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ON THE SHORTAGE CONTROL IN A CONTINUOUS REVIEW (Q, r)
INVENTORY POLICY USING αL SERVICE-LEVEL

Pablo Escalona∗ , Diego Araya , Enrique Simpson ,
Mario Ramirez and Raul Stegmaier

Abstract. Popular measures of product availability in inventory systems seek to control different
aspects of stock shortages. However, none of them simultaneously control all aspects of shortages,
because stock shortages in inventory systems are complex random events. This paper analyzes the
performance of αL service measure, defined as the probability that stockouts do not occur during
a replenishment cycle, to cover different aspects of stock shortages when used to design an optimal
continuous review (Q, r) policy. We show that explicitly controlling the frequency of replenishment cycle
stockouts, using the αL service-level, allows to implicitly control the size of the stockouts at an arbitrary
time, the size of accumulated backorders at an arbitrary time, and the duration of the replenishment
cycle stockouts. However, the cost of controlling the frequency of replenishment cycle stockouts is
greater than the cost of controlling the size of stockouts and the duration of the replenishment cycle
stockouts.
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1. Introduction

The shortage in inventory systems is an inevitable random phenomena under real demand scenarios. This
random phenomena can be classified and combined in a variety of ways. For example, from customer perception,
frequent stockouts with large backorders are different from infrequent and long-lasting stockouts with small
backorders. Depending on the product and the customer’s reaction to the shortage, it is desirable that the
decision-maker identify the shortage events that most deteriorate the customer service and that the inventory
system should place special emphasis on controlling [9]. On the other hand, stock availability measures in
inventory systems seek to control the shortage events in three main dimensions: frequency, size, and duration
of stockouts. Shortage events can be seen as the simultaneous combination of these three dimensions, while
popular availability measures control only one of these dimensions at a time. Although an availability measure
observes only one dimension of the shortage, its control produces effects on the other aspects of the shortage.

Three popular measures of product availability in inventory systems are the probability (α) of not being out
of stock at an arbitrary time, the fraction (β) of demand met directly from inventory on-hand in any period, and
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the fraction (1−γ) of demand being on backorder each period [7,26,27]. From the definitions of these availability
measures, it is easy to infer that the α service-level controls the frequency of the stockouts at an arbitrary time,
the β service-level, which is referred to as fill-rate, controls the size of backorders at an arbitrary time, and the
γ service-level controls the size of accumulated backorders at an arbitrary time. In the continuous review case,
the α service-level is often defined in other ways, as the probability (αL) that stockouts do not occur during a
replenishment cycle [26]. Thus, we infer that the αL service-level controls the frequency of replenishment cycle
stockouts.

According to several authors [5,7,29,33] the β service-level definition is the most observed in practical settings.
Consequently, it can be inferred that the size of the stockouts is the most important shortage dimension for
inventory managers. However, as will be shown later, an optimal inventory policy that ensures a high level of β
service does not guarantee a good performance in other dimensions of the shortage.

Other service level measures, such as the expected duration of the stockouts [2], and the customer waiting
time [15,17,30] are considered in the literature. From the definitions of these availability measures, it is easy to
infer that the expected duration of the stockouts and the customer waiting time control the stockouts duration.

The occurrence of shortage events can be reduced, in some of its dimensions, by implementing inventory
policies that ensure high levels of stock availability. To determine the parameters of these policies, the literature
has focused on two major groups of stochastic inventory control problems: the full cost model, and the partial
cost model with a service level constraint (SLC). In the full cost model, the objective is to find the optimal
parameters of an inventory policy which minimizes the sum of the holding, ordering, and shortages costs. Thus,
to ensure high levels of stock availability, full cost models use high penalties for shortages. On the other hand,
the service level approach introduces a service level constraint in place of the shortage cost. The goal is to deliver
a specified level of service at a minimum ordering and holding costs.

Although most of the literature on stochastic inventory control problems focuses on full cost models, there
are several reasons to adopt a SLC approach when the objective of the inventory system is to control stock
shortages while minimizing the cost of inventory management. The first one is that full-cost optimization
models assume linear cost functions for shortage costs which primary for analytical tractability rather than
an accurate representation of reality [6]. Second, imposing a preset service level is a much more direct way
to quantify and improve an inventory system’s quality service performance [14]. Third, companies are very
mindful of maintaining high service levels to satisfy customer demand, and these high levels have been shown
to alter customer decisions [9,20]. Fourth, the backlogging cost is often very difficult to quantify in practice [8].
Mechanisms for determining target service levels (mainly fill-rate) have been proposed by Teunter et al. [32,33],
and Thonemann et al. [34].

In this paper, we study the effect of an optimal continuous review (Q, r) policy with full-backorders and
deterministic lead time that ensures a high αL service-level on those shortage dimensions that are not explicitly
controlled by the inventory policy. In particular, we studied the effect on the frequency of stockouts at arbitrary
times, the size of backorders at arbitrary times, the size of accumulated backorders at arbitrary times, and
the duration of stockouts. The converse is also done, i.e., we examine the effect that an optimal continuous
review (Q, r) policy that ensures a high service level other than αL has on the frequency of replenishment cycle
stockouts. We consider the fill-rate, the γ service-level, and the fraction (δL) of the lead time without stockouts.
We determine the ordering relationship between the αL service-level and the β, γ, and δL service levels. To
determine the optimal parameters of the inventory policy, we adopt a SLC approach. Consequently, four SLC
problems, one for each service level, are formulated as convex nonlinear optimization problems that ensure
optimal solutions. The SLC models, denoted as αL-SLC, β-SLC, γ-SLC, and δL-SLC, are based on the exact
formulation of the objective function, as well as the exact expression for the αL, β, γ, and δL service levels,
respectively. We determine the ordering relationship between the optimal solution of αL-SLC and the optimal
solutions of β-SLC, γ-SLC, and δL-SLC, respectively. Some propositions allow us to infer that ensuring a high
αL service-level also ensures a high β, γ, and δL service levels and that the opposite is not true. In other words,
and from a practical point of view, strongly limiting the frequency of replenishment cycle stockouts strongly
limits the size of backorders at an arbitrary time, the size of accumulated backorders at an arbitrary time, and
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the duration of stockouts. Furthermore, we study the cost of providing a high αL service-level and show that it
is higher than the cost of providing a high β, γ, and δL service levels.

The main contribution of this paper is the following. We make a comparative study between inventory
availability measures as well as between the optimal solution of SLC models, which had not been addressed in
the literature under exact formulations. In particular, (i) we define a new ordering relationship between αL and
γ service levels, and between αL and δL service levels, and (ii) we define a new ordering relationship between
the optimal solutions of αL-SLC and γ-SLC, and between the optimal solutions of αL-SLC and δL-SLC.

The rest of this paper is structured as follows. In the next section, we review related works. In Section 3,
we formulate the αL, β, γ, and δL service levels under a continuous review (Q, r) policy with full-backorders
and present the αL-SLC, β-SLC, γ-SLC, and δL-SLC models. In Section 4, we define the ordering relationship
between αL service-level and β, γ and δL service levels, respectively. In Section 5, we define the ordering
relationship between optimal solution of αL-SLC and the optimal solution of β-SLC, γ-SLC, and δL-SLC
models, respectively. In Section 6, we report computational results. Finally, in Section 7, we conclude with
managerial insights and future extensions to this work.

2. Literature review

The study of service level measures to control the shortage events in inventory systems are focused on two main
aspects: (i) formulation and characterization of these measures as functions of the inventory policy parameters;
and (ii) definition of the optimal parameters of the inventory policy that explicitly ensures a particular service
level measure.

