
RAIRO-Oper. Res. 55 (2021) 2439–2468 RAIRO Operations Research
https://doi.org/10.1051/ro/2021113 www.rairo-ro.org

A SINGLE-CONSIGNOR MULTI-CONSIGNEE MULTI-ITEM MODEL WITH
PERMISSIBLE PAYMENT DELAY, DELAYED SHIPMENT AND VARIABLE

LEAD TIME UNDER CONSIGNMENT STOCK POLICY

B. Karthick∗ and R. Uthayakumar

Abstract. This article proposes a two-level fuzzy supply chain inventory model, in which a single
consignor delivers multiple items to the multiple consignees with the consignment stock agreement.
The lead time is incorporated into the model and is considered a variable for obtaining optimal replen-
ishment decisions. In addition, crashing cost is employed to reduce the lead time duration. This article
investigates four different cases under controllable lead time to analyze the best strategy, focusing on
two delays such as delay-in-payments and delay-in-shipment. In all four cases, all associated inventory
costs are treated as a trapezoidal fuzzy number, and a signed distance method is employed to defuzzify
the fuzzy inventory cost. An efficient optimization technique is adopted to find the optimal solution
for the supply chain. Four numerical experiments are conducted to illustrate the four cases. Any one of
these experimental results will provide the best solution for the ideal performance of the business under
controllable lead time in the consignment stock policy. Finally, the managerial insights, conclusion and
future direction of this model are provided.
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1. Introduction

In the supply chain, the consignment stock plays a vital role to attain a higher profit. Consignment stock
(CS) is a business agreement where the consignor agrees to deliver the goods/products to the consignee without
getting paid for the products in advance – the consignor still owns the products. The consignee pays for those
products only when it sold. Inventory management is a crucial part of the consignment partnership process.
This partnership has attracted many researchers’ attention, and, as a result, numerous inventory models have
been studied under the CS contract. Moreover, under CS policy, the retailer/buyer is referred to as the consignee
and the supplier/manufacturer as the consignor. In the industrial market, the number of new products increases
day by day depending on the customers’ needs. On its basis, to attract new customers, many researchers have
incorporated permissible payment delay to their models, saying that such incorporation will also enable greater
profitability under the integrated supply chain.
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Many inventory issues consider infinite storage in the buyer’s warehouse, but almost all businesses face ware-
house space limitations. Many researchers have developed a multi-inventory model that considers the number
of shipments equal or unequal. If the buyer’s warehouse has low capacity, the shipment is considered unequal.
Therefore, such a space limitation plays an important role. Lead time in inventory management is the time
period between placing an order to replenish inventory and receiving the order. The manufacturing methods
and the management of stocks can also influence the lead time. Concerning production, it may take longer to
build all the elements of a finished product on-site than to complete some off-site items. Therefore, it is crucial
to consider the lead time as a variable.

The fuzzy logic techniques effectively solve complex, ill-defined problems characterized by environmental
uncertainty and ambiguity of information. It allows for handling uncertain and imprecise knowledge and provides
a robust framework for reasoning. Therefore, it has been confirmed that fuzzy logic is compelling in overcoming
such uncertainty, and it describes a phenomenon in which a mathematical model or input data is unknown.
Due to the uncertainty of the information and the complexity of the decision-making process, it is difficult for
decision-makers to express their preferences using the exact numbers. In such a case, it is easy for them to
use linguistic labels, i.e., fuzzy or vague terms, to express their preferences. Thus, the solution to these sorts of
challenges can be found by considering an uncertain parameter with fuzzy numbers (see, for instance, [19,20,22]).
Generally, fuzzy numbers are used to treat uncertain parameters. It is essential to understand uncertainty, to
manage inventory strategies in supply chain management. In inventory models, there are uncertainties not
only in demand for goods but also in the calculation of inventory-related costs, and some random (stochastic)
techniques have been used to deal with these issues under such supply chain management’s inventory policies. In
such problems, uncertainties are shaped by probability distributions based on the past analysis; however, past
data are not always accurate or reliable. Furthermore, it is difficult to determine and implement uncertainty
in integrated inventory models. Therefore, fuzzy set-based techniques may be the best way to treat these
uncertainties for the practical application of inventory concepts in the supply chain (see, for instance, [29]).
Fuzziness describes event ambiguity, and it measures the degree to which an event occurs, not whether it occurs.
Randomness describes the uncertainty of event occurrence, that is, an event occurs or not. Therefore, whether
an event occurs is “random” and to what degree it occurs is “fuzzy”. Moreover, randomness is an objective form
of indeterminacy whose distribution function of random variables is deduced by applying statistical methods.
Fuzziness is a subjective form of indeterminacy that is distinguished by the degree of belongingness to a set.

By combining all of the features as mentioned above, in this study, we have considered four different cases
under controllable lead-time (CLT) in an uncertain environment, namely (i) CS policy with no delay in payment
(NDIP) – no delay in the shipment (NDIS) under CLT, (ii) CS policy with delay in payment (DIP) – no delay
in the shipment (NDIS) under CLT, (iii) CS policy with no delay in payment (NDIP) – delay in the shipment
(DIS) under CLT, (iv) CS policy with delay in payment (DIP) – delay in the shipment (DIS) under CLT.

2. Literature review

The literature review section covers the following topics: consignment stock policy, delay in payment, delay in
shipment, controllable lead time, and CS policy in a fuzzy sense. We are particularly interested in research work
dealing with two concepts: the allowable payment delay with interest and the delayed delivery in an ambiguous
environment, which will bridge the existing literature and the current work.

2.1. Consignment Stock policy

Braglia and Zavanella [5] were the first researchers who proposed the inventory model under the consignment
stock policy between the single vendor and a single buyer. Huang and Chen [16] showed the industrial strategy
model in the supply chain following the CS policy. Zavanella and Zanoni [40] addressed the production inventory
model under CS policy between the single-vendor multi-buyer. Srinivas and Rao [35] investigated and optimized
the CS contract-based supply chain model for single-vendor multi-buyer with the genetic algorithm. Giri et al.
[14] developed a three-tier supply chain model based on CS policy. Sarkar et al. [28] analyzed CS policy with a
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royalty reduction under a distribution-free approach. Gharaei et al. [12] designed the Vendor Managed Inventory
(VMI) with the CS policy model and sharing multiple items between the single-vendor multi-buyer under green-
house gas emissions and penalty. Giri and Masanta [13] examined the CS policy model under the consideration
of learning and forgetting strategy with an uncertain return. Bylka [6] formulated the CS contract model with
the limited warehouse capacity on the buyer’s side. Sardar and Sarkar [25] investigated the supply chain model
with advanced technology to solve unreliability. Sardar et al. [31] considered a CS agreement based model with
radio frequency identification and machine learning. Chakraborty et al. [7] proposed a closed-loop supply chain
model with CS policy. Çömez-Dolgan et al. [8] developed an inventory model in two different scenarios with
untimely delivery costs.

2.2. Delay in payment

Aggarwal and Jaggi [1] illustrated the inventory model for deteriorating items by implementing permissible
delay in payments. Sarkar [24] examined an imperfect production model with delayed payments and stock-based
demand. Zahran et al. [39] studied the CS case with delay-in-payments for single-vendor and single-buyer.
Shabani et al. [32] developed an inventory model with a two-warehouse inventory, fuzzy demand rate under
permissible delay in payment. Ebrahimi et al. [9] proposed a two-echelon supply chain model with a delay in
payment contract under stochastic promotional effort dependent demand.

2.3. Delay in shipment

Hill [15] suggested an integrated production-inventory model with the optimal production and shipment
policy for the single-vendor single-buyer problem. Valentini and Zavanella [36] developed a consignment stock
model with kth delayed shipment under the industrial case. Yi and Sarker [37] analyzed the replenishment policy
model with delayed deliveries under controllable lead time. Yu and Hsu [38] considered an integrated inventory
model for defective items with unequal-sized shipments. Ganesh Kumar and Uthayakumar [10] developed an
inventory model by considering the delayed shipments under VMI policy.

2.4. Controllable lead time

Jha and Shanker [18] developed the production inventory model by considering the crashing cost for multi-
buyer. Jamshidi et al. [17] considered a flexible inventory model with controllable lead time. Sarkar et al.
[26] examined the effects of quality improvement and price discounts in the context of controllable lead time.
Shin et al. [34] developed an inventory model following a continuous review methodology with variable lead
time. Sarkar et al. [27] developed a model between single-vendor multi-buyer with varying production rate and
controllable lead time. Ganguly et al. [11] designed the supply chain model with the influence of controllable lead
time. Ahmad and Benkherouf [2] investigated an inventory model with replenishment decisions under partial
backorder. Sharma et al. [33] analyzed the supply chain model with deteriorating products under varying lead
time. Sarkar et al. [30] illustrated the deteriorating products-inventory model with varying demand and lead
time.

