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AN ESTIMATION OF EFFECTS OF MEMORY AND LEARNING EXPERIENCE
ON THE EOQ MODEL WITH PRICE DEPENDENT DEMAND

Mostafijur Rahaman1 , Sankar Prasad Mondal2,* and Shariful Alam1

Abstract. In this article, an economic order quantity model has been studied in view of joint impacts of
the memory and learning due to experiences on the decision-making process where demand is considered
as price dependant function. The senses of memory and experience-based learning are accounted by the
fractional calculus and dense fuzzy lock set respectively. Here, the physical scenario is mathematically
captured and presented in terms of fuzzy fractional differential equation. The 𝛼-cut defuzzification
technique is used for dealing with the crisp representative of the objective function. The main credit
of this article is the introduction of a smart decision-making technique incorporating some advanced
components like memory, self-learning and scopes for alternative decisions to be accessed simultaneously.
Besides the dynamics of the EOQ model under uncertainty is described in terms of fuzzy fractional
differential equation which directs toward a novel approach for dealing with the lot-sizing problem.
From the comparison of the numerical results of different scenarios (as particular cases of the proposed
model), it is perceived that strong memory and learning experiences with appropriate keys in the hand
of the decision maker can boost up the profitability of the retailing process.
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1. Introduction

The maintenance of stocks is very crucial issue in a supply chain management problem. Inadequate on hand
stocks may cause the discontinuity in the supply flow. On the contrary, uncontrolled gathering of product in the
store may increase the maintenance cost and blockage of fund. For both of the cases, the result acts as opposite to
the objectivity of the supplier/retailer. So, there is an urge to develop aptly fitted model for scheduling optimal
lots of stocks in this business scenario. Inventory control management can fulfil the needs in this regard.

Among different techniques of inventory control problems, lot sizing problems have drawn huge attentions of
the researchers and the decision makers for its simplicity and efficiency to capture the dynamics of the model.
The classical economic order quantity model (EOQ) introduced by Haris [25] was the pioneering establishment in
this filed. In the classical EOQ model, a simple problem was formulated under the assumptions of deterministic
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and constant demand with no shortage. Gradually, the literature of the lot sizing modelling was improved and
matured incorporating more reliable assumptions serving different purposes [24,46]. In reality, the demand and
pricing are a very crucial factor in any retailing business model. The demand rate may vary with respect to
time [19,61], stock level [21], selling price [37], various dealing policy and so many other components in different
supply situations. In a developing country, generally, the customers pay attentions towards a low-priced product
even sacrificing over the quality in terms of durability and reliability [34–36]. So, the demand rate of product
in these circumstances can be viewed as a negatively proportional to the selling price. In general, the demand
pattern is imprecise in nature. So, the optimal business planning forecasting the demand is matter of great
challenge for the manager. If an organization or an individual decision-maker is enriched with past memory of
dealing with the similar type of circumstance, the overall present dealing management can be more effective
in the fulfilment of its objectivity. Again, the learning through the experiences of the repeated tasks can make
clear perceptions of the decision maker on the demand pattern and the measure of vagueness over the demand
pattern can be reduced.

On the basis of above-mentioned intuitions, the following research questionnaires motivate the authors for
introducing the theory in this present article:

(i) What will be the optimal dealing strategy for an economic order quantity (EOQ) model motivated retailing
scenario with price dependent imprecise demand pattern?

(ii) How does the vagueness regarding the demand pattern create hindrances on the decision-making policy?
(iii) How much the experience gained through doing repeated tasks can help the decision-maker for installing a

better policy to attain the goal?
(iv) How much the memory of the system (retailing organization) can create impacts in making the optimal

strategy in favour of the profit maximization objectivity?
(v) What will be the simultaneous effects of the memory and experience-based learning on the EOQ model?
(vi) If the decision maker has keys in his/her hand, how much the keys can regulate the retailing process towards

the profit maximization objectivity?

Focusing on the mentioned research questions, the above-mentioned intuitions on the decision-making phe-
nomena are mathematically modelled and established in this present paper through the study of an EOQ model
with price sensitive demand rate under the fuzzy fractional differential equation of Caputo type and triangular
dense fuzzy lock set (TDFLS) decision making setup. The next section provides the details on the theoretical
background of the present article.

2. Theoretical background

2.1. Literature review

2.1.1. Recent advancement on inventory modelling

As it is mentioned earlier that the selling price has very significant impacts on the demand pattern in a business
scenario, following the footstep of Kim et al. [37], Polatoglu and Sahin [51] also considered price dependent
demand in one of their studies. Mukhopadhyay et al. [45] include the deterioration of items beside the price
dependency of the demand rate in the list of the assumptions. In another major finding on the consideration
of theprice dependent demand, Pal et al. [47] discussed the problem with no shortage. The investigation for
an EOQ model with price depended demand and fully backlogged shortage was credited by Sana [58]. In this
context, the time varying holding cost and discount policy in inventory model with price dependent demand had
been implemented by Alfares and Ghaithan [6]. Mishra et al. [42] considered an inventory model with stock and
price dependent demand rate, controllable rate of deterioration under preservation technology. Mashud et al.
[40] contributed a worthy investigation on an inventory control problem with stock and price dependent demand
rate, deterioration and partial backlogged shortage. An inventory control management strategy for the perishable
items was developed by Feng et al. [20] assuming the dependency of the demand rate on price, displayed stock,
freshness of items simultaneously. On the other hand, Hendalianpour [26] developed an inventory control problem
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with price dependent demand in game theoretic approach using the double interval grey number for tracing the
consumer behavior more accurately. The study of the distribution management of blood products (one kind of
perishable items) was mathematically modeled under transshipment and uncertain demand consideration and
optimized through heuristic algorithm by Liu et al. [38]. The potential of different contracts (like wholesale-price,
revenue-share, quantity discount etc.) under the competitive structures of two manufactures and two retailers
with price sensitive stochastic grey demand was examined by Hendalianpour et al. [27]. Also, Dey et al. [17]
considered the discrete set up cost for an integrated inventory model with price dependent demand.

2.1.2. Fuzzy lot-sizing models

In the real-world decision-making system, a decision maker must have to tackle the ambiguities involved
in the parameters which have great impacts on the decision. To define, describe and measure the real-world
uncertainty/ambiguity, fuzzy concept is regarded as one of the finest tools. Zadeh [63] was the first to intro-
duce the concept of fuzzy uncertainty. This novel concept was incorporated for decision making problem by
Bellman and Zadeh [9]. Park [49] was the pioneer to manifest the economic order quantity (EOQ) model under
fuzzy uncertainty. Consequently, some worthy findings on the fuzzy inventory models were contributed by the
researchers like Vujosevic et al. [62] and Hojati [29]. Chen et al. [13] was the first to build a fuzzy economic order
quantity model with back order. Following their contribution, the advancement and enrichment of the literature
of the fuzzy inventory model has been done in the recent decades. A very detailed and versatile review on the
inventory model under fuzzy uncertainty was contributed by Shekarian et al. [60] in this regard. On the other
hand, fuzzy arithmetic was quite different from the crisp counterpart. So, the calculus of fuzzy variables and
fuzzy valued functions were developed separately. Chang and Zadeh [12] gave an insight of fuzzy mapping. Later,
Kaleva [30] introduced the concept of fuzzy differential equation. Then, lots of improvements and advancements
[4, 7, 8, 11, 43] were done in this direction. While discussing the inventory problems under fuzzy uncertainty, it
is expected to use the fuzzy differential equation in order to describe the uncertain dynamics of the model. Few
papers [14, 22, 23, 39, 44] used fuzzy differential equation approach to interpret the inventory control problems
under fuzzy uncertainty.

2.1.3. Learning and memory-based decision making of inventory model

Experiences and past memory are two major effective components for self-learning and advancement of human
knowledge. So, memory from the past experience may help the decision maker to accurate the dealing strategy.
Also, earning the experiences through executing the repeated practice of similar kind of job may make the
decision maker more mature in his/her field. So, these two features can be implemented in the study of the
inventory control problems to develop more optimal business planning in favor of its objectivity. In this context,
one of the closest physical interpretations of the fractional calculus is assumed that it represents the memory
of a system through its iterative kernels. The theory of fractional calculus [1, 18, 41, 50] gained attention of the
scholar engaging on the exploration of truth in different research directions of science and technology. Nature
and emotion-based dynamic cannot be described aptly by the classical integer order calculus. Thus, the theory
of fractional differential equation has been implemented to estimate the effect of memory on inventory control
problems [48, 52, 53]. In addition, if the function is fuzzy valued, then it called the fuzzy fractional differential
equation. The fractional differential equation was first discussed in uncertain phenomena by Agarwal et al.
[2]. Then, the theory of fuzzy Laplace transformation and fuzzy fractional differential equation in the sense of
Riemann–Liouville and Caputo had been developed gradually by several novel investigations [3,5,28,56,57]. Very
recently, the production phase of an EPQ model has been analysed by the fuzzy fractional differential equation
under the Riemann–Liouville derivative by Rahaman et al. [54]. The theories of learning were implemented on the
study of inventory control problems in different ways. In this context, Kazemi et al. [33] incorporated the sense
of human learning to study an economic order quantity (EOQ) model with back order under fuzzy uncertainty.
Also, Shekarian et al. [59] considered the fuzzy uncertainty and learning to discuss an EOQ model for the items
of imperfect quality. Bousdekis et al. [10] developed sensor driven learning approach for the perspective analysis
of time dependent parameters that leads to self-optimization through learning and feedback. An alternative



2994 M. RHAMAN ET AL.

intuition for the fuzzy learning-based decision making was established through the introduction of the triangular
dense fuzzy set (TDFS) by De and Beg [16]. The concept of experience-based learning was further enriched with
the key and lock facility in terms of the triangular lock fuzzy dense set (TLFDS) by De [15]. Consequently, the
concept of the TDFS and TLFDS were aptly utilized to explore the environments favoured sustainable decision
making of inventory control problems [31,32].