Schneider [26] studies α, β, and γ service levels under three inventory policies: a continuous review (Q, r)
policy, a periodic review (S, T ) policy, and a periodic review (s, S, T ) policy. For the first policy, the inventory
is continuously reviewed, and a quantity Q is ordered when the inventory position (i.e., inventory on-hand
plus outstanding orders minus backorders) falls to or below the reorder point r. In the second policy, the
inventory is reviewed every T units of time, and an amount S minus the inventory position is ordered, whereas
in the third policy, that amount is ordered if the inventory position falls to or below the reorder point s. This
author formulates exact and approximate mathematical expressions for α, β, and γ service levels, using discrete
(Poisson) and continuous distributions demand and assuming deterministic lead time.

Under a continuous review (Q, r) policy with full-backorders, Zipkin [38] studies the mathematical properties
of two often-used service-level measures, which allow defining γ and β service levels, respectively: the expected
backorders in steady-state and the average stockouts per unit time. This author shows that the first service-level
measure is jointly convex on the inventory policy parameters when the density function of the lead time demand
is non-negative and that the second one is also jointly convex on the inventory policy parameters under some
additional conditions. Zipkin [38] also studies some widely used approximations for these measures, which are
known to be convex. From computational experiments, the author observes that these approximations are only
acceptable when the lead time demand distribution is quite regular, e.g., normal or Poisson, and the quantity
order is large.

Zhang [37] uses a simpler approach than [38] to prove the joint convexity of the expected backorders in steady-
state. This approach is based on the composition of convex functions instead of showing the non-negative
definiteness of the Hessian matrix. Assuming a Poisson demand process, this author also proves the joint
convexity of the average stockouts per unit time. The convexity properties of these service-level measures are
also studied by Wang and Li [35] under a continuous review (Q, r) policy when the demand is modeled as
a discrete process. These authors state that the approaches used by Zipkin [38] and Zhang [37] to prove the
convexity of the expected backorders in steady-state and the average stockouts per unit time are not valid in the
discrete case since the expressions of these measures for the continuous demand case are adequate approximations
only when the order quantity is large. Using the definition and properties of a convex function on an integer
lattice, the authors show that both the expected backorders in steady-state and the average stockout per unit
time are jointly convex functions on the inventory policy parameters.
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Akinniyi and Silver [2] study the duration of stockouts and determine their distribution function when demand
is represented by a Wiener or Poisson process under deterministic lead time. They define a non-linear equation to
determine the reorder point that ensures that the expected duration of stockouts is not greater than a specified
fraction of the lead time. The study of customer waiting time has focused mainly on determining its distribution
function under different inventory systems. A comprehensive review of exact and approximate procedures for
determining the customers’ waiting time distribution function can be found in Tempelmeier and Fischer [31].

With regard to determining the optimal parameters of an inventory policy using SLC problems, Federgruen
and Zheng [12] study a (Q, r) policy with full-backorders and deterministic lead time under discrete demand.
These authors formulate a full-cost optimization model and exploit the unimodality of the objective function to
develop an efficient algorithm to obtain the optimal parameters of the inventory policy. This algorithm can be
used for solving the Lagrangian relaxation of β-SLC problem since shortage costs parameters can be obtained
from the corresponding Lagrangian multiplier of the service-level constraint.

Considering a (Q, r) policy with either continuous or periodic review, deterministic lead time, and continuous
demand, Rosling [25] formulates a full-cost optimization problem and presents an algorithm to determine the
optimal parameters of the inventory policy. This algorithm is based on proof that the objective function is
pseudo-convex. Furthermore, Rosling [25] studies the αL-SLC and β-SLC problems. A variation of the algorithm
is used to solve the Lagrangian relaxation of these SLC problems, in which case the service-level constraint holds
with equality under certain assumptions. From computational experiments and considering Gamma distribution,
the author observes that the relative benefit of using the algorithm over the Economic Order Quantity (EOQ)
solution is more noticeable for low values of the preset service level.

Agrawal and Seshadri [1] formulate a β-SLC model for a continuous review (Q, r) policy with full-backorders,
deterministic lead time, and continuous demands. Without making assumptions about the convexity of the back-
orders, they derive bounds for the optimal solution that are independent of the lead time demand distribution.
Chen and Krass [8] determine the optimal parameters of a periodic review (s, S) policy with full-backorders
and deterministic lead time using SLC models. They formulate the α, β, and γ availability measure as minimal
service-level measures, i.e., as the minimal service level provided by the system in any period. Consequently,
they formulate three SLC problems, one for each level of service, which is solved using a modified version of the
Federgruen and Zheng [12] algorithm.

Under a continuous review (Q, r) policy with full-backorders, deterministc lead time, and normally distributed
demand, Axsäter [3] reformulates the β-SLC problem so that the problem depends on a single parameter,
aggregating the ordering cost, the holding cost per unit and unit time, the deterministic lead time, the demand
per unit time and the variance. With the fill-rate service level constraint defined to equality, Axsäter [3] proposes
to solve the reformulation using the algorithm of Rosling [25] or through a direct search procedure. Thus, this
author solves the problem for different values of the parameter and different values of the preset service level,
storing the results in a table. In this manner, the optimal parameters of the inventory policy can be obtained
by linear interpolation using the data stored in the table or by special approximations for values outside of it.

A comparative study between αL and β service levels, under a continuous review (Q, r) policy with full-
backorders and deterministic lead time, was conducted by Zeng and Hayya [36]. To study the performance
of both service level measures, they formulate two sets of optimization models. The first set considers the
maximization of the service level as objective, subject to a budget (budget-constrained problems). The second
set corresponds to SLC models. These formulations are made considering that (i) the expected backorders in
steady-state are negligible, which induces a relaxation of αL-SLC that decomposes the problem into the EOQ
model, and the stochastic reorder point model; and (ii) a widely used approximation for the provided fill-rate,
whereby the optimal parameters of the approximated β-SLC problem can be obtained through Karush–Kuhn–
Tucker (KKT) conditions. Therefore, Zeng and Hayya [36] study a relaxation of αL-SLC, and an approximation
of β-SLC, since the latter is neither a relaxation nor a constriction of the original problem. Using four continuous
distribution demands, they derive closed-form expressions in order to evaluate the performance of both service
level measures. However, their conclusions are limited by the approximations made.
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Figure 1. Continuous review (Q, r) policy with full-backorder and deterministic lead time.

It should be noted that our study considers an inventory policy under deterministic lead time. The manage-
ment of situations where the lead time is stochastic is more difficult [4,13]. A comprehensive review on stochastic
lead time inventory models can be found in Muthuraman et al. [18]. Furthermore, to the best of our knowledge,
there are no studies of SLC problems under stochastic lead time. On the other hand, several issues in inventory
control systems have gained the interest of many researchers in previous decades. In particular, deterioration,
default risk and price sensitive demand (see e.g., [19,21–23]). However, to the best of our knowledge, these issues
have not been addressed under a SLC approach when the inventory policy is one of continuous review.

3. Inventory models

Consider a wholesaler that supplies a single type of fast-moving customer goods (FMCG) to several retailers
(customers) with independent demand, where FMCG are products with high demand volume or items with high
inventory turnover. Examples include non-perishable food, toiletries, over-the-counter drugs, cleaning supplies,
building supplies, and office supplies.

We assume that each customer follows a strictly increasing non-negative demand. Thus, the total demand
is represented by a non-decreasing stochastic process with stationary increments and continuous sample paths,
because FMCG are more representative of modeling the demand over time with a continuous distribution
[4,10,11,24]. Let D(t, t+ τ) be the total demand in the interval (t, t+ τ ] and FD(τ)(x) be the cumulative distri-
bution function of the total demand in the interval [0, τ ]. It should be noted that under stationary increments,
D(τ) := D(0, τ) = D(t, t+ τ) for any t ≥ 0.

The wholesaler uses a continuous review (Q, r) policy with full-backorder and deterministic lead time, where
an order quantity of constant size, Q, is placed whenever the inventory position (i.e., inventory on-hand plus
outstanding orders minus backorders) falls below a fixed reorder point, r, which arrives at a fixed L > 0 time
unit later. Furthermore, all unmet demand is backordered. Figure 1 illustrates the continuous review (Q, r)
policy with full-backorder, deterministic lead time, and strictly increasing non-negative demand.
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Figure 1 shows that at time t1 the inventory position reaches r, and a quantity Q is ordered, which arrives
at t1 + L. The same happens at times t2, t3, and t4. It should be noted that the inventory position and the
on-hand inventory are equal in the interval [t0, t1], [t2 + L, t3], and [t3 + L, t4].

