
RAIRO-Oper. Res. 55 (2021) 2657–2683 RAIRO Operations Research
https://doi.org/10.1051/ro/2021133 www.rairo-ro.org

A NOVEL EXTENSION OF TOPSIS WITH INTERVAL TYPE-2 TRAPEZOIDAL
NEUTROSOPHIC NUMBERS USING (α, β, γ)-CUTS

Muhammad Touqeer1, Rimsha Umer1, Ali Ahmadian2,3,∗

and Soheil Salahshour4

Abstract. Multi-criteria decision-making (MCDM) is concerned with structuring and solving decision
problems involving multiple criteria for decision-makers in vague and inadequate environment. The
“Technique for Order Preference by Similarity to Ideal Solution” (TOPSIS) is one of the mainly used
tactic to deal with MCDM setbacks. In this article, we put forward an extension of TOPSIS with
interval type-2 trapezoidal neutrosophic numbers (IT2TrNNs) using the concept of (α, β, γ)-cut. First,
we present a novel approach to compute the distance between two IT2TrNNs using ordered weighted
averaging (OWA) operator and (α, β, γ)-cut. Subsequently, we broaden the TOPSIS method in the
context of IT2TrNNs and implemented it on a MCDM problem. Lastly, a constructive demonstration
and several contrasts with the other prevailing techniques are employed to articulate the practicability
of the proposed technique. The presented strategy yields a flexible solution for MCDM problems by
considering the attitudes and perspectives of the decision-makers.
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1. Introduction

“Multi-criteria decision-making” (MCDM) is a branch of operational research yielding results to rank and
assess the best alternatives from set of alternatives under multiple criteria regarding decision-maker’s choices
and preferences [8]. In the conventional techniques for MCDM, the alternative ratings and criterion weights were
articulated by using crisp values. Nevertheless, decision-makers frequently use natural language to eloquent their
outlook and subjective observations in the existent world and it’s complex to state the linguistic terms exactly
and accurately by using crisp values. Consequently, the “fuzzy set” (FS) theory is introduced by Zadeh [57] to
cope up with the problems involving subjective uncertainties. Afterwards, “type-2 fuzzy sets” (T2FSs) [26–28],
an extension of “type-1 fuzzy sets” (T1FSs) were commenced since they can engage with more uncertainties
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than T1FSs. The most largely used T2FSs are “interval type-2 fuzzy sets” (IT2FSs) [26–28] that is a particular
case of frequently used T2FSs.

“Intuitionistic fuzzy sets” (IFSs) are launched by Atanassov [2] that consider both membership and non-
membership grades. Many investigators have declared their uniqueness in decision-making because of their
significance in dealing with uncertainty. To depict the indeterminacy membership grade, IFSs were extended by
Smarandache [35] to “neutrosophic sets” (NSs) characterized by “truth membership function” (TMF), “inde-
terminacy membership function” (IMF) and “falsity membership function” (FMF). Subsequently, the thought
of “single-valued neutrosophic set” (SVNS) [43] was presented to cope up with vague, indefinite and incoher-
ent facts and figures. “Interval type-2 neutrosophic sets” (IT2NSs) [41, 53] were launched to determine the
improbability and haziness more proficiently.

In literature, there are various MCDM techniques including ELECTRE, fuzzy TOPSIS, fuzzy VIKOR,
PROMETHEE, fuzzy AHP, fuzzy ANP and so on [8, 9, 12, 22]. Peng et al. [30] presented an expansion of
ELECTRE for solving MCDM setbacks where the weights and other information was depicted by using multi-
hesitant FSs. Shaygan et al. [34] anticipated a tactic formed on fuzzy AHP for decision-making to classify,
categorize and pick schemes. Akram et al. [1] also presented an approach by extending the TOPSIS method for
MCDM problems using soft sets. Gupta et al. [21] expanded the TOPSIS technique with interval-valued IFSs
to solve MCDM problems. Touqeer et al. [38–40] also presented various techniques for solving MCDM problems
in fuzzy environment using different types of fuzzy numbers. All these MCDM techniques utilizes FSs that are
not capable of handling indeterminacy and irregularity involved during these processes so, in the recent times,
some neutrosophic MCDM approaches have been creatively established to handle vagueness, indeterminacy and
inconsistency in decision-making problems including PROMETHEE method for MCDM problems based on
probability multi-valued NSs extended by Liu et al. [23]. Biswas et al. [5] presented a value and ambiguity-based
ranking approach for trapezoidal neutrosophic number (TrNNs) and presented an MCDM strategy. Deli et al.
[17] proposed a ranking strategy of TrNN for solving MCDM problems. Liang et al. [24] defined score, accuracy
and certainty function in the context of single-valued trapezoidal neutrosophic number (SVTrNN) by using
the concept of center of gravity (COG). Biswas et al. [7] presented TOPSIS approach for MCDM in TrNN
atmosphere. Pramanik et al. [31] established a VIKOR method for a MCDM in TrNN framework. Giri et al.
[20] suggested an MCDM method involving interval trapezoidal neutrosophic number (ITrNN). Pramanik et al.
[32] proposed TODIM strategy for MCDM in TrNN environment.

One more approach involving MCDM problem under fuzzy framework was presented by Yang et al. [51]
where TOPSIS is extended in trapezoidal interval type-2 fuzzy environment using α-cuts. As FSs plays no role
in indeterminacy values and non-membership functions and are only engaged with membership function so, they
are not able to cope up with the vagueness and non-deterministic situations occurring during the MCDM process
hence, in this research, we have extended this approach in neutrosophic environment. We propose an extended
TOPSIS approach where the OWA operator is used to reflect the attitudes and perspectives of decision-makers.
The core difference is that the presented approach utilizes interval type-2 neutrosophic numbers (IT2NNs) and
uses the tool of (α, β, γ)-cut to deneutrosify the IT2NNs. Based on IT2NN structure, this paper utilizes a well-
known neutrosophic number having trapezoidal appearance called an “interval type-2 trapezoidal neutrosophic
number” (IT2TrNN) [42].

The idea of this article is to establish an inventive and effective method for dealing with MCDM prob-
lems under IT2TrNN framework. The IT2TrNNs are used to articulate the performance ratings of criterion in
MCDM problems as they can proficiently convey qualitative assessments of decision-makers. Moreover, (α, β, γ)-
cut approach is used to compute the distance between two IT2TrNNs. By using the tool of (α, β, γ)-cut, the
constraints concerned with the shapes of neutrosophic sets can be avoided and it can lessen the effect of uncer-
tainty inherent in MCDM problems and provide us with more accurate solution. Also, an integral operation of
(α, β, γ)-cut is used to calculate the distance between two neutrosophic numbers. Furthermore, OWA operator is
used to determine the distance between two IT2TrNNs as it can depict the outlook of decision-makers. Finally,
a constructive and precise analytical solution of distance between two IT2TrNNs is derived formed on our
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projected distance approach, which can serve as a uncomplicated and exact distance manner for many applica-
tions in the neutrosophic systems.

The rest of the article is ordered as follows: Section 2 recalls some fundamental concepts about IT2NNs,
(α, β, γ)-cut, OWA operator and classical TOPSIS technique. Section 3 presents a technique to compute distance
between two IT2TrNNs using the notion of (α, β, γ)-cut and OWA operator and also projects an analytical
solution of the distance between two IT2TrNNs. Section 4 anticipates a detailed methodology of extension
of TOPSIS in the context of IT2TrNNs using the projected distance approach. Section 5 demonstrates an
numerical example to prove the feasibility of the proposed approach. Section 6 compares the proposed technique
with previous techniques to demonstrate the viability of presented approach. Section 7 sums up the paper and
provides conclusion.

2. Preliminaries

Several related definitions and concepts about interval type-2 neutrosophic numbers, (α, β, γ)-cut, OWA
operator and TOPSIS method used in the subsequent discussions are briefly reviewed in the following section.

2.1. Interval type-2 neutrosophic numbers

Definition 2.1 ([35, 36]). A single-valued neutrosophic set (SVNS) S̆ on universal set U is characterized by
TMF (φS̆), IMF (ψS̆) and FMF (ϕS̆) respectively, in the following way:

S̆ =
{〈
ξ,
(
φS̆(ξ), ψS̆(ξ), ϕS̆(ξ)

)〉
: ξ ∈ U, φS̆(ξ), ψS̆(ξ), ϕS̆(ξ) ∈ [0, 1]

}
(2.1)

such that 0 ≤ φS̆(ξ), ψS̆(ξ), ϕS̆(ξ) ≤ 3.

Definition 2.2 ([42]). Let S̆(ξ) =
[
S̆
U

(ξ), S̆
L

(ξ)
]

be an interval type-2 neutrosophic set (IT2NS) on universal

set U where ξ ∈ U and S̆
U

: U→ [0, 1] and S̆
L

: U→ [0, 1] are two type-1 neutrosophic sets (T1NSs) known as

upper and lower neutrosophic sets respectively having the condition 0 ≤ S̆
L

(ξ) ≤ S̆
U

(ξ) ≤ 1 defined as follows:

S̆ =
{〈
ξ,
([
φU

S̆
(ξ), φL

S̆
(ξ)
]
,
[
ψU

S̆
(ξ), ψL

S̆
(ξ)
]
,
[
ϕU

S̆
(ξ), ϕL

S̆
(ξ)
])〉

: ξ ∈ U,[
φU

S̆
(ξ), φL

S̆
(ξ)
]
,
[
ψU

S̆
(ξ), ψL

S̆
(ξ)
]
,
[
ϕU

S̆
(ξ), ϕL

S̆
(ξ)
]
∈ [0, 1]

}
.

(2.2)

Definition 2.3 ([42]). Let S̆ be a trapezoidal neutrosophic number (TrNN) with TMF (φS̆), IMF (ψS̆) and
FMF (ϕS̆) defined as follows:

φS̆(ξ) =



(ξ−s̆1)φS̆
s̆2−s̆1

s̆1 ≤ ξ < s̆2

φS̆ s̆2 ≤ ξ ≤ s̆3

(s̆4−ξ)φS̆
s̆4−s̆3

s̆3 < ξ ≤ s̆4

0 otherwise

(2.3)

ψS̆(ξ) =



s̆2−ξ+(ξ−s̆1)ψS̆
s̆2−s̆1

s̆1 ≤ ξ < s̆2

ψS̆ s̆2 ≤ ξ ≤ s̆3

ξ−s̆3+(s̆4−ξ)ψS̆
s̆4−s̆3

s̆3 < ξ ≤ s̆4

1 otherwise

(2.4)
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Figure 1. An interval type-2 trapezoidal neutrosophic number.