2.5. CS policy under fuzzy environment

Ouyang and Yao [22] examined the distribution free inventory model with fuzzy demand. Björk [4] proposed
an Economic Order Quantity (EOQ) model by considering the lead time, inventory level, and demand as
a triangular fuzzy number, and defuzzification is done by using the signed distance method. Kazemi et al.
[21] developed an inventory model by considering the inventory cost as the trapezoidal fuzzy number. Ali
and Nakade [3] have developed a framework for examining the disruption of the supply chain in uncertain
situations. Rani et al. [23] illustrated a model with carbon emission depended demand under a fuzzy environment.
Sarkar et al. [29] suggested the supply chain model by assuming the inventory associated cost as a triangular
fuzzy number under the signed distance method. Karthick and Uthayakumar [19] investigated the imperfect
production inventory model with triangular fuzzy demand under the signed distance method. Karthick and
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Table 1. A comparison of the present model with related existing models.

Reference CS Multi Multi Delay in Delay in Controllable Fuzzy
policy item consignee payment shipment lead time environment

Braglia and
Zavanella [5]

√

Bylka [6]
√

Gharaei et al.
[12]

√ √ √

Huang and
Chen [16]

√

Karthick and
Uthayakumar
[20]

√ √ √

Sarkar et al.
[30]

√

Sarkar et al.
[29]

√

Valentini and
Zavanella [36]

√

Yi and Sarker
[37]

√ √ √

Zavanella and
Zanoni [40]

√ √

Zahran et al.
[39]

√ √

Present model
√ √ √ √ √ √ √

Uthayakumar [20] developed a VMI-consignment stock policy model with multiple items and trapezoidal fuzzy
number under the graded mean integration method.

2.6. The literature gap in previous research

From the above discussion, we observed that the CS policy model plays an essential role in business man-
agement. Braglia and Zavanella [5], Valentini and Zavanella [36], and Huang and Chen [16] developed a CS
policy model for industrial purpose. Zavanella and Zanoni [40] extend the work of [5, 16,36] by considering the
single buyer to multiple buyers. Yi and Sarker [37] examined the inventory model with CS agreement with the
incorporation of variable lead time. Also, Zahran et al. [39] have analyzed the CS policy model with permis-
sible payment delay. However, Zahran et al. [39], Yi and Sarker [37], Braglia and Zavanella [5], Valentini and
Zavanella [36] and Huang and Chen [16] do not consider their models with multiple buyers with multiple prod-
ucts. Nevertheless, Zahran et al. [39] does not discuss how their model operates with controllable lead time. In
trading, lead time plays a significant role in avoiding shortages, so lead time reduction is considered necessary.
Furthermore, there is no inventory model in the literature for dealing with CS policy between a single consignor
and multiple consignees with multiple products in a fuzzy environment. Based on that, in addition, this study
presents four special cases associated with two delays: delay in shipping and delay in payment.

Contributions of various study articles from the existing literature are given in Table 1. The rest of the
paper has been comprised as follows: In Section 3, notations and assumptions are given to develop the model.
In Section 4, four different cases are developed under controllable lead time in the fuzzy environment. The
defuzzification process for the fuzzified total profit function is developed in Section 5. In Section 6, the solution
procedure has been derived to find optimal solutions. Moreover, in this paper, all basic inventory cost is treated
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as a trapezoidal fuzzy number, and the defuzzification process is done using the signed distance method. Four
numerical examples are considered for each case to validate this model in Section 7. Numerical discussions and
managerial insights are given in Sections 8 and 9, respectively. Finally, the conclusion is given in Section 10.

3. Problem definition, notations and assumptions

3.1. Problem definition

The consignor produces a certain quantity of goods and transfers them equally to each consignee. Once the
goods are withdrawn from the consigned inventory, the consignee pays the consignor an equal payment in an
equal interval scheme (see, for instance, [39]). Also, if the consignee’s warehouse reaches the maximum stock
level, the shipments will be delayed. This aside, lead time plays a crucial role in the supply chain, so lead
time crashing cost is incorporated to reduce lead-time length. This study analyzes the consequences of delayed
deliveries and delayed payments in four different cases with uncertain supply chain costs. In the first and second
cases, the shipment is considered without delay, whereas it is considered delayed in the third and fourth cases.
Similarly, in the second and fourth cases, the payment (with interest charges) to the consignor is considered
with delay and in the first and third cases without delay.

In this paper, we develop a mathematical model using the notations and assumptions listed below.

3.2. Notations

The following notations will be used to develop the model.

Indices

i The index of items and 1 ≤ i ≤ z, where z is the total number of items
j The index of consignee’s and 1 ≤ j ≤ y, where y is the total number of consignee
c The index of cases and c = 1, 2, 3, 4

Parameters

Svi Setup cost for ith item ($/setup)
pi Production rate of ith item (units/year)
cpri Production cost of ith item ($/unit)
cpi Purchasing cost of raw materials for ith item ($/unit)
γi Number of units needed to produce ith item
tij Time of invoice of ith item for jth consignee
dij Demand rate of ith item from jth consignee (units/year)
Orij Ordering cost of ith item for jth consignee ($/order)
hfmij Consignor’s financial holding cost of ith item for jth consignee ($/unit/year)
hpmij Consignor’s physical holding cost of ith item for jth consignee ($/unit/year)
hmij Consignor’s holding cost ($/unit/year), i.e., hmij = hfmij + hpmij
hprij Physical holding cost of ith item for jth consignee ($/unit/year)
hpdij Physical holding cost of ith item for jth consignee in transit ($/unit/year)
αij Fraction of invoice’s time given to the jth consignee to settle down its payment

for ith item (interest-free)
βij Fraction of invoice’s time given to the jth consignee to settle down its payment

for ith item (interest-charges)
Ivij Consignor’s investment interest rate of ith item for jth consignee (%/year)
Ibij Investment interest rate of jth consignee for ith item (%/year)
cbij Consignor’s selling price of ith finished item for jth consignee
ccij Selling price of jth consignee for ith finished item ($/unit)
ctij Transaction cost of ith item for jth consignee ($/transaction)
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Tij Cycle length of ith item for jth consignee (year)
B(lj) Lead time crashing cost for jth consignee ($/shipment)

Decision variables

nij Number of shipments of ith item for jth consignee
mij Number of payments of ith item for jth consignee
qij Shipment size of ith item for jth consignee
kij Number of delayed deliveries of ith item due to the stock capacity of jth consignee
lj Lead time length of jth consignee (year)

Diagram notations

B1 Accumulative sales of jth consignee
B2 Profit of jth consignee
I1 Interest-free period
I2 Interest-charge period

3.3. Assumptions

The following assumptions are considered while developing the model.

(1) The demand rate of ith item for jth (j = 1, 2, 3, . . . , y) consignee is assumed to be constant.
(2) The production rate of ith item per year is finite, and it should be greater than the demand rate of the ith

item for jth consignee (i.e., pi > dij) to avoid shortages.
(3) The system inventory is continuously reviewed, and the shortage is not allowed.
(4) The cycle time is common for both the consignor and consignee.
(5) The holding cost of the consignor is divided into two parts, namely financial and physical. Therefore,

consignor’s holding cost of the ith item for the jth consignee, hmij = hfmij + hpmij , unit holding cost of the
ith item for the jth consignee in transit, hdij = hpdij + hfmij , and consignee’s unit holding cost of the ith
item for the jth consignee, hrij = hprij + hfrij (refer, [37]).

(6) The consignee incurs only the physical holding cost for ith item.
(7) For the jth consignee, the lead time lj consists of nj components which are mutually independent. The kth

component has a minimum duration mj,k, normal duration nj,k and a crashing cost per unit time ej,k and
assume that ej,1 ≤ ej,2 ≤ . . . ≤ ej,nij

. The lead time components are to be crashed one at a time beginning
from the least component of ei and so on.

(8) Let lj,0 =
∑nij

k=1 nj,k and lj,f is the length of the lead time components 1, 2, 3, . . . , f crashed to their
minimum duration, then expression of lj,f is given by lj,f = lj,0−

∑f
j=1(nj,k−mj,k), where f = 1, 2, . . . , nij

and crashing cost for the lead time per cycle is given by (see, for instance, [27])

B(lj) = ej,f (lj,f−1 − lj) +
f−1∑
k=1

ej,k (nj,k −mj,k) , lj ∈ [lj,f , lj,f−1] .

