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AN ATTRACTORS-BASED PARTICLE SWARM OPTIMIZATION FOR
MULTIOBJECTIVE CAPACITATED VEHICLE ROUTING PROBLEM

ABDOUL-HAFAR HALASSI BACAR"*® AND SAID CHARRIFFAINI RAWHOUDINE?

Abstract. In this paper, a new multiobjective discrete particle swarm algorithm is presented for the
Capacitated vehicle routing problem. The binary algorithm integrates particle displacement based on
local attractors, a crowding distance as elitism policy and genetic operators. The proposed approach
is first implemented on a set of well-known benchmarks for single-objective capacitated vehicle routing
problems and compared to results underlined in the literature. The obtained results demonstrate its
ability to achieve the main optimization solution and sometimes prove its efficiency from other given
techniques. Then, the approach is applied to an academical example for the multiobjective Urban Bus
Routing Problem with Route Balancing.
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1. INTRODUCTION

The vehicle routing problem (VRP) is a combinatorial optimization problem seeking to service a number of
customers with a fleet of vehicles. Introduced first by Dantzig and Ramser [8], the VRP is an important problem
in the fields of transportation, distribution, and logistics. The problem is concerned with delivering goods to a
set of customers with known demands through vehicle routes by minimizing the total route cost. Capacitated
vehicle routing problem (CVRP) is the most elementary version of the VRP and seeks a number of routes for m
number of vehicles with @ units homogeneous/inhomogeneous capacity to minimize total transportation cost of
routes while satisfying the delivery demands of n number of customer nodes. Each route must start and finish
at the depot and each customer has to be visited exactly once by one vehicle.

Various real cases versions of VRP can be found in literature and details with formulation, and solution
methods can be found in [35]. The VRP is formulated as a combination of the bin packing problem (BPP)
and the traveling salesman problem (TSP). Since both BPP and TSP are proven to be NP-hard problems
[38]; the VRP and its CVRP variant are too. Among those CVRP variants are Vehicle Routing Problem with
Simultaneous Pick-up and Delivery (VRP-SPD) [33] and Vehicle Routing Problem with time windows [9,37].
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In the VRBP-SPD version, customers require simultaneous collection of goods from their location in addition
to distribution of goods to their location and a fleet of vehicles originated in a depot serves customers with pick-
up and deliveries from/to their locations. Increasing importance of reverse logistics activities make it necessary to
determine efficient and effective vehicle routes for simultaneous pick-up and delivery activities. Moreover, when
taking into account the costumers waiting time, the vehicle running time and seeking to minimize that time for
given reasons (using delay for the delivering goods, preserving some physical and/or medical qualities, reducing
the vehicle motor running and the availability time windows of customers), we formulate a multiobjective
optimization problem. That is, the new goal is not only to minimize the total transportation cost of route but
also minimizing each driver’s working time. This multiobjective version of the VRP is named the Vehicle Routing
Problem with Route Balancing (VRP-RB) [17]. Numerous real-life applications of transportation problems can
be derived from this version. We can cite for instance the Urban School Bus Routing [13,29] which is a challenging
problem in urban densely populated areas.

Many natural phenomenon based techniques, for example ant colony optimization (ACOs) and genetic algo-
rithms (GAs), have been developed in solving multi-objective optimization problems such as NSGA-II [10],
PAES [20] and SPEA2 [40] in term of genetic algorithms and for Multiobjective Ant colony Optimization, one
can refer to [2,26] among others. These population-based algorithms have the ability to explore the different
parts of the Pareto front simultaneously [16].

During these last decades, many PSO [18] approaches have been proposed and most of them use the concept
of Pareto dominance to classify the solutions [22,27]. Comparisons of different multiobjective algorithms that
use such techniques have been outlined in [21,27] among others. These outlined works show that, in general,
MOPSO based techniques are able to generate a best set of nondominated solutions close to the true Pareto
front compared to GAs based algorithms. Note that in terms of diversity of the nondominated solutions, GA
based algorithms can produce best results but are not able to cover the entire Pareto front in all test functions.

However, numerical approximation challenges reside on proposed optimization problems algorithms, such
as how intensifying the final computed Pareto front close to the true Pareto known front and how improve
diversification of these optimal solution over the whole Pareto front. First, it should be noted that the use of
a new displacement of particles [15], which basically is based on local attractors, takes into account more the
process of intensification and ensure optimal solution converge to a slongtable point of the true Pareto front.
In other hand, the use of crowding distance for the nondominated sorting in [27], the local choice of global
best guide of a particle and the personal best guide mutation coupled to a crossover operator may improve
considerably the process of diversification.