2.2. Motivation of the present study

2.2.1. Research gap in the existing literature

Based on the existing literature related to our above-mentioned research questionaries, the following research
gaps have been identified:

(i) The past memory very frequently affects the present decision-making process of an organization in present
time. Optimal strategy for the present dealing situation can be adapted from previous experiences. Thus,
the study on the memory concerned decision making of the inventory management problems [48, 52, 53] is
very new trend and many things can be explored in this arena. For example, memory effect with uncertainty
can turn the decision-making process more interesting and reliable.

(ii) The mathematical quantification of experience-based learning doing repeated tasks in terms of dense and
lock fuzzy sets [15,16,31,32] provided a very effective alternative to analyse the uncertain decision-making
situation under self-optimization. The combined effects of the memory and experiences-based learning may
be more reliable scenario in reality. In the existing literature, we have not noticed much work (except the
article [55]) where the memory and learning has been considered simultaneously to describe an EOQ model.

(iii) Fuzzy numbers and variables are being run according to their own arithmetic rule and calculus that are
different from its crisp counterpart. Thus, it is very much desirable to describe the dynamics of a fuzzy
inventory model through the analysis of fuzzy differential equations. The literature of fuzzy inventory
models expressed by the fuzzy differential equations [14, 22, 23, 39, 44] is a little bit inferior in the whole
literature of fuzzy inventory control problems. Memory effected inventory models are seen to be described
by the fractional differential equation. Thus, fuzzy fractional differential equations are expected to be used
for dealing the memory concerned model under fuzzy uncertainty. In this context, we identified an article
concerning the application of the differential equation under Riemann–Liouville derivative on an EPQ
model [54]. However, the definition of initial conditions associated with the Riemann–Liouville fractional
differential equations is little abstract in terms of the physical significance. Thus, the fuzzy fractional
differential equation can be better alternative to fill the gap up.

(iv) The fuzzy fractional differential equations have an enriched literature in the theoretical point of view.
The applications of the notions of fuzzy fractional differential equations are rarely discussed (at least in
the operation research domain). So, there is a gap to explore the meaning of fuzzy fractional differential
equation with respect to the decision-making scenario of lot sizing problems.

2.2.2. Present study as a junction of different research directions

In this article, an EOQ model of price dependent demand rate is developed and analysed incorporating
impacts of the past memory and learning due to experiences on the decision-making process. Intuitively, the
optimal dealing strategy for price sensitive business scenario is subjected to the learning and training facility of
the decision maker(s). Mathematically, the present study connects different research disciplines according to the
intuitive meanings. The sense of memory is adapted in the study in terms of fractional calculus and uncertainty
with associated parameters and variables is represented by the fuzzy set up. We, therefore, utilized Caputo type
fuzzy fractional differential equations to trace the dynamical behaviour of the system in the present study. The
decreasing natures of the vagueness regarding the demand pattern as the time forwards (through repetitions of
similar kind of the decision-making phenomena) are accounted by the theory of TDFLS. Thus, the introduction
of present study may be viewed as a theoretical amalgamation of distinct research directions.
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2.2.3. Novelty of the present study

The main goal of this paper is to consider the demand to be selling price dependent in a TDFLS set up. Price
is a very crucial factor in marketing-retailer scenario. Low price of product can attract the customer attention.
So, the demand rate can be boosted up by lowering the selling price. Thus, the demands were regarded as the
functions of selling price in the existing literature. But, in reality the demand pattern is not precise to the retailer
and thus the selling price may not be crisps. In this circumstance, the decision maker has to find the optimal
retailing policy anticipating the demand pattern more precisely. Suppose, the selling price is primarily traced
with the association of impreciseness and is given loosely as {price is not suitable for the expected profit, price
is suitable for the expected price, price is suitable for the profit above the expectation}. The decision maker(s)
had to take an optimal decision to choose a selling price which can meet an expected level of the profit at least.
The whole discussion of this paper is established on this novel intuition of managerial phenomena. Secondly,
the present study chooses the fuzzy fractional differential equation to describe the proposed EOQ model under
uncertainty and memory sensitivity. To describe the dynamics of the fuzzy parameters carrying memory, the
theory of the fuzzy fractional differential equation under Caputo derivative is utilized for the first time (according
to the authors’ knowledge) in the discussion of an inventory control problem. Thirdly, the proposed theory is
represented in this paper as a more generalized phenomenon of interpretation over the other phenomena on the
different combinations of crisps, fuzzy, dense fuzzy, memory and so many components as the decision-making
features. Also, the superiority of the memory motivated inventory model under TDFLS learning consideration
over the models discussed as the particular cases is established here.

3. Different notations and assumptions

The following notations are used to denote the parameters, decision variables and objective functions to
develop and optimize the model:

̃︀𝐷: Fuzzy demand (units)̃︀𝑝: Fuzzy selling price ($/units)̃︀𝑞(𝑡): Fuzzy inventory level at time 𝑡̃︀𝑄: Fuzzy lot size (units)
𝑄defuzz: Defuzzified lot size (units) (decision variable)
𝑇 : Total time cycle (month) (decision variable)
𝛼: Differential memory index (decision variables)
𝛽: Integral memory index (decision variables)
ℎ: Holding cost (per unit per unit time)
𝐶: Ordering cost (per complete cycle)
TAP𝛼,𝛽 : Total average profit (in fuzzy)
TAPdefuzz: Total average profit (after defuzzification) (objective function)

The proposed EOQ model is developed based on the following assumptions:

(a) The demand
(︁ ̃︀𝐷)︁

is selling price dependent i.e., ̃︀𝐷 = 𝑎− 𝑏̃︀𝑝, where 𝑎 and 𝑏 are two positive crisp constants
and ̃︀𝑝 is a triangular dense fuzzy lock number.

(b) Production is instantaneous.
(c) Shortages are not allowed.
(d) Lead time is zero.
(e) EOQ model is memory sensitive i.e., the demand pattern is motivated by the memory of the customer with

the previous experience concerned with the behaviour of the shopkeeper or the quality of the product etc.



2996 M. RHAMAN ET AL.

4. Mathematical modelling of the EOQ

4.1. Formulation of the model

The classical EOQ model under uncertainty can be described by the fuzzy differential equation with the
terminal conditions as follows: ⎧⎪⎪⎨⎪⎪⎩

̃︀𝑞′(𝑡) = − ̃︀𝐷̃︀𝑞(0) = ̃︀𝑄̃︀𝑞(𝑇 ) = ̃︀0. (4.1)

The equation (4.1) represents a memory free uncertain economic order quantity model. The sense of memory can
be added in this regard by reconstructing the mathematical model with the help of the following differ-integral
equations: ⎧⎪⎪⎨⎪⎪⎩

̃︀𝑞′(𝑡) = −
∫︀ 𝑡
0
𝐾(𝑡, 𝑧) ̃︀𝐷d𝑧̃︀𝑞(0) = ̃︀𝑄̃︀𝑞(𝑇 ) = ̃︀0. (4.2)

In the equation (4.2), 𝐾(𝑡, 𝑧) is an iterative kernel carrying the notion of memory. If the kernel 𝐾(𝑡, 𝑧) is chosen
to be (𝑡−𝑧)𝛼−2

Γ(𝛼−1) , then the equation (4.2) can be rewritten as:

̃︀𝑞′(𝑡) = −𝑅𝐿𝐼𝛼−1
𝑡

̃︀𝐷
i.e.,

𝑅𝐿𝐼1−𝛼
𝑡 [̃︀𝑞′(𝑡)] = − ̃︀𝐷

i.e.,
𝐶𝐷𝛼

𝑡 ̃︀𝑞(𝑡) = − ̃︀𝐷. (4.3)

Thus, incorporating the sense of memory in the fuzzy EOQ model given by the equation (4.1), the memory
motivated uncertain scenario can be depicted by the following fuzzy fractional differential equation under Caputo
differentiability along with the terminal conditions:⎧⎪⎪⎨⎪⎪⎩

𝐶𝐷𝛼
𝑡 ̃︀𝑞(𝑡) = − ̃︀𝐷, 0 ≤ 𝑡 ≤ 𝑇 and 0 < 𝛼 ≤ 1 be a real number̃︀𝑞(0) = ̃︀𝑄̃︀𝑞(𝑇 ) = ̃︀0. (4.4)

The fuzzy demand is taken as a function of the fuzzy selling price in the assumptions for developing the proposed
model. So, putting ̃︀𝐷 = 𝑎 − 𝑏̃︀𝑝 (where the selling price ̃︀𝑝 is a fuzzy number), the system represented by the
equation (4.4) can be rewritten as: ⎧⎪⎨⎪⎩

𝐶𝐷𝛼
𝑡 ̃︀𝑞(𝑡) = −(𝑎− 𝑏̃︀𝑝)̃︀𝑞(0) = ̃︀𝑄̃︀𝑞(𝑇 ) = ̃︀0. (4.5)

4.2. Existence, uniqueness of the solution

Now, one of the major concerns about the system given by the equation (4.5) is existence and uniqueness
of its solution. Here, the theory provided by the Theorem 5.1 of [54] is imitated to discuss the existence and
uniqueness criteria of the solution of the system given by the equation (4.5). The following notes about the
equation (4.5) can be observed:
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(a) Suppose, we consider a region ℛ = [0, ℎ] × 𝐵𝜀

(︁ ̃︀𝑄)︁
, where 𝐵𝜀

(︁ ̃︀𝑄)︁
is the closed ball with centre at ̃︀𝑄 and

radius 𝜀.
(b) Obviously, −(𝑎− 𝑏̃︀𝑝 ) is a fuzzy constant and hence continuous on ℛ. Let us consider that 𝜓(𝑡, ̃︀𝑞(𝑡)) =

−(𝑎− 𝑏̃︀𝑝 ).
(c) If we restrict the fuzzy demand ̃︀𝐷 = (𝑎− 𝑏̃︀𝑝 ) to be bounded quantity, then we can find a positive integer

𝑀1 such that 𝐷𝐻

(︁̃︀0, 𝜓(𝑡, ̃︀𝑞(𝑡)))︁ ≤𝑀1, for all (𝑡, ̃︀𝑞(𝑡)) ∈ ℛ.
(d) We take 𝜙(𝑡, 𝑧) = 𝐴1𝑧, where 𝐴1 is a positive crisp constant. Then 𝜙 is non-decreasing in 𝑧 and 𝜙(𝑡, 0) = 0.
(e) If we consider 𝑞(𝑡) is bounded for the whole-time cycle then, 0 ≤ 𝜙(𝑡, 𝑞(𝑡)) = 𝐴1𝑞(𝑡) ≤ 𝑀2 for all 𝑡 ∈ [0, ℎ],

0 ≤ 𝑞(𝑡) ≤ 𝜀 and 𝐶𝐷𝛼
𝑡 𝑞(𝑡) = −𝐴1𝑞(𝑡), 𝑞(0) = 0 has the unique solution.

