples data from p samples before time ¢,
f samples after time ¢, and sample at time ¢. That is

+f
M(X:) = Z Ok Xitr (2.21)
k=-p

where N =p+ f+ 1. And when f = p, the filter is called an asymmetric moving average filter.

Overall, a single symmetric equal-weight moving average filter with a specific number of terms can smooth
out the periodic fluctuations of the corresponding frequency (the number of terms must be greater than or
equal to the period length of the fluctuation). For seasonal fluctuations of quarterly (monthly) data with a
period of 4 (12), we can eliminate seasonality well by using symmetrical equal-weight moving average filtering
with an item number of 4 (12). However, when N = 4 (12), the number of items is even, and an asymmetric
equal-weight moving average filter cannot be constructed. Therefore, according to the principle of the multi-pass
filter, the X11 seasonal adjustment theory constructs a 2 x N term symmetric moving average filter. For the
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quarterly data with a period of 4 (12), the X11 seasonal adjustment theory constructs a 5 (13) term symmetric
non-equal-weight filter.
The corresponding weight coefficient is

0 =11,2,2,2,1}/8 (0 ={1,2,2,2,2,2,2,2,2,2,2 2, 1}/12). (2.22)

Since the filter can well satisfy three conditions: eliminating seasonality, retaining long-term trend, and
smoothing irregular fluctuation [65], we can make an ideal description of the long-term trend and seasonal
characteristics of the original time series.

In general, seasonal factors acting on time series are relatively stable, so we can calculate seasonal adjustment
factors by using the average degree to which the actual value deviates from the long-term trend value due to
seasonal factors. That is

X 0)(s,t)

n—2
flo)=S 2 g—-1,234 (2.23)
2 T(X0(s,7)

where s refers to the number of cycles, X(9)(s,t) and M(X(®) (s, 1)) represent the actual data obtained from the
original time series and the data filtered by the moving average filter (the long-term trend) respectively. And

X (©)(s,t) represents the actual value for time point ¢, quarter s. Moreover, f(s) indicates the seasonal factor
acting time point ¢, quarter s.

2.5. COSGM model

Considering that the traditional grey forecasting model is not good at capturing the seasonal and trend char-
acteristics, this paper constructs the COSGM model. Then, in this paper, based on the recognition of seasonal
time series seasonality and trend characteristics by using the moving average filter algorithm, a fractional-order
discrete gray prediction model with initial value correction is first constructed for trend characteristics, and then
a COSGM model is established by using seasonal factors to correct forecast trend. PSO algorithm is mainly used
to modify the initial value and determine the fractional order. Thus, the proposed model takes into account the
long memory and seasonal characteristics of the time series, satisfies the principle of new information priority,
and improves the initial value dependence of the grey prediction model. The definitions involved in the COSGM
model are shown below. And the schematic flowchart of the COSGM model is depicted in Figure 3.

2.5.1. The establishment of the COSGM model

Definition 2.1. It is assumed that X(© = {2(0(s,1),2(0(s,2),--- 29 (s,n)} is the original data series, for
which the data points are non-negative and equally spaced over time. m(o)(s,n) represents the actual value
for time point n, quarter s. Then the data sequence X}O) = {5659)(8, 1),x(TO)(s,2), e ,xgj)(sm)} obtained by
moving average filtering is called trend sequence, and the corresponding seasonal factor is f(s), where s refers to

the number of cycles. X}O) and f(s) represents the long-term development trend of the system and the average
degree to which the actual value deviates from the long-term trend value due to seasonal factors, respectively.
Moreover, f(s) indicates the seasonal factor acting time point n, quarter s.