In other hand, several combinatorial Particle Swarm Optimization (PSO) techniques have been proposed to
solve different versions of the Vehicle Routing Problem [1, 24, 25] and results have shown that PSO based algo-
rithms are able to solve efficiently this kind of combinatorial optimization problem. So, the proposed algorithm
extends PSO in solving combinatorial multiobjective capacitated vehicle routing problem with route balancing
by changing the classical displacement to the one based on local attractors and incorporating the mechanism
of crowding distance computation in the insertion method and the deletion method of the external archive of
nondominated solutions. The proposed approach is named the Discrete Multiobjective Particle Swarm Optimiza-
tion based on Attractors (DMOPSO-A). The attractors based displacement, the crowding distance mechanism
together with a mutation based on personal best guides and crossover operators maintain the diversity and the
intensity of nondominated solutions in the external archive.

In order to evaluate the performance of the proposed DMOPSO-A approach, several test problems from the
literature benchmarks are considered. Results of some known solvers are compared with the solution provided
by the proposed approach. And then, an academic version of the urban bus routing problem is solved by the
actual approach.

This paper is organized as follows; in Section 2, the mathematical formulation and details of CVRP with route
balancing is presented. In Section 3, details of the proposed DMOPSO-A approach are introduced and explained.
Numerical experiments and performance validations of the proposed approach are evaluated in Section 4. Finally,
Section 5 concludes the paper with future perspectives.
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2. THE MULTIOBJECTIVE CAPACITATED VEHICLE ROUTING PROBLEM

In this section, the CVRP is formulated as a Mixed-integer linear programming (MILP) model based on
model. Let G = (V, A) be a graph with V = (vg,v1,...,v,) a set of vectors where vy is the depot and vy, ..., v,
are the n customers to be served; and A = A;; = {(vi,v;) : (vi,v5)i; € V} a set of arcs, representing a
route from customer 4 to customer j. The graph G is considered to be complete, i.e., for each couple (4, j)iz;
of customers, there exists an arc a;; (a direct route) from customer i to customer j. Matrices D and T with
entries d;; and t;; represent the length of the arc a;; and the average time for the road cross a;; respectively.
Each customer ¢ has a given positive delivery ¢;, a pick-up quantity p; and a service duration s;. At the depot,
m vehicles are located and each vehicle has a maximal capacity @ and a maximal service duration Dy. Each
vehicle has also a fixed cost f and a variable cost g per distance unit.

The multiobjective CVRP consists on choosing at most m circuits so that

(1) Each circuit starts and ends at the depot;

(2) Each customer is visited once with exactly one vehicle;

(3) The total discharge in a vehicle j along a given arc must not exceed the maximal capacity Qy, of the vehicle;

(4) The total service duration of each vehicle (including the service duration) must not exceed the limit duration
D, of the vehicle;

(5) The total cost and the route balancing of the whole routing must be as minimal as possible.

Let define the CVRP decision variables as a binary variable z;;; which indicates whether the arc (4, j) is
traversed by the vehicle k or not. x;;, = 1 is the vehicle % follows the route (i,7) and zijk = 0 if not; and a
variable y;;, which represents the weight of vehicle k when traversing the route (7, j). The objective functions
of this problem are expressed as:

n n+tl m

Fl(xvy):fZZijk+gZZZdjXmijk» (2.1)

k=1j=1 =0 j=1 k=1
n n+l n n+l
Fg(x,y) = max Z Z Tijk X dij — min E Z Tijk X dij (22)
ke{l,...m} \ 4 - ke{l,...m} \ 4 -
=0 j=1 =0 j=1

and the optimization problem is stated by

Minimize F(x,y) = (Fi(z,y), F2(z,v)) (2.3)
subject to ZZz”k =1, 1<i<n (2.4)
=1 k=1
n n+1
> wjik =Y wijk 1<i<n, 1<k<m (2.5)
5=0 j=1
D woik <1, 1<k<m (2.6)
j=1
n
S tiji + 55 < D, 0<i<n 1<k<m @7)
j=1
Yijk < Tijk X Qp, 0<4,7<n,1<k<m (2.8)
zijk € {0,1}, 0<i:<n,0<j<n+1,1<k<m (2.9)
Yijk > 0, 0<i<n, 0<j<n+1,1<k<m. (2.10)

Constraints (2.4) and (2.5) form the feasible vehicle routes, such that each customer is served by exactly one
vehicle (2.4) and each vehicle that arrives to a customer leaves that customer (2.5) and each vehicle is used to
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serve at most one round (2.6). The constraint (2.7) imposes to each vehicle to respect its maximum time service
allowed during its serving time and constraint (2.8) controls the maximum capacity of each vehicle during the
service. Finally, constraints (2.9) and (2.10) are used for the definition of the decision variables. Note that these
constraints are those imposed for the capacitated vehicle routing problems. But when solving another version
of CVRP, VRP-SPD or VRPTW for example, additional constraints are needed.