(f) 𝐷𝐻

(︁
𝜓(𝑡,̃︀𝑞(𝑡))

(𝑡1−𝑡)1−𝛼 ,
𝜓(𝑡,̃︀𝑞1(𝑡))
(𝑡2−𝑡)1−𝛼

)︁
≤

⃒⃒⃒
(𝑡1 − 𝑡)𝛼−1 − (𝑡2 − 𝑡)𝛼−1

⃒⃒⃒
𝜙(𝑡,𝐷𝐻(̃︀𝑞(𝑡), ̃︀𝑞1(𝑡))).

Then, the Theorem 5.1 of [54] provides the guarantee of the existence and uniqueness of the solution of the
fuzzy fractional differential equation (4.5). Thus, the system represented by the equation (4.5) can produce a
unique solution, provided the demand to have a bounded value.

4.3. Analytical solution

For the analytical solution of the equation (4.5), the parametric representation approach is utilized in this
subsection. Suppose, the 𝑟-cuts of the fuzzy parameters and variables ̃︀𝑞(𝑡), ̃︀𝐷, ̃︀𝑄 and ̃︀𝑝 are given as:

̃︀𝑞(𝑡, 𝑟) = [𝑞𝐿(𝑡, 𝑟), 𝑞𝑅(𝑡, 𝑟)]; ̃︀𝐷(𝑟) = [𝐷𝐿(𝑟), 𝐷𝑅(𝑟)]; ̃︀𝑄(𝑟) = [𝑄𝐿(𝑟), 𝑄𝑅(𝑟)]
= [𝑞𝐿(0, 𝑟), 𝑞𝑅(0, 𝑟)] and ̃︀𝑝(𝑟) = [𝑝𝐿(𝑟), 𝑝𝑅(𝑟)].

Then, the components of the parametric representation of the demand rate ̃︀𝐷(𝑟) are derived as:{︂
𝐷𝐿(𝑟) = 𝑎− 𝑏𝑝𝑅(𝑟)
𝐷𝑅(𝑟) = 𝑎− 𝑏𝑝𝐿(𝑟).

(4.6)

Taking fuzzy Laplace transformation [3, 56,57] of the equation (4.5):

ℒ{𝐷𝛼
𝑎 ̃︀𝑞(𝑡); 𝑠} = −ℒ

{︁ ̃︀𝐷; 𝑠
}︁
. (4.7)

Here, two different cases are considered based on the fuzzy fractional Caputo differentiability [5] of the inventory
level function ̃︀𝑞(𝑡).
Case I. When ̃︀𝑞(𝑡) is 𝐶 [(1)− 𝛼] differentiable

Then, from the equation (4.7), the following equation is derived:

𝑠𝛼ℒ{̃︀𝑞(𝑡); 𝑠} ⊖gH 𝑠
𝛼−1̃︀𝑞(0) = −ℒ

{︁ ̃︀𝐷; 𝑠
}︁
. (4.8)

The parametric representation of the equation (4.8) can be written as:{︃
𝑠𝛼ℓ{𝑞𝐿(𝑡, 𝑟); 𝑠} − 𝑠𝛼−1𝑞𝐿(0, 𝑟) = −ℓ{𝐷𝑅(𝑟); 𝑠}
𝑠𝛼ℓ{𝑞𝑅(𝑡, 𝑟); 𝑠} − 𝑠𝛼−1𝑞𝑅(0, 𝑟) = −ℓ{𝐷𝐿(𝑟); 𝑠}

i.e.,

{︃
𝑠𝛼ℓ{𝑞𝐿(𝑡, 𝑟); 𝑠} − 𝑠𝛼−1𝑄𝐿(𝑟) = −{𝑎−𝑏𝑝𝐿(𝑟)}

𝑠

𝑠𝛼ℓ{𝑞𝑅(𝑡, 𝑟); 𝑠} − 𝑠𝛼−1𝑄𝑅(𝑟) = −{𝑎−𝑏𝑝𝑅(𝑟)}
𝑠

i.e.,

{︃
ℓ{𝑞𝐿(𝑡, 𝑟); 𝑠} = 𝑄𝐿(𝑟)

𝑠 − {𝑎−𝑏𝑝𝐿(𝑟)}
𝑠𝛼+1

ℓ{𝑞𝑅(𝑡, 𝑟); 𝑠} = 𝑄𝑅(𝑟)
𝑠 − {𝑎−𝑏𝑝𝑅(𝑟)}

𝑠𝛼+1 .
(4.9)
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Taking the inverse Laplace transformation of the system represented by the equation (4.9), the components
of the parametric representation of the fuzzy inventory level are given by:{︃

𝑞𝐿(𝑡, 𝑟) = 𝑄𝐿(𝑟)− {𝑎−𝑏𝑝𝐿(𝑟)}𝑡𝛼
Γ(𝛼+1)

𝑞𝑅(𝑡, 𝑟) = 𝑄𝑅(𝑟)− {𝑎−𝑏𝑝𝑅(𝑟)}𝑡𝛼
Γ(𝛼+1) .

(4.10)

Using the initial conditions in the equation (4.10), the components of the parametric representation of the
fuzzy lot size are given by: {︃

𝑄𝐿(𝑟) = {𝑎−𝑏𝑝𝐿(𝑟)}𝑇𝛼

Γ(𝛼+1)

𝑄𝑅(𝑟) = {𝑎−𝑏𝑝𝑅(𝑟)}𝑇𝛼

Γ(𝛼+1) .
(4.11)

Then, ultimately the equation (4.10) takes the form:{︃
𝑞𝐿(𝑡, 𝑟) = {𝑎−𝑏𝑝𝐿(𝑟)}(𝑇𝛼−𝑡𝛼)

Γ(𝛼+1)

𝑞𝑅(𝑡, 𝑟) = {𝑎−𝑏𝑝𝑅(𝑟)}(𝑇𝛼−𝑡𝛼)
Γ(𝛼+1) .

(4.12)

Now, the parametric values of different costs and revenue are counted as follow:
Holding Cost, HC𝛼,𝛽 = [HC𝐿(𝑟),HC𝑅(𝑟)], where

HC𝐿(𝑟) =
ℎ

Γ(𝛽)

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1
𝑞𝐿(𝑡, 𝑟)d𝑡

=
ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}
Γ(𝛽)Γ(𝛼+ 1)

[︃
𝑇𝛼

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1d𝑡−
∫︁ 𝑇

0

𝑡𝛼(𝑇 − 𝑡)𝛽−1d𝑡

]︃

=
ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}
Γ(𝛽)Γ(𝛼+ 1)

[︂
𝑇𝛼+𝛽

𝛽
− 𝑇𝛼+𝛽

∫︁ 1

0

𝑡𝛼(1− 𝑡)𝛽−1d𝑡
]︂

=
ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}𝑇𝛼+𝛽

Γ(𝛽)Γ(𝛼+ 1)

[︂
1
𝛽
− B(𝛼+ 1, 𝛽)

]︂
= ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}𝑇𝛼+𝛽

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂
(4.13)

and

HC𝑅(𝑟) =
ℎ

Γ(𝛽)

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1
𝑞𝑅(𝑡, 𝑟)d𝑡

=
ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}
Γ(𝛽)Γ(𝛼+ 1)

[︃
𝑇𝛼

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1d𝑡−
∫︁ 𝑇

0

𝑡𝛼(𝑇 − 𝑡)𝛽−1d𝑡

]︃

=
ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}
Γ(𝛽)Γ(𝛼+ 1)

[︂
𝑇𝛼+𝛽

𝛽
− 𝑇𝛼+𝛽

∫︁ 1

0

𝑡𝛼(1− 𝑡)𝛽−1d𝑡
]︂

=
ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}𝑇𝛼+𝛽

Γ(𝛽)Γ(𝛼+ 1)

[︂
1
𝛽
− B(𝛼+ 1, 𝛽)

]︂
= ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}𝑇𝛼+𝛽

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂
· (4.14)

Total earned revenue:

ER𝛼,𝛽 = [ER𝐿(𝑟),ER𝑅(𝑟)], where
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ER𝐿(𝑟) =
𝑝𝐿(𝑟)
Γ(𝛽)

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1
𝐷𝐿(𝑟)d𝑡

=
𝑝𝐿(𝑟){𝑎− 𝑏𝑝𝑅(𝑟)}

Γ(𝛽)

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1d𝑡

=
𝑝𝐿(𝑟){𝑎− 𝑏𝑝𝑅(𝑟)}𝑇 𝛽

Γ(𝛽 + 1)
(4.15)

and

ER𝑅(𝑟) =
𝑝𝑅(𝑟)
Γ(𝛽)

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1
𝐷𝑅(𝑟)d𝑡

=
𝑝𝑅(𝑟){𝑎− 𝑏𝑝𝐿(𝑟)}

Γ(𝛽)

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1d𝑡

=
𝑝𝑅(𝑟){𝑎− 𝑏𝑝𝐿(𝑟)}𝑇 𝛽

Γ(𝛽 + 1)
· (4.16)

So, total average profit is given by:

TAP𝛼,𝛽 = [TAP𝐿,TAP𝑅] =
1
𝑇
{ER𝛼,𝛽 − (𝐶 + HC𝛼,𝛽)}.