Definition 2.2 ([58]). Given X:(FO) = {a:gpo)(s, 1),9559)(3, 2),--- ,acg,?)(s,n)}, then the r-order accumulated gen-
erating sequence (r-AGO) is X(TT) = {a:(jf)(s, 1),x§f)(s, 2), - ,ng)(s, n)}

Its calculation formula is

k
r k—j+r—1 )
xgp)(s,k:): E ( i—j )LU:(Z?)(S,_j), k=1,2,---,n (2.24)
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FIGURE 3. Schematic diagram of the COSGM model.

where <r61> _ (k;l) _ o, <kz—]]€t§—1 _ (k*jJrrfl)(lz;z;?f2)..~(r+l)r is the general New-

ton binomial coefficient. In equation (2.24), r indicates the fractional-order value. And fractional derivatives

accumulate the whole history of the system in weighted form. Moreover, when r = 1, m(f )(s,k) reduces to

x(TT )(S, k)= Z?:l x(TO )(s, j) which denotes the first-order accumulated generating operation sequence of X(TO).

Definition 2.3 ([38]). Given Xéo) = {xgg)) (s,1), xg))(s, 2),--- ,a:g)) (s, n)}7 then the r-order inverse accumulated

generating sequence (r-IAGO) is X(Tfr) = {x(T*T)(& 1),1’5«7@(8, 2),--- ,ngr)(s,n)}.

Its calculation formula is

M=

_r k—j—r—1 .
:cgq )(s,k): < lZ:—j )xg))(s,j), k=1,2,---.,n (2.25)

j=1

when r = —1, the r-IAGO just yields the first-order difference.
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Definition 2.4 ([33]). Based on the m-AGO series, the DGM" (1, 1) model is presented as:

o) (s, k + 1) = praf) (s, k) + Ba. (2.26)

. . T
Consequently, the parameters 3 = {61, ,62} of the DGM"(1, 1) model can be estimated by utilizing the least
square method (LSM). That is

e aqT 1
b=[p.5| = (B"B) " BTY (2.27)
x(TT)(s, 1) 1 x(TT)(s,Z)
x(TT)(s,Q) 1 x(TT)(s,B)
where B = ) | and Y =
2P (s,m) 1 2% (s,n + 1)

. . 1T
Definition 2.5. Based on the parameters § = {61, ﬁ2:| , the time response function of the DGM"(1, 1) model
can be calculated by
1-5f

L3, k=1,2,---,n. (2.28)
— M

i:g,r)(s,k—I— 1) = fog,f)(s,l) +

In equation (2.28), ng) (s,1) is called the iterative datum. And the DGM" (1, 1) model in Definition 2.3 is based
on the hypothesis that the first datum of the sequence is invariable. Actually, the hypothesis violates with the
fact [62]. Thus, considering that the iterative datum value significantly influences the simulative and predictive
results [34], we set the iterative datum value as ng )(s, 1) + . And we solve this sensitive problem of iterative
datum value by the optimum method. Therefore, the new time response function can be reckoned as:

T A T 17AkA
@(T>(s,k+1)zﬂf(x;)(s,nﬂ)+1 2152, k=1,2,---.n (2.29)

- Ml

where ¢ is the initial value correction term.

Definition 2.6 ([38]). Via the r-order inverse accumulation generation operator (r-IAGO), the predicted values
of DGM"(1,1) model can be deduced:

k
N k—i—7r—1\ . .
e =Z< ki )x%’(s,z), k=1,2,-n. (2:30)

i=1
In equation (2.30), X:(FO) is the restored value of the development trend of the system.
Definition 2.7. Given )A(T(?) and f(s), then the COSGM model is defined as:
RO = f5)- X = {£(9)- 20 (5. 1. () - 2 (,2), -+ L £() - & (s,m), -} (2.31)

Moreover, the restored values of X(© is X(© When f(s) = 1, the COSGM model reduces to the traditional
DGM"(1,1) model.
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TABLE 1. Measuring prediction accuracy with MAPE [30].

