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EQUILIBRIUM ANALYSIS OF CLOUD USER REQUEST BASED ON THE
MARKOV QUEUE WITH VARIABLE VACATION AND VACATION

INTERRUPTION

Yitong Zhang1 and Xiuli Xu2,∗

Abstract. This paper considers the equilibrium balking behavior of customers in a single-server
Markovian queue with variable vacation and vacation interruption, where the server can switch across
four states: vacation, working vacation, idle period, and busy period. Once the queue becomes empty,
the server commences a working vacation and slows down its service rate. However, this period may be
interrupted anytime by the vacation interruption. Upon the completion of a working vacation, the server
takes a vacation in a probability-based manner and stops service if the system is empty. The system stays
idle after a vacation until a new customer arrives. The comparisons between the equilibrium balking
strategy of customers and the optimal expected social benefit per time unit for each type of queue are
elucidated and the inconsistency between the individual optimization and the social optimization is
revealed. Moreover, the sensitivity of the expected social benefit and the equilibrium threshold with
respect to the several parameters as well as diverse precision levels is illustrated through numerical
examples in a competitive cloud environment.
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1. Introduction

Queueing economics has received increasing attention in recent decades. It was firstly introduced by Naor [12],
who proved that the decisions of individual customers often deviate from the whole interests in that system.
Subsequently, Economou and Kanta [3] examined the equilibrium strategy behavior of customers in a fully
observable queue with service failures. Zhang and Wang [23] considered the equilibrium strategy in a queue
with fault and repairable server and obtained the system’s performance indices.

In order to increase profits, the servers may do some auxiliary or part-time jobs, which temporarily prevent the
servers from providing services for some period, therefore, the vacation policy is introduced. Vacation queueing
systems have been spotlighted due to their versatility and applicability. Readers can refer to the monographs
of Takagi [18] and Tian and Zhang [19] for the fundamental results and comprehensive surveys. Burnetas and
Economou [1] introduced the economic analysis of a vacation queue and compared four precision levels of a
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Markov chain with setup times. Wang et al. [21] analyzed the equilibrium strategies of customers in terms
of the overall welfare in an M/M/k queue with asynchronous or synchronous multiple vacations. Motivated
by modeling the data transmission in telecommunication networks, Peng and Wu [14] studied a Lévy-driven
stochastic queueing system where the server may be subject to breakdowns and repairs. Because introducing
a vacation policy into the inventory system has more realistic significance, Padmavathi et al. [13] considered
two different vacation policies in the inventory queueing system, where the number of demands in the orbit and
the joint probability distribution of the inventory level are obtained by using the method of matrix-geometric
solution. Melikov et al. [11] proposed a three-dimensional Markov vacation system with perishable inventory
and developed an approximate method based on the hierarchical merging of the states, which can be applied to
the asymptotic analysis of any dimension.

For most of the management systems, the vacation of servers sometimes results in the excessive load of
the system. To address this issue, Servi and Finn [15] presented the working vacation policy where the server
does not completely deactivate. Zhang et al. [24] illustrated four equilibrium strategies and provided the optimal
thresholds in a multiple working vacation queue. Li [8] demonstrated an exact steady-state analysis in a discrete-
time Geo/G/1 queue with working vacation and provided an application to the network scheduling in the
wavelength division multiplexed (WDM) system. Recently, Sun et al. [17] dynamically compared the performance
and the threshold policy of the exhaustive or non-exhaustive M/M/1/N queue with working vacations. Do
et al. [2] investigated the M/M/1 retrial queue with working vacation and the optimal strategies for joining the
system were obtained. Tian and Wang [20] combined multiple classical vacations with working vacation and
made the economic analysis of this model in the unobservable cases.

Despite these considerable advantages, the modern management system is still far from a sensitive response.
In practice, the service agencies and network systems must have the ability to deal with emergencies and require
the servers to return to work rather than remain on leave, which is called the vacation interruption strategy,
that is, if there are still a certain number of customers in the system after a service, the vacation may be
suspended immediately and a normal busy period starts in some cases. Lee [7] explored the economic analysis
of an M/M/1 queueing system with single vacation or multiple vacations and vacation interruption. Li et al. [9]
discussed a model with working vacation and vacation interruption under four precision levels. Shekhar et al.
[16] concerned a randomized arrival control policy for prospective customers in a queueing system with working
vacation and vacation interruption.

The growing demands of cloud computing have contributed to a broadened scale in cloud data centers. Bal-
ancing the computing proliferation of cloud users and energy consumption in cloud platforms has inspired a
hotspot field of cloud computing [4,10,22]. Because idle virtual machines falling into deep dormancy effectively
reduce energy consumption in the traditional cloud computing platforms, Jin et al. [6] proposed an allocation
strategy for the clustered virtual machine and constructed a cost function to balance different system perfor-
mances. Furthermore, a mechanism of semi dormancy is considered in [5], where a virtual machine provides
a lower service rate for cloud user requests, which significantly enhances the energy efficiency in the cloud
environment.

However, to the best of our knowledge, none of the above models incorporated the classical vacation, working
vacation and vacation interruption together in a cloud computing platform. Motivated by the allocation strategy
for cloud data centers, this study attempts to analyze a variable dormancy cloud strategy with sleep-wake
control. The virtual machine only enters the semi dormancy state when the cloud platform has no user request.
If the buffer has a waiting cloud user request, the virtual machine immediately changes from the semi dormancy
state to the wake-up state and provides the normal service for cloud users. Otherwise, it continues to stay
in the semi dormancy. When a semi dormancy state is completed and there exist any requests, the virtual
machine participates in the wake-up state. Otherwise, it joins the deep dormancy state for a certain period
with a specified probability. The cloud users and platforms display distinct behavior to avoid the crowd and
maximize their own profits. Based on the above, we derive the expected social benefit using a linear revenue and
expenditure structure and discuss the optimal benefit per time unit for the cloud system in the fully or partly
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Figure 1. State transition diagram in an M/M/1 queue with variable vacation and vacation
interruption.

observable cases, respectively. Our model effectively provides a theoretical basis and potential application for
optimizing user access control in a cloud computing environment.

The rest of this paper is organized as follows: Section 2 describes the queueing model and different information
precision levels. Sections 3–4 focus on the fully observable and partly observable cases, respectively. For each
type of situation, the equilibrium balking strategies of customers and the expected social benefits per time unit
are discussed. Section 5 illustrates the sensitivity analysis on performance characteristics in different situations.
Section 6 summarizes the findings and conclusions of this paper.