And therefore, the components of the parametric representation of TAP𝛼,𝛽 are the follows:

TAP𝐿 =
ER𝐿(𝑟)− 𝐶 −HC𝑅(𝑟)

𝑇

=
𝑝𝐿(𝑟){𝑎− 𝑏𝑝𝑅(𝑟)}𝑇 𝛽−1

Γ(𝛽 + 1)
− 𝐶

𝑇
− ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂
(4.17)

and

TAP𝑅 =
ER𝑅(𝑟)− 𝐶 −HC𝐿(𝑟)

𝑇

=
𝑝𝑅(𝑟){𝑎− 𝑏𝑝𝐿(𝑟)}𝑇 𝛽−1

Γ(𝛽 + 1)
− 𝐶

𝑇
− ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂
·

(4.18)

Case II. When ̃︀𝑞(𝑡) is 𝐶 [(2)− 𝛼] differentiable.
Then, proceeding in the similar path as of case I (details are given in Appendix A), the components of the
parametric representation of the total average profit (TAP𝛼,𝛽) and lot size⎧⎪⎨⎪⎩

TAP𝐿 = 𝑝𝐿(𝑟){𝑎−𝑏𝑝𝑅(𝑟)}𝑇𝛽−1

Γ(𝛽+1) − 𝐶
𝑇 − ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}𝑇𝛼+𝛽−1

[︁
1

Γ(𝛽+1)Γ(𝛼+1) −
1

Γ(𝛼+𝛽+1)

]︁
TAP𝑅 = 𝑝𝑅(𝑟){𝑎−𝑏𝑝𝐿(𝑟)}𝑇𝛽−1

Γ(𝛽+1) − 𝐶
𝑇 − ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}𝑇𝛼+𝛽−1

[︁
1

Γ(𝛽+1)Γ(𝛼+1) −
1

Γ(𝛼+𝛽+1)

]︁ (4.19)

and,

{︃
𝑄𝐿(𝑟) = {𝑎−𝑏𝑝𝐿(𝑟)}𝑇𝛼

Γ(𝛼+1)

𝑄𝑅(𝑟) = {𝑎−𝑏𝑝𝑅(𝑟)}𝑇𝛼

Γ(𝛼+1) .
(4.20)

4.4. TDFLS decision making

In this subsection, the triangular dense fuzzy lock set approach is incorporated to make a proper decision in
the uncertain environment using the learning experience and memory. Here, the unit selling price is assumed to
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be triangular dense fuzzy lock number [15] with two keys and the other involved parameters are assumed to be
constants.

Let, the selling price, a triangular lock fuzzy dense number is given by:̃︀𝑝 =
⟨
𝑝
{︁

1− 𝜌
(︁

1
𝐾1
− 1

𝑛+1

)︁}︁
, 𝑝, 𝑝

{︁
1 + 𝜎

(︁
1
𝐾2
− 1

𝑛+1

)︁}︁⟩
with its membership function

𝜇̃︀𝑝(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥−𝑝

{︁
1−𝜌

(︁
1

𝐾1
− 1

𝑛+1

)︁}︁

𝑝𝜌
(︁

1
𝐾1
− 1

𝑛+1

)︁ , when 𝑝
{︁

1− 𝜌
(︁

1
𝐾1
− 1

𝑛+1

)︁}︁
≤ 𝑥 ≤ 𝑝

𝑝
{︁

1+𝜎
(︁

1
𝐾2
− 1

𝑛+1

)︁}︁
−𝑥

𝑝𝜎
(︁

1
𝐾2
− 1

𝑛+1

)︁ , when 𝑝 ≤ 𝑥 ≤ 𝑝
{︁

1 + 𝜎
(︁

1
𝐾2
− 1

𝑛+1

)︁}︁
0, otherwise.

(4.21)

Therefore, in the 𝑟-cut representation the unit selling price can be given by:

̃︀𝑝 = [𝑝𝐿(𝑟), 𝑝𝑅(𝑟)], where

𝑝𝐿(𝑟) = 𝑝− (1− 𝑟)𝑝𝜌
(︂

1
𝐾1

− 1
𝑛+ 1

)︂
(4.22)

and

𝑝𝑅(𝑟) = 𝑝+ (1− 𝑟)𝑝𝜎
(︂

1
𝐾2

− 1
𝑛+ 1

)︂
· (4.23)

For the case of 𝐶 [(1)− 𝛼] differentiability of ̃︀𝑞(𝑡), the defuzzified value of the total average profit is obtained
using the 𝛼-cut defuzzification approach as follows (details are given in Appendix B):

TAPdefuzz1 =
∑︀𝑁
𝑛=0

∫︀ 1

0
{TAP𝐿 + TAP𝑅}d𝑟

2𝑁

=
𝑇 𝛽−1

Γ(𝛽 + 1)

∑︀𝑁
𝑛=0

∫︀ 1

0
{𝑎(𝑝𝐿(𝑟) + 𝑝𝑅(𝑟))− 2𝑏𝑝𝐿(𝑟)𝑝𝑅(𝑟)}d𝑟

2𝑁
− 𝐶

𝑇

− ℎ𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂{︃
𝑎− 𝑏

∑︀𝑁
𝑛=0

∫︀ 1

0
(𝑝𝐿(𝑟) + 𝑝𝑅(𝑟))d𝑟

2𝑁

}︃

=
𝑇 𝛽−1

Γ(𝛽 + 1)
𝑝

[︂
(𝑎− 𝑏𝑝) +

(︂
𝑎

4
− 𝑏𝑝

2

)︂(︂
𝜎

𝐾2
− 𝜌

𝐾1

)︂
+

𝑏𝑝𝜎𝜌

3𝐾1𝐾2

−
{︂
𝑎(𝜎 − 𝜌)

4
− 𝑏𝑝(𝜎 − 𝜌)

2
− 𝑏𝑝𝜎𝜌

3

(︂
1
𝐾1

+
1
𝐾2

)︂}︂
1
𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

+
𝑏𝑝𝜎𝜌

3
1
𝑁

𝑁∑︁
𝑛=0

(︂
1

𝑛+ 1

)︂2

− 𝐶

𝑇
− ℎ𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂
×

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃(︂
𝜎

𝐾2
− 𝜌

𝐾1

)︂
− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃
· (4.24)

Also, the defuzzified value of the lot size in the case of 𝐶 [(1)− 𝛼] differentiability of ̃︀𝑞(𝑡) will be:

𝑄defuzz1 =
∑︀𝑁
𝑛=0

∫︀ 1

0
{𝑄𝐿(𝑟) +𝑄𝑅(𝑟)}d𝑟

2𝑁

=

{︁
𝑎− 𝑏

∑︀𝑁
𝑛=0

∫︀ 1
0 {𝑝𝐿(𝑟)+𝑝𝑅(𝑟)}d𝑟

2𝑁

}︁
𝑇𝛼

Γ(𝛼+ 1)
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=

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃(︂
𝜎

𝐾2
− 𝜌

𝐾1

)︂
− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃
𝑇𝛼

Γ(𝛼+ 1)
· (4.25)

For the case of 𝐶 [(2)− 𝛼] differentiability of ̃︀𝑞(𝑡), the defuzzified value of the total average profit is obtained
using the 𝛼-cut defuzzification approach as follows (details are given in Appendix B):

TAPdefuzz2 =
∑︀𝑁
𝑛=0

∫︀ 1

0
{TAP𝐿 + TAP𝑅}d𝑟

2𝑁

=
𝑇 𝛽−1

Γ(𝛽 + 1)

∑︀𝑁
𝑛=0

∫︀ 1

0
{𝑎(𝑝𝐿(𝑟) + 𝑝𝑅(𝑟))− 2𝑏𝑝𝐿(𝑟)𝑝𝑅(𝑟)}d𝑟

2𝑁
− 𝐶

𝑇

− ℎ𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂{︃
𝑎− 𝑏

∑︀𝑁
𝑛=0

∫︀ 1

0
(𝑝𝐿(𝑟) + 𝑝𝑅(𝑟))d𝑟

2𝑁

}︃
= TAPdefuzz1.

Also,
𝑄defuzz1 = 𝑄defuzz2.

Interestingly, there is no distinction between two cases regarding fuzzy fractional differentiability of ̃︀𝑞(𝑡) after
the defuzzifications in the above mentioned technique. So, without the loss of generality, 𝑄defuzz1 and TAPdefuzz1

are replaced by the notations 𝑄defuzz and TAPdefuzz respectively.
So, the optimization problem will be⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Max TAPdefuzz

𝑄defuzz =
[︁
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︁(︁
𝜎
𝐾2
− 𝜌

𝐾1

)︁
− 𝜎−𝜌

𝑁

∑︀𝑁
𝑛=0

1
𝑛+1

}︁]︁
𝑇𝛼

Γ(𝛼+1)

TAPdefuzz is given by (4.21)
𝑇 > 0
0 < 𝛼, 𝛽 ≤ 1.

(4.26)

This is a non-linear single objective multiple constrained optimization problem. Instead of going through the
analytical optimization technique, the numerical optimization techniques are chosen in this paper. The numerical
optimization of the system given by the equation (4.26) is done by using LINGO 18.0 software as the working
tool.

5. Special cases for optimization of the problems

In this section, some popular models are seen as particular cases of the proposed inventory model under
memory and learning based study with double keys in the hand of the decision maker. The approach of deduction
may be specified through the values of the memory index or the values of the involved parameters to present
the degree of fuzziness. The categorization of the proposed problem is based on the memory index which
corresponds to the main problem itself and its integer order version (stands for memory free situation). For
both the fractional and integer order model, more categorizations are carried out on the basis of the values of
keys and the variance of the parameters of dense lock fuzzy system.

5.1. Fractional order sub problems

5.1.1. When 𝐾1 = 𝐾2 = 𝐾

Then

TAPdefuzz =
𝑇 𝛽−1

Γ(𝛽 + 1)
𝑝

[︂
(𝑎− 𝑏𝑝) +

(︂
𝑎

4
− 𝑏𝑝

2

)︂(︂
𝜎 − 𝜌

𝐾

)︂
+
𝑏𝑝𝜎𝜌

3𝐾2
−

{︂
𝑎(𝜎 − 𝜌)

4
− 𝑏𝑝(𝜎 − 𝜌)

2
− 2𝑏𝑝𝜎𝜌

3𝐾

}︂
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× 1
𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

+
𝑏𝑝𝜎𝜌

3
1
𝑁

𝑁∑︁
𝑛=0

(︂
1

𝑛+ 1

)︂2
]︃
− 𝐶

𝑇
− ℎ𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂

×

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃(︂
𝜎 − 𝜌

𝐾

)︂
− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃
and

𝑄defuzz =

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃
𝜎 − 𝜌

𝐾
− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃
𝑇𝛼

Γ(𝛼+ 1)
·

This is the case of fractional model in the lock fuzzy dense environment with single key.