MAPE (%) Forecasting ability MAPE (%) Forecasting ability

<10 High ability 20-50 Reasonable ability
10-20 Good ability >50 Weak ability

2.5.2. Parameters estimation

In the COSGM model, the order r of fractional order and initial value correction term ¢ affect the prediction
accuracy of the model significantly. The main idea of finding the optimal value of r and ¢ is to minimize the
error of the COSGM model. The mean absolute percentage error (MAPE) is usually used to represent the
model error (the calculation of MAPE is given in Sect. 2.5.3). To find the optimal r and ¢, this paper selects the
PSO algorithm to optimize the parameters of this COSGM model. We can find the optimum values of the two
coefficients by minimizing the mean absolute percentage error (MAPE) between the fitted and the real values.
Thus, the objective function is constructed as follows.

1 n
in MAPE = —
min - ];

2 O(k) — (I/‘(O)(k)|
20 (k)

8= [31732}71 = (BTB)_lBTY
2O (k) = f(s)-20(s, k), k=1,2,-- ,n.

s.t. (2.32)

2.5.8. Validation criterion for modeling efficacy

To accurately evaluate the effectiveness of the COSGM model, three indexes were selected to evaluate the
prediction accuracy of the model (the root mean square error (RMSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE)). These indicators are calculated as follows, respectively:

1 n
RMSE =, | =) e®(t 2.33
- ; (t) (2.33)
MAE = % > le(t)] (2.34)
t=1
I e
MAPE = ~ ; 0| 100% (2.35)

where e(t) = O (t) — #©(#). 20 (¢) and #(°)(¢) represent actual and predicted values, respectively. Besides,
the prediction accuracy can be graded using MAPE, as shown in Table 1. This is the criterion to determine the
acceptability of the prediction error.

3. EXPERIMENT: THE CASE STUDY

With the rapid development of the economy, the energy demand is increasing day by day in China. However,
the high consumption rate of non-renewable resources has a significant environmental impact on air quality
and climate that cannot be ignored. To promote energy conservation and emissions reduction, Chinese officials
have pledged to cut China’s carbon intensity by 60-65% by 2030 compared with 2005 levels [66]. Therefore,
renewable energy represented by wind and solar energy has been developed rapidly. The ideal forecast of Wind
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FIGURE 5. Power spectrum diagram based on FF'T analysis.

power generation in China is helpful for the optimization of energy structure and the formulation of energy
policy.

The power spectrum obtained by the Fast Fourier Transform (FFT) is shown in Figure 5. From Fig-
ures 4 and 5, China’s wind power generation has been increasing from 2012 to 2020 and has a significant
seasonal fluctuation, that is, s = 4. Then, we can get the Hurst exponent H = 0.74, that is, the wind power
generation sequence shows long memory characteristics [56]. And the detailed data is gathered from China’s
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FIGURE 6. Data set partition diagram.

National Bureau of Statistics (https://data.stats.gov.cn/easyquery.htm?cn=A01). If we want to accu-
rately predict future changes in China’s wind power generation, it is necessary to consider these characteristics.
Namely, seasonal and trend characteristics of wind power generation must be considered. Thus, the COSGM
model is proposed to predict wind power generation in China. Firstly, to verify whether the prediction accuracy
of this model can achieve the ideal effect, we conducted an empirical analysis of China’s quarterly wind power
generation from 2012Q1 to 2020Q1. The prediction results of the COSGM model were compared with those of
the classical GM(1,1) model, Holt-Winters model, and SGM(1,1) model. In this study, the original data from
2012Q1 to 2020Q1 are divided into two sample sets. Data from 2012Q1 to 2016Q4 are divided into a training
set, and data from 2017Q1 to 2020Q1 are divided into the test set. The data used in the study were all from
the National Bureau of Statistics of China. Then, since the COSGM model is suitable for modeling wind power
generation in China, the COSGM model is used to forecast wind power generation in China from 2021Q2 to
2024Q2.

3.1. Model establishment

To highlight the superiority of the COSGM modeling method, the dataset is divided into two groups. Data
from 2012Q1 to 2016Q4 are divided into a training set, and data from 2017Q1 to 2020Q1 are divided into the
test set (Fig. 6). And the prediction results of the COSGM model were compared with those of the classical
GM(1,1) model, Holt-Winters model, and SGM(1,1) model. The prediction accuracy and practicability of the
model for seasonal data series are verified.