2. Model descriptions

This paper introduces a variable vacation and vacation interruption policy in the classical M/M/1 queue
with the arrival rate λ and the normal service rate µ. When the system becomes empty, it begins a working
vacation and the working vacation time is assumed to be exponentially distributed with parameter θ1. During
this period, a new arrival is served at a low rate µ1(µ1 < µ). When a service is completed in the working vacation
and customs are waiting in line, the working vacation ends and the server comes back to the normal service level.
Otherwise, it takes another working vacation. Once a working vacation ends, the server immediately switches to
a regular busy period if the queue is non-empty, otherwise, the system enters a vacation period with probability
p(0 < p ≤ 1), or enters an idle state with probability 1 − p, and the vacation time follows an exponential
distribution with parameter θ2. After the vacation finishes, a regular busy period starts if there are customers
in the system. Otherwise, the server stays idle until a new customer arrives.

Assume that the interarrival times, the service times, the vacation times and the working vacation times are
mutually independent. In addition, the service discipline is first in and first out (FIFO). Denote the number of
customers in the system at time t by N(t), and define

I(t) =


0, the server is busy or stays idle;
1, the server is taking a working vacation;
2, the server is taking a vacation.

Obviously, the state space of the Markov chain {N(t), I(t)} is Ω = {(n, i):n ≥ 0, i = 0, 1, 2}. The state transition
diagram is depicted in Figure 1.

Suppose that each customer can receive a reward of R utility units after service completion but has to pay a
waiting cost of C utility units for waiting a time unit in the system. Assume that R > C/µ hereafter to ensure
customers are attracted to join the system. Customers are risk neutral and maximize their expected net benefit.
Moreover, the decisions are irrevocable in that retrials of balking customers and reneging of queueing behavior
are not allowed.

There are two situations according to the information level acquired by an arrival.

(1) Fully observable case: Arriving customers are informed about the queue length N(t) and the server state
I(t);



2810 Y. ZHANG AND X. XU

Figure 2. State transition diagram in the fully observable case.

(2) Partly observable case: Arriving customers are informed about the queue length N(t) only;

For convenience, denote

ρ =
λ

µ
, σ1 =

λ

λ+ µ1 + θ1
, σ2 =

λ

λ+ θ2
.

3. Equilibrium strategy in fully observable case

3.1. Equilibrium threshold strategy

Suppose that an arriving customer encounters the system state (n, i) and decides to enter, his expected net
benefit after the service completion is Sfo(n, i) = R − CTfo(n, i), where Tfo(n, i) represents his mean sojourn
time in the system. There exists a balk threshold ne(i), meaning that an arriving customer enters the system
in state i (i = 0, 1, 2) if the number of customers is less than the given threshold. Therefore, a pure threshold
strategy is denoted by the tuple (ne(0), ne(1), ne(2)) and the balking strategy has the following form: “While
arriving at time t, observe: enter if N(t) ≤ ne(I(t)) and balk otherwise.” An arrival who finds the same number
of customers in the system prefers to join the queue during the busy or idle period than during the vacation
period or working vacation period. Therefore, the thresholds in different states satisfy ne(2) ≤ ne(1) ≤ ne(0).
The state transition diagram is depicted in Figure 2.

Let bxc represent the largest integer up to x. Then we get the following result.

Theorem 3.1. In the fully observable M/M/1 queue with variable vacation and vacation interruption, there
exist thresholds

(ne(0), ne(1), ne(2)) =

(⌊
µ
R

C

⌋
− 1,

⌊
µ

(
R

C
− µ+ θ1
µ(µ1 + θ1)

)⌋
− 1,

⌊
µ

(
R

C
− 1

θ2

)⌋
− 1

)
,

which satisfy the unique Nash equilibrium strategy that a customer enters if N(t) ≤ ne(I(t)) and balks otherwise
when he observes the system is in state (N(t), I(t)).

Proof. From assumption, we have

Tfo(0, 0) =
1
µ
,

Tfo(0, 1) =
1

µ1 + θ1
+

θ1
µ1 + θ1

Tfo(0, 0),

Tfo(0, 2) =
1
θ2

+
1
µ
,

Tfo(n, 0) =
1
µ

+ Tfo(n− 1, 0), n = 1, 2, . . .

Tfo(n, 1) =
1

µ1 + θ1
+

µ1

µ1 + θ1
Tfo(n− 1, 0) +

θ1
µ1 + θ1

Tfo(n, 0), n = 1, 2, . . .

Tfo(n, 2) =
1
θ2

+ Tfo(n, 0), n = 1, 2, . . .
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After manipulating, we get

Tfo(n, 0) =
n+ 1

µ
, Tfo(n, 2) =

n+ 1

µ
+

1

θ2
, Tfo(n, 1) =

µ+ θ1
µ(µ1 + θ1)

+
n

µ
, n = 0, 1, . . . ,

According to the definition, Sfo(n, i) is a monotonically decreasing function of n as Tfo(n, i) is strictly increasing
of n. Besides, customers prefer to enter when Sfo(n, i) > 0. The thresholds are obtained by substituting Tfo(n, i)
into Sfo(n, i). Theorem 3.1 is proved. �

Specially, if p→ 0, we can get the thresholds (ne(0), ne(1)), which tend to the results derived by Li et al. [9].

3.2. Stationary queue length distribution

Denote the steady state probabilities in the fully observable situation by pfo(n, i) = lim
t→+∞

pfo{N(t) = n,

I(t) = i}, (n, i) ∈ Ω, then we have

Theorem 3.2. In the fully observable M/M/1 queue with variable vacation and vacation interruption where
customers enter the system according to a pure threshold strategy (ne(0), ne(1), ne(2)), the stationary distribution
is as follows

pfo(n, 1) =
λ

θ1(1− pσ2)
σn1 pfo(0, 0), n = 0, 1, . . . , ne(1), (3.1)

pfo(ne(1) + 1, 1) =
λσ1

θ1(1− pσ2)(1− σ1)
σ
ne(1)
1 pfo(0, 0), (3.2)

pfo(n, 2) =
pσ2

1− pσ2
σn2 pfo(0, 0), n = 0, 1, . . . , ne(2), (3.3)

pfo(ne(2) + 1, 2) =
pσ2

2

(1− pσ2)(1− σ2)
σ
ne(2)
2 pfo(0, 0), (3.4)

pfo(n, 0) = Bfoρ
n + Cfoσ

n
1 +Dfoσ

n
2 , n = 0, 1, . . . , ne(0), (3.5)

pfo(ne(0) + 1, 0) = ρ
(
Bfoρ

ne(0) + Cfoσ
ne(0)
1 +Dfoσ

ne(0)
2

)
+

(
λθ1σ

ne(1)+2
1

µθ1(1− pσ2)(1− σ1)
+
pθ2σ

ne(2)+1
2

µ(1− pσ2)

)
pfo(0, 0),

(3.6)

where

pfo(0, 0) =

{
1 +

(µ1σ1 + θ1)σ1ρ

θ1(1− pσ2)(ρ− σ1)(1− σ1)