5.1.2. When 𝐾1 = 𝐾2 = 1

TAPdefuzz =
𝑇 𝛽−1

Γ(𝛽 + 1)
𝑝

[︂
(𝑎− 𝑏𝑝) +

(︂
𝑎

4
− 𝑏𝑝

2

)︂
(𝜎 − 𝜌) +

𝑏𝑝𝜎𝜌

3
−

{︂
𝑎(𝜎 − 𝜌)

4
− 𝑏𝑝(𝜎 − 𝜌)

2
− 2𝑏𝑝𝜎𝜌

3

}︂

× 1
𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

+
𝑏𝑝𝜎𝜌

3
1
𝑁

𝑁∑︁
𝑛=0

(︂
1

𝑛+ 1

)︂2
]︃
− 𝐶

𝑇
− ℎ𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂

×

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃
(𝜎 − 𝜌)− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃
and

𝑄defuzz =

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃
(𝜎 − 𝜌)− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃
𝑇𝛼

Γ(𝛼+ 1)
·

This is the case of fractional model in the fuzzy dense environment.

5.1.3. When 𝐾1 = 𝐾2 = 1 and 𝑁 →∞

TAPdefuzz =
𝑇 𝛽−1

Γ(𝛽 + 1)
𝑝

[︂
(𝑎− 𝑏𝑝) +

(︂
𝑎

4
− 𝑏𝑝

2

)︂
(𝜎 − 𝜌) +

𝑏𝑝𝜎𝜌

3

]︂
− 𝐶

𝑇
− ℎ𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂[︂
(𝑎− 𝑏𝑝)− 𝑏𝑝(𝜎 − 𝜌)

4

]︂
and

𝑄defuzz =
[︂
(𝑎− 𝑏𝑝)− 𝑏𝑝(𝜎 − 𝜌)

4

]︂
𝑇𝛼

Γ(𝛼+ 1)
·

This is the case of fractional in the general fuzzy environment.

5.1.4. When 𝐾1 = 𝐾2 = 1, 𝑁 →∞, 𝜎 = 𝜌 = 0

TAPdefuzz =
𝑇 𝛽−1

Γ(𝛽 + 1)
𝑝(𝑎− 𝑏𝑝)− 𝐶

𝑇
− ℎ𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂
(𝑎− 𝑏𝑝)

and

𝑄defuzz =
(𝑎− 𝑏𝑝)𝑇𝛼

Γ(𝛼+ 1)
·

This is the case of fractional in the crisp environment.
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5.2. Integer order sub problems

When 𝛼 = 𝛽 = 1, then

TAPdefuzz = 𝑝

[︂
(𝑎− 𝑏𝑝) +

(︂
𝑎

4
− 𝑏𝑝

2

)︂(︂
𝜎

𝐾2
− 𝜌

𝐾1

)︂
+

𝑏𝑝𝜎𝜌

3𝐾1𝐾2
−

{︂
𝑎(𝜎 − 𝜌)

4
− 𝑏𝑝(𝜎 − 𝜌)

2
− 𝑏𝑝𝜎𝜌

3

(︂
1
𝐾1

+
1
𝐾2

)︂}︂

× 1
𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

+
𝑏𝑝𝜎𝜌

3
1
𝑁

𝑁∑︁
𝑛=0

(︂
1

𝑛+ 1

)︂2
]︃

− 𝐶

𝑇
− ℎ𝑇

2

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃(︂
𝜎

𝐾2
− 𝜌

𝐾1

)︂
− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃

and

𝑄defuzz =

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃(︂
𝜎

𝐾2
− 𝜌

𝐾1

)︂
− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃
𝑇.

5.2.1. When 𝐾1 = 𝐾2 = 𝐾

Then

TAPdefuzz = 𝑝

[︂
(𝑎− 𝑏𝑝) +

(︂
𝑎

4
− 𝑏𝑝

2

)︂(︂
𝜎 − 𝜌

𝐾

)︂
+
𝑏𝑝𝜎𝜌

3𝐾2
−

{︂
𝑎(𝜎 − 𝜌)

4
− 𝑏𝑝(𝜎 − 𝜌)

2
− 2𝑏𝑝𝜎𝜌

3𝐾

}︂

× 1
𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

+
𝑏𝑝𝜎𝜌

3
1
𝑁

𝑁∑︁
𝑛=0

(︂
1

𝑛+ 1

)︂2
]︃

− 𝐶

𝑇
− ℎ𝑇

2

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃(︂
𝜎 − 𝜌

𝐾

)︂
− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃

and

𝑄defuzz =

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃
𝜎 − 𝜌

𝐾
− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃
𝑇.

This is the case of integer order model in the lock fuzzy dense environment with single key.

5.2.2. When 𝐾1 = 𝐾2 = 1

TAPdefuzz = 𝑝

[︂
(𝑎− 𝑏𝑝) +

(︂
𝑎

4
− 𝑏𝑝

2

)︂
(𝜎 − 𝜌) +

𝑏𝑝𝜎𝜌

3
−

{︂
𝑎(𝜎 − 𝜌)

4
− 𝑏𝑝(𝜎 − 𝜌)

2
− 2𝑏𝑝𝜎𝜌

3

}︂

× 1
𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

+
𝑏𝑝𝜎𝜌

3
1
𝑁

𝑁∑︁
𝑛=0

(︂
1

𝑛+ 1

)︂2
]︃

− 𝐶

𝑇
− ℎ𝑇

2

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃
(𝜎 − 𝜌)− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃

and

𝑄defuzz =

[︃
(𝑎− 𝑏𝑝)− 𝑏𝑝

4

{︃
(𝜎 − 𝜌)− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃]︃
𝑇.

This is the case of integer order model in the fuzzy dense environment.
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5.2.3. When 𝐾1 = 𝐾2 = 1 and 𝑁 →∞

TAPdefuzz = 𝑝

[︂
(𝑎− 𝑏𝑝) +

(︂
𝑎

4
− 𝑏𝑝

2

)︂
(𝜎 − 𝜌) +

𝑏𝑝𝜎𝜌

3

]︂
− 𝐶

𝑇
− ℎ𝑇

2

[︂
(𝑎− 𝑏𝑝)− 𝑏𝑝(𝜎 − 𝜌)

4

]︂
and

𝑄defuzz =
[︂
(𝑎− 𝑏𝑝)− 𝑏𝑝(𝜎 − 𝜌)

4

]︂
𝑇.

This is the case of integer order model in the general fuzzy environment.

5.2.4. When 𝐾1 = 𝐾2 = 1, 𝑁 →∞, 𝜎 = 𝜌 = 0

TAPdefuzz = 𝑝(𝑎− 𝑏𝑝)− 𝐶

𝑇
− ℎ𝑇

2
(𝑎− 𝑏𝑝)

and
𝑄defuzz = (𝑎− 𝑏𝑝)𝑇.

This is the case of integer order model in the crisp environment.

5.3. Graphical depiction of the sense of generalization

The senses of generalization discussed in the Sections 5.1 and 5.2 are presented graphically by Figures 1
and 2. Figure 1 represents the intuitions for the generalization of a crisp model (may be integer or fractional
order) to complicated model under dense fuzzy lock system. On the other hand, Figure 2 explores the fact that
every integer order model is a particular case of the corresponding fractional order model (better to say the
arbitrary order model).

6. Numerical exploration

In this section, some numerical problems are analysed to study the effect of memory and learning experience-
based decision making in an inventory control problem with the selling price dependent demand rate. The
following algorithm developed in the first subsection of the present section is used to measure the impact of
memory and learning experiences.

6.1. Solution algorithm

Step 1. Input the value of the parameters 𝐶, ℎ, 𝑝 and constant 𝑎, 𝑏.
Step 2. Set 𝛽 = 1.
Step 3. For 𝛼 = 1 to 0.1, calculate TAP*defuzz, 𝑄

*
defuzz, 𝑇

*.
Step 4. Check feasible values of 𝑄*defuzz and 𝑇 *.
Step 5. Select TAP*defuzz1 = max𝛼{TAP*defuzz(𝛼)}. Go to step 13.
Step 6. Set 𝛼 = 1.
Step 7. For 𝛽 = 1 to 0.1, calculate TAP*defuzz, 𝑄

*
defuzz, 𝑇

*.
Step 8. Check feasible values of 𝑄*defuzz and 𝑇 *.
Step 9. Select TAP*defuzz2 = max𝛽{TAP*defuzz(𝛽)}. Go to step 13.
Step 10. For 𝛼, 𝛽 = 1 to 0.1, calculate TAP*defuzz, 𝑄

*
defuzz, 𝑇

*.
Step 11. Check feasible values of 𝑄*defuzz and 𝑇 *.
Step 12. Select TAP*defuzz3 = max𝛼,𝛽{TAP*defuzz(𝛼, 𝛽)}. Go to step 13.
Step 13. Do fuzzification of the selected crisp model. Input 𝜎 and 𝜌.

Step 14. Calculate

⎧⎨⎩TAP*defuzz4 = TAP*defuzz1 in general fuzzzy environment
TAP*defuzz5 = TAP*defuzz2 in general fuzzzy environment
TAP*defuzz6 = TAP*defuzz3 in general fuzzzy environment.
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Figure 1. Sense of generalization through different aspects of fuzziness.

Figure 2. Sense of generalization through fractional calculus.
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Step 15. Apply dense fuzzy environment on the selected crisp model. Input 𝜎 and 𝜌.
Step 16. For value 𝑁 = 1 to 4.