3. THE BINARY PARTICLE SWARM OPTIMIZATION BASED ON ATTRACTORS

3.1. The discrete particle swarm optimization

The initial binary particle swarm optimization algorithm was proposed by Kennedy and Eberhart [19] in
1997 for discrete optimization problems and later other versions are studied in [5,6,28] among others. In these
methods, each particle must take “true” or “false” values, “yes” or “no” values, or solution alike which indicate
a potential solution. A fitness solution is always introduced in order to evaluate the appropriateness of solutions.
Each particle is located in some dimensional space and each element of a particle position can take the binary
value of 0 or 1 which can change from 1 to 0 and vise versa. Each particle has also a velocity vector with elements
defined in range [—Viax, Vimax)- The DPSO velocities are defined in terms of probabilities that a bit will be in
one state or the zero state. At the beginning of the algorithm, a number of particles and their velocities are
initialized randomly. Then in each iteration step, the algorithm searches on how reaching the optimal solutions
based on its predefined fitness function. The global best guide and the personal best guides used to update
velocity vectors are chosen in the same manner as for the continuous optimization. Eventually, the position of
the particles is updated using velocity vectors.

With this definition, the velocity vector must be restricted in the interval [0,1]. So, a normalization and
control function is introduced to force the real values of velocity vectors to be in [0, 1]. In this study, the sigmoid

function [36] is defined by
1

V. = sigm(V;;(t)) = : 3.1
) Slgm( 7/]( )) 1 +€Xp(—‘/”(t)> ( )

The velocity is updated in the same way as in continuous optimization and is expressed by
Viet+1 = wVi e + c1r1 (Pt — Tge) + c2m2(Goe — Tit)s (3.2)

where w is the inertia factor that influences the local and global abilities of the algorithm, Vj ; is the velocity
of the particle k at iteration step ¢, ¢; and ¢y are weights affecting the cognitive and social factors, respectively.
r1 and rg ~ U(0,1); Py, stands for the best value found by particle k (pBest) and Gy, denotes the global best
found by the entire swarm (gBest).

And the new position of the particle is obtained using the equation

1 if rpp < V! = sigm (Vi 141)
Xppg1 = r = TRt a 3.3
kit {O otherwise, (3:3)

where 7, is a uniform random number in the range [0, 1].

3.2. Displacement based on attractors

Attractors, in PSO, describe the path marked by particle positions which any particle passes by before landing
on its final target. These intermediate positions are so called local intermediate positions. Let us define Sy, ; and
T} ¢, these local intermediate positions, the particle positions is represented by the values position and velocity
(3.2) and (3.3), the best personal performance Py and the best global performance Gy, of the swarm. So far
the particle (Xj 141; Vi ) travels by the local positions (Sk ¢ and T ) before it reaches the next particle position
(Xk,t+1; Vi,+1)- The operators which recently inserted in [15] perform the continuous and/or combinatorial
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optimization. The increment process grants the application a benefit of the convergency and the diversity. The
equations of attractors are stated as follows:

Skt = Xit +c1 Vi,

Tyt = Skt + cora (Pry — Skt),
X1 = Thp + 373 (Grye — Xiet) (3.4)
Vit + B (Prt — Xpt) +7(Gop — Xit) s

Vie,t+1

where
a=ci (1l —cora) x (1 —car3), B=cara(l—cars), v=cars, (3.5)
The constants ¢y, cg, and ¢z are arbitrary numbers and r1, o and r3 ~ U(0, 1). However, it is suitable to secure

the convergency of the approach. Therefore, the arbitrary constants will be constraint as follows (one set at a
time) [15]:

0<c1<09; 0<e<?2; 0<e3<2, (3.6)
0<c1<09; 2<e<4; 2<c3<4. (3.7)

Introducing the sigmoid function, the attractors aforementioned are reshaped to correspond as follows. The
velocity remains as it is typed above (3.4), however, the intermediate position are formulated

1 if rep < V!, =si X Vi
Ski = i ok < Vi = sigm (X + Vi) (3.8)
0 otherwise,
Ths = 1 if 74 S sigm (Sk,t + 627“2|Pk7t — Sk7t|) (3.9)
0 otherwise,
so that the following particle position is written
1 if rop < sigm (Th, + c3r3]|Gre — Xpel)
X — z ’ ’ ’ 3.10
kit { 0 otherwise, ( )

where (rsk, 1k, rok) ~ U(0,1) are random numbers and |z| is the absolute value of x.

3.3. Elitist policy

The diversity is a quality performance which quantify an approach for its abilities to spread particles and have
a comparable Pareto front. Hypercubes techniques [7] and Crowding Distance (CD) [23,27] are well known in
operations. They aim to select the best particles in order to respect an adequate distribution of the Pareto. The
process consists of mining particles nondominated solutions. The following work, The CD gathers to perform
this tedious work and it delivers value of density of solutions concerning its surroundings. The obtained values
are used to for comparison amongst nondominated solutions, therefore to maintain a well-distributed Pareto
front. To illustrate, if a given archive set is full, one of the techniques (hypercubes techniques or CD) is applied
to select the best solution between a nondominated solution in the archive set and a new nondominated solution
and stored in the archive.