(
ρσ
ne(0)+1
1 − σ1

1− σ1
+

(ρ− σ1)(λ+ θ1)ρσ
ne(1)+2
1

(µ1σ1 + θ1)ρσ1

)

+
pρσ2

(1− pσ2)(ρ− σ2)

(
ρσ
ne(0)+1
2 − σ2

1− σ2
+

1

ρ
+ σ

ne(2)
2 (ρ− σ2)

)
+

(
ρ(λ+ θ1)σ1

θ1(1− pσ2)(ρ− σ1)

+
ρ− σ2 + pσ2

2

(1− pσ2)(ρ− σ2)

)
ρ(1− ρne(0)+1)

1− ρ

}−1

,

Bfo =
[

ρ(λ+ θ1)σ1

θ1(1− pσ2)(ρ− σ1)
+

ρ− σ2 + pσ2
2

(1− pσ2)(ρ− σ2)

]
pfo(0, 0) = pfo(0, 0)− Cfo −Dfo,

Cfo = − ρ(λ+ θ1)σ1

θ1(1− pσ2)(ρ− σ1)
pfo(0, 0), Dfo = − pσ2ρ

(1− pσ2)(ρ− σ2)
pfo(0, 0).



2812 Y. ZHANG AND X. XU

Proof. The corresponding stationary distribution can be obtained in Figure 2.

λpfo(0, 0) = (1− p)θ1pfo(0, 1) + θ2pfo(0, 2), (3.7)
(λ+ µ)pfo(n, 0) = µpfo(n+ 1, 0) + µ1pfo(n+ 1, 1) + θ1pfo(n, 1)

+λpfo(n− 1, 0) + θ2pfo(n, 2), n = 1, 2, . . . , ne(0), (3.8)

µpfo(ne(0) + 1, 0) = θ1pfo(ne(1) + 1, 1) + λpfo(ne(0), 0) + θ2pfo(ne(2) + 1, 2), (3.9)
(λ+ θ1)pfo(0, 1) = µ1pfo(1, 1) + µpfo(1, 0), (3.10)
(λ+ µ1 + θ1)pfo(n, 1) = λpfo(n− 1, 1), n = 1, 2, . . . , ne(1), (3.11)
(µ1 + θ1)pfo(ne(1) + 1, 1) = λpfo(ne(1), 1), (3.12)
(λ+ θ2)pfo(0, 2) = pθ1pfo(0, 1), (3.13)
(λ+ θ2)pfo(n, 2) = λpfo(n− 1, 2), n = 1, 2, . . . , ne(2), (3.14)
θ2pfo(ne(2) + 1, 2) = λpfo(ne(2), 2). (3.15)

According to (3.7) and (3.13), we have

pfo(0, 1) =
λ

θ1(1− pθ2)
pfo(0, 0), pfo(0, 2) =

pσ2

1− pσ2
pfo(0, 0). (3.16)

Substituting (3.16) into (3.11) and (3.14), by iterating we have

pfo(n, 1) =
(

λ

λ+ µ1 + θ1

)n
λ

θ1(1− pσ2)
pfo(0, 0), n = 1, 2, . . . , ne(1),

pfo(n, 2) =
(

λ

λ+ θ2

)n
pσ2

1− pσ2
pfo(0, 0), n = 1, 2, . . . , ne(2),

Combining σ1 and σ2, we can get (3.1) and (3.3).
Substituting n = ne(1) and n = ne(2) into (3.12) and (3.15), respectively, we obtain

pfo(ne(1) + 1, 1) =
(

λ

λ+ µ1 + θ1

)ne(1)
λσ1

θ1(1− pσ2)(1− σ1)
pfo(0, 0),

pfo(ne(2) + 1, 2) =
(

λ

λ+ θ2

)ne(2)
pσ2

2

(1− pσ2)(1− σ2)
pfo(0, 0).

Manipulating above equations, we get 3.2 and (3.4).
Next, we calculate the formulas of pfo(ne(0) + 1, 0) and pfo(n, 0), n = 0, 1, . . . , ne(0). From (3.8), we obtain

µpfo(n+ 1, 0)− (λ+ µ)pfo(n, 0) + λpfo(n− 1, 0)

=
(
−λ(µ1σ1 + θ1)
θ1(1− pσ2)

σn1 −
pσ2θ2

1− pσ2
σn2

)
pfo(0, 0), n = 1, 2, . . . , ne(0).

From above expressions, it follows that pfo(n, 0), n = 1, 2, . . . , ne(0) are solutions of the following nonhomo-
geneous linear difference equation with constant coefficients

µxn+1 − (λ+ µ)xn + λxn−1 =

(
−λ(µ1σ1 + θ1)

θ1(1− pσ2)
σn1 −

pσ2θ2
1− pσ2

σn2

)
pfo(0, 0),

n = 1, 2, . . . , ne(0).

(3.17)
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Considering their corresponding characteristic equation

µx2 − (λ+ µ)x+ λ = 0,

which has two roots, 1 and ρ. The general solution of the homogeneous form of (3.17) is xhom
n = Afo + Bfoρ

n

due to λ < µ, where Afo and Bfo are constants. The general solution xgen
n is given by xgen

n = xhom
n +xspec

n , where
xspec
n is a specific solution of (3.17). The standard method can be used to find a specific solution because the

nonhomogeneous part of (3.17) is the sum of the geometric distributions with parameter σ1 and σ2, respectively,
and σ1, σ2 6= ρ, 1. Then the specific solution of (3.17) has the form Cfoσ

n
1 + Dfoσ

n
2 , where Cfo and Dfo are

constants. Substituting the specific solution xspec
n into (3.17), we obtain

Cfo = − ρ(λ+ θ1)σ1

θ1(1− pσ2)(ρ− σ1)
pfo(0, 0), Dfo = − pσ2ρ

(1− pσ2)(ρ− σ2)
pfo(0, 0).

Hence, the general solution of (3.17) is given as

xn = Afo +Bfoρ
n + Cfoσ

n
1 +Dfoσ

n
2 , n = 1, 2, . . . , ne(0). (3.18)

Specially, taking n = 1, n = 2 in (3.18), respectively, we have

Afo +Bfoρ+ Cfoσ1 +Dfoσ2 = pfo(1, 0),
Afo +Bfoρ

2 + Cfoσ
2
1 +Dfoσ

2
2 = pfo(2, 0).

(3.19)

From (3.8) to (3.10), we obtain

pfo(1, 0) =
[(λ+ θ1)σ1 + θ1]ρ

θ1(1− pσ2)
pfo(0, 0),

pfo(2, 0) =
ρ[(ρ+ σ1)(λ+ θ1)σ1 + θ1(ρ+ pσ2

2)]
θ1(1− pσ2)

pfo(0, 0).