4. Mathematical model

In this section, a trapezoidal fuzzy number and signed distance method are provided for a preliminary
purpose, then a mathematical formulation is developed, including four cases. Basic costs related to inventory
and production are unpredictable due to various factors, i.e., inflation, the global energy crisis, fuel prices, and
oil prices. Failing to consider these unforeseen circumstances results in an unstable supply chain model. For
this reason, all the specific costs associated with the consignor and the consignee are considered to be fuzzy
costs (Trapezoidal fuzzy number) in the proposed model. The signed distance method is used to solve fuzzy
parameters.
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4.1. Trapezoidal fuzzy number

The fuzzy number t̃ is said to be a non-negative trapezoidal fuzzy number (t1, t2, t3, t4) of ti such that
t1 < t2 < t3 < t4. The membership function of trapezoidal fuzzy number is given by

µd(x) =


0, x ≤ t1
B(x) = x−t1

t2−t1 , t1 ≤ x ≤ t2
1, t2 ≤ x ≤ t3
K(x) = x−t4

t3−t4 , t3 ≤ x ≤ t4
0, x ≥ t4

(4.1)

where, t1 = lower limit, t2 = lower mode, t3 = upper mode and t4 = upper limit of the fuzzy number t̃. We
represent the trapezoidal fuzzy number as t̃ = (t−ϕ1, t−ϕ2, t+ϕ3, t+ϕ4), where ϕi, i = 1, 2, 3, 4 are arbitrary
positive numbers with the restriction t > ϕ1 > ϕ2, ϕ3 < ϕ4. For the trapezoidal fuzzy number t̃ = (t1, t2, t3, t4),
the left and right λ cuts of t̃ are respectively given by t̃L(λ) = t1 + (t2 − t1)λ and t̃U (λ) = t4 − (t4 − t3)λ.

4.2. Signed distance method

For any t ∈ R, d(t, 0) = t is named as the signed distance from t to 0. If t > 0, then the distance from t to
0 is t = d(t, 0); if t < 0, the distance from t to 0 is −t = −d(t, 0). Therefore, d(t, 0) = t is known as the signed
distance from t to 0.

For the fuzzy set t̃ ∈ R+, 0 ≤ λ ≤ 1, the following expression can be obtained as F̃ = ∪0≤λ≤1F̃λ =
∪0≤λ≤1[Lλ, Rλ]. The signed distance of the interval [Lλ, Rλ] measured from the origin 0 is given by
d([Lλ, Rλ], 0̃) = (F̃L(λ)+F̃U (λ))

2 . For the fuzzy number F̃ ∈ R−, the proposed defuzzification methods d(F̃ , 0)
(the distance from F̃ to 0) is written as

d0

(
F̃ , 0̃

)
=
∫ 1

0

d
(
F̃λ, 0̃

)
dλ =

∫ 1

0

d
(
[Lλ, Rλ] , 0̃

)
dλ =

1
2

∫ 1

0

{
F̃L(λ) + F̃U (λ)

}
dλ

=
1
2

∫ 1

0

[t1 + (t2 − t1)λ+ t4 − (t4 − t3)λ] dλ =
1
4

[t1 + t2 + t3 + t4] . (4.2)

4.3. Mathematical formulation

All four cases in this study consider the model between a single consignor and multiple consignees with
multi-item based on the CS policy.

The cost associated with CS policy model are considered as the trapezoidal fuzzy number 4.1, which are
given in the following:

Set-up cost: S̃vi = (Svi − ϕSvi1 , Svi − ϕSvi2 , Svi + ϕSvi3 , Svi + ϕSvi4),
Selling price: c̃cij =

(
ccij − ϕccij1 , ccij − ϕccij2 , ccij + ϕccij3 , ccij + ϕccij4

)
,

Transaction cost: c̃tij =
(
ctij − ϕctij1 , ctij − ϕctij2 , ctij + ϕctij3 , ctij + ϕctij4

)
,

Order cost: Õbij =
(
Obij − ϕObij1 , Obij − ϕObij2 , Obij + ϕObij3 , Obij + ϕObij4

)
,

Production cost: c̃pri =
(
cpri − ϕcpri1 , cpri − ϕcpri2 , cpri + ϕcpri3 , cpri + ϕcpri4

)
,

Consignor’s selling price: c̃bij =
(
cbij − ϕcbij1 , cbij − ϕcbij2 , cbij + ϕcbij3 , cbij + ϕcbij4

)
,

Transit physical holding cost: h̃pdij =
(
hpdij − ϕhp

dij1
, hpdij − ϕhp

dij2
, hpdij + ϕhp

dij3
, hpdij + ϕhp

dij4

)
,

Consignor’s raw material purchasing cost: c̃pi =
(
cpi − ϕcpi1 , cpi − ϕcpi2 , cpi + ϕcpi3 , cpi + ϕcpi4

)
,

Consignee’s physical holding cost: h̃prij =
(
hprij − ϕhp

rij1
, hprij − ϕhp

rij2
, hprij + ϕhp

rij3
, hprij + ϕhp

rij4

)
,

Consigor’s financial holding cost: h̃fmij =
(
hfmij − ϕhf

mij1
, hfmij − ϕhf

mij2
, hfmij + ϕhf

mij3
, hfmij + ϕhf

mij4

)
, and

Consigor’s physical holding cost: h̃pmij =
(
hpmij − ϕhp

mij1
, hpmij − ϕhp

mij2
, hpmij + ϕhp

mij3
, hpmij + ϕhp

mij4

)
,
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where ϕSvic
, ϕObijc

, ϕhf
mijc

, ϕhp
mijc

, ϕhp
dijc

, ϕhp
rijc

, ϕctijc
, ϕcpric

, ϕcbic
, ϕccic

and ϕcpic
, i = 1, 2, 3; j = 1, 2, 3;

c = 1, 2, 3, 4, are arbitrary positive numbers under the following conditions:

Svi > ϕSvi1 > ϕSvi2 , ϕSvi3 < ϕSvi4 ;Obij > ϕObij1 > ϕObij2 , ϕObij3 < ϕObij4 ;hfmij > ϕhf
mij1

> ϕhf
mij2

,

ϕhf
mij3

< ϕhf
mij4

;hpmij > ϕhp
mij1

> ϕhp
mij2

, ϕhp
mij3

< ϕhp
mij4

;hpdij > ϕhp
dij1

> ϕhp
dij2

, ϕhp
dij3

< ϕhp
dij4

;

hprij > ϕhp
rij1

> ϕhp
rij2

, ϕhp
rij3

< ϕhp
rij4

; ctij > ϕctij1 > ϕctij2 , ϕctij3 < ϕctij4 ; cpri > ϕcpri1 > ϕcpri2 ,

ϕcpri3 < ϕcpri4 ; cbij > ϕcbij1 > ϕcbij2 , ϕcbij3 < ϕcbij4 ; ccij > ϕccij1 > ϕccij2 , ϕccij3 < ϕccij4 ; and
cpi > ϕcpi1 > ϕcpi2 , ϕcpi3 < ϕcpi4 .

The cost formulation of the consignor and consignees are described as follows.

4.3.1. Consignor’s cost formulation

The costs associated with the consignor for y consignees and z items are derived as following:

Setup cost. Setup cost is the cost of purchasing and maintaining the equipment needed for the production stage
before manufacturing the products,

SC =
z∑
i=1

y∑
j=1

S̃vidij
nijqij

· (4.3)

Raw material cost. Spare parts are required to make a finished product, so the cost of purchasing those spare
parts (raw materials) is known to be a raw material cost,

RMC =
z∑
i=1

y∑
j=1

γic̃pidij . (4.4)

Production cost. Production costs refer to the cost of producing or manufacturing an item. Also, this includes
direct labour costs, direct material and overhead costs for production,

PC =
z∑
i=1

y∑
j=1

c̃pridij . (4.5)

Lead time crashing cost. Lead time is the interval between when an order is placed to fill the goods and when
the order is received. However, to reduce the length of lead time, the crashing cost is used as

LTCC =
z∑
i=1

y∑
j=1

B(lj)dij
qij

· (4.6)

4.3.2. Consignee’s cost formulation

The costs associated with y consignees for z items are derived as follows:

Purchasing cost. Purchase cost refers to the cost of purchasing products from the consignor,

PRC =
z∑
i=1

y∑
j=1

c̃bij
dij . (4.7)
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Ordering cost. The cost required by y consignees to process the order from the consignor is said to be an ordering
cost,

OC =
z∑
i=1

y∑
j=1

Õbijdij
qij

· (4.8)

Transaction cost. The commission paid by y consignees for transaction per cycle is calculated as

TRC =
z∑
i=1

y∑
j=1

mij c̃tijdij
nijqij

· (4.9)

The total cost of the supply chain (without inventory holding cost of the consignor and y consignees) is derived
by adding equations (4.3)–(4.9).