ϕS̆(ξ) =



s̆2−ξ+(ξ−s̆1)ϕS̆
s̆2−s̆1

s̆1 ≤ ξ < s̆2

ϕS̆ s̆2 ≤ ξ ≤ s̆3

ξ−s̆3+(s̆4−ξ)ϕS̆
s̆4−s̆3

s̆3 < ξ ≤ s̆4

1 otherwise

(2.5)

where φS̆ =
[
φU

S̆
, φL

S̆

]
, ψS̆ =

[
ψU

S̆
, ψL

S̆

]
and ϕS̆ =

[
ϕU

S̆
, ϕL

S̆

]
are interval type-2 neutrosophic numbers (IT2NNs).

The number S̆ can be represented as

S̆ =
[
S̆
U
, S̆
L
]

=
[(

s̆U1 , s̆
U
2 , s̆

U
3 , s̆

U
4 ;φU

S̆
, ψU

S̆
, ϕU

S̆

)
,
(

s̆L1 , s̆
L
2 , s̆

L
3 , s̆

L
4 ;φL

S̆
, ψL

S̆
, ϕL

S̆

)]
(2.6)

and is called interval type-2 trapezoidal neutrosophic number (IT2TrNN) where 0 ≤ s̆U1 ≤ s̆U2 ≤ s̆U3 ≤ s̆U4 ≤ 1,
0 ≤ s̆L1 ≤ s̆L2 ≤ s̆L3 ≤ s̆L4 ≤ 1, 0 ≤ φL

S̆
≤ φU

S̆
≤ 1, 0 ≤ ψL

S̆
≤ ψU

S̆
≤ 1 and 0 ≤ ϕL

S̆
≤ ϕU

S̆
≤ 1 (Fig. 1).

Definition 2.4. Let S̆ =
(

S̆
U
, S̆
L
)

=
[(

s̆U1 , s̆
U
2 , s̆

U
3 , s̆

U
4 ;φU

S̆
, ψU

S̆
, ϕU

S̆

)
,
(

s̆L1 , s̆
L
2 , s̆

L
3 , s̆

L
4 ;φL

S̆
, ψL

S̆
, ϕL

S̆

)]
and T̆ =(

T̆
U
, T̆

L
)

=
[(

t̆
U

1 , t̆
U

2 , t̆
U

3 , t̆
U

4 ;φU
T̆
, ψU

T̆
, ϕU

T̆

)
,
(

t̆
L

1 , t̆
L

2 , t̆
L

3 , t̆
L

4 ;φL
T̆
, ψL

T̆
, ϕL

T̆

)]
be two IT2TrNNs. We introduce the

arithmetic operations of addition and subtraction on S̆ and T̆ defined as follows:

(i) Addition:

S̆⊕ T̆ =
([

s̆U1 + t̆
U

1 , s̆
U
2 + t̆

U

2 , s̆
U
3 + t̆

U

3 , s̆
U
4 + t̆

U

4 ; min
((
φU

S̆
, ψU

S̆
, ϕU

S̆

)
,
(
φU

T̆
, ψU

T̆
, ϕU

T̆

))]
,[

s̆L1 + t̆
L

1 , s̆
L
2 + t̆

L

2 , s̆
L
3 + t̆

L

3 , s̆
L
4 + t̆

L

4 ; min
((
φL

S̆
, ψL

S̆
, ϕL

S̆

)
,
(
φL

T̆
, ψL

T̆
, ϕL

T̆

))])
.

(2.7)
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(ii) Subtraction:

S̆− T̆ =
([

s̆U1 − t̆
U

4 , s̆
U
2 − t̆

U

3 , s̆
U
3 − t̆

U

2 , s̆
U
4 − t̆

U

1 ; min
((
φU

S̆
, ψU

S̆
, ϕU

S̆

)
,
(
φU

T̆
, ψU

T̆
, ϕU

T̆

))]
,[

s̆L1 − t̆
L

4 , s̆
L
2 − t̆

L

3 , s̆
L
3 − t̆

L

2 , s̆
L
4 − t̆

L

1 ; min
((
φL

S̆
, ψL

S̆
, ϕL

S̆

)
,
(
φL

T̆
, ψL

T̆
, ϕL

T̆

))])
.

(2.8)

2.2. (α, β, γ)-cut

Definition 2.5 ([37]). The (α, β, γ)-cut of a neutrosophic number denoted by S̆(α, β, γ) is defined as:

S̆(α,β,γ) =
{〈
ξ,
(
φS̆(ξ), ψS̆(ξ), ϕS̆(ξ)

)〉
: ξ ∈ U, φS̆(ξ) ≥ α,ψS̆(ξ) ≤ β, ϕS̆(ξ) ≤ γ

}
(2.9)

where α, β, γ ∈ [0, 1] and are fixed numbers such that α+ β + γ ≤ 3.

Definition 2.6 ([37]). The (α, β, γ)-cut of an IT2NN S̆ is represented as follows:

S̆ =
{〈
ξ,
([
φU

S̆
(ξ), φL

S̆
(ξ)
]
≥ α,

[
ψU

S̆
(ξ), ψL

S̆
(ξ)
]
≤ β,

[
ϕU

S̆
(ξ), ϕL

S̆
(ξ)
]
≤ γ

)〉}
=
[
s̆(α), t̆(α)

]
,
[
s̆(β), t̆(β)

]
,
[
s̆(γ), t̆(γ)

] (2.10)

where ξ ∈ U,
[
φU

S̆
(ξ), φL

S̆
(ξ)
]
,
[
ψU

S̆
(ξ), ψL

S̆
(ξ)
]
,
[
ϕU

S̆
(ξ), ϕL

S̆
(ξ)
]
, α, β, γ ∈ [0, 1] and s̆(α) ∈ [̆sl(α), s̆r(α)], t̆(α) ∈[

t̆l(α), t̆r(α)
]
, s̆(β) ∈ [̆sl(β), s̆r(β)], t̆(β) ∈

[
t̆l(β), t̆r(β)

]
, s̆(γ) ∈ [̆sl(γ), s̆r(γ)], t̆(γ) ∈

[
t̆l(γ), t̆r(γ)

]
.

If (α, β, γ)-cut on S̆
L

exists, then the intervals [̆s(α), t̆(α)], [̆s(β), t̆(β)], [̆s(γ), t̆(γ)] are divided into
three sub-intervals: [̆sl(α), s̆r(α)], [̆sr(α), t̆l(α)] and [̆tl(α), t̆r(α)], [̆sl(β), s̆r(β)], [̆sr(β), t̆l(β)] and [̆tl(β), t̆r(β)],
[̆sl(γ), s̆r(γ)], [̆sr(γ), t̆l(γ)] and [̆tl(γ), t̆r(γ)] respectively.

s̆(α), s̆(β) and s̆(γ) cannot assume a value larger than s̆r(α), s̆r(β) and s̆r(γ). Similarly, t̆(α) ∈[
t̆l(α), t̆r(α)

]
, t̆(β) ∈

[
t̆l(β), t̆r(β)

]
and t̆(γ) ∈

[
t̆l(γ), t̆r(γ)

]
cannot assume a value smaller than t̆l(α), t̆l(β)

and t̆l(γ) respectively. However, if (α, β, γ)-cut on S̆
L

doesn’t exist, then both s̆r(α) and t̆l(α), s̆r(β) and t̆l(β)
and s̆r(γ) and t̆l(γ) can assume values freely in the entire intervals [̆sl(α), t̆r(α)], [̆sl(β), t̆r(β)] and [̆sl(γ), t̆r(γ)]
(Fig. 2).

s̆(α) ∈

[̆sl(α), s̆r(α)] α ∈
[
0, φL

S̆

]
[
s̆l(α), t̆r(α)

]
α ∈

[
φL

S̆
, 1
] (2.11)

t̆(α) ∈


[
t̆l(α), t̆r(α)

]
α ∈

[
0, φL

S̆

]
[
s̆l(α), t̆r(α)

]
α ∈

[
φL

S̆
, 1
] (2.12)

s̆(β) ∈

[̆sl(β), s̆r(β)] β ∈
[
0, ψL

S̆

]
[
s̆l(β), t̆r(β)

]
β ∈

[
ψL

S̆
, 1
] (2.13)

t̆(β) ∈


[
t̆l(β), t̆r(β)

]
β ∈

[
0, ψL

S̆

]
[
s̆l(β), t̆r(β)

]
β ∈

[
ψL

S̆
, 1
] (2.14)

s̆(γ) ∈

[̆sl(γ), s̆r(γ)] γ ∈
[
0, ϕL

S̆

]
[
s̆l(γ), t̆r(γ)

]
γ ∈

[
ϕL

S̆
, 1
] (2.15)
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Figure 2. The (α, β, γ)-cut of an IT2TrNN.

t̆(γ) ∈


[
t̆l(γ), t̆r(γ)

]
γ ∈

[
0, ϕL

S̆

]
[
s̆l(γ), t̆r(γ)

]
γ ∈

[
ϕL

S̆
, 1
]
.

(2.16)

2.3. OWA operator

Definition 2.7 ([33]). An OWA operator having dimension n is a mapping S̆ : Rn → R associated with an n
vector W̆ = (w̆1, . . . , w̆n) such that w̆i ∈ [0, 1] and

∑n
i=1 w̆i = 1. Moreover,

S̆w̆(s̆1, . . . , s̆n) =
n∑
j=1

w̆j t̆j (2.17)

where t̆j represents j-th largest element of aggregated objects collection s̆1, . . . , s̆n.

2.4. TOPSIS method

The “Technique for Order Preference by Similarity to Ideal Solution” (TOPSIS) is the most recognized
techniques to deal with MCDM setbacks in different application fields and the primary foundation of TOPSIS
is that the optimal alternative has shortest distance from “Positive Ideal Solution” (PIS) and farthest distance
from “Negative Ideal Solution” (NIS). Assuming a MCDM problem having n alternatives (L1, . . . ,Ln) and m
criterion (R1, . . . ,Rn). Each alternative is to be evaluated according to the n criterion. All the values that are
assigned to the alternative for each criterion are shown by the decision matrix X = (xij)n×m. W̆ = (w̆1, . . . , w̆m)
shows the criterion weights satisfying

∑m
j=1 w̆j = 1.
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2.4.1. Algorithm of TOPSIS

Step 1. Build a normalized decision matrix.
For benefit type criteria:

nij =
xij

max(xij)
· (2.18)

For cost type criteria:

nij =
min(xij)
xij

(2.19)

where nij is the normalized value of xij .
Step 2. Compute weighted normalized decision matrix V = (vij)n×m.

vij = w̆jnij (2.20)

where w̆j is the j-th criterion weight and
∑m
j=1 w̆j = 1.