To complete the inventory policy, we assume that the wholesaler defines a single service level policy. In this
paper, we consider four kinds of service-level definitions – the αL service-level, which controls the frequency of
the replenishment cycles stockouts and is independent of order quantity Q; the β service-level which controls the
backorders at an arbitrary time; the γ service level which controls the accumulated backorders at an arbitrary
time; and the δL service-level which controls the duration of stockout replenishment cycles. Thus, the objective
of the wholesaler is to determine the optimal (Q, r) parameters, which minimize the sum of ordering and holding
costs per unit time and to ensure a single service-level.

In what follows, we develop expressions for the sum of ordering and holding costs per unit time, for the αL,
β, γ, and δL service levels, and present the αL, β, γ and δL service level constraints problems. The notations
used in this section are summarized in Appendix A.

3.1. Average cost per unit time

We seek to minimize the average cost per unit time, which is the sum of ordering and holding costs per unit
time. Let µ be the total average demand per unit time, let h be the holding cost per unit and unit time, and
let S be the ordering cost. Consequently, the average cost per unit time is

AC(Q, r) = S
µ

Q
+ hE(OH∞(Q, r)), (3.1)

where E(OH∞(Q, r)) is the expected on-hand steady-state inventory. The first term of (3.1) corresponds to the
ordering cost, and the second term is the holding cost, both measured per unit time.

In a continuous review (Q, r) policy with full-backorders and a deterministic lead time, we have that OH(t+
L) = (IL(t + L))+ = (IP(t)−D(t, t+ L))+ = IP(t) − D(t, t + L) + (IP(t)−D(t, t+ L))−, where OH(t + L)
denotes on-hand inventory at time t+L, IL(t+L) denotes the inventory level at time t+L, and IP(t) denotes
the inventory position at time t. It should be noted that, in steady state, the inventory position is uniformly
distributed in the interval [r, r +Q], i.e., IP(t) ∼ U [r, r +Q]. Consequently, the expected on-hand steady-state
inventory is:

E(OH∞(Q, r)) =
Q

2
+ r − µL+B(Q, r), (3.2)

where B(Q, r) = E (IP(t)−D(t, t+ L))− is the steady-state backorders. Then, conditioning on the inventory
position and changing the order of integration, it is easy to show that the expected backorders in steady-state
is B(Q, r) = 1

Q (G(r)−G(r +Q)) with G(v) =
∫∞
v

(x− v)(1− FD(L)(x)) dx. Substituting in (3.2) and then in
(3.1), the average cost per unit time is

AC(Q, r) = S
µ

Q
+ h

(
Q

2
+ r − µL+B(Q, r)

)
. (3.3)

Zipkin [38] has shown that B(Q, r) is jointly convex in Q and r when fD(L)(x) > 0 for any x > 0, where
fD(L)(x) is the density function of the lead time demand. Consequently, it is easy to show that AC(Q, r) is
jointly convex in Q and r because it is the sum of convex functions.

3.2. Provided service levels

The provided service level is the availability of stock capable of providing an inventory system that operates
under a given inventory policy. The provided service level is expressed as a function of the inventory policy
parameters, in our case, as a function of the (Q, r) parameters.

Let α(Q, r) be the provided α service-level, i.e., the probability of not being out of stock at an arbitrary time.
The inventory system is in stockout at an arbitrary time t+L if the inventory level in t+L is strictly less than zero,
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i.e., IL(t+L) < 0. Consequently, the probability of not being out of stock at an arbitrary time under a continuous
review (Q, r) policy is defines as α(Q, r) = P(IL(t+L) ≥ 0) which is also interpreted as the fraction of time with a
positive stock-on-hand known as ready-rate [4]. It is easy to show that α(Q, r) = P(D(L) ≤ IP(t)) because under
a continuous review (Q, r) policy with strictly increasing non-negative demand we have IL(t+L) = IP(t)−D(L).
Thus, conditioning on the inventory position, IP(t), the provided α service-level is:

α(Q, r) =
1
Q

∫ r+Q

r

FD(L)(y) dy. (3.4)

Let αL(r) be the provided αL service-level, i.e., the probability that stockouts do not occur during a replen-
ishment cycle. The inventory system is in stockout during a replenishment cycle if the demand during the lead
time is strictly greater than the reorder point, i.e., D(L) > r. Consequently, the probability that stockouts do
not occur during a replenishment cycle is defined as:

αL(r) = P(D(L) ≤ r) = FD(L)(r). (3.5)

Let β(Q, r) be the provided fill-rate defined as the fraction of demand met directly from on-hand inventory
at an arbitrary time. Following Zipkin [38], the provided fill-rate is defined as

β(Q, r) = 1− A(Q, r)
µ

, (3.6)

where A(Q, r) is the average stockouts per unit time. Demand per unit time is backorder in t+L if the inventory
level in t+L is strictly less than zero. Therefore, assuming independence, the average stockouts per unit time is
A(Q, r) = µP(IL(t+L) < 0). Substituting in (3.6), it can be shown that β(Q, r) = 1−P(IL(t+L) < 0) = α(Q, r).
The main consequence of this equality is that the provided fill-rate, under a continuous review (Q, r) policy
with strictly increasing non-negative demand, simultaneously controls frequency and size of backorders at an
arbitrary time.

It should be noted that under pure Poisson and normally distributed demand, the fill-rate is equivalent to the
ready-rate [4,28]. We conclude that under strictly increasing non-negative demand, the fill-rate and ready-rate
are also equivalent.

The fill-rate defined as (3.4) is a concave function because A(Q, r) is jointly convex on Q and r when fD(L)(x)
is non-increasing for any x ≥ r ≥ E(D(L)). This is valid, e.g., if fD(L)(x) is unimodal and symmetric (or skewed
to the right) and the safety stock is non-negative [38].

Proposition 3.1. β(Q, r) is strictly increasing in Q and r.

Proof. Proof is provided in Appendix B. �

Let γ(Q, r) be the provided γ service-level. Following Schneider [26], the provided γ service-level is defined
as:

γ(Q, r) = 1− B(Q, r)
µ

· (3.7)

It should be noted that γ(Q, r) defined by (3.7) is a concave function because B(Q, r) is jointly convex on Q
and r when fD(L)(x) > 0 for any x > 0. Furthermore, function γ(Q, r) is increasing in Q and r because B(Q, r)
is non-increasing in Q and r [38].

Let δL(r) be the provided δL service-level, defined as the fraction of the lead time without stockouts. Conse-
quently,

δL(r) = 1− ∆L(r)
L

, (3.8)

where ∆L(r) is the expected duration of stockouts replenishment cycle. To develop an expression for ∆L(r) we
use the hitting time τ rH,D = inf{τ > 0 : D(τ) > r} corresponding to the time required for r demands. Thus,
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∆L(r) = E
(
L− τ rH,D

)
if τ rH,D < L; 0 otherwise. Substituting in (3.8) and considering some straightforward

calculations we have,

δL(r) = FD(L)(r) +
1
L

∫ L

0

τfrH,D(τ)∂τ, (3.9)

where frH,D(τ) = −∂FD(τ)(x)

∂τ is the distribution function of the hitting time τ rH,D. Under a strictly increas-
ing non-negative demand, we have P

(
τ rH,D ≤ τ

)
= P (D(τ) ≥ r) [10, 11]. Considering the following refor-

mulation of the second term of the right-hand side of (3.9): 1
L

∫ L
0
τfrH,D(τ)∂τ = 1

L

∫ L
0

[∫ τ
0
∂t
]
frH,D(τ)∂τ =

1
L

∫ L
0

[∫ L
t
frH,D(τ)∂τ

]
∂t = 1

L

∫ L
0

[∫ L
t
∂frH,D(τ)

]
∂t = 1

L

∫ L
0

[
P
(
τ rH,D ≤ L

)
− P(τ rH,D ≤ t)

]
∂t = 1

L

∫ L
0

[
FD(t)(r)

−FD(L)(r)
]
∂t = 1

L

∫ L
0
FD(t)(r)∂t− FD(L)(r), we have,

δL(r) =
1
L

∫ L

0

FD(t)(r)∂t. (3.10)

Proposition 3.2. δL(r) is strictly concave function for any r ≥ E(D(L)). Furthermore, δL(r) is strictly increas-
ing in r.