3.1.1. Direct modelling: traditional GM(1,1) model

According to the modeling procedure used in the traditional GM(1,1) model, the GM(1,1) model is directly
established using the data in the training set from 2012 to 2016, to forecast wind power generation from 2017Q1
to 2020Q1. And the predicted results are compared with actual data. Then, through using the MATLAB toolbox,
the traditional GM(1,1) model can be directly established.

The parameters are P = [a,b]T = (BT B)"1BTY = [-0.0471,217.662]T.

Meanwhile, the corresponding time response function is ﬁ(l)(k) = 4825.274¢00471(-=1) _ 4621.27. Then, via
the first order inverse accumulation generation operator (1-TAGO), we can get the restored value (9 (k). The
predicted values from 2012Q1 to 2020Q1 are compared with the actual values, and the results are shown in
Figure 7.

3.1.2. Holt-winters model

Exponential smoothing is an important method for time series prediction. However, simple exponential
smoothing cannot properly remove the randomness of time series. As a result, more effective methods have
been developed, such as the Holt-winter model [57]. This model was first proposed by Holt, and then Winters
improved it, so it was called the Holt-Winters model. The model has a solid theoretical basis and a satisfactory
expression of seasonality [19]. In general, there are two types of Holt-Winters models: the multiplication model
and the addition model. The multiplication model is more popular, which is more accurate and robust than the
addition form.
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TABLE 2. The seasonal index of the Holt-Winters model in the training set.

Seasonal index
L I I3 14

Value 1.00 1.11 0.82 1.08

Considering that the seasonal fluctuation increases gradually with the development of the trend, this paper
used the multiplicative Holt-Winters model to model the wind power generation of the training set and to
predict the wind power generation of the test set.

With the help of Eviews10, the Holt-Winters model can be established in this work. The prediction results
based on the Holt-Winters model are shown in Figure 7, and Table 2 is the seasonal index estimated based on
the Holt-Winters multiplication model.

3.1.3. The seasonal GM(1,1) model

To enhance the forecasting ability of the grey forecast model for seasonal time series, Wang et al. introduced
seasonal factors into the accumulating generation process. By changing the internal mechanism of the grey
model, Wang established a grey prediction model based on the seasonal accumulation operator [51].

By referring to the modeling procedure of Wang et al., we can obtain the seasonal factors by using the
corresponding period average method. The calculation results of the seasonal index are shown in Table 3.

Then, the 1-SAGO is generated by seasonal factors and the SGM(1,1) model is established.

Where, as = [as, bs]T = [-0.0453, 221.3892]7.

The corresponding time response function is :%22'1)(16) = 5107.917¢%-0453(k=1) _ 4887.18. From 5521)(1{)7 the

prediction value ;@S”(k:) can be obtained through 1-TAGO, and the results are shown in Figure 7.
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TABLE 3. The seasonal index of the SGM(1,1) model in the training set.

Seasonal index
I I I3 14

Value 092 1.08 0.83 1.16

TABLE 4. The seasonal factors of the COSGM model in the training set.

Seasonal factors
f)  f@) f@)  f4)
Value 0.99 1.12 0.82 1.07

3.1.4. The COSGM model

The modeling procedure of the COSGM model is as follows:

Firstly, based on the moving average filter algorithm, the trend sequence and seasonal sequence are obtained,
and then the seasonal factors f(s) is calculated. Since the data of the training set is quarterly data, the parameter
used in the moving average filtering algorithm is 0, = {1,2,2,2,1}/8. Under the assumption that the seasonal
change is stable, we can calculate the seasonal factors in the training set, as shown in Table 4.

Secondly, The COSGM model can be constructed and the PSO algorithm can be used to search for the
r-order of fractional order and initial value correction term ¢. Therefore, » = 0.9582 and ¢ = 0.7606 can be
obtained by using the PSO algorithm.