Step 3. Evaluate the PIS and NIS.

P∗ = {v∗1 , v∗2 , . . . , v∗n}

=
{(

max
i
vij |j ∈ Kt

)(
min
i
vij |j ∈ Kc

)}
(2.21)

N− =
{
v−1 , v

−
2 , . . . , v

−
n

}
=
{(

max
i
vij |j ∈ Kc

)(
min
i
vij |j ∈ Kt

)}
(2.22)

where Kt is the benefit criterion set and Kc is the cost criterion set.
Step 4. Acquire the distances of alternatives from PIS and NIS.

D∗
i =

√√√√ n∑
j=1

(
vij − v∗j

)2 (2.23)

D−
i =

√√√√ n∑
j=1

(
vij − v−j

)2
. (2.24)

Step 5. Compute relative closeness to the ideal alternatives.

RCi =
D−
i

D−
i + D∗

i

· (2.25)

Step 6. Rank the alternatives with respect to the relative closeness to the ideal alternatives. The larger the
relative closeness coefficient, is the better alternative.

3. Method to compute distance between two IT2TrNNs

In the following segment, we projected a new technique to compute the distance between two IT2TrNNs by
using the conception of (α, β, γ)-cuts and OWA operator that can be used to determine the distances from an
alternative to PIS and NIS whose ratings of local criterion are represented in the form of IT2TrNNs. Moreover,
we established an analytical solution of the distance between two IT2TrNNs that can be used for calculating
the distance more suitably and easily.

The techniques of computing the distance between two IT2TrNNs are shown as follows:
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Figure 3. The (α, β, γ)-cut of an IT2TrNN.

Firstly, a new assumption is made about the (α, β, γ)-cuts of a IT2TrNN when α, β and γ are over the lower
truth, indeterminacy and falsity membership functions i.e. φL

S̆
, ψL

S̆
and ϕL

S̆
. For a IT2TrNN S̆ (seen in Fig. 3), it

is assumed that when α, β, γ > φL
S̆
, ψL

S̆
, ϕL

S̆
, s̆(α) values freely in the interval

[
s̆l(α), t̆r(α)

]
and t̆(α) also values

freely in the interval
[
s̆l(α), t̆r(α)

]
, which means the α-cuts of a IT2TrNN are

[([
s̆l(α), t̆r(α)

])
,
([

s̆l(α), t̆r(α)
])]

when α > φL
S̆

. Similarly, s̆(β) values freely in the interval
[
s̆l(β), t̆r(β)

]
and t̆(β) also values freely in the interval[

s̆l(β), t̆r(β)
]
, which means the β-cuts of a IT2TrNN are

[([
s̆l(β), t̆r(β)

])
,
([

s̆l(β), t̆r(β)
])]

when β > ψL
S̆

and
s̆(γ) values freely in the interval

[
s̆l(γ), t̆r(γ)

]
and t̆(γ) also values freely in the interval

[
s̆l(γ), t̆r(γ)

]
, which

means the γ-cuts of a IT2TrNN are
[([

s̆l(γ), t̆r(γ)
])
,
([

s̆l(γ), t̆r(γ)
])]

when γ > ϕL
S̆

. In order to get rid of the
overlapping of left and right intervals of α, β and γ cuts of IT2TrNN, we make a modification of the above
assumption, which assumes that s̆(α) values freely in the interval

[
s̆l(α), x

L
2 +xL

3
2

]
and t̆(α) values freely in the

interval
[
xL

2 +xL
3

2 , t̆r(α)
]
, when α > φL

S̆
. Similarly, s̆(β) values freely in the interval

[
s̆l(β), x

L
2 +xL

3
2

]
and t̆(β) values

freely in the interval
[
xL

2 +xL
3

2 , t̆r(β)
]
, when β > ψL

S̆
and s̆(γ) values freely in the interval

[
s̆l(γ), x

L
2 +xL

3
2

]
and

t̆(γ) values freely in the interval
[
xL

2 +xL
3

2 , t̆r(γ)
]
, when γ > ϕL

S̆
. In other words, we replace s̆r(α) and t̆l(α) with

xL
2 +xL

3
2 when α > φL

S̆
, s̆r(β) and t̆l(β) with xL

2 +xL
3

2 when β > ψL
S̆

and s̆r(γ) and t̆l(γ) with xL
2 +xL

3
2 when γ > ϕL

S̆
.

Therefore, s̆r(α), t̆l(α), s̆r(β), t̆l(β), s̆r(γ) and t̆l(γ) can be redefined as follows:

s̆r(α) ,

s̆r(α) α ∈
[
0, φL

S̆

]
xL

2 +xL
3

2 α ∈
[
φL

S̆
, φU

S̆

] (3.1)
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t̆l(α) ,

t̆l(α) α ∈
[
0, φL

S̆

]
xL

2 +xL
3

2 α ∈
[
φL

S̆
, φU

S̆

] (3.2)

s̆r(β) ,

s̆r(β) β ∈
[
0, ψL

S̆

]
xL

2 +xL
3

2 β ∈
[
ψL

S̆
, ψU

S̆

] (3.3)

t̆l(β) ,

t̆l(β) β ∈
[
0, ψL

S̆

]
xL

2 +xL
3

2 β ∈
[
ψL

S̆
, ψU

S̆

] (3.4)

s̆r(γ) ,

s̆r(γ) γ ∈
[
0, ϕL

S̆

]
xL

2 +xL
3

2 γ ∈
[
ϕL

S̆
, ϕU

S̆

] (3.5)

t̆l(γ) ,

t̆l(γ) γ ∈
[
0, ϕL

S̆

]
xL

2 +xL
3

2 γ ∈
[
ϕL

S̆
, ϕU

S̆

]
.

(3.6)

Figure 3 indicates a new definition of the (α, β, γ)-cuts of a IT2TrNN when (α, β, γ) >
(
φL

S̆
, ψL

S̆
, ϕL

S̆

)
and

(α, β, γ) <
(
φL

S̆
, ψL

S̆
, ϕL

S̆

)
.

3.1. Algorithm for calculating the distance between two IT2TrNNs

Step 1. Computing the (α, β, γ)-cuts of the difference between two IT2TrNNs.
For IT2TrNNs S̆ and T̆

S̆ =
(

S̆
U
, S̆
L
)

=
[
(s̆U1 , s̆

U
2 , s̆

U
3 , s̆

U
4 ;φU

S̆
, ψU

S̆
, ϕU

S̆
),
(

s̆L1 , s̆
L
2 , s̆

L
3 , s̆

L
4 ;φL

S̆
, ψL

S̆
, ϕL

S̆

)]
T̆ =

(
T̆
U
, T̆

L
)

=
[(

t̆
U

1 , t̆
U

2 , t̆
U

3 , t̆
U

4 ;φU
T̆
, ψU

T̆
, ϕU

T̆

)
,
(

t̆
L

1 , t̆
L

2 , t̆
L

3 , t̆
L

4 ;φL
T̆
, ψL

T̆
, ϕL

T̆

)]
the difference between them can be computed by using the subtraction operation denoted as S̆− T̆ that is
also an IT2TrNN. The (α, β, γ)-cut of the difference between S̆ and T̆ is represented in Figure 4 denoted as
follows: (

S̆− T̆
)
α

=
[[(

S̆− T̆
)
α1
,
(

S̆− T̆
)
α2

][(
S̆− T̆

)
α3
,
(

S̆− T̆
)
α4

]]
(3.7)(

S̆− T̆
)
β

=
[[(

S̆− T̆
)
β1

,
(

S̆− T̆
)
β2

][(
S̆− T̆

)
β3

,
(

S̆− T̆
)
β4

]]
(3.8)(

S̆− T̆
)
γ

=
[[(

S̆− T̆
)
γ1

,
(

S̆− T̆
)
γ2

][(
S̆− T̆

)
γ3

,
(

S̆− T̆
)
γ4

]]
. (3.9)

Now, we have

(
S̆− T̆

)
α1

=

(
s̆U2 − t̆

U

3 − s̆U1 + t̆
U

4

)
· α

min
(
φU

S̆
, φU

T̆

) + s̆U1 − t̆
U

4 α ∈
[
0,min

(
φU

S̆
, φU

T̆

)]
(3.10)
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Figure 4. The (α, β, γ)-cut of difference between S̆ and T̆.

(
S̆− T̆

)
α2

=


(s̆L

2 −t̆
L
3 −s̆L

1 +t̆
L
4 )·α

min(φL
S̆
,φL

T̆) + s̆L1 − t̆
L

4 α ∈
[
0,min

(
φL

S̆
, φL

T̆

)]
s̆L
2 −t̆

L
3 +s̆L

3 −t̆
L
2

2 α ∈
[
min

(
φL

S̆
, φL

T̆

)
,min

(
φU

S̆
, φU

T̆

)] (3.11)

(
S̆− T̆

)
α3

=


s̆L4 − t̆

L

1 −
(s̆L

4 −t̆
L
1 −s̆L

3 +t̆
L
2 )·α

min(φL
S̆
,φL

T̆) α ∈
[
0,min

(
φL

S̆
, φL

T̆

)]
s̆L
2 −t̆

L
3 +s̆L

3 −t̆
L
2

2 α ∈
[
min

(
φL

S̆
, φL

T̆

)
,min

(
φU

S̆
, φU

T̆

)] (3.12)

(
S̆− T̆

)
α4

= s̆U4 − t̆
U

1 −

(
s̆U4 − t̆

U

1 − s̆U3 + t̆
U

2

)
· α

min
(
φU

S̆
, φU

T̆

) α ∈
[
0,min

(
φU

S̆
, φU

T̆

)]
(3.13)

where
(

S̆− T̆
)
α1

<
(

S̆− T̆
)
α2

<
(

S̆− T̆
)
α3

<
(

S̆− T̆
)
α4

when α ∈
[
0,min

(
φL

S̆
, φL

T̆

)]
and

(
S̆− T̆

)
α1

<(
S̆− T̆

)
α2

=
(

S̆− T̆
)
α3
<
(

S̆− T̆
)
α4

when α ∈
[
min

(
φL

S̆
, φL

T̆

)
,min

(
φU

S̆
, φU

T̆

)]
.