Proof. Proof is provided in Appendix C. �

3.3. Service level constraint problems

Using (3.3) and (3.5), the αL service level constraint problem is defined as the following nonlinear problem
(NLP):

αL-SLC : min
Q,r

S
µ

Q
+ h

(
Q

2
+ r − µL+B(Q, r)

)
(3.11)

s.t. ᾱL − FD(L)(r) ≤ 0 (3.12)
r ≥ E(D(L)) (3.13)
Q ≥ QEOQ, (3.14)

where ᾱL ∈ (0, 1) is the preset αL service-level, i.e., ᾱL is the minimum frequency of replenishment cycles that

the decision-maker wants (or requires) do not fall into shortage, and QEOQ =
√

2µS
h is the economic order

quantity. QEOQ is the lower bound of the ordered quantity Q for any SLC problem with objective function
(3.11).

The objective is to minimize the sum of ordering and holding costs per unit time. Constraint (3.12) ensures
that the provided αL service-level is greater than or equal to the preset service level. Constraint (3.13) ensures
that the safety stock is non-negative, because, by definition, the safety stock in a continuous review (Q, r)
policy is r − E(D(L)). Constraint (3.14) avoids expressing the ordered quantity greater than or equal to zero
and thus does not produce a contradiction with (3.11). It should be noted that for any ᾱL ≥ FD(L)(E(D(L))),
the constraint (3.13) is redundant and can be relaxed from αL-SLP.

The αL-SLC model can be reformulated as a convex NLP, changing (3.12) by r ≥ F−1
D(L)(ᾱL) and consequently,

optimally solved through KKT conditions or using a nonlinear convex solver.
In the same way, using (3.3) and (3.4), the β service level constraint problem is defined as the following NLP:

β-SLC : min
Q,r

S
µ

Q
+ h

(
Q

2
+ r − µL+B(Q, r)

)
(3.11)

s.t. β̄ − 1
Q

∫ r+Q

r

FD(L)(y) dy ≤ 0 (3.15)
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(3.13), (3.14),

where β̄ ∈ (0, 1) is the preset fill-rate, i.e., the minimum fraction of demand that the decision-maker wants
(or requires) to meet directly with the available stock at an arbitrary time. Constraint (3.15) ensures that the
provided fill-rate is greater than or equal to their preset service level.

Let Cβ be the set of all (Q, r) satisfying (3.15), (3.13), and (3.14). It is easy to show that Cβ is a convex
set because the function of the inequality constraint (3.15) is jointly convex on Q and r when fD(L)(x) is non-
increasing for any x ≥ r ≥ E(D(L)), which is ensured by (3.13). Thus, β-SLC model is a convex NLP because
a convex function on a convex set is minimized. Consequently, β-SLC can be solved through KKT conditions
or using a nonlinear solver that computes integrals.

Using (3.3) and (3.7), the γ service level constraint problem is defined as the following NLP:

γ-SLC : min
Q,r

S
µ

Q
+ h

(
Q

2
+ r − µL+B(Q, r)

)
(3.11)

s.t. γ̄ −
{

1− 1
Qµ

(∫ ∞
r

(x− r)(1− FD(L)(x)) dx

−
∫ ∞
r+Q

(x− r −Q)(1− FD(L)(x)) dx
)}
≤ 0 (3.16)

(3.13), (3.14),

where γ̄ ∈ (0, 1) is the preset γ service-level. We refer to (1− γ̄) as the maximum fraction of the demand that
the decision-maker allows to be on backorder at an arbitrary time. Constraint (3.16) ensures that the provided
γ service-level is greater than or equal to their preset service level.

Let Cγ be the feasible region of γ-SLC model, i.e., the set of all (Q, r) satisfying (3.16), (3.13), and (3.14). It
is easy to show that Cγ is a convex set because the function of the inequality constraint (3.16) is jointly convex
on Q and r when fD(L)(x) > 0 for any x ≥ 0. Thus, γ-SLC model is a convex NLP because a convex function
on a convex set is minimized. Consequently, γ-SLC can be solved through KKT conditions or using a nonlinear
solver that computes integrals.

Using (3.3) and (3.10), the δL service level constraint problem is defined as the following NLP:

δL-SLC : min
Q,r

S
µ

Q
+ h

(
Q

2
+ r − µL+B(Q, r)

)
(3.11)

s.t. δ̄L −
1
L

∫ L

0

FD(t)(r)∂t ≤ 0 (3.17)

(3.13), (3.14),

where δ̄L ∈ (0, 1) is the preset δL service-level, i.e., the minimum fraction of the lead time that the decision-
maker allows to be without shortage. Constraint (3.17) ensures that the provided δL service-level is greater than
or equal to their preset service level.

Let CδL be the set of all (Q, r) satisfying (3.17), (3.13), and (3.14). It is easy to show that CδL is a convex
set because the function of the inequality constraint (3.17) is convex when fD(t)(r) is non-increasing for any
r ≥ E(D(L)), which is ensured by (3.13). Thus, δL-SLC model is a convex NLP. Consequently, δL-SLC can be
solved through KKT conditions or using a nonlinear solver that computes integrals. On the other hand, δL-SLC
model can be reformulated as a convex NLP, changing (3.17) by r ≥ rδL , where rδL = min

{
r : δL(r) ≥ δ̄L

}
and

rδL solves δL(r) = δ̄L because δL(r) is increasing in r (Prop. 3.2).

4. Order relationship between αL and β, γ, δL

In this section, we study the ordering relationship between the provided service level αL(r) and the provided
service levels β(Q, r), γ(Q, r), δL(r). We show that ensuring a high αL service-level, ensures a high β, γ, and
δL service levels.
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Klemm [16] shows that in general αL(r) is less than or equal to α(Q, r) for a definite reorder point [26].
Unfortunately, we do not have access to Klemm’s proof. We conclude that under a continuous review (Q, r)
policy with strictly increasing non-negative demand it follows that

αL(r) ≤ α(Q, r) = β(Q, r) ∀Q, r ≥ 0, (4.1)

because β(Q, r) = α(Q, r) = 1
Q

∫ r+Q
r

FD(L)(y) dy ≥ 1
Q

∫ r+Q
r

FD(L)(r) dy = αL(r).
The main consequence of (4.1) is that ensuring a high αL service-level ensures a high fill-rate and the opposite

is not true. In other words, ensuring low stockout frequency during the replenishment cycle ensures low stockout
frequency at any arbitrary time and small backorders at any arbitrary time.

To the best of our knowledge, the order relationship between αL(r) and γ(Q, r) is unknown. We propose the
following relationship:

Proposition 4.1. αL(r) ≤ γ(Q, r) for any Q ≥ 0 and r ≥ rγαL , where rγαL solve the following NLP,

P1 : min
r

r (4.2)

s.t. FD(L)(r)− γ(QEOQ, r) ≤ 0 (4.3)
r ≥ FD(L)(E(D(L))). (4.4)

Proof. Proof is provided in Appendix D. �

The main consequence of Proposition 4.1 is that by ensuring a high αL service-level, with ᾱL ≥ FD(L)

(
rγαL
)
,

ensures a high γ service-level. In other words, ensuring low stockout frequency during the replenishment cycle
ensures low cumulative backorders at any arbitrary time.