Ctotal = SC + RMC + PC + LTCC + PRC + OC + TRC

Ctotal =
z∑
i=1

y∑
j=1

(γic̃pi + c̃pri + c̃bij) dij +
(
S̃vi + nijÕbij +mij c̃tij + nijB(lj)

) dij
nijqij

· (4.10)

Case 1. CS policy with NDIP – NDIS under CLT
(
hp

mij > hp
rij

)
. The consignor produces qij of items

in each nij batches within cycle with fixed setup cost Svi at finite production rate pi. In order to avoid the
shock out, the production rate is assumed to be greater than the demand rate. The consignor utilizes
the consignee’s warehouse space to store the manufactured items; this seems to be more advantageous for
the consignor to keep fewer items in the warehouse. Moreover, there is an advantage for the consignee
by holding the maximum stock level to avoid stockouts. The inventory pattern of the consignor, transit,
consignees and financial behaviour of y consignees can be seen in Figure 1, and the average inventory of the
system is calculated as

Ics =
z∑
i=1

y∑
j=1

qij

(
nij
2
− nijdij

2pi
+
dij
pi

)
+ dij lj . (4.11)

The average inventory of y consignees are derived by dividing the area
∑z
i=1

∑y
j=1 q

2
ij

(
nij

2pi
− n2

ij

2pi
+ n2

ij

2dij

)
by

the cycle time
∑z
i=1

∑y
j=1

nijqij

dij
=
∑z
i=1

∑y
j=1 Tij , that is,

Iconsignee =
z∑
i=1

y∑
j=1

q2ij

(
nij

2pi
− n2

ij

2pi
+ n2

ij

2dij

)
Tij

=
z∑
i=1

y∑
j=1

dij
nijqij

× q2ij

(
nij
2pi
−
n2
ij

2pi
+

n2
ij

2dij

)
· (4.12)

The average inventory in transit is calculated as.

Itransit =
z∑
i=1

y∑
j=1

nijqij lj ×
1
Tij

=
z∑
i=1

y∑
j=1

dij
nijqij

× nijqij lj =
z∑
i=1

y∑
j=1

dij lj . (4.13)

The average inventory of the consignor Iconsignor is derived by subtracting Iconsignee and Itransit from the
system average inventory Ics.

Iconsignor = Ics − Iconsignee − Itransit =
z∑
i=1

y∑
j=1

qijdij
2pi

(4.14)
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Figure 1. Inventory pattern of consignment stock policy with no delay in payment and no
delay in shipment under controllable lead time (Case 1). (a) Consignor inventory. (b) Transit
inventory. (c) Inventory of jth consignee. (d) Financial behaviour of jth consignee.
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therefore, the physical holding cost of the consignor for y consignees are obtained as

z∑
i=1

y∑
j=1

h̃pmij
qijdij
2pi
· (4.15)

The financial holding cost of the consignor is formulated as (see, for instance, [39])

z∑
i=1

y∑
j=1

h̃fmij

(
(mij + 1)nijqij

2mij
− (nij − 1)

qijdij
2pi

)
(4.16)

where, h̃fmij = c̃bijIvij . The physical holding cost of y consignees are derived as

z∑
i=1

y∑
j=1

h̃prij

(
nijqij

2
− (nij − 1)

qijdij
2pi

)
(4.17)

and the transit holding cost is given as

z∑
i=1

y∑
j=1

(
h̃pdij + h̃fmij

)
dij lj . (4.18)

The total cost of the supply chain with y consignees for z items are calculated by adding the equations
(4.10), (4.15)–(4.18).

C̃1 (mij , nij , qij , lj) =
z∑
i=1

y∑
j=1

(γic̃pi + c̃pri + c̃bij) dij +
(
S̃vi + nijÕbij +mij c̃tij + nijB(lj)

) dij
nijqij

+ h̃fmij

(
(mij + 1)nijqij

2mij
− (nij − 1)

qijdij
2pi

)
+
(
h̃pmij + h̃fmij

) qijdij
2pi

+ h̃prij

(
nijqij

2
− (nij − 1)

qijdij
2pi

)
+
(
h̃pdij + h̃fmij

)
dij lj . (4.19)

The revenue of the consignor is obtained as

R̃1
consignor =

z∑
i=1

y∑
j=1

c̃bijdij (4.20)

and the revenue of y consignees for z items are obtained by adding the selling price and investment interest
rate of y consignees for z items.

R̃1
consignee =

z∑
i=1

y∑
j=1

c̃cij

(
dij + Ibij

nijqij
2mij

)
· (4.21)

Then the total revenue of the supply chain is calculated by adding the equations (4.20) and (4.21), that is,

R̃1
total(mij , nij , qij) =

z∑
i=1

y∑
j=1

c̃bijdij + c̃cij

(
dij + Ibij

nijqij
2mij

)
· (4.22)

Hence, the annual profit function P̃1(mij , nij , qij , lj) for case 1 can be written as

Max P̃1 (mij , nij , qij , lj) = R̃1
total (mij , nij , qij)− C̃1 (mij , nij , qij , lj) (4.23)
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Max P̃1 (mij , nij , qij , lj) =
z∑
i=1

y∑
j=1

c̃bijdij + c̃cij

(
dij + Ibij

nijqij
2mij

)
−
(

(γic̃pi + c̃pri + c̃bij) dij

+
(
S̃vi + nijÕbij +mij c̃tij + nijB(lj)

) dij
nijqij

+ h̃fmij

(
(mij + 1)nijqij

2mij
− (nij − 1)

qijdij
2pi

)
+
(
h̃pmij + h̃fmij

)
× qijdij

2pi
+ h̃prij

(
nijqij

2
− (nij − 1)

qijdij
2pi

)
+
(
h̃pdij + h̃fmij

)
dij lj

)
(4.24)

subject to (
nijqij − (nij − 1)qij

dij
pi

)
≤ Imax,

qij > 0,
mij , nij and lj are positive integers.

Case 2. CS policy with DIP – NDIS under CLT
(
hp

mij > hp
rij

)
. In this case, the consignor offers the

allowable payment delay to the consignee under the CS policy, i.e., the consignee pays the invoice amount to
the consignor by the end of the permissible period τij = tij + αijtij , where αijtij is delay period offered by
the consignor without interest. Sometimes, in reality, the consignee may not pay the invoice amount within
the delay period αijtij . Therefore, the consignee may pay the invoice amount with interest charges by the
end of the period δij = tij + αijtij + βijτij , where βij > 0. The inventory pattern for this case is given by
Figure 2, and the system inventory is the same as in the case 1. The opportunity loss of the consignor is
written as (see, for instance, [39])

z∑
i=1

y∑
j=1

h̃fmij

(
(mij + 1 + 2αij + 2βij (1 + αij))nijqij

2mij
− (nij − 1)

qijdij
2pi

)
· (4.25)

The consignee pays the invoice amount by the end of δij period, therefore the interest charges for the
extra delay by βijτij , which incurs the cost of

∑z
i=1

∑y
j=1(δij − τij)cbijIvijdijTij , where

∑z
i=1

∑y
j=1 Tij =∑z

i=1

∑y
j=1

βij(1+αij)nijqij

mijdij
. The total cost for case 2 is obtained by adding (4.10), (4.15), (4.17), (4.18) and

(4.25).

C̃2 (mij , nij , qij , lj)

=
z∑
i=1

y∑
j=1

(
(γic̃pi + c̃pri + c̃bij) dij +

(
S̃vi + nijÕbij +mij c̃tij + nijB(lj)

) dij
nijqij

+
(
h̃pmij + h̃fmij

) qijdij
2pi

+ h̃fmij

(
(mij + 1 + 2αij + 2βij (1 + αij))nijqij

2mij
− (nij − 1)

qijdij
2pi

)
+ h̃prij

(
nijqij

2
− (nij − 1)

qijdij
2pi

)
+ c̃biIvij

(
βij (1 + αij)nijqij

mij

)
+
(
h̃pdij + h̃fmij

)
dij lj

)
. (4.26)

The consignor’s revenue is adding obtained by selling cost of the z items to the y consignees and the interest
charged for unsettled balances, which is written as

R̃2
consignor =

z∑
i=1

y∑
j=1

cbij

(
dij + Ivij

βij (1 + αij)nijqij
mij

)
· (4.27)
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Figure 2. Inventory pattern of CS policy with delay in payment and no delay in shipment under
controllable lead time (Case 2). (a) Consignor inventory. (b) Transit inventory. (c) Inventory
of jth consignee. (d) Financial behaviour of jth consignee.
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Similarly, the revenue of y consignees is obtained by adding sales and investment (i.e.,)

R̃2
consignee =

z∑
i=1

y∑
j=1

ccij

(
dij + Ibij

(2αij + 1 + 2βij (1 + αij))nijqij
2mij

)
· (4.28)

Therefore, the total revenue is calculated by adding (4.27) and (4.28).

R̃2
total(mij , nij , qij) =

z∑
i=1

y∑
j=1

cbij

(
dij + Ivij

βij (1 + αij)nijqij
mij

)

+ ccij

(
dij + Ibij

(2αij + 1 + 2βij (1 + αij))nijqij
2mij

)
· (4.29)

Hence, the annual profit function P̃2(mij , nij , qij , lj) for case 2 is calculated by subtracting the total cost
(4.26) from the total revenue (4.29) of the supply chain.