Third, the corresponding time response can be obtained by plugging r and ¢ into the COSGM model. In the

. . AT
COSGM model, the parameters are 3 = [ﬁl,ﬁg] = [1.045,207.2996]7 .

Finally, based on the seasonal factors, the predicted value can be obtained, and the results as shown in
Figure 7.

3.2. Comparison of prediction accuracy

To better evaluate the prediction accuracy of the four models, RMSE, MAE, and MAPE are selected in
this paper. And the calculation results are shown in Table 5. The performance of the four models in the test
set are shown in Figure 8. In addition, to verify that the measurement of the seasonal effect of this model is
more consistent with the actual situation, the COSGM model, SGM(1,1) model, and Holt-Winters model are
compared and analyzed in this paper to measure the seasonal effect of wind power generation. And the results
are shown in Figure 9.

Overall, the traditional GM(1,1) model had the worst predictive effect in both the training set and the test
set. The main reason why the prediction accuracy is not high is that the model cannot reflect the seasonal
fluctuation characteristics. However, compared with the Holt-Winters model, the traditional GM(1,1) model
has better mid-term and long-term forecasting ability due to its high mining ability for the long-term trend of
a data sequence.

It can be seen from Table 5 and Figure 8 that the Holt-Winters model is significantly better than the GM(1,1)
model and SGM(1,1) model in fitting the data sequences, and only worse than the COSGM(1,1) model. From
Figure 7, although the Holt-Winters model can reflect the characteristics of seasonal fluctuation well, it is
difficult to describe the long-term trend of the data series. This is mainly because the Holt-Winters model is
suitable for linear trend and has weak adaptability to nonlinear trend. This is also the main reason that the
prediction accuracy of the Holt-Winters model in the short-term and long-term predictions is worse than that
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TABLE 5. Comparison of prediction accuracy of the four models (2012Q1-2020Q1).

GM(1,1) Holt-Winters SGM(1,1) COSGM

Train set

MAE (108 KWh) 35.90 14.62 22.56 13.51
RMSE (108 KWh) 48.12 18.85 27.34 16.46
MAPE (%) 10.16% 3.97% 6.17% 3.80%
Test set

MAE (1()8 KWh) 97.35 120.51 90.45 64.58
RMSE (108 KWh) 115.03 136.17 108.24 81.16
MAPE (2017Q1-2018Q4) (%) 13.42% 13.06% 11.14% 9.58%
MAPE (2019Q1-2020Q1) (%) 12.05% 16.42% 11.21% 6.13%
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FIGURE 8. Comparison of testing errors.

of the SGM(1,1) model and the COSGM(1,1) model. When the long-term trend of the data series is linear, the
Holt-Winters model has a satisfactory prediction effect.

The fitting effect of the SGM(1,1) model in the training set is only better than the traditional GM(1,1)
model. Because the grey model well represents the long-term trend and the seasonal grey model considers the
characteristics of seasonal fluctuations, the performance of the model in the test set is better than the Holt-
Winters model and the traditional GM(1,1). However, the prediction effect of the SGM(1,1) model is weaker
than that of the COSGM model in both the training set and test set. From Figure 9, it can be seen that the
SGM(1,1) model does not reflect the seasonal fluctuation characteristics well. This is mainly because the season
factor of the SGM(1,1) model is a simple average method which is suitable for no obvious long-term trend [36],
so it is difficult to accurately measure the seasonal effect of wind power generation. Holt-winter model and
COSGM model measure the seasonal utility, in general, is consistent, the main reason for the difference is that
the trend of the measure is not consistent. According to the effect of the training set, the COSGM model is
reasonable in the measure of seasonality.
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Whether in the training set or the test set, the prediction effect of the COSGM model is better than the
traditional GM(1,1) model, Holt-Winters model, and the SGM(1,1) model. There are three reasons for the
high prediction accuracy of the COSGM model. Firstly, considering the seasonal characteristics of the data
series, we can accurately measure the seasonality of the data series, so it has better seasonal characterization
ability than GM(1,1) model and SGM(1,1) model. Secondly, we consider the long-memory property of the data
series and the sensitivity of the initial value of the grey model, which is more in line with the criterion of
new information first, so it has better tendency representation ability than other grey prediction models and
Holt-Winters model. Thirdly, considering the trend and seasonality synthetically, the evolution law of the data
series is dug more deeply, and it has better performance in the medium and long term. In general, it can be
seen from Tables 1 and 5 that the COSGM model has a high prediction accuracy in both the short term and
medium term. In the long run, with the stability of seasonal fluctuation, the prediction effect of this model will
be better. Therefore, the COSGM model can provide important data support for future energy planning.