Similarly,

(
S̆− T̆

)
β1

=

(
s̆U2 − t̆

U

3 − s̆U1 + t̆
U

4

)
· β − s̆U2 + t̆

U

3 +
(

s̆U1 + t̆
U

4

)
·min

(
ψU

S̆
, ψU

T̆

)
min

(
ψU

S̆
, ψU

T̆

)
− 1

β ∈
[
0,min

(
ψU

S̆
, ψU

T̆

)]
(3.14)

(
S̆− T̆

)
β2

=


(s̆L

2 −t̆
L
3 −s̆L

1 +t̆
L
4 )·β−s̆L

2 +t̆
L
3 +(s̆L

1 +t̆
L
4 )·min(ψL

S̆
,ψL

T̆)
min(ψL

S̆
,ψL

T̆)−1
β ∈

[
0,min

(
ψL

S̆
, ψL

T̆

)]
s̆L
2 −t̆

L
3 +s̆L

3 −t̆
L
2

2 β ∈
[
min

(
ψL

S̆
, ψL

T̆

)
,min

(
ψU

S̆
, ψU

T̆

)] (3.15)

(
S̆− T̆

)
β3

=


(s̆L

4 −t̆
L
1 −s̆L

3 +t̆
L
2 )·β+s̆U

3 −t̆
L
2 −(s̆L

4 −t̆
L
1 )·min(ψL

S̆
,ψL

T̆)
1−min(ψL

S̆
,ψL

T̆) β ∈
[
0,min

(
ψL

S̆
, ψL

T̆

)]
s̆L
2 −t̆

L
3 +s̆L

3 −t̆
L
2

2 β ∈
[
min

(
ψL

S̆
, ψL

T̆

)
,min

(
ψU

S̆
, ψU

T̆

)] (3.16)
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(
S̆− T̆

)
β4

=

(
s̆U4 − t̆

U

1 − s̆U3 + t̆
U

2

)
· β + s̆U3 − t̆

U

2 −
(

s̆U4 − t̆
U

1

)
·min

(
ψU

S̆
, ψU

T̆

)
1−min

(
ψU

S̆
, ψU

T̆

) β ∈
[
0,min

(
ψU

S̆
, ψU

T̆

)]
(3.17)

where
(

S̆− T̆
)
β1

<
(

S̆− T̆
)
β2

<
(

S̆− T̆
)
β3

<
(

S̆− T̆
)
β4

when β ∈
[
0,min

(
ψL

S̆
, ψL

T̆

)]
and

(
S̆− T̆

)
β1

<(
S̆− T̆

)
β2

=
(

S̆− T̆
)
β3

<
(

S̆− T̆
)
β4

when β ∈
[
min

(
ψL

S̆
, ψL

T̆

)
,min

(
ψU

S̆
, ψU

T̆

)]
, and

(
S̆− T̆

)
γ1

=

(
s̆U2 − t̆

U

3 − s̆U1 + t̆
U

4

)
· γ − s̆U2 + t̆

U

3 +
(

s̆U1 + t̆
U

4

)
·min

(
ϕU

S̆
, ϕU

T̆

)
min

(
ϕU

S̆
, ϕU

T̆

)
− 1

γ ∈
[
0,min

(
ϕU

S̆
, ϕU

T̆

)]
(3.18)

(
S̆− T̆

)
γ2

=


(s̆L

2 −t̆
L
3 −s̆L

1 +t̆
L
4 )·γ−s̆L

2 +t̆
L
3 +(s̆L

1 +t̆
L
4 )·min(ϕL

S̆
,ϕL

T̆)
min(ϕL

S̆
,ϕL

T̆)−1
γ ∈

[
0,min

(
ϕL

S̆
, ϕL

T̆

)]
s̆L
2 −t̆

L
3 +s̆L

3 −t̆
L
2

2 γ ∈
[
min

(
ϕL

S̆
, ϕL

T̆

)
,min

(
ϕU

S̆
, ϕU

T̆

)] (3.19)

(
S̆− T̆

)
γ3

=


(s̆L

4 −t̆
L
1 −s̆L

3 +t̆
L
2 )·γ+s̆U

3 −t̆
L
2 −(s̆L

4 −t̆
L
1 )·min(ϕL

S̆
,ϕL

T̆)
1−min(ϕL

S̆
,ϕL

T̆) γ ∈
[
0,min

(
ϕL

S̆
, ϕL

T̆

)]
s̆L
2 −t̆

L
3 +s̆L

3 −t̆
L
2

2 γ ∈
[
min

(
ϕL

S̆
, ϕL

T̆

)
,min

(
ϕU

S̆
, ϕU

T̆

)] (3.20)

(
S̆− T̆

)
γ4

=

(
s̆U4 − t̆

U

1 − s̆U3 + t̆
U

2

)
· γ + s̆U3 − t̆

U

2 −
(

s̆U4 − t̆
U

1

)
·min

(
ϕU

S̆
, ϕU

T̆

)
1−min

(
ϕU

S̆
, ϕU

T̆

) γ ∈
[
0,min

(
ϕU

S̆
, ϕU

T̆

)]
(3.21)

where
(

S̆− T̆
)
γ1

<
(

S̆− T̆
)
γ2

<
(

S̆− T̆
)
γ3

<
(

S̆− T̆
)
γ4

when γ ∈
[
0,min

(
ϕL

S̆
, ϕL

T̆

)]
and

(
S̆− T̆

)
γ1

<(
S̆− T̆

)
γ2

=
(

S̆− T̆
)
γ3

<
(

S̆− T̆
)
γ4

when γ ∈
[
min

(
ϕL

S̆
, ϕL

T̆

)
,min

(
ϕU

S̆
, ϕU

T̆

)]
.

Step 2. Calculating the distance between two IT2TrNNs at α, β and γ level.
Further, the (α, β, γ)-cut intervals of the difference between two IT2TrNNs are integrated within the range
of α, β and γ respectively by which the difference between two IT2TrNNs is converted into type-2 interval,
calculated as follows:

4α
(

S̆, T̆
)

=
∫ min(φU

S̆
,φU

T̆)

0

(
S̆− T̆

)
α

dα

=

[∫ min(φU
S̆
,φU

T̆)

0

(
S̆− T̆

)
α1

dα,
∫ min(φU

S̆
,φU

T̆)

0

(
S̆− T̆

)
α2

dα

]

×

[∫ min(φU
S̆
,φU

T̆)

0

(
S̆− T̆

)
α3

dα,
∫ min(φU

S̆
,φU

T̆)

0

(
S̆− T̆

)
α4

dα

] (3.22)

where ∫ min(φU
S̆
,φU

T̆)

0

(
S̆− T̆

)
α1

dα =
s̆U2 − t̆

U

3 − s̆U1 + t̆
U

4

2 ·min
(
φU

S̆
, φU

T̆

) (3.23)

∫ min(φU
S̆
,φU

T̆)

0

(
S̆− T̆

)
α2

dα =
s̆L2 − t̆

L

3 − s̆L1 + t̆
L

4

2 ·min
(
φL

S̆
, φL

T̆

) +
s̆L2 − t̆

L

3 + s̆L3 − t̆
L

2

2 ·min
(
φU

S̆
, φU

T̆

) (3.24)
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S̆
,φU

T̆)

0

(
S̆− T̆

)
α3

dα =
s̆L4 − t̆

L

1 − s̆L3 + t̆
L

2

2 ·min
(
φL

S̆
, φL

T̆

) +
s̆L2 − t̆

L

3 + s̆L3 − t̆
L

2

2 ·min
(
φU

S̆
, φU

T̆

) (3.25)

∫ min(φU
S̆
,φU

T̆)

0

(
S̆− T̆

)
α4

dα =
s̆U4 − t̆

U

1 + s̆U3 + t̆
U

2

2 ·min
(
φU

S̆
, φU

T̆

) · (3.26)

Similarly,

4β
(

S̆, T̆
)

=
∫ min(ψU

S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β
dβ

=

[∫ min(ψU
S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β1

dβ,
∫ min(ψU

S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β2

dβ

]

×

[∫ min(ψU
S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β3

dβ,
∫ min(ψU

S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β4

dβ

] (3.27)

where ∫ min(ψU
S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β1

dβ =
s̆U2 − t̆

U

3 − s̆U1 + t̆
U

4

2 ·
(

min
(
ψU

S̆
, ψU

T̆

)
− 1
) (3.28)

∫ min(ψU
S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β2

dβ =
s̆L2 − t̆

L

3 − s̆L1 + t̆
L

4

2 ·min
(
ψL

S̆
, ψL

T̆

) +
s̆L2 − t̆

L

3 + s̆L3 − t̆
L

2

2 ·
(

min
(
ψU

S̆
, ψU

T̆

)
− 1
) (3.29)

∫ min(ψU
S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β3

dβ =
s̆L4 − t̆

L

1 − s̆L3 + t̆
L

2

2 ·
(

1−min
(
ψU

S̆
, ψU

T̆

)) +
s̆L2 − t̆

L

3 + s̆L3 − t̆
L

2

2 ·min
(
ψU

S̆
, ψU

T̆

) (3.30)

∫ min(ψU
S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β4

dβ =
s̆U4 − t̆

U

1 − s̆U3 + t̆
U

2

2 ·
(

1−min
(
ψU

S̆
, ψU

T̆

)) (3.31)

and

4γ
(

S̆, T̆
)

=
∫ min(ϕU

S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ
dγ

=

[∫ min(ϕU
S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ1

dγ,
∫ min(ϕU

S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ2

dγ

]

×

[∫ min(ϕU
S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ3

dγ,
∫ min(ϕU

S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ4

dγ

] (3.32)

where ∫ min(ϕU
S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ1

dγ =
s̆U2 − t̆

U

3 − s̆U1 + t̆
U

4

2 ·
(

min
(
ϕU

S̆
, ϕU

T̆

)
− 1
) (3.33)

∫ min(ϕU
S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ2

dγ =
s̆L2 − t̆

L

3 − s̆L1 + t̆
L

4

2 ·min
(
ϕL

S̆
, ϕL

T̆

) +
s̆L2 − t̆

L

3 + s̆L3 − t̆
L

2

2 ·
(

min
(
ϕU

S̆
, ϕU

T̆

)
− 1
) (3.34)
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S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ3

dγ =
s̆L4 − t̆

L

1 − s̆L3 + t̆
L

2

2 ·
(

1−min
(
ϕU

S̆
, ϕU

T̆

)) +
s̆L2 − t̆

L

3 + s̆L3 − t̆
L

2

2 ·min
(
ϕU

S̆
, ϕU

T̆

) (3.35)

∫ min(ϕU
S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ4

dγ =
s̆U4 − t̆

U

1 − s̆U3 + t̆
U

2

2 ·
(

1−min
(
ϕU

S̆
, ϕU

T̆

)) · (3.36)