Max P̃2 (mij , nij , qij , lj) = R̃2
total (mij , nij , qij)− C̃2 (mij , nij , qij , lj) (4.30)

Max P̃2 (mij , nij , qij , lj) =
z∑
i=1

y∑
j=1

c̃bij

(
dij + Ivij

βij (1 + αij)nijqij
mij

)
+ c̃cij

(
dij + Ibij(2αij + 1

+ 2βij (1 + αij))×
nijqij
2mij

)
−
(

(γic̃pi + c̃pri + c̃bij) dij

+
(
S̃vi + nijÕbij +mij c̃tij + nijB(lj)

) dij
nijqij

+
(
h̃pmij + h̃fmij

) qijdij
2pi

+ h̃fmij

(
(mij + 1 + 2αij + 2βij (1 + αij))nijqij

2mij
− (nij − 1)

qijdij
2pi

)
+ h̃prij

(
nijqij

2
− (nij − 1)

qijdij
2pi

)
+ c̃biIvij

(
βij (1 + αij)nijqij

mij

)
+
(
h̃pdij + h̃fmij

)
dij lj

)
(4.31)

subject to (
nijqij − (nij − 1)qij

dij
pi

)
≤ Imax,

qij > 0,
mij , nij and lj are positive integers.

Case 3. CS policy with NDIP – DIS under CLT
(
hp

mij < hp
rij

)
. In this case, the consignor faces the

problem of limited storage in the consignee’s warehouse. The consignor will not offer any payment delay to
the consignee. The inventory system with maximum delayed shipment is given in Figure 3, and the average
inventory of the system is calculated as the same as in case 1. The average inventory of consignee is derived by

dividing the area q2ij

2

(
nij

pi
+
(

1
pi
− 1

dij

)
(k2
ij − n2

ij + kij)
)

by the cycle time nijqij

dij
= Tij , where, kij = nij−1.

The calculation is on the following:

Iconsignee =
z∑
i=1

y∑
j=1

dij
nijqij

×
q2ij
2

(
nij
pi

+
(

1
pi
− 1
dij

)(
k2
ij − n2

ij + kij
))

. (4.32)
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Figure 3. Inventory pattern of CS policy with no delay in payment and delay in shipment
(Case 3). (a) Consignor inventory. (b) Transit inventory. (c) Inventory of jth consignee. (d)
Financial behaviour of jth consignee.
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The average inventory of the consignor Iconsignor is equal to the system average inventory Ics (4.11) minus
the consignee’s inventory Iconsignee (4.32) minus transit inventory Itransit (4.18).

Iconsignor = Ics − Iconsignee − Itransit =
z∑
i=1

y∑
j=1

qijdij
2pi

+
qij
2

(
1− dij

pi

)
k2
ij + kij

nij
· (4.33)

The total cost of the supply chain is derived as

C̃3 (mij , nij , qij , kij , lj) =
z∑
i=1

y∑
j=1

(
(γic̃pi + c̃pri + c̃bij) dij +

(
S̃vi + nijÕbij +mij c̃tij + nijB(lj)

) dij
nijqij

+ h̃fmij

(
(mij + 1)nijqij

2mij
− (nij − 1)

qijdij
2pi

)
+
(
h̃pmij + h̃fmij

) qijdij
2pi

+ h̃prij

(
nijqij

2
− (nij − 1)

qijdij
2pi

)
+
(
h̃pmij − h̃

p
rij

)
×
(
qij(pi − dij)

2pi

)
(nij − 1) +

(
h̃pdij + h̃fmij

)
dij lj

)
(4.34)

and the revenue of the consignor and consignee seems to be same as the case 1. Hence, the annual profit
P̃3(mij , nij , qij , kij , lj) can be written as

Max P̃3 (mij , nij , qij , kij , lj) =
z∑
i=1

y∑
j=1

c̃bijdij + c̃cij

(
dij + Ibij

nijqij
2mij

)
−
(

(γic̃pi + c̃pri + c̃bij) dij +
(
S̃vi

+ nijÕbij +mij c̃tij + nijB(lj)
) dij
nijqij

+ h̃fmij

(
(mij + 1)nijqij

2mij
− (nij − 1)

qijdij
2pi

)
+
(
h̃pmij + h̃fmij

) qijdij
2pi

+ h̃prij

(
nijqij

2
− (nij − 1)

qijdij
2pi

)
+
(
h̃pmij − h̃

p
rij

)
×
(
qij(pi − dij)

2pi

)
(nij − 1) +

(
h̃pdij + h̃fmij

)
dij lj

)
(4.35)

subject to (
(nij − kij) qij − (nij − kij − 1) qij

dij
pi

)
≤ Imax,

qij > 0,
kij ≤ nij − 1,

mij , nij and lj are positive integers.

Case 4. CS policy with DIP – DIS under CLT
(
hp

mij < hp
rij

)
. In this case, the consignor offers a pay-

ment delay to the consignee and simultaneously, there was a limited storage space in the consignee’s ware-
house. The inventory of consignor, consignee, transit is depicted in Figure 4. The revenue of the consignor
(i.e., Eq. (4.27)) and consignee (i.e., Eq. (4.28)) in case 2 are taken in this case. Then, the consignor’s
opportunity loss is given in (i.e., Eq. (4.25)). The total cost of the supply chain is calculated as

C̃4 (mij , nij , qij , lj) =
z∑
i=1

y∑
j=1

(
(γic̃pi + c̃pri + c̃bij)dij +

(
S̃vi + nijÕbij +mij c̃tij + nijB(lj)

) dij
nijqij
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Figure 4. Inventory pattern of CS policy with delay in payment and delay in shipment under
controllable lead time (Case 4). (a) Consignor inventory. (b) Transit inventory. (c) Inventory
of jth consignee. (d) Financial behaviour of jth consignee.
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+
(
h̃pmij + h̃fmij

) qijdij
2pi

+ h̃fmij

(
(mij + 1 + 2αij + 2βij (1 + αij))nijqij

2mij

− (nij − 1)
qijdij
2pi

)
+ h̃prij

(
nijqij

2
− (nij − 1)

qijdij
2pi

)
+ c̃bijIvij

(
βij (1+ αij)nijqij

mij

)
+
(
h̃pmij − h̃

p
rij

)
×
(
qij(pi − dij)

2pi

)
(nij − 1) +

(
h̃pdij + h̃fmij

)
dij lj

)
(4.36)

and the total revenue is same as the case 3. Hence, the annual profit P̃4(mij , nij , qij , kij , lj) can be written
as

Max P̃4 (mij , nij , qij , kij , lj) =
z∑
i=1

y∑
j=1

c̃bij

(
dij + Ivij

βij (1 + αij)nijqij
mij

)

+ c̃cij

(
dij + Ibij (2αij + 1 + 2βij (1 + αij))

nijqij
2mij

)
−
(

(γic̃pi + c̃pri + c̃bij) dij +
(
S̃vi + nijÕbij +mij c̃tij + nijB(lj)

) dij
nijqij

+
(
h̃pmij + h̃fmij

) qijdij
2pi

+ h̃fmij

(
(mij + 1 + 2αij + 2βij (1 + αij))nijqij

2mij

− (nij − 1)
qijdij
2pi

)
+ h̃prij

(
nijqij

2
− (nij − 1)

qijdij
2pi

)
+ c̃bijIvij

(
βij (1 + αij)nijqij

mij

)
+
(
h̃pmij − h̃

p
rij

)
×
(
qij(pi − dij)

2pi

)
(nij − 1) +

(
h̃pdij + h̃fmij

)
dij lj

)
(4.37)

subject to (
(nij − kij) qij − (nij − kij − 1) qij

dij
pi

)
≤ Imax,

qij > 0,
kij ≤ nij − 1,

mij , nij and lj are positive integers.