3.3. Out of sample forecast of wind power generation in China from 2021Q2 to 2024Q2

It can be seen from the analysis in Section 3.2 that the COSGM model, which comprehensively considers
the characteristics of seasonal fluctuation and long-term trend, is suitable for modeling wind power generation
in China. Therefore, in this section, COSGM is used to forecast wind power generation in China from 2021Q2
to 2024Q2. To make full use of the information and mine the long-term trend and seasonal fluctuation charac-
teristics of the data series, this study established COSGM(1,1) model with all data from 2012Q1 to 2021Q1 to
predict wind power generation in China from 2021Q2 to 2024Q2.

According to the modeling process of the COSGM model, we can calculate the seasonal factors, as shown in
Table 6.

Then, by using PSO, » = 0.9048 and ¢ = 0.7682 can be obtained.

So, the corresponding time response can be obtained by plugging r and ¢ into the COSGM model. In the
) . 1T
COSGM model, the parameters are 3 = [ﬁl,ﬂg] = [1.0450, 186.503] .



3068 A. SUI AND W. QIAN

TABLE 6. The seasonal factors of the COSGM model (2012Q1-2021Q1).

Seasonal factors
f) f2) fB) f4)
Value 1.03 1.10 0.80 1.06
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FicUuRE 10. Comparison of values predicted by the COSGM model and the actual values:
2012Q1-2024Q2.

Finally, based on the seasonal factors, the predicted value can be obtained, and the results as shown in
Figure 10. Table 7 shows the comparison between the fit values of the model and the actual values from 2012Q1
to 2021Q1.

During 2012Q1-2021Q1, the MAE, MAPE, and RMSE of the COSGM model are 32.66%, 5.19%, and 46.64%,
respectively. Therefore, COSGM has excellent prediction accuracy, and the prediction results of wind power
generation in China from 2021Q2 to 2024Q2 are credible based on the MAPE. And the long-term forecasts are
valid if the existing wind power expansion capacity policy is maintained in the next four years.

According to Figure 10, the total amount of wind power generation in China will continue to grow. It is
estimated that by 2024Q2, the total amount of wind power will reach 239.09 TWh. Moreover, wind power
generation in China presents a significant seasonal fluctuation characteristic. In the fourth quarter, wind power
generation reached the highest, and in the third quarter, wind power generation reached the lowest.

4. CONCLUSIONS AND DISCUSSIONS

On the whole, starting from the seasonality of wind power generation, this paper proposes a new seasonal
grey forecasting model based on collaborative optimization to excavate the development patterns of quarterly
time series. And this proposed model accurately captures the seasonal characteristics and trend characteristics
of the quarterly time series.

This proposed model is applied to forecast the wind power generation between 2012Q1 and 2020Q1 in China.
And the prediction results are then compared with those obtained by using three existing approaches, GM(1,1)
model, SGM(1,1) model, and the Holt-Winters model. Comparative results indicate that the proposed method
has higher prediction accuracy and is suitable for forecasting data series with seasonal fluctuations.
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TABLE 7. Fit values and actual values of COSGM model from 2012Q1 to 2021Q1.