As
(

S̆− T̆
)
α1

<
(

S̆− T̆
)
α2

<
(

S̆− T̆
)
α3

<
(

S̆− T̆
)
α4

when α ∈
[
0,min

(
φL

S̆
, φL

T̆

)]
and

(
S̆− T̆

)
α1

<(
S̆− T̆

)
α2

=
(

S̆− T̆
)
α3

<
(

S̆− T̆
)
α4

when α ∈
[
min

(
φL

S̆
, φL

T̆

)
,min

(
φU

S̆
, φU

T̆

)]
. It can be concluded

that
∫min(φU

S̆
,φU

T̆)
0

(
S̆− T̆

)
α1

dα <
∫min(φU

S̆
,φU

T̆)
0

(
S̆− T̆

)
α2

dα <
∫min(φU

S̆
,φU

T̆)
0

(
S̆− T̆

)
α3

dα <
∫min(φU

S̆
,φU

T̆)
0(

S̆− T̆
)
α4

dα. Exchanging the position of S̆ and T̆ in equations (3.22), (3.27) and (3.32), we obtain that:

4α
(

T̆, S̆
)

=
∫ min(φU

S̆
,φU

T̆)

0

(
T̆− S̆

)
α

dα

=

[
−
∫ min(φU

S̆
,φU

T̆)

0

(
S̆− T̆

)
α4

dα,−
∫ min(φU

S̆
,φU

T̆)

0

(
S̆− T̆

)
α3

dα

]

×

[
−
∫ min(φU

S̆
,φU

T̆)

0

(
S̆− T̆

)
α2

dα,−
∫ min(φU

S̆
,φU

T̆)

0

(
S̆− T̆

)
α1

dα

]
.

(3.37)

Similarly,

4β
(

T̆, S̆
)

=
∫ min(ψU

S̆
,ψU

T̆ )

0

(
T̆− S̆

)
β
dβ

=

[
−
∫ min(ψU

S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β4

dβ,−
∫ min(ψU

S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β3

dβ

]

×

[
−
∫ min(ψU

S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β2

dβ,−
∫ min(ψU

S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β1

dβ

] (3.38)

and

4γ
(

T̆, S̆
)

=
∫ min(ϕU

S̆
,ϕU

T̆)

0

(
T̆− S̆

)
γ
dγ

=

[
−
∫ min(ϕU

S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ4

dγ,−
∫ min(ϕU

S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ3

dγ

]

×

[
−
∫ min(ϕU

S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ2

dγ,−
∫ min(ϕU

S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ1

dγ

]
.

(3.39)

Thus, it is shown that the difference between S̆ and T̆ at (α, β, γ) level has an important property i.e.
4α
(

T̆, S̆
)

= − 4α
(

S̆, T̆
)
,4β

(
T̆, S̆

)
= − 4β

(
S̆, T̆

)
and 4γ

(
T̆, S̆

)
= − 4γ

(
S̆, T̆

)
. It indicates that it

doesn’t satisfy commutativity. However, no matter what the computational order of both is, the absolute
values of the endpoints of two intervals are equal.
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Step 3. In the following step, we introduce an OWA operator for deneutrosifying the difference between two
IT2TrNNs at α, β and γ level. The distance between them is denoted by d

(
S̆, T̆

)
and can be determined as:

d
(

S̆, T̆
)

=
[
Fw̆

(
4α
(

S̆, T̆
))]

=

[
Fw̆

(∫ min(φU
S̆
,φU

T̆)

0

(
S̆− T̆

)
α1

dα, . . . ,
∫ min(φU

S̆
,φU

T̆)

0

(
S̆− T̆

)
α4

dα

)]

=


Fw̆

(∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α1

dα, . . . ,
∫min(φU

S̆
,φU

T̆)
0

(
S̆− T̆

)
α4

dα
)

if S̆ > T̆

Fw̆

(
−
∫min(φU

S̆
,φU

T̆)
0

(
S̆− T̆

)
α1

dα, . . . ,−
∫min(φU

S̆
,φU

T̆)
0

(
S̆− T̆

)
α4

dα
)

if S̆ < T̆
(3.40)

=
[
Fw̆

(
4β
(

S̆, T̆
))]

=

[
Fw̆

(∫ min(ψU
S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β1

dβ, . . . ,
∫ min(ψU

S̆
,ψU

T̆ )

0

(
S̆− T̆

)
β4

dβ

)]

=


Fw̆

(∫min(ψU
S̆
,ψU

T̆ )
0

(
S̆− T̆

)
β1

dβ, . . . ,
∫min(ψU

S̆
,ψU

T̆ )
0

(
S̆− T̆

)
β4

dβ
)

if S̆ > T̆

Fw̆

(
−
∫min(ψU

S̆
,ψU

T̆ )
0

(
S̆− T̆

)
β1

dβ, . . . ,−
∫min(ψU

S̆
,ψU

T̆ )
0

(
S̆− T̆

)
β4

dβ
)

if S̆ < T̆
(3.41)

=
[
Fw̆

(
4γ
(

S̆, T̆
))]

=

[
Fw̆

(∫ min(ϕU
S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ1

dγ, . . . ,
∫ min(ϕU

S̆
,ϕU

T̆)

0

(
S̆− T̆

)
γ4

dγ

)]

=


Fw̆

(∫min(ϕU
S̆
,ϕU

T̆)
0

(
S̆− T̆

)
γ1

dγ, . . . ,
∫min(ϕU

S̆
,ϕU

T̆)
0

(
S̆− T̆

)
γ4

dγ
)

if S̆ > T̆

Fw̆

(
−
∫min(ϕU

S̆
,ϕU

T̆)
0

(
S̆− T̆

)
γ1

dγ, . . . ,−
∫min(ϕU

S̆
,ϕU

T̆)
0

(
S̆− T̆

)
γ4

dγ
)

if S̆ < T̆
(3.42)

where Fw̆ is an OWA operator (see Eq. (2.17)).

The degree of “orness” related with Fw̆ is defined as:

orness
(

W̆
)

=
1

n− 1

n∑
i=1

(n− i)w̆i

= w̆1 +
n− 2
n1

× w̆2 + . . .+
1

n− 1
× w̆n−1.

(3.43)

If the orness degree related to the OWA operator is greater than 1
2 , it depicts that the distance between two

IT2TrNNs is overestimated; in contrast, if it is less than 1
2 , it means the distance is underestimated; further, if

the orness degree is equal to 1
2 , it means the distance is average of the endpoints of the difference between them

at α, β and γ level.

We suppose that an OWA operator Fw̆ is related with a weighting function W̆ = (w̆1, w̆2, w̆3, w̆4). Owing that(
S̆− T̆

)
α1

<
(

S̆− T̆
)
α2

<
(

S̆− T̆
)
α3

<
(

S̆− T̆
)
α4

and
(

S̆− T̆
)
α1

<
(

S̆− T̆
)
α2

=
(

S̆− T̆
)
α3

<
(

S̆− T̆
)
α4

,
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the distance between S̆ and T̆ can be computed as:

d
(

S̆, T̆
)

=



w̆4

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α1

dα+ w̆3

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α2

dα

+w̆2

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α3

dα+ w̆1

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α4

dα if S̆ > T̆

−w̆1

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α1

dα− w̆2

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α2

dα

−w̆3

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α3

dα− w̆4

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α4

dα if S̆ < T̆.

(3.44)

According to equations (3.10)–(3.13), we have
(

T̆− S̆
)
α1

= −
(

S̆− T̆
)
α4
,
(

T̆− S̆
)
α2

= −
(

S̆− T̆
)
α3

,(
T̆− S̆

)
α3

= −
(

S̆− T̆
)
α2

,
(

T̆− S̆
)
α4

= −
(

S̆− T̆
)
α1

. Therefore, the distance between two IT2TrNNs S̆ and

T̆ (Eq. (3.44)) can be computed as follows:

d
(

S̆, T̆
)

=



w̆4

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α1

dα+ w̆3

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α2

dα

+w̆2

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α3

dα+ w̆1

∫min(φU
S̆
,φU

T̆)
0

(
S̆− T̆

)
α4

dα if S̆ > T̆

w̆4

∫min(φU
S̆
,φU

T̆)
0

(
T̆− S̆

)
α1

dα+ w̆3

∫min(φU
S̆
,φU

T̆)
0

(
T̆− S̆

)
α2

dα

+w̆2

∫min(φU
S̆
,φU

T̆)
0

(
T̆− S̆

)
α3

dα+ w̆1

∫min(φU
S̆
,φU

T̆)
0

(
T̆− S̆

)
α4

dα if S̆ < T̆.

(3.45)

By following the same procedure as mentioned above and using equations (3.14)–(3.17) and (3.18)–(3.21). We
can get

d
(

S̆, T̆
)

=



w̆4

∫min(ψU
S̆
,ψU

T̆ )
0

(
S̆− T̆

)
β1

dβ + w̆3

∫min(ψU
S̆
,ψU

T̆ )
0

(
S̆− T̆

)
β2

dβ

+w̆2

∫min(ψU
S̆
,ψU

T̆ )
0

(
S̆− T̆

)
β3

dβ + w̆1

∫min(ψU
S̆
,ψU

T̆ )
0

(
S̆− T̆

)
β4

dβ if S̆ > T̆

w̆4

∫min(ψU
S̆
,ψU

T̆ )
0

(
T̆− S̆

)
β1

dβ + w̆3

∫min(ψU
S̆
,ψU

T̆ )
0

(
T̆− S̆

)
β2

dβ

+w̆2

∫min(ψU
S̆
,ψU

T̆ )
0

(
T̆− S̆

)
β3

dβ + w̆1

∫min(ψU
S̆
,ψU

T̆ )
0

(
T̆− S̆

)
β4

dβ if S̆ < T̆

(3.46)

=



w̆4

∫min(ϕU
S̆
,ϕU

T̆)
0

(
S̆− T̆

)
γ1

dγ + w̆3

∫min(ϕU
S̆
,ϕU

T̆)
0

(
S̆− T̆

)
γ2

dγ

+w̆2

∫min(ϕU
S̆
,ϕU

T̆)
0

(
S̆− T̆

)
γ3

dγ + w̆1

∫min(ϕU
S̆
,ϕU

T̆)
0

(
S̆− T̆

)
γ4

dγ if S̆ > T̆

w̆4

∫min(ϕU
S̆
,ϕU

T̆)
0

(
T̆− S̆

)
γ1

dγ + w̆3

∫min(ϕU
S̆
,ϕU

T̆)
0

(
T̆− S̆

)
γ2

dγ

+w̆2

∫min(ϕU
S̆
,ϕU

T̆)
0

(
T̆− S̆

)
γ3

dγ + w̆1

∫min(ϕU
S̆
,ϕU

T̆)
0

(
T̆− S̆

)
γ4

dγ if S̆ < T̆.