Furthermore, substituting the above expressions into (3.19), we get

Afo = 0,

Bfo =
[

ρ(λ+ θ1)σ1

θ1(1− pσ2)(ρ− σ1)
+

ρ− σ2 + pσ2
2

(1− pσ2)(ρ− σ2)

]
pfo(0, 0),

then
pfo(n, 0) = Bfoρ

n + Cfoσ
n
1 +Dfoσ

n
2 , n = 1, 2, . . . , ne(0).

Similarly, we obtain (3.5) by substituting n = 0 into above expressions. Through some algebraic simpli-
fications, we obtain pfo(ne(0) + 1, 0) based on (3.2), (3.4) and (3.9). Finally, pfo(0, 0) can be solved by the
normalization equation

ne(0)+1∑
n=0

pfo(n, 0) +
ne(1)+1∑
n=0

pfo(n, 1) +
ne(2)+1∑
n=0

pfo(n, 2) = 1.

�

3.3. Analysis of social benefits

Denote the expected social benefit per time unit in the fully observable situation by SWfo = Rλ(1− pbalk)−
CLfo, where pbalk and Lfo respectively represent the balking probability and the expected queue length of
customers in the fully observable case, then we have
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Theorem 3.3. In the fully observable M/M/1 queue with variable vacation and vacation interruption, the
expected social benefit per time unit SWfo is given as follows

SWfo = Rλ

[
1−

λσ
ne(1)+1
1 (θ1σ1 + µ)

µθ1(1− pσ2)(1− σ1)
pfo(0, 0)−

pσ
ne(2)+1
2 ρ(µ+ θ2)

θ2(1− pσ2)
pfo(0, 0)− ρ

(
Bfoρ

ne(0)

+ Cfoσ
ne(0)
1 +Dfoσ

ne(0)
2

)]
− C

[
λσ1(1− σ

ne(1)+1
1 )

θ1(1− pσ2)(1− σ1)2
pfo(0, 0) +

pσ2
2(1− σ

ne(2)+1
2 )

(1− pσ2)(1− σ2)2

× pfo(0, 0) +Bfo
ρ− (ne(0) + 2)ρne(0)+2 + (ne(0) + 1)ρne(0)+3

(1− ρ)2
+Dfo

(
ρσ
ne(0)
2 (ne(0)

+ 1) +
σ2 − (ne(0) + 1)σ

ne(0)+1
2 + ne(0)σ

ne(0)+2
2

(1− σ2)2
−
σ
ne(2)
2

ρ− σ2

)
+ Cfo

(
(ne(0) + 1)ρσ

ne(0)
1

+
σ1 − (ne(0) + 1)σ

ne(0)+1
1 + ne(0)σ

ne(0)+2
1

(1− σ1)2
−

(ρ− σ1)θ1σ
ne(1)+1
1

µ1σ1 + θ1

)]
.

Proof. Arrivals will balk when they find the system at state (ne(0) + 1, 0), (ne(1) + 1, 1) and (ne(2) + 1, 2).
Therefore, the balking probability is pbalk = pfo(ne(0) + 1, 0) + pfo(ne(1) + 1, 1) + pfo(ne(2) + 1, 2), the effective
arrival rate is λ(1− pbalk) and the expected queue length equals

Lfo =
ne(0)+1∑
n=0

npfo(n, 0) +
ne(1)+1∑
n=0

npfo(n, 1) +
ne(2)+1∑
n=0

npfo(n, 2).

The expression of the expected social benefit can be obtained by Theorem 3.2. �

3.4. Numerical analysis

This section demonstrates the impacts of several parameters on the expected social benefit in a variable
dormancy cloud strategy with sleep-wake control.

Assuming that λ = 0.5, µ1 = 0.2, θ1 = 0.5, θ2 = 0.4, p = 0.5, C = 2, the relationship between the expected
social benefit SWfo and the service rate µ of the virtual machine for different revenues R is shown in Figure 3.
It shows a gently increasing trend of the expected social benefit with respect to the increase of the service rate.
Moreover, the cloud user requests prefer to enter the system when enhancing the expected social benefit by
raising the revenue R.

Assuming that R = 25, µ1 = 0.2, θ1 = 0.5, θ2 = 0.4, p = 0.5, C = 2, the relationship between the expected
social benefit SWfo and the service rate µ of the virtual machine for different arrival rates λ is shown in Figure 4.
It displays that the expected social benefit is not necessarily increasing with the parameter λ which is contrary to
our common sense. This mainly results from the general increasing trend of considerable waiting costs. Specially,
the expected social benefit SWfo is negative at parameter λ = 0.4, µ = 1.5.

Assuming that µ = 5, µ1 = 1.5, θ1 = 0.8, θ2 = 1, p = 0.5, C = 2, the relationship between the expected social
benefit SWfo and the arrival rate λ of cloud user requests for different revenues R is shown in Figure 5. It
presents that the expected social benefit rises with respect to the increasing arrival rate when the revenue is
large enough and the expected social benefit boosts remarkably with raising revenue. Besides, the vertex of the
expected social benefit is SWfo = 3.0 for the arrival rate λ = 0.4 at parameter R = 15.

Assuming that R = 15, µ1 = 1.5, θ1 = 0.8, θ2 = 1, p = 0.5, C = 2, the relationship between the expected social
benefit SWfo and the arrival rate λ of cloud user requests for different service rates µ is shown in Figure 6. It
reveals that the expected social benefit first gradually increases and achieves a maximum at about λ = 0.4,
then decreases as parameter λ continues to increase at parameter µ = 4.5 and presents a fluctuating tendency.
The maximum and minimum of the expected social benefit are SWfo = 2.0 and SWfo = −0.9 respectively for
the arrival rate λ = 0.3 and λ = 0.8 at parameter µ = 3.5. Moreover, the cloud user requests prefer to enter the
system with the increasing service rate which raises the expected social benefit as well.
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Figure 3. The expected social benefit versus parameter µ with the revenue R.

Figure 4. The expected social benefit versus parameter µ with the arrival rate λ.

Figure 5. The expected social benefit versus parameter λ with the revenue R.

Figure 6. The expected social benefit versus parameter λ with the service rate µ.
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Figure 7. State transition diagram in the partly observable case.

4. Equilibrium strategy in partly observable case

4.1. Stationary queue length distribution

This section proceeds to analyze the partly observable case that arriving customers can only observe the
number N(t) of customers presented. To obtain the pure equilibrium threshold strategy, we should compute the
steady-state distribution in this situation. Denote the stationary distribution in the partly observable queue by
pao(n, i) = lim

t→+∞
pao{N(t) = n, I(t) = i}, (n, i) ∈ Ω. The state transition diagram is illustrated in Figure 7.