Time Actual value Forecasted value Error (%)
2012Q1  204.00 204.00 0.00%
2012Q2 235.70 235.70 0.00%
2012Q3 196.70 186.50 5.19%
2012Q4  279.80 265.30 5.18%
2013Q1  271.50 274.70 1.18%
2013Q2  325.70 311.20 4.45%
2013Q3  273.40 239.40 12.44%
2013Q4  342.50 334.90 2.22%
2014Q1 313.10 342.90 9.52%
2014Q2  360.00 385.50 7.08%
2014Q3  282.30 294.80 4.43%
2014Q4  414.90 410.40 1.08%
2015Q1  397.00 418.80 5.49%
2015Q2  453.80 469.40 3.44%
2015Q3 323.10 358.10 10.83%
2015Q4  450.80 497.50 10.36%
2016Q1  476.20 506.80 6.43%
2016Q2 573.80 567.10 1.17%
2016Q3  420.20 432.10 2.83%
2016Q4  598.10 599.70 0.27%
2017Q1  621.20 610.20 1.77%
2017Q2  694.50 682.30 1.76%
2017Q3  562.90 519.50 7.711%
2017Q4  782.10 720.50 7.88%
2018Q1  871.60 732.70 15.94%
2018Q2 841.60 818.80 2.71%
2018Q3 654.30 623.10 4.77%
2018Q4  850.10 863.80 1.61%
2019Q1 913.40 878.00 3.88%
2019Q2  959.40 980.90 2.24%
2019Q3 662.70 746.20 12.60%
2019Q4  979.20 1034.10 5.61%
2020Q1 1022.40 1050.90 2.79%
2020Q2 1094.60 1173.70 7.23%
2020Q3  854.90 892.60 4.41%
2020Q4 1174.10 1236.80 5.34%
2021Q1  1400.60 1256.60 10.28%

Subsequently, we apply the proposed model to predict future wind power generation in China between 2021Q2
and 2024Q2. The results show that the long-term forecasts are valid if the existing wind power expansion capacity
policy is maintained in the next four years. Our prediction confirms that wind power will continue to change
seasonally, showing a steady upward trend. By 2024Q2, China’s wind power generation is projected to reach
239.09 TWh. With the acceleration of China’s construction of the energy industry, stable and sustained growth
of wind power generation can effectively help optimize and upgrade the energy structure, and help realize the
coordinated development of the economy and environment.

As demonstrated above, the COSGM model achieves a competitive performance in the quarterly wind power
generation. The reason why the proposed model possesses high forecasting accuracy can be interpreted as below:
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(1) Compared with the other grey model, the fractional-order accumulation generation operator (r-AGO) is
employed in the COSGM model to preprocess the wind power generation series. On the one hand, this
technology significantly weakens the randomness of the data sequence and enhances the development trend
of the data sequence. On the other hand, it also further excavates the hidden characteristics of the data
sequence and adapts to the long memory characteristics of the data sequence. Moreover, the COSGM
model is more in line with the criterion of new information priority and reduces the loss of information.
And PSO algorithm is used to modify the initial value of the COSGM model, and further mining the
potential information of the data sequence.

(2) In the proposed model, the moving average filtering algorithm is applied to realize the separation of the
trend and season. Thus, compared with other grey prediction models, this paper measures the seasonal
effect of wind power generation more accurately. This technology has a broad application prospect, it can
not only adapt to various periodic characteristics but also reduce the interference of irregular fluctuations.
However, as the symmetrical moving average filter will cause information loss, so this paper adopts the
method of simultaneous optimization of trend and season to compensate for the loss of information.

However, there are still many new research opportunities that are worth exploring in the future. On the one
hand, the COSGM model divides the original sequence into a trend and a periodic component, and regards
the seasonal fluctuation as the pure influence of seasonal factors on the original trend, but ignores the role of
irregular factors. How to further analyze and predict the role of irregular factors will be a valuable topic in the
future.

On the other hand, the proposed model is based on the premise that the seasonal effect of the original
sequence is stable. If the seasonal effect of the original sequence develops and changes over time, the model will
be difficult to measure the seasonal effect. Therefore, the future work is how to further capture the dynamic
changes of seasonal effects and adapt to the development of seasonal patterns.
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