Model P1 is neither convex nor concave because the inequality constraint function (4.3) is neither convex
nor concave. However, model P1 is an NLP optimization problem easily solved with a global search method
because it is a single variable problem.

To the best of our knowledge, the order relationship between αL(r) and δL(r) is unknown. We propose the
following relationship:

Proposition 4.2. αL(r) ≤ δL(r) for any r > 0.

Proof. Proof is provided in Appendix E. �

The main consequence of Proposition 4.2 is that ensuring a high αL service-level ensures a high δL service-
level, and the opposite is not true. In other words, ensuring a low stockout frequency during the replenishment
cycle ensures a low stockout duration during the replenishment cycle.

5. Cost of providing an αL service-level

In what follows, we describe a number of properties of the SLC models that allow us to establish an ordering
among optimal solutions of αL-SLC and β-SLC, γ-SLC, and δL-SLC models.

Let Z∗αL and Z∗β be the optimal solutions of αL-SLC and β-SLC models, respectively. The following proposition
establishes an ordering relation among the optimal solutions of αL-SLC and β-SLC models.

Proposition 5.1. Z∗β ≤ Z∗αL for any ᾱL ≥ β̄.

Proof. Proof is provided in Appendix F. �
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The main consequence of Proposition 5.1 is that, under the same preset service levels, the cost of providing a
high αL service-level is greater than or equal to the cost of providing a high fill-rate service level. However, this
higher cost has the benefit that ensuring a high level of service αL also ensures a high level of fill-rate, because
β
(
Q∗αL , r

∗
αL

)
≥ αL

(
r∗αL
)
≥ ᾱL according to (4.1) and constraint (3.12), where

(
Q∗αL , r

∗
αL

)
are the optimal

parameters of the αL-SLC model.
Let Z∗γ be the optimal solutions of γ-SLC model. The following proposition establishes an ordering relation

among the optimal solutions of αL-SLC and γ-SLC models.

Proposition 5.2. Z∗γ ≤ Z∗αL for any ᾱL ≥ FD(L)

(
rγαL
)
≥ γ̄, where rγαL solve P1.

Proof. Proof is provided in Appendix G. �

The main consequence of Proposition 5.2 is that, under the same preset service levels, the cost of providing
a high αL service-level, with ᾱL ≥ FD(L)

(
rγαL
)
, is greater than or equal to the cost of providing a high γ

service-level. However, this higher cost has the benefit that ensuring a high level of service αL also ensures a
high level of γ service level, because γ

(
Q∗αL , r

∗
αL

)
≥ αL

(
r∗αL
)
≥ ᾱL according to Proposition 4.1 and constraint

(3.16).
Let Z∗δL be the optimal solutions of δL-SLC model. The following proposition establishes an ordering relation

among the optimal solutions of αL-SLC and δL-SLC models.

Proposition 5.3. Z∗δL ≤ Z
∗
αL for any ᾱL ≥ δ̄L.

Proof. Proof is provided in Appendix H. �

The main consequence of Proposition 5.3 is that, under the same preset service levels, the cost of providing
a high αL service-level is greater than or equal to the cost of providing a high δL service-level. However, this
higher cost has the benefit that ensuring a high level of service αL also ensures a high level of δL service-level,
because δL

(
r∗αL
)
≥ αL

(
r∗αL
)
≥ ᾱL according to Proposition 4.2 and constraint (3.17).

6. Computational study

In Section 4, we conclude that ensuring a high αL service-level ensures a high fill-rate and δL service-level,
and for any ᾱL ≥ FD(L)

(
rγαL
)

a high γ service-level is also ensured (Props. 4.1 and 5.2). Consequently, the first
objective of the computational study is to determine the threshold FD(L)

(
rγαL
)

for which Propositions 4.1 and 5.2
are valid.

On the other hand, the magnitude of the service levels β, γ, and δL induced by a continuous review
(
Q∗αL , r

∗
αL

)
policy that ensures high αL service-level are unknown. The opposite is also unknown, i.e., the magnitude of
the induced αL service-level by an optimal continuous review (Q, r) policy under β, γ, and δL service-level
constraint, respectively. Consequently, the second objective of the computational study is to determine the
magnitude of the induced service levels.

In Section 5, we show that the cost of providing a high αL service-level is greater than or equal to the cost
of providing a high fill-rate, γ, and δL service levels when ᾱL ≥ β̄, ᾱL ≥ FD(L)

(
rγαL
)
≥ γ̄ and ᾱL ≥ δ̄L,

respectively. However, the magnitude of this higher cost is unknown. Consequently, the third objective of the
computational study is to establish the magnitude of this higher cost under the same preset service levels.
Furthermore, a comparison between the optimal parameters of the continuous review (Q, r) policy resulting
from models αL-SLC, β-SLC, γ-SLC, and δL-SLC is performed.

To illustrate the objectives of the computational study, we simulated several test problems with the following
common criteria and parameters: holding cost per unit and unit time h = U [0.1, 1.25], ordering cost S =
U [100, 500], and normal demand distribution, as an approximation to strictly increasing non-negative demand,
with coefficient of variation CV = U [0.1, 0.6]. Furthermore, we mean high service level values greater than or
equal to 0.95.



2796 P. ESCALONA ET AL.

Figure 2. Maximum FD(L)

(
rγαL
)

for different lead times and set of experiments.

Models αL-SLC, β-SLC, γ-SLC and δL-SLC were programmed in Pyton using Sequential Least Squares
Programming libraries. All tests were done on a PC with an Intel Core i7 2.3 GHz processor and 16 GB RAM.
The time to compute the optimal parameters of the continuous review (Q, r) policy using αL-SLC, β-SLC,
γ-SLC and δL-SLC models are, on average 0.44s, 0.66s, 0.87s and 8.12s, respectively.

6.1. Determining the threshold FD(L)

(
rγαL

)
Propositions 4.1 and 5.2, which define the ordering relationship between αL(r) and γ(Q, r), and the ordering

relationship between the optimal solutions of αL-SLC and γ-SLC models, respectively, depend on the threshold
FD(L)

(
rγαL
)

where rαγL solves P1 model. To establish the range of FD(L)

(
rγαL
)

for which Propositions 4.1 and 5.2
are valid we designed a set of three experiments covering a wide range of data. In each experiment, we generated
10 000 random sets of {h, S, µ,CV} according to the common criteria of h, S and CV, while µ = U [1, 200] for
the first set of experiments, µ = U [200, 2000] for the second set of experiments, and µ = U [2000, 20 000] for the
third set of experiments. For each set of randomly generated parameters we solve P1 model for L = {1, . . . , 55}
and return the maximum FD(L)

(
rγαL
)

for each L. Figure 2 shows the behavior of the maximum FD(L)

(
rγαL
)

for
each experiment.

From Figure 2, we observe that ensuring a high αL service-level, with ᾱL ≥ 0.95, ensures a high γ service-level
when L ≤ 33 and µ ∈ [1, 200], L ≤ 21 and µ ∈ [200, 2000], and L ≤ 18 and µ ∈ [2000, 20 000]. Thus, we infer
that Propositions 4.1 and 5.2 hold for a wide range of data.

6.2. Induced service levels

The fill-rate, γ, and δL service levels induced by the continuous review
(
Q∗αL , r

∗
αL

)
policy are defined as

β
(
Q∗αL , r

∗
αL

)
, γ
(
Q∗αL , r

∗
αL

)
and δL

(
r∗αL
)

according to (3.4), (3.7) and (3.10), respectively.
To determine the magnitude of the induced service levels, we generated 10 000 random sets of {h, S, µ,CV, L}

according to the common criteria for h, S and CV, while µ = U [1, 200] and L = {1, . . . , 8} with discrete uniform
distribution. We denote this set of instances as test set. For each random set, the αL-SLC model is solved, and
the induced service levels are computed. Table 1 shows the average, maximum, and minimum induced β, γ, and
δL service levels when αL-SLC is solved using a high preset αL service-level.