5. Defuzzification methodology

Defuzzification is the method of generating a quantifiable result in crisp logic, from fuzzy sets and correspond-
ing membership functions (i.e., the process of reducing the fuzzy set to a crisp set or converting the fuzzy quantity
to a crisp quantity). There may be situations in which the output of a fuzzy process must be a single scalar
quantity as opposed to a fuzzy set. The left and right λ cuts of Svi, Obij , h

f
mij , h

p
mij , h

p
dij , h

p
rij , ctij , cpri, cbi, cci,

and cpi are given below, S̃Lvi(λ) = Svi − ϕSvi1 + (ϕSvi1 − ϕSvi2)λ; S̃Uvi(λ) = Svi − ϕSvi4 + (ϕSvi4 − ϕSvi3)λ,
ÕLbij(λ) = Obij − ϕObij1 +

(
ϕObij1 − ϕObij2

)
λ; ÕUbij(λ) = Obij − ϕObij4 +

(
ϕObij4 − ϕObij3

)
λ, h̃fLmij(λ) =

hfmij − ϕhf
mij1

+
(
ϕhf

mij1
− ϕhf

mij2

)
λ; h̃fUmij(λ) = hfmij − ϕhf

mij4
+
(
ϕhf

mij4
− ϕhf

mij3

)
λ, h̃pLmij(λ) = hpmij −

ϕhp
mij1

+
(
ϕhp

mij1
− ϕhp

mij2

)
λ; h̃pUmij(λ) = hpmij − ϕhp

mij4
+
(
ϕhp

mij4
− ϕhp

mij3

)
λ, h̃pLdij(λ) = hpdij − ϕhp

dij1
+(

ϕhp
dij1
− ϕhp

dij2

)
λ; h̃pUdij(λ) = hpdij−ϕhp

dij4
+
(
ϕhp

dij4
− ϕhp

dij3

)
λ, h̃pLrij(λ) = hprij−ϕhp

rij1
+
(
ϕhp

rij1
− ϕhp

rij2

)
λ;

h̃pUrij(λ) = hprij−ϕhp
rij4

+
(
ϕhp

rij4
− ϕhp

rij3

)
λ, c̃Ltij(λ) = ctij−ϕctij1 +

(
ϕctij1 − ϕctij2

)
λ; c̃Utij(λ) = ctij−ϕctij4 +
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ϕctij4 − ϕctij3

)
λ, c̃Lpri(λ) = cpri − ϕcpri1 +

(
ϕcpri1 − ϕcpri2

)
λ; c̃Upri(λ) = cpri − ϕcpri4 +

(
ϕcpri4 − ϕcpri3

)
λ,

c̃Lbi(λ) = cbi − ϕcbi1 + (ϕcbi1 − ϕcbi2)λ; c̃Ubi(λ) = cbi − ϕcbi4 + (ϕcbi4 − ϕcbi3)λ, c̃Lci(λ) = cci − ϕcci1 +
(ϕcci1 − ϕcci2)λ; c̃Uci(λ) = cci − ϕcci4 + (ϕcci4 − ϕcci3)λ, and c̃Lpi(λ) = cpi − ϕcpi1 +

(
ϕcpi1 − ϕcpi2

)
λ;

c̃Upi(λ) = cpi − ϕcpi4 +
(
ϕcpi4 − ϕcpi3

)
λ. Therefore, by using the signed distance method 4.2,

d0

(
P̃c(mij , nij , qij , kij , lj), 0̃

)
=

1
2

∫ 1

0

[
P̃c (mij , nij , qij , kij , lj)L (λ) + P̃c (mij , nij , qij , kij , lj)U (λ)

]
dλ

if c = 1, 2 then kij = 0 and if c = 3, 4 then kij = nij − 1,

d0

(
S̃vi, 0̃

)
= Svi +

1
4

(ϕSvi4 + ϕSvi3 − ϕSvi2 − ϕSvi1) > 0 (5.1)

d0

(
Õbij , 0̃

)
= Obij +

1
4
(
ϕObij4 + ϕObij3 − ϕObij2 − ϕObij1

)
> 0 (5.2)

d0

(
h̃fmij , 0̃

)
= hfmij +

1
4

(
ϕhf

mij4
+ ϕhf

mij3
− ϕhf

mij2
− ϕhf

mij1

)
> 0 (5.3)

d0

(
h̃pmij , 0̃

)
= hpmij +

1
4

(
ϕhp

mij4
+ ϕhp

mij3
− ϕhp

mij2
− ϕhp

mij1

)
> 0 (5.4)

d0

(
h̃pdij , 0̃

)
= hpdij +

1
4

(
ϕhp

dij4
+ ϕhp

dij3
− ϕhp

dij2
− ϕhp

dij1

)
> 0 (5.5)

d0

(
h̃prij , 0̃

)
= hprij +

1
4

(
ϕhp

rij4
+ ϕhp

rij3
− ϕhp

rij2
− ϕhp

rij1

)
> 0 (5.6)

d0

(
c̃tij , 0̃

)
= ctij +

1
4
(
ϕctij4 + ϕctij3 − ϕctij2 − ϕctij1

)
> 0 (5.7)

d0

(
c̃pri, 0̃

)
= cpri +

1
4
(
ϕcpri4 + ϕcpri3 − ϕcpri2 − ϕcpri1

)
> 0 (5.8)

d0

(
c̃bij , 0̃

)
= cbij +

1
4
(
ϕcbij4 + ϕcbij3 − ϕcbij2 − ϕcbij1

)
> 0 (5.9)

d0

(
c̃cij , 0̃

)
= ccij +

1
4
(
ϕccij4 + ϕccij3 − ϕccij2 − ϕccij1

)
> 0 (5.10)

d0

(
c̃pi, 0̃

)
= cpi +

1
4
(
ϕcpi4 + ϕcpi3 − ϕcpi2 − ϕcpi1

)
> 0. (5.11)

By inserting (5.1)–(5.11) into the equations (5.12)–(5.15) yields the defuzzified profit function,
For Case 1.

d0

(
P̃1(mij , nij , qij , lj), 0̃

)
=

z∑
i=1

y∑
j=1

d0

(
c̃bij , 0̃

)
dij + d0

(
c̃cij , 0̃

)(
dij + Ibij

nijqij
2mij

)
−
((
γid0

(
c̃pi, 0̃

)
+ d0

(
c̃pri, 0̃

)
+ d0

(
c̃bij , 0̃

))
dij +

(
d0

(
S̃vi, 0̃

)
+ nijd0

(
Õbij , 0̃

)
+mijd0

(
c̃tij , 0̃

)
+ nijB (lj)

) dij
nijqij

+ d0

(
h̃fmij , 0̃

)( (mij + 1)nijqij
2mij

− (nij − 1)
qijdij
2pi

)
+
(
d0

(
h̃pmij , 0̃

)
+ d0

(
h̃fmij , 0̃

)) qijdij
2pi

+ d0

(
h̃prij , 0̃

)(nijqij
2
− (nij − 1)

qijdij
2pi

)
+
(
d0

(
h̃pdij , 0̃

)
+ d0

(
h̃pmij , 0̃

))
dij lj

)
(5.12)

subject to
(
nijqij − (nij − 1) qij

dij

pi

)
≤ Imax, qij > 0, mij , nij and lj are positive integers.

For Case 2.

d0

(
P̃2 (mij , nij , qij , lj) , 0̃

)
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=
z∑
i=1

y∑
j=1

d0

(
c̃bij , 0̃

)(
dij + Ivij

βij (1 + αij)nijqij
mij

)
+ d0

(
c̃ci, 0̃

)(
dij + Ibij

nijqij
2mij

× (2αij + 1 + 2βij (1 + αij))
)
−
((

γid0

(
c̃pi, 0̃

)
+ d0

(
c̃pri, 0̃

)
+ d0

(
c̃bij , 0̃

))
dij +

(
d0

(
S̃vi, 0̃

)
+ nijd0

(
Õbij , 0̃

)
+mijd0

(
c̃tij , 0̃

)
+ nijB (lj)

) dij
nijqij

+ d0

(
h̃fmij , 0̃

)(
(mij + 1 + 2αij

+2βij (1 + αij))
nijqij
2mij

− (nij − 1)
qijdij
2pi

)
+
(
d0

(
h̃pmij , 0̃

)
+ d0

(
h̃fmij , 0̃

)) qijdij
2pi

+ d0

(
h̃prij , 0̃

)(nijqij
2
− (nij − 1)

qijdij
2pi

)
+ d0

(
c̃bij , 0̃

)
Ivij

(
βij (1 + αij)nijqij

mij

)
+
(
d0

(
h̃pdij , 0̃

)
+ d0

(
h̃pmij , 0̃

))
dij lj

)
(5.13)

subject to
(
nijqij − (nij − 1) qij

dij

pi

)
≤ Imax, qij > 0, mij , nij and lj are positive integers.