For instance, the nondominanted solutions rest in the archive set; they are arranged in order, from lower to
the upper of objective function values. These values are computed for all nondominated solutions; besides the
value represents the distance between two neighboring nondominated solutions of the considered solution. Two
particular values remain permanent in the achieve set: the lower and the higher objective function values; their
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CD possess a significant value and they are also the boundaries. The algebraic form of the CD of the kieth
particle at iteration step t is stated as follows:

2
CD(k) = Z (fi (@rt14) = fi (Tk—11)) (3.11)

i=1

The two particles sent in computation for the kth are the k — 1 and k£ + 1 particles respectively before and after
the considered particle. Therefore, the CD values saved will be compared so that the particles with small CD
values are exposed to be replaced for another nondominated solutions. The nondominated solutions altogether
which are kept in the external archive set are eligible to be a global best guide (each one). Moreover, a random
selection is practicable for all the swarm at each iteration. However, a single steady global best guide occur an
efficient convergency. On the other hand, the diversification is jeopardized in all the process.

As regards of the approximated Pareto front, all the nondominated solutions recorded in the archive set might
be selected to serve as a guide. From the start of the program, a set of particles is run in the PSO variant, then
the nondominated solutions are stored in the archive set. Then, at each iteration a nondominated solution is
selected as the global best guide randomly. Obviously any nondominated solution can play the role of global best
guide. In process of finding the approximated Pareto Front, solutions will converge towards the nondominated
solution. According to the parameters’ set, the application can guarantee a compelling convergence. Nevertheless
the distribution over the archive set remains debatable as in each step all the offspring relay on a random global
best guide. In term of perusing the process till the end, many nondominated solutions may gather partially.
Therefore, the display of Pareto front could appeal with scattered dense part of nondominated solutions.

Based on the late information, it is suitable to add another tool to hold the diversification. For the current
circumstances, a particle with the highest CD value represents the global best guide for the swarm at each
iteration. Although the satisfactory was not accurate enough; an additional tool is subsequently added, the
DMOPSO-A. This application reinforces the intensification by allowing each particle to possess its own best
guide G}, ; at each iteration along the entire process. The DMOPSO-A withstands both the intensification and
the diversification; by the end the nondominated solutions dwell in a set with flawless diversity characteristic.

3.4. Adaptation of genetic operators

During this last decade, operation researchers focus on adapting native evolutionary operators to particle
swarm approaches such as mutation [7,27] and elitism [20].
3.4.1. Mutation operator

The mutation operator consists on applying a mutation (a genetic modification) of a particle to improve its
position. Applied to a given particle chosen randomly, the mutation operator changes its coordinates with a
certain probability. An uniform mutation operator selects with a certain probability a particle to be muted.
Then, with another given probability, it chooses a dimension (one of the particle coordinates in the decision
space) and apply modification of that position with respect of the search domain space.

In this work, we select the mutation operator [34] which applies the mutation of the personal best guide of
the particle instead of the particle itself. The mutation operator is defined by

. P, if < si ' x Rand'()),
Pi’tZ{ ot rkt_51gm(0k)t and()) (3.12)

— )
Py, otherwise,

where P,i’wt is the ¢eth coordinate of the personal best guide P of the kieth particle at iteration step ¢,
Rand() ~ Beta(a, 3) is a beta distributed random number with parameters «, 3 < 1. F;’t is the opposite of

P,i’t value, i.e., if Pli,t =1, then ﬁ;vt = 0 and wvise versa. The parameter a;c’t is defined by

Ohy =0kt X exp (T x N(0,1) + 7' x N*(0,1)),
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where oy ; is an uniform generated random number named the strategy parameter, N'* means that a normal

distributed random number is generated for each dimension coordinate; 7 = —2= and 7/ = —24— with K is
g V2K A /2\/E

the population size.

Note that after the mutation operator applied, comparisons between the personal best guide Pj; and its
corresponding muted particle Py, ; are made to determine if the new muted particle P ; dominates Py ¢ or not.
Py, 1 is replaced only if its is dominated by its muted particle Py ;.

8.4.2. Crossover operator

In addition to the mutation operator and the elitist policy, the DMOPSO-A approach integrates a crossover
operator. This approach, introduced in [34] and named DE-PSO, is formulated as a Differential Evolution
algorithm. A target particle is fixed, then a new candidate particle is created by crossing other particles randomly
selected in the swarm.