Theorem 4.1. In the partly observable M/M/1 queue with variable vacation and vacation interruption where
customers enter the system according to the pure threshold strategy ne, the stationary distribution is as follows

pao(n, 1) =
λ

θ1(1− pσ2)
σn1 pao(0, 0), n = 0, 1, . . . , ne, (4.1)

pao(ne + 1, 1) =
λσ1

θ1(1− pσ2)(1− σ1)
σne

1 pao(0, 0), (4.2)

pao(n, 2) =
pσ2

1− pσ2
σn2 pao(0, 0), n = 0, 1, . . . , ne, (4.3)

pao(ne + 1, 2) =
pσ2

2

(1− pσ2)(1− σ2)
σne

2 pao(0, 0), (4.4)

pao(n, 0) = Baoρ
n + Caoσ

n
1 +Daoσ

n
2 , n = 0, 1, . . . , ne, (4.5)

pao(ne + 1, 0) = ρ(Baoρ
ne + Caoσ

ne
1 +Daoσ

ne
2 )

+
(

λθ1σ
ne+2
1

µθ1(1− pσ2)(1− σ1)
+

pθ2σ
ne+1
2

µ(1− pσ2)

)
pao(0, 0), (4.6)

where

pao(0, 0) =

{
1 +

ρ− ρne+2

1− ρ
+

ρ(λ+ θ1)σ1

θ1(1− pσ2)(ρ− σ1)

(
ρ− ρne+2

1− ρ
+ σne

1

(
θ1

(λ+ θ1)(1− σ1)
− ρ

)

+
λ− σ1µ

(λ+ θ1)(1− σ1)σ1
−
σ1 − σne+1

1

1− σ1

)
+

pρσ2

(1− pσ2)(ρ− σ2)

(
ρ− ρne+2

1− ρ
+ σne

2 (1− ρ)

+
1

ρ
−
σ2 − σne+2

2

1− σ2

)}−1

,

Bao =
[

ρ(λ+ θ1)σ1

θ1(1− pσ2)(ρ− σ1)
+

ρ− σ2 + pσ2
2

(1− pσ2)(ρ− σ2)

]
pao(0, 0) = pao(0, 0)− Cao −Dao,

Cao = − ρ(λ+ θ1)σ1

θ1(1− pσ2)(ρ− σ1)
pao(0, 0), Dao = − pσ2ρ

(1− pσ2)(ρ− σ2)
pao(0, 0).
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Proof. The corresponding stationary distribution can be obtained in Figure 7.

λpao(0, 0) = (1− p)θ1pao(0, 1) + θ2pao(0, 2), (4.7)
(λ+ µ)pao(n, 0) = µpao(n+ 1, 0) + µ1pao(n+ 1, 1) + θ1pao(n, 1)

+λpao(n− 1, 0) + θ2pao(n, 2), n = 1, 2, . . . , ne, (4.8)
µpao(ne + 1, 0) = θ1pao(ne + 1, 1) + λpao(ne, 0) + θ2pao(ne + 1, 2), (4.9)
(λ+ θ1)pao(0, 1) = µ1pao(1, 1) + µpao(1, 0), (4.10)
(λ+ µ1 + θ1)pao(n, 1) = λpao(n− 1, 1), n = 1, 2, . . . , ne, (4.11)
(µ1 + θ1)pao(ne + 1, 1) = λpao(ne, 1), (4.12)
(λ+ θ2)pao(0, 2) = pθ1pao(0, 1), (4.13)
(λ+ θ2)pao(n, 2) = λpao(n− 1, 2), n = 1, 2, . . . , ne, (4.14)
θ2pao(ne + 1, 2) = λpao(ne, 2). (4.15)

According to (4.7) and (4.13), we have

pao(0, 1) =
λ

θ1(1− pθ2)
pao(0, 0), pao(0, 2) =

pσ2

1− pσ2
pao(0, 0). (4.16)

Substituting (4.16) into (4.11) and (4.14), by iterating we obtain

pao(n, 1) =
(

λ

λ+ µ1 + θ1

)n
λ

θ1(1− pσ2)
pao(0, 0), n = 1, 2, . . . , ne,

pao(n, 2) =
(

λ

λ+ θ2

)n
pσ2

1− pσ2
pao(0, 0), n = 1, 2, . . . , ne,

Combining σ1 and σ2, we get (4.1) and (4.3).
Substituting n = ne into (4.12) and (4.15), respectively, we get

pao(ne + 1, 1) =
(

λ

λ+ µ1 + θ1

)ne λσ1

θ1(1− pσ2)(1− σ1)
pao(0, 0),

pao(ne + 1, 2) =
(

λ

λ+ θ2

)ne pσ2
2

(1− pσ2)(1− σ2)
pao(0, 0).

Manipulating above equations, we get (4.2) and (4.4).
Next, we calculate the formulas of pao(n, 0), n = 0, 1, . . . , ne and pao(ne + 1, 0). Similar to the proof for

Theorem 3.2, pao(n, 0) are solutions of the following nonhomogeneous linear difference equation with constant
coefficients

µxn+1 − (λ+ µ)xn + λxn−1 =

(
−λ(µ1σ1 + θ1)

θ1(1− pσ2)
σn1 −

pσ2θ2
1− pσ2

σn2

)
pao(0, 0),

n = 1, 2, . . . , ne.

(4.17)

As the nonhomogeneous part of (4.17) is the sum of geometric distributions with parameter σ1 and σ2 and
σ1, σ2 6= ρ, 1, Equation (4.17) have specific solutions of the form Caoσ

n
1 + Daoσ

n
2 , where Cao and Dao are

constants. Substituting the specific solution into (4.17), we obtain

Cao = − ρ(λ+ θ1)σ1

θ1(1− pσ2)(ρ− σ1)
pao(0, 0), Dao = − pσ2ρ

(1− pσ2)(ρ− σ2)
pao(0, 0).
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Hence, general solutions of (4.17) are given as

xgen
n = Aao +Baoρ

n + Caoσ
n
1 +Daoσ

n
2 , n = 1, 2, . . . , ne,

where Aao, Bao, Cao and Dao are constants. Specially, taking n = 1 and n = 2 in the general solution, we have

Aao +Baoρ+ Caoσ1 +Daoσ2 = pao(1, 0),
Aao +Baoρ

2 + Caoσ
2
1 +Daoσ

2
2 = pao(2, 0).

(4.18)

From (4.8) to (4.10), we obtain

pao(1, 0) =
[(λ+ θ1)σ1 + θ1]ρ

θ1(1− pσ2)
pao(0, 0),

pao(2, 0) =
ρ[(ρ+ σ1)(λ+ θ1)σ1 + θ1(ρ+ pσ2

2)]
θ1(1− pσ2)

pao(0, 0).