For Case 3.

d0

(
P̃3 (mij , nij , qij , kij , lj) , 0̃

)
=

z∑
i=1

y∑
j=1

d0

(
c̃bij , 0̃

)
dij + d0

(
c̃cij , 0̃

)(
dij + Ibij

nijqij
2mij

)
−
((
γid0

(
c̃pi, 0̃

)
+ d0

(
c̃pri, 0̃

)
+ d0

(
c̃bij , 0̃

))
dij +

(
d0

(
S̃vi, 0̃

)
+ nijd0

(
Õbij , 0̃

)
+mijd0

(
c̃tij , 0̃

)
+ nijB(lj)

) dij
nijqij

+ d0

(
h̃fmij , 0̃

)( (mij + 1)nijqij
2mij

− (nij − 1)
qijdij
2pi

)
+
(
d0

(
h̃pmij , 0̃

)
+ d0

(
h̃fmij , 0̃

))
× qijdij

2pi
+
(
d0

(
h̃pmij , 0̃

)
− d0

(
h̃prij , 0̃

))(qij (pi − dij)
2pi

)
(nij − 1) + d0

(
h̃prij , 0̃

)
×
(
nijqij

2
− (nij − 1)

qijdij
2pi

)
+
(
d0

(
h̃pdij , 0̃

)
+ d0

(
h̃pmij , 0̃

))
dij lj

)
(5.14)

subject to
(

(nij − kij) qij − (nij − kij − 1) qij
dij

pi

)
≤ Imax, qij > 0, kij ≤ nij − 1,mij , nij and lj are positive

integers.
For Case 4.

d0

(
P̃4 (mij , nij , qij , kij , lj) , 0̃

)
=

z∑
i=1

y∑
j=1

d0

(
c̃bij , 0̃

)(
dij + Ivij

βij (1 + αij)nijqij
mij

)
+ d0

(
c̃cij , 0̃

)(
dij + Ibij

nijqij
2mij

× (2αij + 1 + 2βij (1 + αij))
)
−
((

γid0

(
c̃pi, 0̃

)
+ d0

(
c̃pri, 0̃

)
+ d0

(
c̃bij , 0̃

))
dij

+
(
d0

(
S̃vi, 0̃

)
+ nijd0

(
Õbij , 0̃

)
+mijd0

(
c̃tij , 0̃

)
+ nijB (lj)

) dij
nijqij

+ d0

(
h̃fmij , 0̃

)
×
(

(mij + 1 + 2αij + 2βij (1 + αij))nijqij
2mij

− (nij − 1)
qijdij
2pi

)
+
(
d0

(
h̃pmij , 0̃

)
+ d0

(
h̃fmij , 0̃

)) qijdij
2pi

+ d0

(
h̃prij , 0̃

)(nijqij
2
− (nij − 1)

qijdij
2pi

)
+ d0

(
c̃bij , 0̃

)
Ivij
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×
(
βij (1 + αij)nijqij

mij

)
+
(
d0(h̃pmij , 0̃)− d0(h̃prij , 0̃)

)(qij (pi − dij)
2pi

)
(nij − 1)

+
(
d0

(
h̃pdij , 0̃

)
+ d0

(
h̃pmij , 0̃

))
dij lj

)
(5.15)

subject to
(

(nij − kij) qij − (nij − kij − 1) qij
dij

pi

)
≤ Imax, qij > 0, kij ≤ nij − 1, mij , nij and lj are positive

integers.

6. Solution procedure

In this section, we derive the optimal value of qij and demonstrate the concavity of the integrated profit
function with respect to the decision variable qij . In this model, the number of shipment nij , the number of
payment mij and the number of delayed deliveries kij are assumed to be positive integer variables. The given
integrated profit function (5.12)–(5.15) seems to be non-linear. To solve this non-linear programming problem,
we have focused on some property to obtain the optimal solutions.

Property 6.1. For given values of mij , nij and lj ∈ [lj,f , lj,f−1], d0(P̃c, 0̃) is concave in qij .

Proof. On taking the first and second order partial derivatives of (5.12)–(5.15) with respect to qij , we obtain

For Case 1.

∂d0

(
P̃1

(
qij |m∗ij , n∗ij , l

∗
j

)
, 0̃
)

∂qij

=
B(lj)dij
q2ij

− dij
2pi

(
d0

(
h̃fmij , 0̃

)
+ d0

(
h̃pmij , 0̃

)
− d0

(
h̃fmij , 0̃

)
(nij − 1)

)
− d0

(
h̃prij , 0̃

)(nij
2
− dij (nij − 1)

2pi

)
+
dij
q2ij

d0

(
Õbij , 0̃

)
+
nijIbij
2mij

d0

(
c̃cij , 0̃

)
+

dij
nijq2ij

d0

(
S̃vi, 0̃

)
− nij (mij + 1)

2mij
d0

(
h̃fmij , 0̃

)
+
mijdij
nijq2ij

d0

(
c̃tij , 0̃

)
(6.1)

and

∂2d0

(
P̃1

(
qij |m∗ij , n∗ij , l

∗
j

)
, 0̃
)

∂q2ij
= −2dijB (lj)

q3ij
− 2dij

q3ij
d0

(
Õbij , 0̃

)
− 2dij
nijq3ij

d0

(
S̃vi, 0̃

)
− 2mijdij

nijq3ij
d0

(
c̃tij , 0̃

)
< 0.

(6.2)

For Case 2.

∂d0

(
P̃2

(
qij |m∗ij , n∗ij , l

∗
j

)
, 0̃
)

∂qij
=

B (lj) dij
q2ij

− dij
2pi

(
d0

(
h̃fmij , 0̃

)
+ d0

(
h̃pmij , 0̃

)
− d0

(
h̃fmij , 0̃

)
(nij − 1)

)
− d0

(
h̃prij , 0̃

)(nij
2
− dij (nij − 1)

2pi

)
+
dij
q2ij

d0

(
Õbij , 0̃

)
+
nijIbij
2mij

d0

(
c̃cij , 0̃

)
× (2αij + 2βij (αij + 1) + 1) +

dij
nijq2ij

d0

(
S̃vi, 0̃

)
− nij

2mij
d0

(
h̃fmij , 0̃

)
× (2αij +mij + 2βij (αij + 1) + 1) +

mijdij
nijq2ij

d0

(
c̃tij , 0̃

)
(6.3)
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and

∂2d0

(
P̃2

(
qij |m∗ij , n∗ij , l

∗
j

)
, 0̃
)

∂q2ij
= −2dijB (lj)

q3ij
− 2dij

q3ij
d0

(
Õbij , 0̃

)
− 2dij
nijq3ij

d0

(
S̃vi, 0̃

)
− 2mijdij

nijq3ij
d0

(
c̃tij , 0̃

)
< 0.

(6.4)

For Case 3.

∂d0

(
P̃3

(
qij |m∗ij , n∗ij , k∗ij , l

∗
j

)
, 0̃
)

∂qij
=

B (lj) dij
q2ij

− dij
2pi

(
d0

(
h̃fmij , 0̃

)
+ d0

(
h̃pmij , 0̃

)
− d0

(
h̃fmij , 0̃

)
(nij − 1)

)
− d0

(
h̃prij , 0̃

)(nij
2
− dij (nij − 1)

2pi

)
+
dij
q2ij

d0

(
Õbij , 0̃

)
+
nijIbij
2mij

d0

(
c̃cij , 0̃

)
+

dij
nijq2ij

d0

(
S̃vi, 0̃

)
− nij (mij + 1)

2mij
d0

(
h̃fmij , 0̃

)
+
mijdij
nijq2ij

d0

(
c̃tij , 0̃

)
+

(dij − pi) (nij − 1)
2pi

(
d0

(
h̃fmij , 0̃

)
− d0

(
h̃prij , 0̃

))
(6.5)

and

∂2d0

(
P̃3

(
qij |m∗ij , n∗ij , k∗ij , l

∗
j

)
, 0̃
)

∂q2ij
= − 2dijB (lj)

q3ij
− 2dij

q3ij
d0

(
Õbij , 0̃

)
− 2dij
nijq3ij

d0

(
S̃vi, 0̃

)
− 2mijdij

nijq3ij
d0

(
c̃tij , 0̃

)
< 0. (6.6)

For Case 4.

∂d0

(
P̃4

(
qij |m∗ij , n∗ij , k∗ij , l

∗
j

)
, 0̃
)

∂qij
=

B (lj) dij
q2ij

− dij
2pi

(
d0

(
h̃fmij , 0̃

)
+ d0

(
h̃pmij , 0̃

)
− d0

(
h̃fmij , 0̃

)
(nij − 1)

)
− d0

(
h̃prij , 0̃

)(nij
2
− dij (nij − 1)

2pi

)
+
dij
q2ij

d0

(
Õbij , 0̃

)
+
nijIbij
2mij

× (2αij + 2βij (αij + 1) + 1) d0

(
c̃cij , 0̃

)
+

dij
nijq2ij

d0

(
S̃vi, 0̃

)
− nij (2αij +mij + 2βij (αij + 1) + 1)

2mij
d0

(
h̃fmij , 0̃

)
+
mijdij
nijq2ij

d0

(
c̃tij , 0̃

)
+

(dij − pi) (nij − 1)
2pi

(
d0

(
h̃fmij , 0̃

)
− d0

(
h̃prij , 0̃

))
(6.7)

and

∂2d0

(
P̃4

(
qij |m∗ij , n∗ij , k∗ij , l

∗
j

)
, 0̃
)

∂q2ij
= − 2dijB (lj)

q3ij
− 2dij

q3ij
d0

(
Õbij , 0̃

)
− 2dij
nijq3ij

d0

(
S̃vi, 0̃

)
− 2mijdij

nijq3ij
d0

(
c̃tij , 0̃

)
< 0. (6.8)

Therefore, for fixed mij , nij and lj ∈ [lj,f , lj,f−1], d0(P̃c, 0̃) is concave in qij . Hence, this completes the proof of
Property 6.1. �
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Result. From the Property 6.1,

For Case 1. We obtain the optimal value of qij (6.9) by equating (6.1) to zero, which maximize the d0(P̃1, 0̃).

qij =

√√√√√2mijdijpi

(
d0

(
S̃vi, 0̃

)
+ nijB (lj) + nijd0

(
Õbij , 0̃

)
+mijd0

(
c̃tij , 0̃

))
nij

(
d0

(
h̃prij , 0̃

)
(mijdij −mijnijdij +mijnijpi) + κ1 + Γ1

) (6.9)

where κ1 = d0

(
h̃fmij , 0̃

)
(2mijdij + nijpi −mijnijdij +mijnijpi) and Γ1 = mijdijd0

(
h̃pmij , 0̃

)
−

nijIbijpid0

(
c̃cij , 0̃

)
.