As expected from (4.1), and Propositions 4.1 and 4.2, Table 1 shows that the fill-rate, γ, and δL induced by
the continuous review (Q∗αL , r

∗
αL) policy are strictly greater than the preset αL service-level. Here, the surprise
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Table 1. Induced β, γ, and δL service levels by the optimal parameters of an αL-SLC model.

β
(
Q∗
αL , r

∗
αL

)
γ
(
Q∗
αL , r

∗
αL

)
δL
(
Q∗
αL , r

∗
αL

)

ᾱL Ave. Max. Min. Ave. Max. Min. Ave. Max. Min.

0.99 0.999 1.000 0.998 1.000 1.000 0.999 0.999 1.000 0.999
0.98 0.999 1.000 0.995 1.000 1.000 0.999 0.999 1.000 0.998
0.97 0.998 1.000 0.992 1.000 1.000 0.998 0.998 0.999 0.997
0.96 0.997 1.000 0.989 0.999 1.000 0.997 0.997 0.999 0.996
0.95 0.996 1.000 0.986 0.999 1.000 0.996 0.996 0.999 0.994

Figure 3. Induced service levels when ᾱL = 0.95.

is that for all instances tested, the minimum β
(
Q∗αL , r

∗
αL

)
, γ
(
Q∗αL , r

∗
αL

)
, and δL

(
r∗αL
)

are strictly greater than
0.98. Figure 3 shows the behavior of the induced service levels when ᾱL = 0.95.

From Figure 3, it is observed that a continuous review
(
Q∗αL , r

∗
αL

)
policy that ensures a high αL service-

level induces a high performance of service levels not explicitly defined in the inventory policy. Furthermore,
we observe that γ

(
Q∗αL , r

∗
αL

)
service-level is the best performing and that in 80% of the tested instances it

is satisfied that ᾱL < δL
(
r∗αL
)
< β

(
Q∗αL , r

∗
αL

)
< γ

(
Q∗αL , r

∗
αL

)
. Similar behavior is observed for any ᾱL ∈

{0.96, 0.97, 0.98, 0.99}.

Let
(
Q∗β , r

∗
β

)
,
(
Q∗γ , r

∗
γ

)
, and

(
Q∗δL , r

∗
δL

)
be the optimal parameters of the β-SLC, γ-SLC, and δL-SLC models,

respectively. The αL service-level induced by the continuous review
(
Q∗β , r

∗
β

)
,
(
Q∗γ , r

∗
γ

)
, and

(
Q∗δL , r

∗
δL

)
policies

are defined as αL
(
r∗β

)
, αL

(
r∗γ
)
, and αL

(
r∗δL
)

according to (3.5). Table 2 shows the average, maximum and
minimum induced αL service-level when β-SLC, γ-SLC, and δL-SLC are solved using the same high preset
service level.

As expected from (4.1), and Propositions 4.1 and 4.2, Table 2 shows that αL
(
r∗β

)
, αL

(
r∗γ
)
, and αL

(
r∗δL
)

are strictly lower than the preset service level β̄ = γ̄ = δ̄L. Here, the surprise is that for all instances tested, the
average induced αL service levels are strictly lower than 0.88, i.e., the continuous review

(
Q∗β , r

∗
β

)
,
(
Q∗γ , r

∗
γ

)
,
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Table 2. Induced αL

(
r∗β

)
, αL

(
r∗γ
)

and αL
(
r∗δL
)

service levels.

αL
(
r∗β
)

αL
(
r∗γ
)

αL
(
r∗δL
)

β̄ = γ̄ = δ̄L Ave. Max. Min. Ave. Max. Min. Ave. Max. Min.

0.99 0.813 0.953 0.500 0.628 0.885 0.500 0.881 0.922 0.750
0.98 0.709 0.913 0.500 0.555 0.811 0.500 0.797 0.865 0.590
0.97 0.642 0.877 0.500 0.526 0.750 0.500 0.728 0.817 0.500
0.96 0.596 0.842 0.500 0.513 0.698 0.500 0.673 0.773 0.500
0.95 0.565 0.809 0.500 0.506 0.652 0.500 0.629 0.734 0.500

Figure 4. Induced αL service levels when β̄ = γ̄ = δ̄L = 0.95.

and
(
Q∗δL , r

∗
δL

)
policies ensure high β, γ, and δL service levels, respectively, perform poorly at αL service-level.

Figure 4 shows the behavior of the induced αL service-level when β̄ = γ̄ = δ̄L = 0.95.
From Figure 4, we observe that αL

(
r∗γ
)

service-level is the lowest performing and that in the 80% of the

instances it is satisfied that αL
(
r∗γ
)
≤ αL

(
r∗β

)
≤ αL

(
r∗δL
)
. Similar behavior is observed for any β̄ = γ̄ = δ̄L ∈

{0.96, 0.97, 0.98, 0.99}.

6.3. Cost of providing a high αL service-level

To quantify how much higher the cost of a continuous review
(
Q∗αL , r

∗
αL

)
policy is in relation to the cost of con-

tinuous review
(
Q∗β , r

∗
β

)
,
(
Q∗γ , r

∗
γ

)
, and

(
Q∗δL , r

∗
δL

)
policies, we compute4

(
Z∗αL , Z

∗
(·)

)
= 100×

(
Z∗αL − Z

∗
(·)

)
/Z∗(·)

for each instance of the test set. In other words, we compute the the relative cost of the continuous review(
Q∗αL , r

∗
αL

)
policy with respect to the continuous review

(
Q∗β , r

∗
β

)
,
(
Q∗γ , r

∗
γ

)
, and

(
Q∗δL , r

∗
δL

)
policies, respec-

tively. Table 3 shows the average, maximum and minimum relative cost.

From Table 3, we observe that 4
(
Z∗αL , Z

∗
(·)

)
is decreasing in the preset service level and that the lowest and

highest relative cost are δL and γ service levels, respectively. Thus, the maximum relative cost is 65.9% when
ᾱL = γ̄ = 0.95. Figure 5 shows the behavior of the relative cost of the continuous review

(
Q∗αL , r

∗
αL

)
policy in
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Table 3. Relative cost between inventory policies with single service level strategies.

4
(
Z∗
αL , Z

∗
β

)
4
(
Z∗
αL , Z

∗
γ

)
4
(
Z∗
αL , Z

∗
δL

)

ᾱL = β̄ = γ̄ = δ̄L Ave. Max. Min. Ave. Max. Min. Ave. Max. Min.

0.99 14.3% 19.6% 2.2% 24.8% 45.9% 2.2% 13.6% 32.5% 1.6%
0.98 16.2% 22.5% 2.0% 26.1% 53.4% 2.0% 15.2% 37.8% 1.7%
0.97 17.5% 24.8% 1.8% 26.2% 57.5% 1.8% 16.4% 41.8% 1.8%
0.96 18.3% 26.6% 1.7% 25.7% 62.0% 1.7% 17.3% 45.1% 1.7%
0.95 18.8% 28.3% 1.6% 24.9% 65.9% 1.6% 18.1% 48.1% 1.6%

Figure 5. 4
(
Z∗αL , Z

∗
(·)

)
when ᾱL = β̄ = γ̄ = δ̄L = 0.95.

relation to the continuous review
(
Q∗β , r

∗
β

)
,
(
Q∗γ , r

∗
γ

)
, and

(
Q∗δL , r

∗
δL

)
policies, respectively, when β̄ = γ̄ = δ̄L =

0.95.
From Figure 5, we observed that the highest relative cost is in relation to γ service-level for any instances.

More precisely, we observed that in 79% of the instances the lowest and highest relative cost is in relation to
δL and γ service levels, respectively, i.e., 4

(
Z∗αL , Z

∗
δL

)
≤ 4

(
Z∗αL , Z

∗
β

)
≤ 4

(
Z∗αL , Z

∗
γ

)
, and that in the rest of

the instances it holds that 4
(
Z∗αL , Z

∗
β

)
< 4

(
Z∗αL , Z

∗
δL

)
< 4

(
Z∗αL , Z

∗
γ

)
.