Furthermore, substituting above expressions into (4.18), we get

Aao = 0,

Bao =
[

ρ(λ+ θ1)σ1

θ1(1− pσ2)(ρ− σ1)
+

ρ− σ2 + pσ2
2

(1− pσ2)(ρ− σ2)

]
pao(0, 0),

then
pao(n, 0) = Baoρ

n + Caoσ
n
1 +Daoσ

n
2 , n = 1, 2, . . . , ne.

Similarly, substituting n = 0 into above expressions, we obtain (4.5). Through some algebraic simplifications,
we obtain pao(ne+ 1, 0) based on (4.2), (4.4) and (4.9). Finally, the probability pao(0, 0) can be solved using the
normalization equation

ne+1∑
n=0

pao(n, 0) +
ne+1∑
n=0

pao(n, 1) +
ne+1∑
n=0

pao(n, 2) = 1.

�

4.2. Benefit analysis of customers

The expected net benefit of an arriving customer who finds n customers ahead and decides to enter is

S(n) = R− CTao(n) (4.19)

where Tao(n) = Eao[S|N = n] represents the mean sojourn time of this new arrival.
For convenience, we introduce the following notations

a =
(µ+ θ1)(1− σ2)

µ(1− σ1)
, b =

ρ(1− σ1)
σ2

, c =
ρ(1− σ2)

σ1
, d =

(λ+ θ2)(µ+ θ2)(1− σ1)
µθ2

.

Theorem 4.2. In the partly observable M/M/1 queue with variable vacation and vacation interruption, if an
arriving customer finds n customers waiting in line and other customers follow the policy ne, if he decides to
enter, his expected net benefit per time unit is

S(n) = R− C
[
n+ 1

µ
+

(µ− µ1)σn1 pao(0, 1)

µ(µ1 + θ1)[Baoρn + (Cao + pao(0, 1))σn1 + (Dao + pao(0, 2))σn2 ]

+
σn2 pao(0, 2)

θ2[Baoρn + (Cao + pao(0, 1))σn1 + (Dao + pao(0, 2))σn2 ]

]
, n = 0, 1, . . . , ne.
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S(ne + 1) = R− C

[
ne + 2

µ

+

µ−µ1
µ(µ1+θ1)

σne+1
1 pao(0, 1)

(1− σ1)Baoρne+1 +
[
µ1+θ1
µ

Cao + µ+θ1
µ

pao(0, 1)
]
σne+1
1 + [bDao + dpao(0, 2)]σne+1

2

+
σne+1
2 pao(0, 2)

θ2
(

(1− σ2)Baoρne+1 + (cCao + apao(0, 1))σne+1
1 +

(
θ2
µ
Dao + µ+θ2

µ
pao(0, 2)

)
σne+1
2

)



 .

Moreover, S(n) is monotonically decreasing with respect to n, 0 ≤ n ≤ ne + 1.

Proof. Using the conditional expectation formula, we obtain

Tao(n) = Tao(n, 0)pao(i = 0|N = n) + Tao(n, 1)pao(i = 1|N = n)
+ Tao(n, 2)pao(i = 2|N = n),

(4.20)

where pao(i|n) is the conditional probability that the server is in state i when there are n customers in the line.
By the definition of the conditional probability, we have

pao(i|n) =
pao(n, i)

pao(n, 0) + pao(n, 1) + pao(n, 2)
, 0 ≤ n ≤ ne + 1.

Calculating pao(0|n), pao(1|n) and pao(2|n) using Theorem 4.1 and substituting Tfo(n, 0), Tfo(n, 1) and Tfo(n, 2)
into (4.20), we obtain

Tao(n) =

(
µ+ θ1

µ(µ1 + θ1)
+
n

µ

)
σn1 pao(0, 1)

Baoρn + (Cao + pao(0, 1))σn1 + (Dao + pao(0, 2))σn2

+

(
n+ 1

µ
+

1

θ2

)
σn2 pao(0, 2)

Baoρn + (Cao + pao(0, 1))σn1 + (Dao + pao(0, 2))σn2

+
n+ 1

µ

Baoρ
n + Caoσ

n
1 +Daoσ

n
2

Baoρn + (Cao + pao(0, 1))σn1 + (Dao + pao(0, 2))σn2
, n = 0, 1, . . . , ne,

Tao(ne + 1) =
ne + 2

µ

+

µ−µ1
µ(µ1+θ1)

σne+1
1 pao(0, 1)

(1− σ1)Baoρne+1 +
[
µ1+θ1
µ

Cao + µ+θ1
µ

pao(0, 1)
]
σne+1

1 + [bDao + dpao(0, 2)]σne+1
2

+

σ
ne+1
2
θ2

pao(0, 2)

(1− σ2)Baoρne+1 + [cCao + apao(0, 1)]σne+1
1 +

[
θ2
µ
Dao + µ+θ2

µ
pao(0, 2)

]
σne+1

2

.

Substituting Tao(n) and Tao(ne + 1) into (4.19), we obtain the expression of S(n) and S(ne + 1).
A tagged customer decides to queue when he sees j(1 ≤ j ≤ ne + 1) customers ahead, then his residual

sojourn time equals the sum of the residual waiting time and the service time. Therefore, S(j) < S(j − 1) and
S(n) declines monotonically with respect to n. Theorem 4.2 is proved. �

4.3. Equilibrium threshold strategy

New arrivals will balk when the system is empty if S(0) < 0, hence, we suppose S(0) > 0 hereafter. ne
is identified as the optimal threshold when S(ne) > 0 and S(ne + 1) < 0. For convenience, referring to the
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method used in Burnetas and Economou [1] and Li et al. [9], and considering the form of S(n) and S(ne + 1),
we introduce a set of functions S(x, n), x ∈ R;n = 0, 1, . . ..

S(x, n) = R− C

[
n+ 1
µ

+
µ−µ1

µ(µ1+θ1)
σn1 pao(0, 1)

(1− σ1x)Baoρn +
[
µ+(µ1+θ1−µ)x

µ Cao + µ+θ1x
µ pao(0, 1)

]
σn1 + [(1 + h2(x))Dao + (1 + h1(x))pao(0, 2)]σn2

+
σn
2
θ2
pao(0, 2)

(1− σ2x)Baoρn + [(1 + h3(x))Cao + (1 + h4(x))pao(0, 1)]σn1 +
[
µ+(θ2−µ)x

µ Dao + µ+θ2x
µ pao(0, 2)

]
σn2

 ,
where

h1(x) =
(

(1− σ1)[λ(µ+ θ2) + θ22]
µθ2

− σ1

)
x, h2(x) =

ρ(1− σ1)− σ2

σ2
x,

h3(x) =
ρ(1− σ2)− σ1

σ1
x, h4(x) =

θ1(1− σ2) + µ(σ1 − σ2)
µ(1− σ1)

x.