Calculate

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TAP*defuzz7 = TAP*defuzz1 in dense fuzzzy environment (𝑁 = 1)
TAP*defuzz8 = TAP*defuzz1 in dense fuzzzy environment (𝑁 = 2)
TAP*defuzz9 = TAP*defuzz1 in dense fuzzzy environment (𝑁 = 3)
TAP*defuzz10 = TAP*defuzz1 in dense fuzzzy environment (𝑁 = 4)
TAP*defuzz11 = TAP*defuzz2 in dense fuzzzy environment (𝑁 = 1)
TAP*defuzz12 = TAP*defuzz2 in dense fuzzzy environment (𝑁 = 2)
TAP*defuzz13 = TAP*defuzz2 in dense fuzzzy environment (𝑁 = 3)
TAP*defuzz14 = TAP*defuzz2 in dense fuzzzy environment (𝑁 = 4)
TAP*defuzz15 = TAP*defuzz3 in dense fuzzzy environment (𝑁 = 1)
TAP*defuzz16 = TAP*defuzz3 in dense fuzzzy environment (𝑁 = 2)
TAP*defuzz17 = TAP*defuzz3 in dense fuzzzy environment (𝑁 = 3)
TAP*defuzz18 = TAP*defuzz3 in dense fuzzzy environment (𝑁 = 4).

.

Step 17. Apply dense fuzzy lock (single key) environment on the selected crisp model. Input 𝜎, 𝜌 and 𝐾.
Step 18. For value 𝑁 = 1 to 4.

Calculate

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TAP*defuzz19 = TAP*defuzz1 in dense fuzzzy lock (single key) environment (𝑁 = 1)
TAP*defuzz20 = TAP*defuzz1 in dense fuzzzy lock (single key) environment (𝑁 = 2)
TAP*defuzz21 = TAP*defuzz1 in dense fuzzzy lock (single key) environment (𝑁 = 3)
TAP*defuzz22 = TAP*defuzz1 in dense fuzzzy lock (single key) environment (𝑁 = 4)
TAP*defuzz23 = TAP*defuzz2 in dense fuzzzy lock (single key) environment (𝑁 = 1)
TAP*defuzz24 = TAP*defuzz2 in dense fuzzzy lock (single key) environment (𝑁 = 2)
TAP*defuzz25 = TAP*defuzz2 in dense fuzzzy lock (single key) environment (𝑁 = 3)
TAP*defuzz26 = TAP*defuzz2 in dense fuzzzy lock (single key) environment (𝑁 = 4)
TAP*defuzz27 = TAP*defuzz3 in dense fuzzzy lock (single key) environment (𝑁 = 1)
TAP*defuzz28 = TAP*defuzz3 in dense fuzzzy lock (single key) environment (𝑁 = 2)
TAP*defuzz29 = TAP*defuzz3 in dense fuzzzy lock (single key) environment (𝑁 = 3)
TAP*defuzz30 = TAP*defuzz3 in dense fuzzzy lock (single key) environment (𝑁 = 4).

Step 19. Apply dense fuzzy lock (double keys) environment on the selected crisp model. Input 𝜎, 𝜌, 𝐾1 and
𝐾2.

Step 20. For value 𝑁 = 1 to 4.

Calculate

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TAP*defuzz31 = TAP*defuzz1 in dense fuzzzy lock (double key) environment (𝑁 = 1)
TAP*defuzz32 = TAP*defuzz1 in dense fuzzzy lock (double key) environment (𝑁 = 2)
TAP*defuzz33 = TAP*defuzz1 in dense fuzzzy lock (double key) environment (𝑁 = 3)
TAP*defuzz34 = TAP*defuzz1 in dense fuzzzy lock (double key) environment (𝑁 = 4)
TAP*defuzz35 = TAP*defuzz2 in dense fuzzzy lock (double key) environment (𝑁 = 1)
TAP*defuzz36 = TAP*defuzz2 in dense fuzzzy lock (double key) environment (𝑁 = 2)
TAP*defuzz37 = TAP*defuzz2 in dense fuzzzy lock (double key) environment (𝑁 = 3)
TAP*defuzz38 = TAP*defuzz2 in dense fuzzzy lock (double key) environment (𝑁 = 4)
TAP*defuzz39 = TAP*defuzz3 in dense fuzzzy lock (double key) environment (𝑁 = 1)
TAP*defuzz40 = TAP*defuzz3 in dense fuzzzy lock (double key) environment (𝑁 = 2)
TAP*defuzz41 = TAP*defuzz3 in dense fuzzzy lock (double key) environment (𝑁 = 3)
TAP*defuzz42 = TAP*defuzz3 in dense fuzzzy lock (double key) environment (𝑁 = 4).

Step 21. Select TAP*defuzz = max𝑖=1 to 42TAP*defuzz𝑖.
Step 22. End.

6.2. Memory sensitivity in crisp system

Let us consider the following values of the fundamental parameters as inputs:

𝑎 = 200; 𝑏 = 0.5; 𝑝 = 25; 𝐶 = 600; ℎ = 1.5.
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Table 1. Sensitivity of optimal solution with respect to differential memory index.

Differential memory
index (𝛼)

𝑇 * 𝑄*
defuzz TAP*

defuzz

1 2.066 387.298 4106.55
0.9 2.286 410.366 4133.51
0.8 2.601 432.511 4168.48
0.7 3.068 452.302 4212.58
0.6 3.802 467.619 4266.65
0.5 5.049 475.380 4330.97
0.4 7.427 471.268 4404.74
0.3 12.855 449.469 4485.24
0.2 29.803 402.652 4566.71
0.1 136.536 322.244 4639.16

Table 2. Sensitivity of optimal solution with respect to integral memory index.

Integral memory
index (𝛽)

𝑇 * 𝑄*
defuzz TAP*

defuzz

1 2.066 387.298 4106.55
0.9 0.982 184.148 4135.42
0.8 0.491 92.130 4504.31
0.7 0.253 47.439 5371.12
0.6 0.123 23.108 7218.78
0.5 0.051 9.631 11 632.79
0.4 0.016 2.921 25 644.59
0.3 0.002 0.454 106 255.90

Then, the optimum values of the objective function and the decision variables in the classical EOQ model are
obtained as TAPdefuzz = 4106.55; 𝑄*defuzz = 387.298 and 𝑇 * = 2.066.

Now, the impacts of memory on the classical EOQ model are examined letting the order of differentiation
and integration to be constants. The Tables 1 and 2 represent the memory sensitivity individually with respect
to the differential and integral memory index respectively. One memory index is fixed to the value 1 while
measuring the impact of another memory index. The Table 3 shows the memory sensitivity of the result varying
both memory indexes simultaneously.

The Figures 3, 4 and 5 present graphically the variance of the total average profit, lot size and total cycle
time, respectively with respect to the memory indexes.

From the Figure 1, it is seen that as the memory index decreases, the graph of the optimal values of total
average profit maintains a strictly increasing pattern. However, the influence of the integral memory index on
the total average profit is far superior in comparison to the differential memory index. From the Figure 2, it is
seen that as the differential memory index decreases, the graph of the optimal lot size increases initially and
then ultimately decreases with a bell-shaped curve. However, for the case of integral memory index as well as
the case of combined effects, the graphs maintain steady decreasing patterns. Also, in the Figure 3, it is noticed
that the graph of the total cycle time follows an increasing pattern with respect to the decreasing trends of the
differential memory index. Again, the scenarios for the case of the integral memory index and the combined
case are totally reversed.
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Table 3. Sensitivity of optimal solution with respect to both the memory indexes.

Differential memory
index (𝛼)

Integral memory
index (𝛽)

𝑇 * 𝑄*
defuzz TAP*

defuzz

1 1 2.066 387.298 4106.55
0.9 0.9 1.006 195.942 4137.54
0.8 0.8 0.497 115.007 4497.14
0.7 0.7 0.254 79.105 5353.91
0.6 0.6 0.124 59.842 7188.58
0.5 0.5 0.051 48.000 11 579.93
0.4 0.4 0.016 40.026 25 534.66
0.3 0.3 0.002 34.307 105 884.9

Figure 3. Total average profit for different memory index.
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Figure 4. Lot size for different memory index.

6.3. Decision making under uncertainty

Apart from the memory less case (corresponding to 𝛼 = 𝛽 = 1), we select three different fractional cases on
the basis of maximization objective of total average profit subject to the condition of feasible values of total time
cycle and lot size from the analysis in the Section 6.2. The performance of the selected pairs of memory index
in crisp and different fuzzy situations are displayed in the Table 4. Together with the non-fuzzy parameters,
described in the Section 6.2, the below mentioned values of the fuzzy parameters are considered here:

(i) For general fuzzy models we take 𝜎 = 0.35, 𝜌 = 0.2.
(ii) For dense fuzzy models we take 𝜎 = 0.35, 𝜌 = 0.2 and 𝑁 = 1 to 4.
(iii) For dense fuzzy lock (single key) models we take 𝜎 = 0.35, 𝜌 = 0.2, 𝐾 = 0.5 and 𝑁 = 1 to 4.
(iv) For dense fuzzy lock (double key) models we take 𝜎 = 0.35, 𝜌 = 0.2, 𝐾1 = 0.5, 𝐾2 = 0.45 and 𝑁 = 1 to 4.

The bar diagram with fifty-six bars in the Figure 6 is regarded as a graphical correspondence of the results
displayed by the Table 4.

The most preferable solution in the sense of profit maximization is therefore given by TAP*defuzz = 4836.45,
𝑄*defuzz = 469.628 and 𝑇 * = 7.453 corresponding to the inputs 𝑎 = 200, 𝑏 = 0.5, 𝑝 = 25, 𝐶 = 600, ℎ = 1.5,
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Figure 5. Total cycle time for different memory index.

𝜎 = 0.35, 𝜌 = 0.2, 𝐾1 = 0.5, 𝐾2 = 0.45 and 𝑁 = 4. The red coloured bar numbered at the serial 28 corresponds
to the most preferable value of the total average profit in the Figure 6.

6.4. Sensitivity analysis

The sensitivity of the most preferable solution with respect to the non-fuzzy parameters is discussed in this
subsection. Changing the values of ordering cost (𝐶), the unit holding cost (ℎ), unit selling price (𝑝) from −50%
to +50%, the sensitivity of the optimal solution is structured in the tabular and graphical forms by the Table 5
and the Figure 7 respectively.

The graph of total average profit preserves the expected facts that it is an increasing function with respect to
𝑝 and is a decreasing function of 𝐶 and ℎ. Moreover, the total average profit is highly sensitive with respect to
the parameter 𝑝 compared to the parameters 𝐶 and ℎ. The sensitivity patterns are just reversed for the cases
of the lot size and the total cycle time.