6.4. Optimal parameters of a continuous review (Q, r) policy under αL, β, γ, and δL
service-level constraint

In what follows, we compare the optimal parameters of the continuous review (Q, r) policy resulting from
αL-SLC, β-SLC, γ-SLC and δL-SLC models.

For each instance of the test set we compute Q∗αL , Q∗β , Q∗γ , and Q∗δL , and determine the ordering relationship
between the optimal order quantities. Table 4 shows the percentage of instances associated with each ordering
of the optimal order quantities.

From Table 4, it is observed that under the same preset service levels the optimal order quantity resulting
from αL-SLC model is less than or equal to the optimal order quantity resulting from β-SLC, γ-SLC, and
δL-SLC models. On the contrary, the optimal order quantity resulting from β-SLC is greater than or equal to
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Table 4. Order of optimal order quantities.

ᾱL = β̄ = γ̄ = δ̄L
0.99 0.98 0.97 0.96 0.95

Q∗
β = Q∗

γ = Q∗
δL

= Q∗
αL 0.6% 6.6% 11.6% 16.8% 18.4%

Q∗
β > Q∗

γ > Q∗
δL
> Q∗

αL 25.3% 44.1% 55.1% 55.9% 54.5%
Q∗
β > Q∗

γ = Q∗
δL

= Q∗
αL 12.8% 10.4% 7.0% 3.0% 0.8%

Q∗
β > Q∗

γ > Q∗
δL

= Q∗
αL 12.0% 8.6% 5.8% 2.6% 1.2%

Q∗
β > Q∗

γ = Q∗
δL
> Q∗

αL 0.0% 2.2% 5.8% 10.6% 11.6%
Q∗
β = Q∗

γ = Q∗
δL
> Q∗

αL 0.0% 0.0% 0.8% 3.6% 10.0%
Q∗
β = Q∗

γ > Q∗
δL

= Q∗
αL 0.0% 0.0% 0.0% 1.0% 2.2%

Q∗
γ > Q∗

β > Q∗
δL
> Q∗

αL 36.1% 25.9% 14.0% 6.6% 1.4%
Q∗
γ > Q∗

αL = Q∗
β = Q∗

δL
13.2% 2.2% 0.0% 0.0% 0.0%

Figure 6. Q∗αL , Q∗β , Q∗γ , and Q∗δL when ᾱL = β̄ = γ̄ = δ̄L = 0.95.

the optimal order quantity resulting from γ-SLC, δL-SLC, and αL-SLC in 50.7% and 98.6% of the instances
when the preset service levels are 0.95 and 0.99, respectively. Figure 6 shows the behavior of the optimal order
quantities resulting from αL-SLC, β-SLC, γ-SLC, and δL-SLC when ᾱL = β̄ = γ̄ = δ̄L = 0.95.

From Figure 6, it is observed that the order quantities resulting from αL-SLC and δL-SLC are similar in mag-
nitude and are clearly lower than the order quantities resulting from β-SLC and γ-SLC in most instances. In
particular, the average and maximum difference between Q∗αL and Q∗δL is 1.3% and 11%, respectively. Further-
more, it is observed that the order quantity resulting from β-SLC is larger than the order quantities resulting
from αL-SLC, γ-SLC, and δL-SLC models. In particular, the average and maximum difference between Q∗αL
and Q∗β is 14.6% and 63%, respectively.

In the same way, for each instance of the test set we compute r∗αL , r∗β , r∗γ , and r∗δL , and determine the ordering
relationship between optimal reorder points, respectively. Table 5 shows the percentage of instances associated
with each ordering of optimal reorder points.

From Table 5, it is observed that under the same preset service levels the optimal reorder point resulting from
αL-SLC model is strictly greater than the reorder points resulting from β-SLC, γ-SLC, and δL-SLC models. It
should be noted that the inequality r∗α > r∗β is hold since β(Q, r) is strictly increasing in r and Q (Prop. 3.1),
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Table 5. Order of optimal reorder points.

ᾱL = β̄ = γ̄ = δ̄L
0.99 0.98 0.97 0.96 0.95

r∗αL > r∗β > r∗γ > r∗δL 17.0% 20.8% 21.4% 21.2% 20.0%
r∗αL > r∗β > r∗δL > r∗γ 43.5% 34.1% 26.7% 20.0% 14.4%
r∗αL > r∗δL > r∗β > r∗γ 38.5% 35.5% 30.7% 24.4% 18.2%
r∗αL > r∗δL > r∗β = r∗γ 1.0% 5.8% 9.4% 13.4% 15.6%
r∗αL > r∗δL = r∗β = r∗γ 0.0% 0.8% 4.2% 11.6% 19.2%
r∗αL > r∗β > r∗δL = r∗γ 0.0% 3.0% 7.6% 9.6% 12.6%

Figure 7. r∗αL , r∗β , r∗γ , and r∗δL when ᾱL = β̄ = γ̄ = δ̄L = 0.95.

and α(r) ≤ β(Q, r) according to (4.1). Furthermore, it is easy to show that rαL ≥ rδL since αL(r) ≤ δL(r) for
any r > 0 (Prop. 4.2). Figure 7 shows the behavior of reorder points resulting from αL-SLC, β-SLC, γ-SLC,
and δL-SLC when ᾱL = β̄ = γ̄ = δ̄L = 0.95.

From Figure 7, it is observed that the optimal reorder points resulting from αL-SLC are noticeably larger than
the optimal reorder points resulting from β-SLC, γ-SLC, and δL-SLC. In particular, the average and maximum
difference between r∗αL and r∗γ is 22% and 49.4%, respectively.

7. Conclusions

In inventory control, stock availability measures seek to control the frequency, size, and duration of stock
shortages. However, none of them simultaneously control all dimensions of shortages. Depending on the type
of product and consumer reaction to shortages, the decision-maker should implement an inventory policy that
ensures a high service level in the shortage dimension that most affects customer service while minimizing
inventory costs. However, ensuring a high service level in one shortage dimension does not necessarily guarantee
good performance in the other shortage dimensions.

In this paper, we study the effect of an optimal continuous review (Q, r) policy that ensures a low frequency of
replenishment cycle stockouts (high αL service-level) on the size of backorders at an arbitrary time (β service-
level), on the size of accumulated backorders at an arbitrary time (γ service-level), and on the duration of
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stockouts replenishment cycle (δL service-level). The converse was also done, i.e., we analyzed the performance
of optimal continuous review (Q, r) policies that ensure high β, γ, and δL service levels, respectively, on the
frequency of replenishment cycle stockouts. In order to determine the optimal parameters of the continuous
review (Q, r) policy that ensures a high service level in some shortage dimension, four SLC problems (one for
each service level) were formulated as convex nonlinear optimization problems based on exact expressions for
each service level and holding costs. Thus, different of previous work, our analysis and results are based on exact
formulations.

Several relationships between stock availability measures and optimal solutions of SLC models have been
proved, from which we concluded the following managerial insights for a continuous review (Q, r) policy under
a single service level constraint.

– The β service-level simultaneously controls frequency and size of backorders at an arbitrary time.
– Ensuring a high αL service-level also ensures a high level of β and δL service levels, and the opposite is not

true.
– Ensuring a high αL service-level also ensures a high γ service-level for a wide range of demand configurations.
– The cost of providing a high αL service-level is greater than the cost of providing a high level of β and δL

service levels, and the opposite is not true.
– The cost of providing a high αL service-level is greater than the cost of providing a high γ service-level for

a wide range of demand configurations.

We conducted several test problems from which the following managerial insights are inferred.

– An optimal continuous review (Q, r) policy that ensures an αL service-level greater or equal to 0.95 induces
β, γ, and δL service levels greater or equal to 0.98.

– An optimal continuous review (Q, r) policy that ensures a β, γ, and δL service-level greater than or equal
to 0.95 induces an αL service-level less than or equal to 0.81, 0.65, and 0.73, respectively.