In this work, the crossover algorithm uses three particles selected such that they are pairwise different and all
different to the target particle. If k denotes the target particle and k1, ko, k3 the selected particles for crossover,
the crossover operator is defined by

~ T if rp; < sigm (F X ‘mkzjt - ka,tD ,
Tt = _. . (3.13)
Ty 4 otherwise,
1,

where F' ~ U(0,1), a:fcht, m};%t and x}cs’t are the ieth coordinates of the particles k1, ks, k3 at iteration step ¢
respectively; and E};’t is the ieth coordinate of the candidate (crossed) particle k and T}'ﬂ’t is the opposite bit

of a:fcl’t value. If the new created particle k dominates the target particle k, the candidate particle replaces the
target one.

3.5. Adaptation of the DMOPSO-A for the multiobjective CVRP

Let us describe now the formulation of DMOPSO-A algorithm for the multiobjective CVRP. Scheduling
vehicle routing is one of the key issues for a successful application of the DMOPSO-A algorithm to the multi-
objective CVRP. The goal is how finding a suitable mapping from problem solution to DMOPSO-A particle.
The following modelization has been presented in [4] for the Capacitated Vehicle Routing Problem.

Let us consider a problem of which N customers must be visited by M vehicles. We can generate a search
space with particles positions vectors so that each particle length has N x M components. Each particle will
contain M sections, and each section will be formed by N discrete points with values 0 or 1. If the value is 1
that means that the corresponding customer is served by the considered vehicle and if the value is 0 this will
mean that the vehicle selected does not serve the corresponding customer. An example of this modelization can
be set as in Figure 1.

In this example, eight customers must be served by two vehicles. And a possible vehicle routing problem
instance (customer, vehicle) is generated. For the decoding process, each particle is represented as a matrix
with two lines. For a VRP problem when N customers must be served by M vehicles, the first line of the matrix

is composed by a vector S = (s1,89,...,S8Nyxn) With entries integer values arranged from 1 to N x M, i.e.,
si=1(=1,...,N x M). The route construction is formed as follows:
— R;ji, represents a tensor where k = 1,..., K is the candidate particle, ¢ the vehicle and j the customer.

— Ryji, = 1 if the particle K the ieth vehicle serves the jieth customer and O otherwise.
— The vehicle number is computed from the position X by using the following equation

i = rl];lJ 11, (3.14)

where |z is the integer portion of z.
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First vcla\hjcle Second vg{u'cle —
Dimension:1 2 3 456 7 84 10 11 12 13 14 15 18

Position :011 010011 0 O i 01 1 O

—1

(1,2), (2,1), (3.1), (4.2), (5.1),(6,2), (7,2),(8,1)

FIGURE 1. An example of mapping for the DMOPSO-A approach in the CVRP.

— The customer number is extracted using equation

; s1—1

]:sl—NxVN J (3.15)

— Finally, the scheduled route is obtained by the value contained in the second line of the column [. If that
value is 1, then the customer j is served by the vehicle i.

For handling the CVRP constraints, each customer has to be served exactly once by one vehicle, the total
vehicle length must not exceed the maximal distance constraint and the total discharge of any route must not
exceed the capacity of the vehicle. To check such constraints, the matrix R is used. For a given particle kg, each
column (customer service) j is examined.

— If there exists only one line i such that R;jr, = 1, then the column (customer) j respects the serving
constraints.

— If Rijr, =0, Vi=1,..., M (the customer j is not visited by any vehicle), a line i is randomly pulled and
the value is changed to R;,jr, = 1.

— If there exists at least two indices (lines) ¢; and iy such that R;, jx, = Ri,jk, = 1 (the customer j is served
by at least two vehicles), a line 4o is randomly chosen from those with values 1 and its value is maintained
while all the others indices will be set to zero.

— If the total length in the route exceeds the limited value or the total successive discharge of each direct
route exceeds the capacity of the vehicle, the solution is infeasible. For infeasible solutions, carry out the
DMOPSO-A operation until the solutions become feasible.

4. NUMERICAL EXPERIMENTS

In this section, computational results are conducted in order to discuss the performance of the proposed
algorithm. Some benchmarks from literature are selected and obtained results are compared to those proposed
in literature. All the tests are carried on Matlab R2011b programs under Linux in a PC with AMD E1-1200
APU - 2GB RAM.

4.1. Dell’Amico benchmark

The first computational experiment is conducted on the Vehicle Routing problem with Simultaneous Pick-up
and Delivery (VRP-SPD) which is a particular case of the Capacitated Vehicle Routing Problem where the
vehicle capacity must be revalued after each customer service. Each customer is affected to a demand to be
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TABLE 1. Comparison of the DMOPSO-A best solution found by DMOPSO-A, PSO and the
handled Dell’Amico et al. optimal solution.