Next we will certify the existence of the equilibrium threshold strategies of customers and explore the corre-
sponding thresholds using S(x, n). By calculating, we have

S(n) = S(0, n), n = 0, 1, . . . , ne, S(ne + 1) = S(1, ne + 1).

Let us mark an arriving customer and suppose that other customers enter the queue following the threshold
ne. Then S(0, n), n = 0, 1, . . . , ne and S(1, ne+ 1) respectively represent the expected net benefit of this marked
customer who observes there are n or ne + 1 customers ahead and decides to enter.

Denote S
′
(x, n) = ∂S(x,n)

∂x and take the derivative of S(x, n) with respect to x for a given n, we obtain

S
′
(x, n)

=
µ−µ1

µ(µ1+θ1)
Caoσ

n
1 pao(0, 1)

[
−Baoρ

n +
(
µ1+θ1−µ

µ Cao + θ1
µ pao(0, 1)

)
σn1 + [h2(1)Dao + h1(1)pao(0, 2)]σn2

]
[
(1− σ1x)Baoρn +

[
µ+(µ1+θ1−µ)x

µ Cao + µ+θ1x
µ pao(0, 1)

]
σn1 + [(1 + h2(x))Dao + (1 + h1(x))pao(0, 2)]σn2

]2
+

σn
2
θ2
Caopao(0, 2)

[
−Baoσ2ρ

n + [h3(1)Cao + h4(1)pao(0, 1)]σn1 +
(
θ2−µ
µ Dao + θ2

µ pao(0, 2)
)
σn2

]
[
(1− σ2x)Baoρn + [(1 + h3(x))Cao + (1 + h4(x))pao(0, 1)]σn1 +

[
µ+(θ1−µ)x

µ Dao + µ+θ2x
µ pao(0, 2)

]
σn2

]2 .
Because the denominator of S

′
(x, n) is greater than zero and the numerator of S

′
(x, n) only relates to n, the

positive and negative properties of S
′
(x, n) doesn’t depend on x for a given n. If S

′
(x, n) < 0, that is, S(x, n) is

monotonically decreasing with respect to x for a given n, then S(0, n) > S(1, n); Otherwise, S(0, n) < S(1, n).
Therefore, we obtain Theorem 4.3.

Theorem 4.3. There exist finite non-negative integers nL ≤ nU , such that the following holds.
Case 1. If S(x, n) is monotonically decreasing in x given n, we have

(a) S(0, 0), S(0, 1), . . . , S(0, nL), . . . , S(0, nU ) > 0, S(0, nU + 1) ≤ 0, (4.21)
(b) S(1, nU + 1), S(1, nU ) . . . , S(1, nL + 1) ≤ 0, S(1, nL) > 0, (4.22)

or S(1, nU + 1), S(1, nU ), . . . , S(1, nL), . . . , S(1, 1), S(1, 0) ≤ 0. (4.23)
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The equilibrium threshold strategy in the partly observable M/M/1 queue with variable vacation and vacation
interruption is “While arriving at time t, observe: enter if n ≤ ne and balk otherwise” for ne ∈ {nL, nL +
1, . . . , nU}.

Case 2. If S(x, n) is monotonically increasing in x given n, we have

(c) S(0, 0), S(0, 1), . . . , S(0, nL − 1) > 0, S(0, nL), . . . , S(0, nU ) ≤ 0,

(d) S(1, nL), S(1, nL + 1), . . . , S(1, nU + 1) ≥ 0, S(1, nU + 2) < 0,

or S(1, nL), S(1, nL + 1), . . . , S(1, nU ), S(1, nU + 1) ≥ 0.

The equilibrium threshold strategy in the partly observable M/M/1 queue with variable vacation and vacation
interruption is “While arriving at time t, observe: enter if n > ne and balk otherwise” for ne ∈ {nL, nL +
1, . . . , nU}.

Proof. We prove case 1 in two steps.
Step 1. We prove that ne ∈ {nL, nL + 1, . . . , nU}.
(a) We can easily get S(0, 0) > 0 and lim

n→+∞
S(0, n) = −∞, so there exists a positive integer nU which satisfies

S(0, nU + 1) ≤ 0 and S(0, nU ) > 0 when S(x, n) is monotonically decreasing, therefore, (4.21) is obtained.
(b) Similarly, due to S(1, n) < S(0, n), we can easily find the positive integer nL satisfying (4.22). Otherwise,

if all items of S(1, n) are non-positive, we get (4.23).
Step 2. We prove that ne is the threshold.
On one hand, for an arriving customer who decides to enter the system when there are n(n ≤ ne) customers

ahead of him, his expected net benefit is S(n), and S(n) ≥ S(ne) = S(0, ne) > 0 based on Theorem 4.2
and (4.21). Hence, he prefers to enter the system. On the other hand, for an arriving customer who decides to
enter the system when there are n = ne + 1 customers ahead of him, his expected net benefit is S(ne + 1), and
S(ne + 1) = S(1, ne + 1) ≤ 0 based on Theorem 4.2, (4.22) and (4.23). Therefore, this arrival is reluctant to
queue.

Case 2 can be similarly proved. �

It is interesting to note that there is a Follow-The-Crowd (FTC) situation in the partly observable queue
when S(x, n) is monotonically decreasing. Otherwise, there is an Avoid-The-Crowd (ATC) [9] situation in the
partly observable queue.

4.4. Analysis of social benefits

Denote the expected social benefit per time unit in the partly observable situation as SWao = Rλ(1 −
pao(ne+1))−CLao, where pao(ne+1) and Lao represent the balking probability and the expected queue length
of customers in the partly observable case. Then we have

Theorem 4.4. In the partly observable M/M/1 queue with variable vacation and vacation interruption, if an
arriving customer finds other customers follow the threshold ne and decides to enter, his expected social benefit
per time unit is

SWao = Rλ

[
1− λσne+1

1 pao(0, 0)
θ1(1− pσ2)(1− σ1)

− pσne+2
2 pao(0, 0)

(1− pσ2)(1− σ2)
−Baoρ

ne+1 − Caoσ
ne+1
1

µ1ρ+ θ1
µ1σ1 + θ1

−Daoσ
ne+1
2

]
− C

[
pσ2

2

(
1− σne+1

2

)
pao(0, 0)

(1− pσ2)(1− σ2)2
+Bao

ρ− (ne + 2)ρne+2 + (ne + 1)ρne+3

(1− ρ)2

+ Cao
(µ1ρ+ θ1)(ne + 1)σne+1

1

µ1σ1 + θ1
+ Cao

σ1 − (ne + 1)σne+1
1 + neσ

ne+2
1

(1− σ1)2

+
λσ1

(
1− σne+1

1

)
pao(0, 0)

θ1(1− pσ2)(1− σ1)2
+Dao

σ2 − (ne + 2)σne+2
2 + (ne + 1)σne+3

2

(1− σ2)2

]
.
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Figure 8. The equilibrium thresholds versus parameter λ.