(3.47)

In order to acquire analytical solution of the distance between two IT2TrNNs, we suppose that S̆ > T̆.

d
(

S̆, T̆
)

= w4 · χ1 ·min
(
φU

S̆
, φU

T̆

)
+ w3 ·

[
χ2 ·min

(
φL

S̆
, φL

T̆

)
+ σ ·min

(
φU

S̆
, φU

T̆

)]
× w2 ·

[
χ3 ·min

(
φL

S̆
, φL

T̆

)
+ σ ·min

(
φU

S̆
, φU

T̆

)]
+ w1 · χ4 ·min

(
φU

S̆
, φU

T̆

)
= (w4χ1 + w3σ + w2σ + w1χ4) ·min

(
φU

S̆
, φU

T̆

)
+ (w3χ2 + w2χ3) ·min

(
φL

S̆
, φL

T̆

)
(3.48)

= w4 · χ1 ·min
(
ψU

S̆
, ψU

T̆

)
+ w3 ·

[
χ2 ·min

(
ψL

S̆
, ψL

T̆

)
+ σ ·min

(
ψU

S̆
, ψU

T̆

)]
× w2 ·

[
χ3 ·min

(
ψL

S̆
, ψL

T̆

)
+ σ ·min

(
ψU

S̆
, ψU

T̆

)]
+ w1 · χ4 ·min

(
ψU

S̆
, ψU

T̆

)
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Figure 5. Flowchart for computing distance between two IT2TrNNs.

= (w4χ1 + w3σ + w2σ + w1χ4) ·min
(
ψU

S̆
, ψU

T̆

)
+ (w3χ2 + w2χ3) ·min

(
ψL

S̆
, ψL

T̆

)
(3.49)

= w4 · χ1 ·min
(
ϕU

S̆
, ϕU

T̆

)
+ w3 ·

[
χ2 ·min

(
ϕL

S̆
, ϕL

T̆

)
+ σ ·min

(
ϕU

S̆
, ϕU

T̆

)]
× w2 ·

[
χ3 ·min

(
ϕL

S̆
, ϕL

T̆

)
+ σ ·min

(
ϕU

S̆
, ϕU

T̆

)]
+ w1 · χ4 ·min

(
ϕU

S̆
, ϕU

T̆

)
= (w4χ1 + w3σ + w2σ + w1χ4) ·min

(
ϕU

S̆
, ϕU

T̆

)
+ (w3χ2 + w2χ3) ·min

(
ϕL

S̆
, ϕL

T̆

)
(3.50)

where χ1, χ2, χ3, χ4 and σ are constant terms calculated as follows:

χ1 =
s̆U2 − t̆

U

3 − s̆U1 + t̆
U

4

2
, χ2 =

s̆L2 − t̆
L

3 − s̆L1 + t̆
L

4

2
, χ3 =

s̆L4 − t̆
L

1 − s̆L3 + t̆
L

2

2
, χ4 =

s̆U4 − t̆
U

1 − s̆U3 + t̆
U

2

2

and σ =
s̆L2 − t̆

L

3 + s̆L3 − t̆
L

2

2
·

(α, β, γ)-cut and OWA operator are the core tools of this approach. Firstly, the difference between two IT2TrNNs
is converted from a IT2TrNN to a type-2 interval by using the perception of (α, β, γ)-cut. Then, the distance
between two IT2TrNNs is acquired by neutrosifying the difference between them at (α, β, γ) level with OWA
operator. By following this methodology, an analytical solution is obtained that can be implememted to TOPSIS
for attaining the distances from alternatives to PIS and NIS (Fig. 5).

4. Extension of TOPSIS with IT2TrNNs

TOPSIS is one of the mainly used MCDM method based upon the principle of choosing an optimal alternative
having shortest distance from PIS and farthest distance from NIS. In existent MCDM circumstances, decision-
makers have different decision-making outlooks towards the gains and losses: few decision-makers possess opti-
mistic attitude, few have pessimistic while others have neutral attitude. The presented TOPSIS technique can
assist decision-makers having different decision-making perspectives to make the optimal selection. Decision-
makers having optimistic outlook tend to grant more concern towards the gains than the losses so, the gains
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will be overestimated and the losses will be underestimated. The contradictory is true for the decision-makers
having pessimistic outlook. Hence, decision-makers with optimistic outlook will overestimate the distance from
an alternative to NIS and underestimate the distance from an alternative to the PIS. In contrast, decision-
makers holding pessimistic attitude have the opposite. In the presented approach, OWA operator is used to
depict the outlook of decision-makers that can play a vital role in MCDM process. In typical TOPSIS method,
the performance ratings of the local criterion related to the alternatives are articulated by crisp numbers, on
the contrary, we put forward an extension of TOPSIS in the framework of IT2TrNNs to solve MCDM problems
based upon the distance method introduced in Section 3.

4.1. Algorithm of proposed TOPSIS method

Step 1. Construct the decision matrix. Let (L1, . . . ,Ln) be n alternatives and (R1, . . . ,Rm) be m criterion. Let
δ1, . . . , δm be the m weights associated with the criterion such that

∑m
j=1 δj = 1. Let D

[
X̆ij

]
n×m

be the

decision matrix, where

X̆ =
(

X̆
U
, X̆

L
)

=
[(

ăU1 , ă
U
2 , ă

U
3 , ă

U
4 ;φU

X̆
, ψU

X̆
, ϕU

X̆

)
,
(

ăL1 , ă
L
2 , ă

L
3 , ă

L
4 ;φL

X̆
, ψL

X̆
, ϕL

X̆

)]

D
[
X̆ij

]
n×m

=



[
X̆
U

11, X̆
L

11

] [
X̆
U

12, X̆
L

12

]
· · ·
[
X̆
U

1m, X̆
L

1m

]
[
X̆
U

21, X̆
L

21

] [
X̆
U

22, X̆
L

22

]
· · ·
[
X̆
U

2m, X̆
L

2m

]
...

...
. . .

...[
X̆
U

n1, X̆
L

n1

] [
X̆
U

n2, X̆
L

n2

]
· · ·
[
X̆
U

nm, X̆
L

nm

]


. (4.1)

Step 2. Normalize the decision matrix.

N̆ij =


[(

xU
1ij

X̆
∗
j

,
xU

2ij

X̆
∗
j

,
xU

3ij

X̆
∗
j

,
xU

4ij

X̆
∗
j

;φU
X̆ij
, ψU

X̆ij
, ϕU

X̆ij

)
,

(
xL

1ij

X̆
∗
j

,
xL

2ij

X̆
∗
j

,
xL

3ij

X̆
∗
j

,
xL

4ij

X̆
∗
j

;φL
X̆ij
, ψL

X̆ij
, ϕL

X̆ij

)]
if j ∈ Kt[(

X̆
−
j

xU
4ij
,

X̆
−
j

xU
3ij
,

X̆
−
j

xU
2ij
,

X̆
−
j

xU
1ij

;φU
X̆ij
, ψU

X̆ij
, ϕU

X̆ij

)
,

(
X̆
−
j

xL
4ij
,

X̆
−
j

xL
3ij
,

X̆
−
j

xL
2ij
,

X̆
−
j

xL
1ij

;φL
X̆ij
, ψL

X̆ij
, ϕL

X̆ij

)]
if j ∈ Kc

(4.2)

where X̆
∗
j = max X̆

U

ij (for j ∈ Kt) and X̆
−
j = min X̆

L

ij (for j ∈ Kc), where Kt is benefit type and Kc is the
cost type criterion. The normalized decision matrix is shown as follows:

D
[
N̆ij

]
n×m

=



[
N̆
U

11, N̆
L

11

] [
N̆
U

12, N̆
L

12

]
· · ·
[
N̆
U

1m, N̆
L

1m

]
[
N̆
U

21, N̆
L

21

] [
N̆
U

22, N̆
L

22

]
· · ·
[
N̆
U

2m, N̆
L

2m

]
...

...
. . .

...[
N̆
U

n1, N̆
L

n1

] [
N̆
U

n2, N̆
L

n2

]
· · ·
[
N̆
U

nm, N̆
L

nm

]


. (4.3)

It should be known that normalization is only necessary when the criterion are estimated by using different
sets of linguistic variables. Apart from that, it is not mandatory.

Step 3. Deduce the PIS and NIS.

P∗ = {v∗1 , v∗2 , . . . , v∗m}

=
{(

max
i

N̆ij |j ∈ Kt

)(
min
i

N̆ij |j ∈ Kc

)}
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v∗j =
[(
v∗Uj1 , v

∗U
j2 , v

∗U
j3 , v

∗U
j4 ;φUv∗j , ψ

U
v∗j
, ϕUv∗j

)
,
(
v∗Lj1 , v

∗L
j2 , v

∗L
j3 , v

∗L
j4 ;φLv∗j , ψ

L
v∗j
, ϕLv∗j

)]
(4.4)

N− =
{
v−1 , v

−
2 , . . . , v

−
m

}
=
{(

max
i

N̆ij |j ∈ Kc

)(
min
i

N̆ij |j ∈ Kt

)}
v−j =

[(
v−Uj1 , v−Uj2 , v−Uj3 , v−Uj4 ;φU

v−j
, ψU

v−j
, ϕU

v−j

)
,
(
v−Lj1 , v−Lj2 , v−Lj3 , v−Lj4 ;φL

v−j
, ψL

v−j
, ϕL

v−j

)]
(4.5)

where Kt is benefit type criterion set and Kc is the cost type criterion set.
Step 4. Acquire the distances among the alternatives from PIS and NIS.

According to the definitions of PIS and NIS, the performance ratings of local criterion of PIS should not
be less than that of the prevailing alternatives if the criterion are benefit type however the converse is true
if the criterion are cost type. Alternatively, the performance ratings of local criterion of NIS should not be
more than that of the existing alternatives if the criterion are benefit type although the converse is true if
the criterion are cost type. Hence, we have

v∗j ≥ N̆ij , j ∈ Kt; N̆ij ≥ v∗j , j ∈ Kc;

N̆ij ≥ v−j , j ∈ Kt; v−j ≥ N̆ij , j ∈ Kc.