Instance class Average total cost

Dell’Amico [11] The Jin Ai [I] DMOPSO-A
Class 1 522.5 524.7 523.9
Class 2S 236 822.7 236 826.4 236 824.1
Class 2C 341481.2 341994.3 341484.0
Class 3S 12082.3 11912.3
Class 3C 15979.6 15984.6 15980.6

delivered and a given good to be picked. This is a single objective optimization problem where the only need
is to minimize the routes cost of the fleet. For instance, the benchmark data set taken into account is recorded
in the work of Dell’Amico et al. [11]. This problem comprises five classes of VRP-SPD instances. Each class
composed of 20 or 40 customers consists of instances. Class 1 consists of 12 instances, while Class 2S, 2C, 3S, and
3C consist of 18 instances. The following problem parameters are affected in the proposed DMOPSO-A method:
fixed cost per vehicle, f = 0; variable cost per distance unit, g = 1; maximal service duration D; = oo; and the
number of vehicles available is the number of vehicle in the optimal known solution. The computation test is run
during 100 iterations, based on a mutation rate equal to 0.6, a crossover rate equal to 0.39, ¢; = 0.75, co = 1.2,
¢3 = 2.6. This problem has been considered in [1] where authors resolve it using a simple PSO algorithm. Their
results are using here for comparison.

The comparison of the best solution among 100 iterations of the DMOPSO-A is presented is Table 1. The
average total cost of the instances in each class is compared to the one found by Dell’Amico et al. [11]. It has
been mentioned that Dell’Amico et al. [11] provided the optimal solution of 75 out of 84 instances and the upper
bound represents the optimal solution found. Hence, results in Table 1 demonstrate that DMOPSO-A approach
can be able to produce high quality solutions that are very close to the best solution found. We can also remark
that only for the 3S class, The Jin approach [1] produces a best solution compared to the proposed approach.
In addition, the solutions can be reached in a few computational iterations and a short computation time.

4.2. Dethloff test problem

Next, we consider another computational experiment that is based of the benchmark problem presented by
Dethloff [12]. This is composed by four data sets named SCA3, SCA8, CON3 and CONS, which consist of 10
instances of a problem of 50 customers. Each one is different of another one by specific characteristics: SCA data
are composed by customers distributed uniformly in the service area while the CON problems are generated
with half of costumers located uniformly in the service region and the other half are situated in given part of the
service affectation. The number after SCA or CON indicated the parameter for determining vehicle capacity.

This VRPSPD is an multiobjective optimization problem where the goal is to minimize the total traveled
distance by maximizing the capacity constraint of the vehicle. Therefore, the problem parameters are set as
follows: the cost per vehicle is fixed, and f = 0; the variable cost per distance unit is g = 1; there is no constraint
on service duration, so D = oo; and the number of available vehicles is equal to the number of available vehicle
in the best known solution.

To compare our approach to those found in the literature, we collect the best solution among 10 iterations
based on a mutation rate equal to 0.5, a crossover rate equal to 0.25, ¢; = 0.58, co = 1.5, c3 = 2.4. The
found solutions are compared to those obtained by The Jin [1] using PSO, Tang and Galvao [32] using a
Tabu search approach, Bianchessi and Righini [3] by using an heuristic algorithms and the reference solutions
in [12]. The overage results of the numerical results over the 10 iterations of each data set are presented
in Table 2. The presented results show that the proposed DMOPSO-A performs best results compared the
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TABLE 2. Comparison of the 10 iterations overage solution optimal solutions found by
DMOPSO-A and others published methods on the Dethloff benchmark.

Set Average total cost

Dethloff [12] Tang [32] Bianchessi [3] The Jin [1] DMOPSO-A
SCA3 746.6 674.2 684.6 675.8 679.5
SCAS8 1166.4 1044.4 1035.7 1041.8 1043.4
CONS3 597.3 564.2 568.5 569.6 575.2
CONS 860.6 774.3 776.4 798.3 801.6

TABLE 3. Computational comparison between the benchmark of the Salomon’s RC instances
and the current results.

Best known solution Ghoseiri [14] Proposed DMOPSO-A Approach

Average of solutions Best solution during Average of solutions
Instance : ;