– The cost of assuring an αL service-level greater than or equal to 0.95 is on average 24%, 57%, and 41%
higher than assuring a β, γ, and δL service levels greater than or equal to 0.95, respectively.

– Under the same preset service levels, the continuous review (Q, r) policy causes the lowest order quantity
and the highest reorder point.

Thus, based on theoretical and experimental evidence, we infer that the αL service-level performs better
overall than β, γ, and δL service levels on frequency, size, and duration of stockouts. However, this better
performance has higher holding and ordering costs. Therefore, the fill-rate (the most observed service level
definition in practical settings) is an attractive control measure to design a continuous review (Q, r) policy only
for its lower cost.

There are a number of questions and issues left for future research. The first issue is to relax the main
assumptions made in this study, i.e., deterministic lead time and full-backorder. Thus, it will be possible to
verify whether the main conclusions of this study hold under stochastic lead time, partial backorder, and lost sale.
Similarly, a question for future work is whether the conclusions obtained in this work hold under deterioration,
default risk, and price sensitivity demand. Since each stock availability measures only consider a single shortage
aspect, a second issue is to study the relationship between a pure service level policy, i.e., an inventory policy
that responds to a single service level explicitly defined in the stochastic inventory model, and a mixed service
level policy, i.e., an inventory policy in which more than one service level is explicitly defined in the stochastic
inventory model. A third issue is related to exploring other service levels, which by their nature, induce a good
performance in those measures of stock availability that are not explicitly defined in the inventory policy.

Appendix A. Glossary of terms

See Table A.1.
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Table A.1. Spectroscopic parameters of propynethial in MHz – S Reduction.

Parameters
S Ordering cost
h Holding cost per unit and unit time
µ Average demand per unit time
L Lead time
ᾱL Preset αL service-level
β̄ Preset β service-level
γ̄ Preset γ service-level
δ̄L Preset δL service-level
Parameter functions
FD(τ)(x) Cumulative demand distribution function in the interval [0, τ ]
fD(τ)(x) Demand density function
QEOQ Economic order quantity
E(D(L)) Expected demand during lead time
Variables
Q Order quantity
r Reorder point
Variable functions
AC(Q, r) Average cost per unit time
B(Q, r) Expected on-hand steady-state inventory
α(Q, r) Provided α service-level
αL(r) Provided αL service-level
β(Q, r) Provided fill-rate service-level
γ(Q, r) Provided γ service-level
δL(r) Provided δL service-level
A(Q, r) Average stockouts per unit time
∆L(r) Expected duration of stockouts replenishment cycle

Appendix B. Proof of Proposition 3.1

Proof. Using the Leibniz integral rule to obtain partial derivatives of (3.4) with respect to Q and r, respectively,
and assuming Q > 0 and r ≥ 0, we have

∂β(Q, r)
∂Q

=
1
Q2

(∫ r+Q

r

(
FD(L)(r +Q)− FD(L)(y)

)
dy

)
> 0,

because r +Q > y for any y ∈ (r, r +Q) and Q > 0; and

∂β(Q, r)
∂r

=
1
Q

(
FD(L)(r +Q)− FD(L)(r)

)
> 0,

because Q > 0, and FD(L)(x) is a monotonically increasing function in x. �

Appendix C. Proof of Proposition 3.2

Proof. Deriving (3.10) with respect to r we have that ∂δL(r)
∂r = 1

L

∫ L
0
fD(t)(r)∂t. We conclude that δL(r) is

strictly increasing in r, i.e., ∂δL(r)
∂r > 0, because fD(t)(r) > 0 for any t ∈ (0, L] and r > 0.

Taking the second derivative of (3.10) with respect to r we have that ∂2δL(r)
∂r2 = 1

L

∫ L
0

∂fD(t)(r)

∂r ∂t. We conclude

that ∂2δL(r)
∂r2 < 0, which implies that δL(r) is strictly concave function, because ∂fD(t)(r)

∂r < 0 for any t ∈ (0, L]
when r ≥ E(D(L). �
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Appendix D. Proof of Proposition 4.1

Proof. Because γ(Q, r) is increasing in Q we have that αL(r) = FD(L)(r) ≤ γ(QEOQ, r) ≤ γ(Q, r) for any
Q ≥ QEOQ, r ≥ rαLγ . �

Appendix E. Proof of Proposition 4.2

Proof. The result follows directly from (3.5) and (3.9). �

Appendix F. Proof of Proposition 5.1

Proof. Let rβ(Q) be the minimum reorder point such that the provided β service-level is greater than or
equal to the preset service level β̄, i.e., rβ(Q) = min{r : β(Q, r) ≥ β̄)}. Because function β(Q, r) increasing
in r (Prop. 3.1) we conclude that rβ(Q) solve β(Q, r) = β̄. Furthermore, rβ(Q) is jointly convex in (Q, r)
because rβ(Q) is super-level set of the concave function β(Q, r), and rβ(Q) is strictly decreasing in Q because
∂rβ(Q)
∂Q = −∂β(Q,r)

∂Q /∂β(Q,r)
∂r < 0. Once rβ(Q) is defined, the feasible region Cβ is the intersection of the areas

above rβ(Q), above E(D(L)) and to the right of QEOQ. On the other hand, let CαL be the feasible region of αL-
SLP, i.e., the set of all (Q, r) satisfying (3.12)–(3.14), defined as the intersection of the areas above F−1

D(L)(ᾱL),
above E(D(L)) and to the right of QEOQ.

For any ᾱL ≥ β̄ we have rβ(0) = F−1
D(L)(β̄) ≤ F−1

D(L)(ᾱL) and we conclude that CαL ⊆ Cβ . Therefore, β-SLC
is relaxation of αL-SLC for any ᾱL ≥ β̄ and consequently, the optimal solution of β-SLC is a lower bound of
αL-SLC, i.e., Z∗β ≤ Z∗αL for any ᾱL ≥ β̄. �

Appendix G. Proof of Proposition 5.2

Proof. Let rγ(Q) = min{r : γ(Q, r) ≥ γ̄)}. Because function γ(Q, r) increasing in r we conclude that rγ(Q)
solve γ(Q, r) = γ̄. Furthermore, rγ(Q) is jointly convex in (Q, r) because rγ(Q) is super-level set of the concave
function γ(Q, r), and rγ(Q) is strictly decreasing in Q because ∂rγ(Q)

∂Q = −∂γ(Q,r)∂Q /∂γ(Q,r)∂r < 0. Once rγ(Q) is
defined, the feasible region Cγ is the intersection of the areas above rγ(Q), above E(D(L)) and to the right of
QEOQ.

For any ᾱL ≥ FD(L)(rαLγ) ≥ γ̄ we have rγ(QEOQ) ≤ rαLγ ≤ F−1
D(L)(ᾱL), where rγ(QEOQ) solve γ(QEOQ, r) =

γ̄ and rαLγ solve P1, and we conclude that CαL ⊆ Cγ for any ᾱL ≥ FD(L)(rαLγ) ≥ γ̄. Therefore, γ-SLC is
relaxation of αL-SLC for any ᾱL ≥ FD(L)(rαLγ) ≥ γ̄ and consequently, the optimal solution of β-SLC is a lower
bound of αL-SLC, i.e., Z∗γ ≤ Z∗αL for any ᾱL ≥ FD(L)(rαLγ) ≥ γ̄. �

Appendix H. Proof of Proposition 5.3

Proof. For any ᾱL ≥ δ̄L we have rδL ≤ F−1
D(L)(ᾱL), where rδL solve δL(r) = δ̄L, and we conclude that CαL ⊆ CδL .

Therefore, δL-SLC is relaxation of αL-SLC for any ᾱL ≥ δ̄L and consequently, the optimal solution of δL-SLC
is a lower bound of αL-SLC, i.e., Z∗δL ≤ Z

∗
αL for any ᾱL ≥ δ̄L. �
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