Assuming Fw̆ is an OWA operator having the weighting function W̆ = (w̆1, w̆2, . . . , w̆n), the distances from
ratings of local criterion of the prevailing alternatives to that of PIS and NIS can be obtained by equations
(3.45)–(3.47) as follows:

d
(

N̆ij , v
∗
j

)
=



w̆4

∫min

(
φU

N̆ij
,φU

v∗
j

)

0

(
N̆ij − v∗j

)
α1

dα+ w̆3

∫min

(
φU

N̆ij
,φU

v∗
j

)

0

(
N̆ij − v∗j

)
α2

dα

+w̆2

∫min

(
φU

N̆ij
,φU

v∗
j

)

0

(
N̆ij − v∗j

)
α3

dα+ w̆1

∫min

(
φU

N̆ij
,φU

v∗
j

)

0

(
N̆ij − v∗j

)
α4

dα if j ∈ Kc

w̆4

∫min

(
φU

N̆ij
,φU

v∗
j

)

0

(
v∗j − N̆ij

)
α1

dα+ w̆3

∫min

(
φU

N̆ij
,φU

v∗
j

)

0

(
v∗j − N̆ij

)
α2

dα

+w̆2

∫min

(
φU

N̆ij
,φU

v∗
j

)

0

(
v∗j − N̆ij

)
α3

dα+ w̆1

∫min

(
φU

N̆ij
,φU

v∗
j

)

0

(
v∗j − N̆ij

)
α4

dα if j ∈ Kt

(4.6)

=



w̆4

∫min

(
ψU

N̆ij
,ψU

v∗
j

)

0

(
N̆ij − v∗j

)
β1

dβ + w̆3

∫min

(
ψU

N̆ij
,ψU

v∗
j

)

0

(
N̆ij − v∗j

)
β2

dβ

+w̆2

∫min

(
ψU

N̆ij
,ψU

v∗
j

)

0

(
N̆ij − v∗j

)
β3

dβ + w̆1

∫min

(
ψU

N̆ij
,ψU

v∗
j

)

0

(
N̆ij − v∗j

)
β4

dβ if j ∈ Kc

w̆4

∫min

(
ψU

N̆ij
,ψU

v∗
j

)

0

(
v∗j − N̆ij

)
β1

dβ + w̆3

∫min

(
ψU

N̆ij
,ψU

v∗
j

)

0

(
v∗j − N̆ij

)
β2

dβ

+w̆2

∫min

(
ψU

N̆ij
,ψU

v∗
j

)

0

(
v∗j − N̆ij

)
β3

dβ + w̆1

∫min

(
ψU

N̆ij
,ψU

v∗
j

)

0

(
v∗j − N̆ij

)
β4

dβ if j ∈ Kt

(4.7)
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=



w̆4

∫min

(
ϕU

N̆ij
,ϕU

v∗
j

)

0

(
N̆ij − v∗j

)
γ1

dγ + w̆3

∫min

(
ϕU

N̆ij
,ϕU

v∗
j

)

0

(
N̆ij − v∗j

)
γ2

dγ

+w̆2

∫min

(
ϕU

N̆ij
,ϕU

v∗
j

)

0

(
N̆ij − v∗j

)
γ3

dγ + w̆1

∫min

(
ϕU

N̆ij
,ϕU

v∗
j

)

0

(
N̆ij − v∗j

)
γ4

dγ if j ∈ Kc

w̆4

∫min

(
ϕU

N̆ij
,ϕU

v∗
j

)

0

(
v∗j − N̆ij

)
γ1

dγ + w̆3

∫min

(
ϕU

N̆ij
,ϕU

v∗
j

)

0

(
v∗j − N̆ij

)
γ2

dγ

+w̆2

∫min

(
ϕU

N̆ij
,ϕU

v∗
j

)

0

(
v∗j − N̆ij

)
γ3

dγ + w̆1

∫min

(
ϕU

N̆ij
,ϕU

v∗
j

)

0

(
v∗j − N̆ij

)
γ4

dγ if j ∈ Kt

(4.8)

where 0 < orness
(

W̆
)
< 1

2 for decision-makers having optimistic attitude, 1
2 < orness

(
W̆
)
< 1 for decision-

makers possessing pessimistic attitude and orness
(

W̆
)

= 1
2 for decision-makers having neutral attitude.

d
(

N̆ij , v
−
j

)
=



w̆4

∫min

(
φU

N̆ij
,φU

v
−
j

)

0

(
N̆ij − v−j

)
α1

dα+ w̆3

∫min

(
φU

N̆ij
,φU

v
−
j

)

0

(
N̆ij − v−j

)
α2

dα

+w̆2

∫min

(
φU

N̆ij
,φU

v
−
j

)

0

(
N̆ij − v−j

)
α3

dα+ w̆1

∫min

(
φU

N̆ij
,φU

v
−
j

)

0

(
N̆ij − v−j

)
α4

dα if j ∈ Kt

w̆4

∫min

(
φU

N̆ij
,φU

v
−
j

)

0

(
v−j − N̆ij

)
α1

dα+ w̆3

∫min

(
φU

N̆ij
,φU

v
−
j

)

0

(
v−j − N̆ij

)
α2

dα

+w̆2

∫min

(
φU

N̆ij
,φU

v
−
j

)

0

(
v−j − N̆ij

)
α3

dα+ w̆1

∫min

(
φU

N̆ij
,φU

v
−
j

)

0

(
v−j − N̆ij

)
α4

dα if j ∈ Kc

(4.9)

=



w̆4

∫min

(
ψU

N̆ij
,ψU

v
−
j

)

0

(
N̆ij − v−j

)
β1

dβ + w̆3

∫min

(
ψU

N̆ij
,ψU

v
−
j

)

0

(
N̆ij − v−j

)
β2

dβ

+w̆2

∫min

(
ψU

N̆ij
,ψU

v
−
j

)

0

(
N̆ij − v−j

)
β3

dβ + w̆1

∫min

(
ψU

N̆ij
,ψU

v
−
j

)

0

(
N̆ij − v−j

)
β4

dβ if j ∈ Kt

w̆4

∫min

(
ψU

N̆ij
,ψU

v
−
j

)

0

(
v−j − N̆ij

)
β1

dβ + w̆3

∫min

(
ψU

N̆ij
,ψU

v
−
j

)

0

(
v−j − N̆ij

)
β2

dβ

+w̆2

∫min

(
ψU

N̆ij
,ψU

v
−
j

)

0

(
v−j − N̆ij

)
β3

dβ + w̆1

∫min

(
ψU

N̆ij
,ψU

v
−
j

)

0

(
v−j − N̆ij

)
β4

dβ if j ∈ Kc

(4.10)
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=



w̆4

∫min

(
ϕU

N̆ij
,ϕU

v
−
j

)

0

(
N̆ij − v−j

)
γ1

dγ + w̆3

∫min

(
ϕU

N̆ij
,ϕU

v
−
j

)

0

(
N̆ij − v−j

)
γ2

dγ

+w̆2

∫min

(
ϕU

N̆ij
,ϕU

v
−
j

)

0

(
N̆ij − v−j

)
γ3

dγ + w̆1

∫min

(
ϕU

N̆ij
,ϕU

v
−
j

)

0

(
N̆ij − v−j

)
γ4

dγ if j ∈ Kt

w̆4

∫min

(
ϕU

N̆ij
,ϕU

v
−
j

)

0

(
v−j − N̆ij

)
γ1

dγ + w̆3

∫min

(
ϕU

N̆ij
,ϕU

v
−
j

)

0

(
v−j − N̆ij

)
γ2

dγ

+w̆2

∫min

(
ϕU

N̆ij
,ϕU

v
−
j

)

0

(
v−j − N̆ij

)
γ3

dγ + w̆1

∫min

(
ϕU

N̆ij
,ϕU

v
−
j

)

0

(
v−j − N̆ij

)
γ4

dγ if j ∈ Kc

(4.11)

where 0 < orness
(

W̆
)
< 1

2 for decision-makers possessing pessimistic attitude, 1
2 < orness

(
W̆
)
< 1 for

decision-makers holding optimistic attitude and orness
(

W̆
)

= 1
2 for decision-makers having neutral attitude.

It is indicated that OWA operator depicts the perspectives of decision-makers by overestimating or under-
estimating the distances among the local criterion corresponding to alternatives and their ideal solutions.
Further, the distances from alternatives to PIS and NIS can be computed by taking weighted sum aggrega-
tions of criterion as follows:

Z∗i =
∑

δjd
(
v∗j , N̆ij

)
(4.12)

Z−i =
∑

δjd
(
v−j , N̆ij

)
. (4.13)

Step 5. Compute the relative closeness to ideal alternatives as follows:

RCi =
Z−i

Z−i + Z∗i
· (4.14)

Step 6. Rank the alternatives on the basis of their relative closeness to ideal alternatives. The alternative
having the largest relative closeness coefficient is considered to be the best or optimal alternative.

5. Numerical example

In the following section, we demonstrate a numerical example involving MCDM problem to achieve the
practicability of our technique to the extension of TOPSIS in the framework of IT2TrNNs.

We consider an application of personnel selection in a company that is a project oriented organization and
whose major focus is on project management in various fields. There are five candidates who applied for the
vacant position in the company are considered as five alternatives represented as (L1,L2,L3,L4 and L5) for this
MCDM problem and following are the four aspects for the evaluation of personnel by the experts panel of the
company: past experience (R1), computer skills (R2), fluency in foreign language (R3) and project management
knowledge (R4), where R1,R3 are cost criterion and R2,R4 are benefit criterion.

In order to pick the best candidate amongst the five personnel, first rate each of the five alternatives with
regard to the four criterion and give the local criterion weights. The criterion ratings corresponding to all
alternatives are provided in Table 1 and the criterion weights are shown in Table 2.

In this numerical example, ranking results are discussed in three situations: optimistic,pessimistic and neutral.
Based upon our projected strategy, the methodology for choosing the best personnel is demonstrated as follows:
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0
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0
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Table 2. Criterion weights.

δ1 δ2 δ3 δ4

0.4 0.3 0.2 0.1

Step 1. Build a decision matrix based on Table 1 denoted by D[Xij ]5×4 and represented as follows:

D
[
X̆ij

]
5×4

=



[
X̆
U

11, X̆
L

11

] [
X̆
U

12, X̆
L

12

]
· · ·
[
X̆
U

14, X̆
L

14

]
[
X̆
U

21, X̆
L

21

] [
X̆
U

22, X̆
L

22

]
· · ·
[
X̆
U

24, X̆
L

24

]
...

...
. . .

...[
X̆
U

51, X̆
L

51

] [
X̆
U

52, X̆
L

52

]
· · ·
[
X̆
U

54, X̆
L

54

]


. (5.1)

Step 2. Normalize the decision matrix.
Normalization is not necessary as the criterion in this example is assessed using the same set of linguistic
variables.