in 10 runs the 10 runs in 10 runs

# Vehicles Distance # Vehicles Distance +# Vehicles Distance # Vehicles Distance

RC101 15 1636.92 15.3 1693.2 15.4 1689.5 15 1696.99
RC102 13 1470.26 14.5 1521.0 13.5 1509.1 14 1554.77
RC103 11 1261.67 12.2 1357.4 13 1250.8 12 1261.66
RC104 10 1135.48 11 1213.5 11 1120.4 10 1135.47
RC105 16 1590.25 15.9 1610.5 16 1615.7 16 1629.44
RC106 11 1427.13 13.5 1437.1 12 1422.1 12 1424.75
RC107 11 1230.48 12.2 1287.9 11 1223.1 11 1230.50
RC108 10 1142.66 11.3 1197.9 11 1136.5 11 1139.83
RC201 6 1134.91 4 1457.0 5 1401.2 6 1406.98
RC202 4 1181.99 4 1381.9 5 1364.3 5 1365.71
RC203 4 1026.61 4.9 1196.7 4 1056.9 4 1057.99
RC204 3 798.46 3 926.74 4 795.54 3 798.76
RC205 4 1300.25 4 1411.3 4 1300.5 4 1298.01
RC206 3 1153.93 4 1195.5 3 1144.1 3 1146.52
RC207 4 1040.67 4 1070.3 4 1043.4 4 1061.15
RC208 4 785.93 3.7 905.07 4 828.40 4 828.70

others approaches considered for comparison. Moreover, the proposed MOPSO based approach achieves best
results in less computational time. Once more, the considered test problem prove that the proposed approach
is competitive and improve solution for this kind of benchmarks.

4.3. Solomon’s problem

Next, we consider the Solomon’s problem which consists of a vehicle routing problem with time windows.
The problem is defined as a bi-objective vehicle routing problem with route balancing with 25, 50 and 100
customers. These Solomon’s instances are generally used as references in operation research. These are devised
into three categories [30, 31, 39]: category C plus a number of instances where customers are distributed in a
cluster, category R plus a number of instances where customers are randomly distributed, and category RC plus
a number of instances where the repartition of customers is handled so that distribution is between random and
clusters. This problem is solved in [14] using goal programming and genetic algorithm. Their obtained results
are used in the current work for comparison. In this example, only the last category with 100 customers is taken
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FIGURE 2. Geographical location of the 20 bus stations from the depot.

TABLE 4. Longitudinal and latitudinal positions of the 20 bus stations from the depot.

Station number 1 2 3 4 5 6 7 8 9 10

z coordinate (km) 42954 57855 64085 51767 99193 4160 20978 29074 31946 60305
y coordinate (km) 74720 31390 38737 97777 16444 1146 37130 70034 19222 94225
Station number 11 12 13 14 15 16 17 18 19 20

z coordinate (km) 8611 32214 3157 29549 58417 43846 37265 66703 97045 18686
y coordinate (km) 50092 47538 30251 54998 32380 65350 46608 2932 44565 8785

TABLE 5. The delivery, pick-up and service duration parameters for the stations.

Station 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Deliveries 4 5 3 5 2 3 3 3 5 4 4 4 3 3 3 2 4 1 2 4
Pick-up 1 0 1 2 1 2 1 2 2 1 1 2 2 0 2 2 2 1 3 1
Service (min) 3 2 2 3 3 2 3 2 2 2 3 2 2 3 2 3 2 2 2 3
TABLE 6. The fleet capacities and maximal service duration.
Vehicle 1 2 3 4 5 6 7 8 9 10
Maximal capacity 27 34 30 38 48 33 30 42 42 50

Maximal service duration (min) 187 190 119 192 186 132 177 150 182 135

into account. The computation test is run during 10 iterations, based on a population size settled to be equal
to 150, a mutation rate equal to 0.5, a crossover rate equal to 0.35, ¢c; = 0.75, co = 1.45, ¢3 = 1.85.
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FIGURE 3. Compromise surface of the studied problem after 1000 iterations (left) and 1500
iterations (right).

TABLE 7. Compromise surface of the studied problem after 500, 1000 and 1500 iterations.

500 1000 1500
Cost Balance Cost Balance Cost Balance
267.7704 0 263.0799  82.8680 246.6556  62.1773

258.0097 151.3161 241.9217 111.6078 207.7286 160.9848

227.8329 186.9130 221.3454 157.5654 202.2095 224.1326

220.3364 258.3727 215.6187 214.8524 217.0931 125.2366

243.2008 164.8209 260.8721  88.5379 223.2417  88.6984
254.7722  151.8112  224.3150 133.3050 259.2252 0

208.3095 271.0049 236.5776 132.5957 215.7201 156.1479

262.6538 111.2472  204.2400 143.8645 191.6524 238.3541

221.0789  182.4075 207.7286 160.9848

219.8852  194.5006 239.5300 73.6239

214.3199  239.0917  192.5655 232.2075

191.2347  264.8391 198.0644 226.8551

204.6563 239.5708 233.5968  85.9236

265.7499 0 234.3565  82.3965

196.3839  249.3279  234.3351  83.8069

174.3803  251.8756

202.5823  222.9275

Experimental results are reported in Table 3 where the first column presents the instance name of the
considered Solomon’s benchmark [30], the second and third columns point to the best solution (number of
vehicles and distance cost) known from literature, the fourth and fifth columns reproduces the average solutions
from Ghoseiri’s results published in [14]. Finally, the computed best optimal solutions by the current DMOPSO-
A approach are listed in the sixth and seventh columns while the eighth and ninth columns represent the average
solutions for the 10 runs. The best solution known from literature is taken according to those considered in [14].
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TABLE 8. Two examples of bus orientation found in the nondominated solutions.