6.5. Discussion and managerial insight

In this subsection, we have enlisted our observations that are obtained from the numerical analysis and
enlighten the managerial strategies.
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Table 4. Effects of memory and uncertainty on the EOQ models.

Memory

index

Environment Learning

experience

𝑇* 𝑄*defuzz TAP*defuzz

𝛼= 𝛽= 1 Crisp – 2.066 387.298 4106.55

General fuzzy (𝜎 = 0.35, 𝜌 = 0.2) – 2.068 386.814 4278.63

Dense fuzzy (𝜎 = 0.35, 𝜌 = 0.2) 1 2.064 387.540 4221.03

2 2.066 387.258 4247.89

3 2.066 387.150 4257.56

4 2.067 387.090 4262.57

Lock fuzzy dense (single key 𝐾 = 0.5, 𝜎 = 0.35, 1 2.067 387.056 4414.99

𝜌 = 0.2) 2 2.068 386.773 4436.78

3 2.069 386.666 4445.35

4 2.069 386.606 4449.93

Lock fuzzy dense (double keys 𝐾1 = 0.5, 𝐾2 = 0.45, 1 2.068 386.805 4504.47

𝜎 = 0.35, 𝜌 = 0.2) 2 2.070 386.522 4525.72

3 2.070 386.414 4534.17

4 2.071 386.354 4538.69

𝛼= 0.4, Crisp – 7.427 471.268 4404.74

𝛽= 1 General fuzzy (𝜎 = 0.35, 𝜌 = 0.2) – 2.863 543.287 4416.46

Dense fuzzy (𝜎 = 0.35, 𝜌 = 0.2) 1 7.420 471.689 4519.33

2 7.428 471.198 4546.05

3 7.431 471.011 4555.68

4 7.432 470.907 4560.66

Lock fuzzy dense (single key 𝐾 = 0.5, 𝜎 = 0.35, 1 7.433 470.847 4713.06

𝜌 = 0.2) 2 7.441 470.356 4734.72

3 7.444 470.169 4743.25

4 7.446 470.065 4747.80

Lock fuzzy dense (double keys 𝐾1 = 0.5, 𝐾2 = 0.45, 1 7.440 470.411 4802.44

𝜎 = 0.35, 𝜌 = 0.2) 2 7.448 469.919 4823.54

3 7.451 469.732 4831.94

4 7.453 469.628 4836.45

𝛼= 1, Crisp – 0.982 184.148 4135.42

𝛽= 0.9 General fuzzy (𝜎 = 0.35, 𝜌 = 0.2) – 0.957 178.989 4314.47

Dense fuzzy (𝜎 = 0.35, 𝜌 = 0.2) 1 0.965 181.103 4254.98

2 0.961 180.155 4282.76

3 0.960 179.811 4292.77

4 0.959 179.630 4297.94

Lock fuzzy dense (single key 𝐾 = 0.5, 𝜎 = 0.35, 1 0.937 175.495 4457.24

𝜌 = 0.2) 2 0.934 174.718 4479.79

3 0.933 174.416 4488.67

4 0.932 174.253 4493.41

Lock fuzzy dense (double keys 𝐾1 = 0.5, 𝐾2 = 0.45, 1 0.925 172.973 4550.73

𝜎 = 0.35, 𝜌 = 0.2) 2 0.922 172.225 4572.73

3 0.921 171.931 4581.49

4 0.921 171.772 4586.18

𝛼= 0.9, Crisp – 1.006 195.942 4137.54

𝛽= 0.9 General fuzzy (𝜎 = 0.35, 𝜌 = 0.2) – 0.978 190.698 4316.19

Dense fuzzy (𝜎 = 0.35, 𝜌 = 0.2) 1 0.987 192.882 4256.83

2 0.983 191.905 4284.55

3 0.981 191.550 4294.53

4 0.981 191.363 4299.70

Lock fuzzy dense (single key 𝐾 = 0.5, 𝜎 = 0.35, 1 0.957 187.189 4458.65

𝜌 = 0.2) 2 0.954 186.386 4481.16

3 0.953 186.074 4490.02

4 0.952 185.906 4494.74

Lock fuzzy dense (double keys 𝐾1 = 0.5, 𝐾2 = 0.45, 1 0.944 184.628 4551.95

𝜎 = 0.35, 𝜌 = 0.2) 2 0.941 183.855 4573.90

3 0.940 183.552 4582.64

4 0.939 183.388 4587.33
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Figure 6. Total average profit in different decision-making situations.

6.5.1. Major observations

Firstly, in the study of the fuzzy fractional differential equation under Caputo gH derivative, two kinds
of equations appear corresponding to the 𝐶 [(1)− 𝛼] and 𝐶 [(2)− 𝛼] differentiability. Here, in both cases, the
solutions converge into a single function. Secondly, it is to be noted that the lower values of 𝛼 and 𝛽 (where
𝛼 and 𝛽 indicate the memory indexes) represent the stronger senses of the system’s memory. Thus, from the
numerical values of Tables 1–3 and the Figure 3 of Section 6.2, we may conclude that stronger system’s memory
always favours towards the profit maximization goal. Thirdly, we get the following results on the optimality of
the total average profit incorporating different kinds of uncertainties, learning experience and key facilities of
dense fuzzy lock situations as described in Table 4:

(i) Ordering with respect to memory index: (𝛼 = 𝛽 = 1) < (𝛼 = 1, 𝛽 = 0.9) < (𝛼 = 0.9, 𝛽 = 0.9) < (𝛼 = 0.4,
𝛽 = 1).

(ii) Ordering with respect to degree of uncertainty: Crisp< Dense fuzzy < General fuzzy < Lock fuzzy dense
(single key) < Lock fuzzy dense (double keys).

(iii) Ordering with respect to degree of experiences:

(𝑁 = 1) < (𝑁 = 2) < (𝑁 = 3) < (𝑁 = 4).

(iv) Ordering with respect to number of keys:

Single key < Double keys.

From the above results, it appears that the stronger memory and TDFLS fuzzy set up with double keys
facilities is the most desirable and generalized decision-making methodology among the different discussed
phenomena.

6.5.2. Managerial insights

It may be noted that in general, the demand rate of any product in the retailing process is not deterministic
at all; rather lots of uncertainties are involved with it. Moreover, pricing is also a very sensitive decision to
control demand pattern. In a developing country like India, common people pay concerns for the low-priced
product even sacrificing the durability and quality of a product. In these circumstances, the demand can be
viewed as a linear function of selling price. Now, to trace the demand pattern which is not precise to the
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Table 5. Sensitivity of the optimal solution with respect to the non-fuzzy parameters.

Parameters Changes (%) 𝑇 *,new 𝑄*,new
defuzz TAP*,new

defuzz

TAP
*,new
defuzz−TAP*defuzz

TAP*defuzz
× 100%

𝐶 +50 9.956 527.310 4801.84 −0.71561
+40 9.477 517.017 4808.01 −0.58803
+30 8.989 506.185 4814.51 −0.45364
+20 8.489 494.740 4821.38 −0.31159
+10 7.978 482.592 4828.67 −0.16086
−10 6.912 455.701 4844.80 0.172647
−20 6.355 440.621 4853.85 0.359768
−30 5.776 424.127 4863.75 0.564464
−40 5.174 405.853 4874.71 0.791076
−50 4.542 385.252 4887.07 1.046635

ℎ +50 5.579 418.256 4741.79 −1.95722
+40 5.860 426.583 4759.89 −1.58298
+30 6.179 435.711 4778.37 −1.20088
+20 6.543 445.790 4797.25 −0.81051
+10 6.962 457.012 4816.59 −0.41063
−10 8.035 483.980 4856.87 0.422211
−20 8.740 500.544 4877.96 0.858274
−30 9.615 520.010 4899.82 1.310259
−40 10.734 543.425 4922.59 1.781058
−50 12.227 572.483 4946.48 2.275016

𝑃 +50 7.650 457.508 7149.05 47.81606
+40 7.610 459.942 6700.06 38.5326
+30 7.570 462.371 6244.30 29.10916
+20 7.530 464.795 5781.78 19.54595
+10 7.491 467.214 5312.50 9.842963
−10 7.415 472.037 4353.63 −9.98294
−20 7.377 474.441 3864.05 −20.1057
−30 7.340 476.840 3367.71 −30.3681
−40 7.303 479.234 2864.60 −40.7706
−50 7.267 481.624 2354.73 −51.3128

retailer, the adjustment of the pricing will be a vague phenomenon. So, fuzzy decision-making technique is
more desirable in this context. From the numerical simulation, it is perceived that the fuzzy decision making
can favour the goal of the retailer. However, the retailer may have memory from the past dealing procedures.
If there is any memory experience of the retailer, it can help to make a more accurate dealing policy to gain
customer’s faith which leads towards the ultimate gain of the organization. It is one of the major outcomes
from the discussion of this article that stronger memory always helps to attain the highest gain of the retailer.
However, the stronger memory sometimes may boost up the profit through lowering the values of the lot size
and total cycle time in a very alarming measure which may not be cases of feasible phenomena in the practical
sense. A smart decision maker must consider the system with moderate sense of memory for the feasibility of
his/her decision in the real context. Another way to go for the accuracy in the optimal retailing policy is that
the decision makers have to go through the self-learning procedure doing repeated deals in a particular retailing
cycle. The demand pattern can be more precise to the decision-maker due to regular repetitions of the tasks.
The numerical simulation in this study do explore the fact that the dense fuzzy frame carrying the sense of
learning can give better result compared to the crisp and general fuzzy sense. The decision-making methodology
can be further improved incorporating the sense of key and lock in the dense fuzzy decision-making process. The
decision makers have better control on the system in terms of execution of desirable conditions when different
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Figure 7. Sensitivity with respect to non-fuzzy parameters.

key features are available in the system. In this study, we have established that smart decisions (through the
selection of suitable keys) of the experts can increase the profitability of the organization and several key options
may contribute for the more accuracy on the decisions which also helps to the profit maximization. Actually, the
mathematical concept of double keys represents two available alternatives of business strategies to be executed.
Suppose, there are two experts engaged to make the decisions of their own. That is, two keys are available in
the hand of the retailing organization to solve the puzzle due to impreciseness about the decision making for
the optimal pricing to reach the maximum profit. Thus, optimal choice of the pricing through memory, learning
experiences and key-lock technique can fulfil the retailer’s objective of the profit maximization.