Step 3. Determine the PIS and NIS respectively by using equations (4.4) and (4.5).

P∗
i = {v∗1 , v∗2 , v∗3 , v∗4} = {X̆21, X̆42, X̆23, X̆54}

= {[(0.4528, 0.4121, 0.5708, 0.0075; 1.0, 0.9, 0.8), (0.0205, 0.3000, 0.2405, 0.0042; 0.8, 0.7, 0.6)],
[(0.8888, 0.9937, 0.8854, 0.9275; 1.0, 0.9, 0.8), (0.7326, 0.9926, 0.7743, 0.8164; 0.8, 0.7, 0.6)],
[(0.4547, 0.4772, 0.9011, 0.5044; 1.0, 0.9, 0.8), (0.2325, 0.2550, 0.2551, 0.2000; 0.8, 0.7, 0.6)],
[(0.9548, 0.8954, 0.9259, 0.8259; 1.0, 0.9, 0.8), (0.7325, 0.7443, 0.6042, 0.7958; 0.8, 0.7, 0.6)]}

N−
i = {v−1 , v

−
2 , v

−
3 , v

−
4 } = {X̆31, X̆22, X̆13, X̆44}

= [(0.9574, 0.5299, 0.5895, 0.8821; 1.0, 0.9, 0.8), (0.8463, 0.4188, 0.4784, 0.7710; 0.8, 0.7, 0.6)],
[(0.2523, 0.3521, 0.5735, 0.3616; 1.0, 0.9, 0.8), (0.1412, 0.2410, 0.2624, 0.2505; 0.8, 0.7, 0.6)],
[(0.9952, 0.9745, 0.9952, 0.9585; 1.0, 0.9, 0.8), (0.7730, 0.7523, 0.7730, 0.7363; 0.8, 0.7, 0.6)],
[(0.5177, 0.5070, 0.5074, 0.5608; 1.0, 0.9, 0.8), (0.4065, 0.74060, 0.4663, 0.4007; 0.8, 0.7, 0.6)].

Step 4. Acquire the distances of alternatives from PIS and NIS. We allot three OWA operators with different
weighting functions given as follows:

FW̆1
= (0.4, 0.3, 0.2, 0.1), orness

(
W̆1

)
=

3
4

FW̆2
= (0.1, 0.1, 0.1, 0.7), orness

(
W̆2

)
=

2
5

FW̆3
= (0.1, 0.2, 0.3, 0.4), orness

(
W̆3

)
=

1
2
·

For decision-maker’s optimistic attitude: the OWA operators for computing distances from ratings of local
criterion to PIS and NIS are allotted with weighting functions W̆2 and W̆1 respectively. For decision-maker’s
pessimistic attitude: the OWA operators are appointed with weighting functions W̆1 and W̆2 respectively.
For decision-maker’s neutral attitude: the OWA operators are allotted with weighting functions W̆3.
Then, the distances from ratings of local criterion of all alternatives to PIS and NIS can be determined by
using equations (4.6)–(4.11). Further, distances from alternatives to PIS and NIS can be acquired by using
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Table 3. Distances from alternatives to PIS and NIS.

Alternatives L1 L2 L3 L4 L5

Distances Z∗1 Z−1 Z∗2 Z−2 Z∗3 Z−3 Z∗4 Z−4 Z∗5 Z−5

Optimistic 0.3457 0.3660 0.3304 0.3666 0.3346 0.3135 0.3375 0.3880 0.2908 0.4712
Pessimistic 0.3968 0.3584 0.4058 0.3986 0.2729 0.2797 0.2470 0.4104 0.2933 0.4427
Neutral 0.3776 0.4938 0.3706 0.3492 0.2630 0.3174 0.3194 0.4139 0.3102 0.4667

Table 4. Relative closeness coefficients of all alternatives.

RC1 RC2 RC3 RC4 RC5

Optimistic 0.5142 0.5259 0.4837 0.5348 0.6183
Pessimistic 0.4745 0.4955 0.5061 0.6242 0.6014
Neutral 0.5666 0.4851 0.5468 0.5644 0.6007

equations (4.12) and (4.13) and the distances in three situations of decision-maker’s attitude are presented
in Table 3.

Step 5. Compute the relative closeness of alternatives by using equation (4.14) and the outcomes are given in
Table 4.

Step 6. Rank the alternatives. They are ranked according to the descending order of their relative closeness
coefficients.

Notice that the ranking results of five personnel varies for different decision-makers having different decision-
making perspective. Decision-maker possessing optimistic attitude have following priorities for the personnel
choice: L5,L4,L2,L1, and L3. Decision-maker with pessimistic attitude holds following priorities: L4,L5,L3,L2

and L1. Decision-maker with neutral attitude: L5,L1,L4,L3 and L2.
In the real decision-making situation, decision-makers are not usually objective i.e. their decision-making

perspective is not neutral. Hence, in such cases where their attitude is optimistic or pessimistic have more
realistic importance.

6. Comparative analysis

A comparative revision is conducted to verify the consequences of the projected technique with several other
approaches. This investigation is based on the same input information presented in Section 5.

We have chosen two existing distance approaches from literature: a signed-distance based approach for TOP-
SIS and a distance operational rule described as follows:

– Signed distances approach:
The signed distance of a IT2TrNN S̆ far from 0̆ is defined as:

d
(

S̆, 0̆1

)
=

1
8

[
2
(

s̆U1 + s̆U2 + s̆U3 + s̆U4
)

+ 2
(

s̆L1 + s̆L2 + s̆L3 + s̆L4
)

+ 3
(

s̆L2 + s̆L3 − s̆L1 − s̆L4
)(

1 +
φL

S̆

φU
S̆

−
ψL

S̆

ψU
S̆

−
ϕL

S̆

ϕU
N̄

)]
. (6.1)

Taking into account the above signed distance, the distance between two IT2TrNNs S̆ and T̆ can be deter-
mined as:

d
(

S̆, T̆
)

=
∣∣∣d(S̆, 0̆1

)
− d
(

T̆, 0̆1

)∣∣∣. (6.2)
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Table 5. Relative closeness coefficients using signed distance-based method.

RC1 RC2 RC3 RC4 RC5

0.7484 0.7151 0.8277 0.9501 0.8657

Table 6. Relative closeness coefficients using distance operational rule.

RC1 RC2 RC3 RC4 RC5

0.4234 0.5616 0.5120 0.4629 0.4825

Table 7. Comparison of relative closeness coefficients of all alternatives.

RC1 RC2 RC3 RC4 RC5

Proposed method
Optimistic 0.5142 0.5259 0.4837 0.5348 0.6183
Pessimistic 0.4745 0.4955 0.5061 0.6242 0.6014
Neutral 0.5666 0.4851 0.5468 0.5644 0.6007
Signed distance-based method 0.7484 0.7151 0.8277 0.9501 0.8657
Distance operational rule 0.4234 0.5616 0.5120 0.4629 0.4825

– Distance operational rule:
The distance between two IT2TrNNs can be computed as:

d
(

S̆, T̆
)

=
1
8

(∣∣min
(
φU

S̆
, ψU

S̆
, ϕU

S̆

)
× sU1 −min

(
φU

T̆
, ψU

T̆
, ϕU

T̆

)
× tU1

∣∣+
∣∣min

(
φU

S̆
, ψU

S̆
, ϕU

S̆

)
× sU2

− min
(
φU

T̆
, ψU

T̆
, ϕU

T̆

)
× tU2

∣∣+
∣∣min

(
φU

S̆
, ψU

S̆
, ϕU

S̆

)
× sU3 −min

(
φU

T̆
, ψU

T̆
, ϕU

T̆

)
× tU3

∣∣
+
∣∣min

(
φU

S̆
, ψU

S̆
, ϕU

S̆

)
× sU4 −min

(
φU

T̆
, ψU

T̆
, ϕU

T̆

)
× tU4

∣∣
+
∣∣min

(
φL

S̆
, ψL

S̆
, ϕL

S̆

)
× sL1 −min

(
φL

T̆
, ψL

T̆
, ϕL

T̆

)
× tL1

∣∣
+
∣∣min

(
φL

S̆
, ψL

S̆
, ϕL

S̆

)
× sL2 −min

(
φL

T̆
, ψL

T̆
, ϕL

T̆

)
× tL2

∣∣
+
∣∣min

(
φL

S̆
, ψL

S̆
, ϕL

S̆

)
× sL3 −min

(
φL

T̆
, ψL

T̆
, ϕL

T̆

)
× tL3

∣∣
+
∣∣min

(
φL

S̆
, ψL

S̆
, ϕL

S̆

)
× sL4 −min

(
φL

T̆
, ψL

T̆
, ϕL

T̆

)
× tL4

∣∣). (6.3)

The relative closeness coefficients computed by using the signed distance-based approach are given in Table 5
while those computed by using the distance operational rule are given in Table 6 and the comparison of the
relative closeness coefficients computed by our proposed approach and other two methods are given in Table 7.

According to the comparative study, the results show that the projected approach is way better than
the other two techniques since it can produce several subjective ranking results in different situations
where the decision-makers have different decision-making outlook while in both of the other approaches, attitude
of the decision-makers is not considered that means the two techniques can only yield objective ranking results for
the decision-makers. Though, in the existent world, the outlook of decision-maker plays a vital role while choos-
ing the best alternative. Therefore, it is presented that our anticipated technique can produce multiple subjec-
tive decisions for the decision-makers whilst choosing the best alternative according to their decision-making



A NOVEL EXTENSION OF TOPSIS WITH INTERVAL TYPE-2 TRAPEZOIDAL NEUTROSOPHIC NUMBERS 2681

attitude. Consequently, our presented approach is more suitable and accurate in dealing MCDM problems as it
takes the outlook of decision-makers into deliberation.

7. Conclusion

In this article, we have developed a TOPSIS technique in the framework of IT2TrNNs. In contrast with the
prevailing approaches, the novelty of this research work is to project a new distance computation strategy for
IT2TrNNs using the concept of OWA operator and (α, β, γ)-cut by which a more flexible and precise analytical
solution of the distance between two IT2TrNNs is presented. Furthermore, we developed a unique TOPSIS
technique for coping up with MCDM problems formed on the distance method which can produce multiple
subjective decisions for the decision-makers having different decision-making perspectives. Nonetheless, it is
also indicated that the weighting functions associated with the OWA operators are allocated without any
examination or practice in this study that may manipulate the quality of decisions. In future, we aim to
broaden our research in the other directions and its application in some other neutrosophic systems.
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