Bus Particle 2 Particle 14
1 0 11 0 - - 0 11 0 - - -
2 0 12 2 10 0 0 7 10 0 - -
3 0 9 19 0 - 0 4 9 0 - -
4 0 17 0 - - 0 14 17 0 -
5 0o 7 3 13 0 0 1 5 0 — -
6 0 8 14 0 - 0 12 13 19 O -
7 0 4 5 0 - 0 6 20 0 — -
8 0 15 16 0 0 8 2 15 18 O
9 0 18 0 - 0 3 0 - - -
10 0 1 6 20 0 0 16 O - - -
< 10% Bus scheduling of the second particle < 10% Bus scheduling of the 14th particle
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FIGURE 4. Route balance of the selected nodominated solutions in Table 8.

These results show that the use of the proposed approach to solve this biobjective optimization problem for
the vehicle routing problem based on the Solomon’s benchmark is more interesting and competitive compared
to results in the literature. This approach lead us to get interesting route balance optimal solutions without
considerably affecting the optimal distance cost. We can therefore conclude that the proposed DMOPSO-A
approach is adapted to solve VRP with simultaneous pickup and deliveries or with time windows.

4.4. Urban school bus routing with route balancing

Finally, we consider an urban school bus routing problem with route balancing. The problem consists of
affecting a set of buses to serve a given number of stations to deposit and/or retrieve schoolboys and schoolgirls.
In the real-life process, the number of students to be picked or deposed at a given station is stochastic and
cannot be fixed a priori. But, in this example, for reasons of simplicity and as preliminary example, this number
is considered to be a priori known. This problem is one of the famous applications of the Vehicle Routing
Problem with Simultaneous Pick-up and Delivery (VRP-SPD). Because pupils must not arrive late to their
school/home, this problem is also one of the applications of the vehicle routing problem with time windows.
To take into account the time windows constraint, we use here the route balancing objective. This will lead
vehicles to minimize routes circuits and minimize students waiting time in the station and inside the bus. Each
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bus must return to the depot after the end of service. In this current example, we do not consider the problem
of stochastic route traffic which may change the route travel time.

In this example, 20 stations have to be served by at most 10 school buses. To facilitate the modeling, the
geographic distribution of the stations must be known. The stations distribution is depicted in Figure 2.

For each station j, there are assigned the longitude and latitude localisation as a two-dimensional orthonormal
positions, a number of students to be deposed, a number of students to be picked and a service time duration
s; in minutes. The initial delivery number of students are considered to pick-up into the bus from the depot
(bus terminal). These are summarized in Tables 4 and 5.

The fleet of buses is considered to be inhomogeneous. So, each vehicle has its own maximal transport capacity
and its own maximal service duration. These characteristics are summarized in Table 6.

For comparison, simulations are made for the proposed DMOPSO-A approach. The swarm population con-
tains 20 particles, the mutation rate is equal to 0.75, the crossover rate is setted to 0.6; ¢; = 0.48 ¢co = 0.9 and
c3 = 2.0 The code is run up to 500, 1000 and 1500 iterations. Next, Pareto front results corresponding to 1000
and 1500 iterations are plotted in Figure 3.

The compromise solutions are summarized in the Table 7 where the first column of each class corresponds to
the total cost of a route while the second column is the route equity (the route balance).

Two examples of nondominated particle solutions reported in Table 8 and prove that each route starts from
the depot and finishes on the depot; and each station is visited once by exactly one bus. The majority of
the buses have almost the same number of stations to serve. This last remark is in concordance of the route
balancing desire. These selected two routes balances are depicted in Figure 4.

5. CONCLUSION

The Discrete Multiobjective Particle Swarm approach, based on a probability of particle bit update, local
attractors, crowding distance, and genetic operators; has been used in this work to solve vehicle routing problems.
The performance of this new approach over all the benchmark problems studied turned out to be satisfactory in
the sense that the aim was to determine if the new algorithm was able to obtain results close to those underlined
in the literature.

Numerical results are shown for three well-known test examples on vehicle routing problems and compared
to results from the literature. The obtained results demonstrate that, in spite of its simplicity, handling and
flexibility, the DMOPSO-A is a promising approach to multiobjective optimization because its performance was
generally better and encouraging. Further work will consider stochastic vehicle routing problems such as Urban
School Bus routing without any a priori knowledge of number of students to be picked and/or deposed at a
given bus station and by taking into account stochastic traffic flow.

Acknowledgements. The authors wish to thank the anonymous referees for their valuable comments that lead us to
improve the quality of the present work.
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