Figure 9. The equilibrium thresholds versus parameter µ.

Proof. Arrivals are reluctant to enter when they find the system at state (ne + 1, 0), (ne + 1, 1) and (ne + 1, 2).
Therefore, the balking probability is pao(ne + 1) = pao(ne + 1, 0) + pao(ne + 1, 1) + pao(ne + 1, 2), the effective
arrival rate is λ(1− pao(ne + 1)) and the expected queue length can be calculated using the formula

Lao =
ne+1∑
n=0

n(pao(n, 0) + pao(n, 1) + pao(n, 2)).

The expression of the expected social benefit can be derived from Theorem 4.1. �

5. Numerical comparison of equilibrium thresholds

This section presents numerical experiments to demonstrate the impact of information levels and several
parameters on the equilibrium threshold strategy of customers.

Assuming that R = 5, µ = 2, µ1 = 0.5, θ1 = 5, θ2 = 0.5, p = 0.5, C = 1.2, the relationship between the
equilibrium threshold strategy and the arrival rate λ of cloud user requests is shown in Figure 8. The equilibrium
threshold strategy remains unaltered since the arrival rate λ is irrelevant to the decisions of customers when the
cloud user requests master the state information completely, which is derived from Theorem 3.1. In addition, the
equilibrium threshold increases with the parameter λ in the partly observable case, meaning that the customer
prefers to join the system in this situation.

Assuming that R = 5, λ = 1, µ1 = 0.5, θ1 = 5, θ2 = 0.5, p = 0.5, C = 1.2, Figure 9 shows that all types of the
equilibrium thresholds increase along with the service rate µ resulted by accelerating the delivery of the virtual
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Figure 10. The equilibrium thresholds versus parameter R.

Figure 11. The equilibrium thresholds versus parameter θ1.

machine and lessening the expected sojourn time of customers. In other words, the cloud user requests have a
greater incentive to enter the system whether they acquire the state information or not when the service rate
increases.

When λ = 1, µ = 2, µ1 = 0.5, θ1 = 5, θ2 = 0.5, p = 0.5, C = 1.2, the result shown in Figure 10 indicates that
the whole equilibrium threshold policies linearly increase with parameter R, which is consistent with the results
of Theorems 3.1 and 4.2. It is intuitive that the more revenues after customers are served, the more customers
prefer to enter the system.

When R = 5, λ = 1.2, µ = 0.5, µ1 = 0.5, θ2 = 0.5, p = 0.5, C = 1.2, the relationship between the equilibrium
threshold strategy and parameter θ1 in semi dormancy state is shown in Figure 11. It is observed that the
maximum entrance thresholds ne(0) and ne(2) for cloud user requests in the fully observable case remain
constant, while the threshold ne(1) is more sensitive. Moreover, the thresholds nU and nL display a gently
reducing trend in the partly observable case. When shortening the duration of semi dormancy, new arrivals
predict that the system will be congested and overloaded, therefore, they enter reluctantly.

More importantly, Figures 8–11 reveal that the range of thresholds {nL, nL+1, . . . , nU} in the partly observable
case always contains inside the range of thresholds ne(0) and ne(2) in the fully observable case. In other words,
customers prefer to queue if they master the information levels completely, which means that there exists
an intermediate value in the partly observable case between two separate thresholds in the fully observable
case.
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6. Conclusions

This paper describes the individual and social strategic behaviors of customers in a single server Markov
queueing system that incorporates the classical vacation and working vacation. We discuss and numerically
compare the equilibrium thresholds of customers and the corresponding expected social benefits based on a
reward-cost structure for both fully observable and partly observable cases. The research outcomes can help the
managers to make appropriate strategic decisions utilizing the available information. Further, we conduct the
sensitivity analysis of the expected social benefit as well as the equilibrium threshold for various parameters
and different information levels. This study can reduce expenses by setting suitable indicators in the virtual
technology and automatic management system. Further extensions of this work may explore the equilibrium
behaviors under the unobservable cases in view of the application.

Acknowledgements. The authors are grateful to the anonymous referees for their detailed comments and
valuable suggestions, and would like to thank the support by the National Natural Science Foundation (No.
6217012029), the Hebei Province Natural Science Foundation (No. A2019203313) and the Science Research
Project of Education Department of Hebei Province (No. ZD2019079), China.

References

[1] A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times. Queue.
Syst. 56 (2007) 213–228.

[2] N.H. Do, T.V. Do and A. Melikov, Equilibrium customer behavior in the M/M/1 retrial queue with working vacations and a
constant retrial rate. Oper. Res. 20 (2020) 627–646.

[3] A. Economou and S. Kanta, Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs.
Oper. Res. Lett. 36 (2008) 696–699.

[4] S. Jin, S. Hao, X. Qie and W. Yue, A virtual machine scheduling strategy with a speed switch and a multi-sleep mode in cloud
data centers. J. Syst. Sci. Syst. Eng. 28 (2019) 194–210.

[5] S. Jin, S. Hao and B. Wang, Virtual machine scheduling strategy based on dual-speed and work vacation mode and its
parameter optimization. J. Commun. 38 (2017) 10–20.

[6] S. Jin, X. Qie, W Zhao, W. Yue and Y. Takahashi, A clustered virtual machine allocation strategy based on a sleep-mode with
wake-up threshold in a cloud environment. Ann. Oper. Res. 293 (2020) 193–212.

[7] D.H. Lee, Equilibrium balking strategies in Markovian queues with a single working vacation and vacation interruption. Qual.
Technol. Quant. Manage. 16 (2019) 355–376.

[8] J. Li, Analysis of the discrete-time Geo/G/1 working vacation queue and its application to network scheduling. Comput. Indus.
Eng. 65 (2013) 594–604.

[9] K. Li, J. Wang, Y. Ren and J. Chang, Equilibrium joining strategies in M/M/1 queues with working vacation and vacation
interruptions. RAIRO – OR 50 (2016) 451–471.

[10] R. Marek and K. Hoon, Cognitive systems and operations research in big data and cloud computing. Ann. Oper. Res. 265
(2018) 183–186.

[11] A.Z. Melikov, A.M. Rustamov and L.A. Ponomarenko, Approximate analysis of a queueing-inventory system with early and
delayed server vacations. Autom. Remote Cont. 78 (2017) 1991–2003.

[12] P. Naor, The regulation of queue size by levying tolls. Econometrica 37 (1969) 15–24.

[13] I. Padmavathi, B. Sivakumar and G. Arivarignan, A retrial inventory system with single and modified multiple vacation for
server. Ann. Oper. Res. 233 (2015) 335–364.
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