7. Conclusion

In this article, an EOQ model with price dependent demand is developed in a memory and learning moti-
vated uncertain situation. Here, the fuzzy fractional differential equations of Caputo types are used to describe
the proposed physical scenario. Also, the TDFLS decision making setup is utilized here to incorporate the
experiences-based learning concept. The TDFLS decision making mechanism is designed for the optimal pricing
which favours for increasing the total profit crystallizing the demand pattern. From the very discussion, it is
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perceived that memory has a very positive impact on the profit maximization goal of the retailer. The second
observation is that through more learning experience, the decision will be matured and thus it will lead the
system towards more profits. The keys facility in the TDFLS decision making mechanism also boosts up the
total profit regulating the uncertain parameters through smart decisions. Besides the mentioned intuitions and
managerial insights, this present article can be viewed as an initiative for finding the applications of fuzzy frac-
tional calculus in the domain of the operation research. Though the present article is engaging in the exploration
of a very interesting and effective managerial insight, we also acknowledge the limitation of the present study.
The modelling and the decision-making components in this article are very well connected with the real business
scenarios. However, the numerical simulation is carried out on the hypothetical data. In future, this drawback
can be overcome by collecting raw data from real world business sector to validate the proposed methodology
of this present article. Searching for the analytical solution approach replacing the numerical simulation will be
future challenges in this research direction.

Appendix A.

Case II: when ̃︀𝑞(𝑡) is 𝐶 [(2)− 𝛼] differentiable.
Then from the equation (4.7),{︀

−𝑠𝛼−1̃︀𝑞(0)
}︀
⊖gH {−𝑠𝛼ℒ{̃︀𝑞(𝑡); 𝑠} = −ℒ

{︁ ̃︀𝐷; 𝑠
}︁
. (A.1)

In the parametric representation the equation (A.1) can be written as:{︃
𝑠𝛼ℓ{𝑞𝐿(𝑡, 𝑟); 𝑠} − 𝑠𝛼−1𝑞𝐿(0, 𝑟) = −ℓ{𝐷𝐿(𝑟); 𝑠}
𝑠𝛼ℓ{𝑞𝑅(𝑡, 𝑟); 𝑠} − 𝑠𝛼−1𝑞𝑅(0, 𝑟) = −ℓ{𝐷𝑅(𝑟); 𝑠}

i.e.,

{︃
𝑠𝛼ℓ{𝑞𝐿(𝑡, 𝑟); 𝑠} − 𝑠𝛼−1𝑄𝐿(𝑟) = −{𝑎−𝑏𝑝𝑅(𝑟)}

𝑠

𝑠𝛼ℓ{𝑞𝑅(𝑡, 𝑟); 𝑠} − 𝑠𝛼−1𝑄𝑅(𝑟) = −{𝑎−𝑏𝑝𝐿(𝑟)}
𝑠

i.e.,

{︃
ℓ{𝑞𝐿(𝑡, 𝑟); 𝑠} = 𝑄𝐿(𝑟)

𝑠 − {𝑎−𝑏𝑝𝑅(𝑟)}
𝑠𝛼+1

ℓ{𝑞𝑅(𝑡, 𝑟); 𝑠} = 𝑄𝑅(𝑟)
𝑠 − {𝑎−𝑏𝑝𝐿(𝑟)}

𝑠𝛼+1 .
(A.2)

Taking the inverse Laplace transformation of the system given by the equation (A.2), the following deduction
is obtained: {︃

𝑞𝐿(𝑡, 𝑟) = 𝑄𝐿(𝑟)− {𝑎−𝑏𝑝𝑅(𝑟)}𝑡𝛼
Γ(𝛼+1)

𝑞𝑅(𝑡, 𝑟) = 𝑄𝑅(𝑟)− {𝑎−𝑏𝑝𝐿(𝑟)}𝑡𝛼
Γ(𝛼+1) .

(A.3)

Using the initial conditions on the system given by the equation (A.3), the components of the parametric
representation of the lot size are given as:{︃

𝑄𝐿(𝑟) = {𝑎−𝑏𝑝𝑅(𝑟)}𝑇𝛼

Γ(𝛼+1)

𝑄𝑅(𝑟) = {𝑎−𝑏𝑝𝐿(𝑟)}𝑇𝛼

Γ(𝛼+1) .
(A.4)

Then, the equation (A.4) takes the form:{︃
𝑞𝐿(𝑡, 𝑟) = {𝑎−𝑏𝑝𝑅(𝑟)}(𝑇𝛼−𝑡𝛼)

Γ(𝛼+1)

𝑞𝑅(𝑡, 𝑟) = {𝑎−𝑏𝑝𝐿(𝑟)}(𝑇𝛼−𝑡𝛼)
Γ(𝛼+1) .

(A.5)

Now, the parametric values of different costs and revenue are counted as follow:
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Holding Cost, HC𝛼,𝛽 = [HC𝐿(𝑟),HC𝑅(𝑟)], where

HC𝐿(𝑟) =
ℎ

Γ(𝛽)

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1
𝑞𝐿(𝑡, 𝑟)d𝑡

=
ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}
Γ(𝛽)Γ(𝛼+ 1)

[︃
𝑇𝛼

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1d𝑡−
∫︁ 𝑇

0

𝑡𝛼(𝑇 − 𝑡)𝛽−1d𝑡

]︃

=
ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}
Γ(𝛽)Γ(𝛼+ 1)

[︂
𝑇𝛼+𝛽

𝛽
− 𝑇𝛼+𝛽

∫︁ 1

0

𝑡𝛼(1− 𝑡)𝛽−1d𝑡
]︂

=
ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}𝑇𝛼+𝛽

Γ(𝛽)Γ(𝛼+ 1)

[︂
1
𝛽
− B(𝛼+ 1, 𝛽)

]︂
= ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}𝑇𝛼+𝛽

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂
(A.6)

and

HC𝑅(𝑟) =
ℎ

Γ(𝛽)

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1
𝑞𝑅(𝑡, 𝑟)d𝑡

=
ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}
Γ(𝛽)Γ(𝛼+ 1)

[︃
𝑇𝛼

∫︁ 𝑇

0

(𝑇 − 𝑡)𝛽−1d𝑡−
∫︁ 𝑇

0

𝑡𝛼(𝑇 − 𝑡)𝛽−1d𝑡

]︃

=
ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}
Γ(𝛽)Γ(𝛼+ 1)

[︂
𝑇𝛼+𝛽

𝛽
− 𝑇𝛼+𝛽

∫︁ 1

0

𝑡𝛼(1− 𝑡)𝛽−1d𝑡
]︂

=
ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}𝑇𝛼+𝛽

Γ(𝛽)Γ(𝛼+ 1)

[︂
1
𝛽
− B(𝛼+ 1, 𝛽)

]︂
= ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}𝑇𝛼+𝛽

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂
· (A.7)

So, total average profit is obtained as:

TAP𝛼,𝛽 = [TAP𝐿,TAP𝑅] =
1
𝑇
{ER𝛼,𝛽 − (𝐶 + HC𝛼,𝛽)}

This gives

TAP𝐿 =
ER𝐿(𝑟)− 𝐶 −HC𝑅(𝑟)

𝑇

=
𝑝𝐿(𝑟){𝑎− 𝑏𝑝𝑅(𝑟)}𝑇 𝛽−1

Γ(𝛽 + 1)
− 𝐶

𝑇
− ℎ{𝑎− 𝑏𝑝𝑅(𝑟)}𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂
(A.8)

and

TAP𝑅 =
ER𝑅(𝑟)− 𝐶 −HC𝐿(𝑟)

𝑇

=
𝑝𝑅(𝑟){𝑎− 𝑏𝑝𝐿(𝑟)}𝑇 𝛽−1

Γ(𝛽 + 1)
− 𝐶

𝑇
− ℎ{𝑎− 𝑏𝑝𝐿(𝑟)}𝑇𝛼+𝛽−1

[︂
1

Γ(𝛽 + 1)Γ(𝛼+ 1)
− 1

Γ(𝛼+ 𝛽 + 1)

]︂
· (A.9)

Appendix B.

From the equations (4.22) and (4.23), it is obtained that:

𝑝𝐿(𝑟) + 𝑝𝑅(𝑟) = 2𝑝+ (1− 𝑟)𝑝
{︂
𝜎

(︂
1
𝐾2

− 1
𝑛+ 1

)︂
− 𝜌

(︂
1
𝐾1

− 1
𝑛+ 1

)︂}︂
(B.1)
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and

𝑝𝐿(𝑟)𝑝𝑅(𝑟) = 𝑝2 − (1− 𝑟)𝑝2𝜌

(︂
1
𝐾1

− 1
𝑛+ 1

)︂
+ (1− 𝑟)𝑝2𝜎

(︂
1
𝐾2

− 1
𝑛+ 1

)︂
− (1− 𝑟)2𝑝2𝜎𝜌

(︂
1
𝐾1

− 1
𝑛+ 1

)︂(︂
1
𝐾2

− 1
𝑛+ 1

)︂
· (B.2)

Therefore, ∑︀𝑁
𝑛=0

∫︀ 1

0
{𝑝𝐿(𝑟) + 𝑝𝑅(𝑟)}d𝑟

2𝑁
=

∑︀𝑁
𝑛=0

[︁
2𝑝+ 𝑝

2

{︁
𝜎
(︁

1
𝐾2
− 1

𝑛+1

)︁
− 𝜌

(︁
1
𝐾1
− 1

𝑛+1

)︁}︁]︁
2𝑁

= 𝑝+
𝑝

4

{︃(︂
𝜎

𝐾2
− 𝜌

𝐾1

)︂
− 𝜎 − 𝜌

𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃

= 𝑝

{︃
1 +

1
4

(︂
𝜎

𝐾2
− 𝜌

𝐾1

)︂
− 𝜎 − 𝜌

4𝑁

𝑁∑︁
𝑛=0

1
𝑛+ 1

}︃
(B.3)

and∑︀𝑁
𝑛=0

∫︀ 1
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Using the equations (B.3) and (B.4) the following deduction can be done:∑︀𝑁
𝑛=0
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Again

𝑎− 𝑏
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