For Case 2. We obtain the optimal value of qij in (6.10) by equating (6.3) to zero, which maximize the d0(P̃2, 0̃).

qij =

√√√√√2mijdijpi

(
d0

(
S̃vi, 0̃

)
+ nijB (lj) + nijd0

(
Õbij , 0̃

)
+mijd0

(
c̃tij , 0̃

))
nij

(
d0

(
h̃prij , 0̃

)
(mijdij −mijnijdij +mijnijpi) + κ2 + Γ2

) (6.10)

where κ2 = d0

(
h̃fmij , 0̃

)
(2dijmij − dijmijnij + 2piαijnij + 2piβijnij + pimijnij + 2piαijβijnij) and

Γ2 = mijdijd0

(
h̃pmij , 0̃

)
− Ibijpinijd0(c̃cij , 0) (1 + 2αij + 2βij + 2αijβij) .

For Case 3. We obtain the optimal value of qij in (6.11) by equating (6.5) to zero, which maximize the d0

(
P̃3, 0̃

)
.

qij =

√√√√√ 2mijdijpi

(
d0

(
S̃vi, 0̃

)
+ nijB (lj) + nijd0

(
Õbij , 0̃

)
+mijd0

(
c̃tij , 0̃

))
nij

(
d0

(
h̃prij , 0̃

)
(mijpi) + d0

(
h̃fmij , 0̃

)
(2mijdij + nijpi −mijnijdij +mijnijpi) + Γ3

) (6.11)

where Γ3 = (2dijmij − pimij − dijmijnij + pimijnij) d0

(
h̃pmij , 0̃

)
− Ibijpinijd0

(
c̃cij , 0̃

)
.

For Case 4. We obtain the optimal value of qij in (6.12) by equating (6.7) to zero, which maximize the d0

(
P̃4, 0̃

)
.

qij =

√√√√√ 2mijdijpi

(
d0

(
S̃vi, 0̃

)
+ nijB (lj) + nijd0

(
Õbij , 0̃

)
+mijd0

(
c̃tij , 0̃

))
nij

(
d0

(
h̃prij , 0̃

)
(mijpi) + d0

(
h̃fmij , 0̃

)
(2dij + pinij − dijmijnij + κ4) + Γ4

) (6.12)

where κ4 = 2piαijnij + 2piβijnij + pimijnij + 2piαijβijnij and Γ4 = (2dijmij − pimij − dijmijnij+

pimijnij) d0

(
h̃pmij , 0̃

)
− Ibijpinij (1 + 2αijnij + 2βij + 2αijβij) d0

(
c̃cij , 0̃

)
.

Property 6.2. For fixed values of mij , nij and qij , the integrated profit function d0

(
P̃c (lj) , 0̃

)
, where c =

1, 2, 3, 4 is linear on lj .

Proof. On taking the first order derivatives of profit functions (5.12)–(5.15) will lead to

∂d0

(
P̃c (lj) , 0̃

)
∂lj

= dij

[
ej
qij
−
(
hpdij +

1
4

(
ϕhp

dij4
+ ϕhp

dij3
− ϕhp

dij2
− ϕhp

dij1

)
+ hfmij

+
1
4

(
ϕhf

mij4
+ ϕhf

mij3
− ϕhf

mij2
− ϕhf

mij1

))]
(6.13)
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Table 2. Input parameter for trapezoidal fuzzy number.

Fuzzy
parameters of

Item i
Fuzzy
parameters of

Item i
Fuzzy
parameters of

Item i

Svi 1 2 3 cpri 1 2 3 cpi 1 2 3

ϕSvi1 300 300 300 ϕcpri1 0.7 0.7 0.7 ϕcpi1 2.6 2.3 2
ϕSvi2 200 200 200 ϕcpri2 0.4 0.4 0.4 ϕcpi2 1.6 1.3 1
ϕSvi3 150 150 150 ϕcpri3 0.4 0.4 0.4 ϕcpi3 2 1.8 1.5
ϕSvi4 250 250 250 ϕcpri4 0.9 0.9 0.9 ϕcpi4 2.5 2.3 2.2

where c = 1, 2, 3, 4. Equation (6.13) result as a constant. If ej

qij
>
[
d0

(
h̃pdij , 0̃

)
+ d0

(
h̃fmij , 0̃

)]
, then the

d0

(
P̃c (lj) , 0̃

)
is linear increase on lj . If ej

qij
<
[
d0

(
h̃pdij , 0̃

)
+ d0

(
h̃fmij , 0̃

)]
, then the d0

(
P̃c(lj), 0̃

)
is linear

decrease on lj . If ej

qij
=
[
d0

(
h̃pdij , 0̃

)
+ d0

(
h̃fmij , 0̃

)]
, then the d0

(
P̃c(lj), 0̃

)
is flat on lj . Therefore, under each

case, the profit function d0

(
P̃c(lj), 0̃

)
is linear on lj . Hence, this completes the proof of Property 6.2. �

For the fixed values of mij , nij , and qij , the maximum d0

(
P̃c(lj), 0̃

)
always occurs only at the end points of

[lj,f , lj,f−1] .

7. Numerical analysis

Let us consider a two-tier supply chain model for three items and three consignees, that is z=3, y=3. For
simplicity the parameters for three items and three consignee are arranged in the row matrix, i.e., production
rate pi=[p1, p2, p3] is the production rate of ith item, demand dij = [d11, d12, d13; d21, d22, d23; d31, d32, d33] is
the demand of the ith item for jth consignee.

The numerical data was taken from Zavanella and Zanoni [40], Sarker [37], Sarkar et al. [27] and Zahran et al.
[39].

Example 7.1. For Case 1.
(
hpmij > hprij

)
. Parameters related to Consignor: Svi = [400, 370, 345] ($/setup),

cpri = [3, 2.5, 1]($/unit), hpmij = [15, 14.5, 16; 14.8, 16.7, 15.9; 15, 15.7, 16]($/unit/year), hfmij = [0.54, 0.54,
0.54; 0.51, 0.51, 0.51; 0.48, 0.48, 0.48] ($/unit/year), cbij = [5.4, 5.4, 5.4; 5.4, 5.4, 5.4;5.4, 5.4,5.4] ($/unit),
cpi = [3, 2.8, 2.4] ($/unit). Parameters related to Consignee: Obij = [29, 26, 25; 27, 26.5, 25.5; 26, 29,
26] ($/order), hprij = [7, 6.8, 7; 8, 7, 8; 8.5, 7, 7.8]($/unit/year), Ibij = [0.1, 0.1, 0.1; 0.1, 0.1, 0.1; 0.1, 0.1,
0.1] ($/year), ccij = [13.9, 14, 12.29; 13.9, 14, 12.29; 13.9, 14, 12.29]($/unit), ctij = [0.7, 0.6, 0.75; 0.7, 0.5,
0.6; 0.65, 0.75, 0.66] ($/transaction). General parameters: dij = [900, 600, 650; 600, 650, 700; 350, 400,
430] (units/year), pi = [3200, 2000, 2500] (units/year), hpdij = [7, 7.8, 6.2; 8.8, 7.5, 6.8; 6.4, 6.8, 7]
($/unit/year), γi = [1, 1, 1]. The fuzzy parameteric values are listed out in the Tables 2 and 3. In
addition, the lead time has three components with data shown in Table 4 as well as the summarized
lead time components information is given in Table 5. The optimal solution, lj = [0.0767, 0.0767, 0.0959],
B(lj) = [18.2000, 16.1000, 40.6000], mij = [1, 1, 1], nij = [3, 3, 3], the order quantity of three items
for first consignee, [q11, q21, q31] = [128.84105, 96.193021, 68.123938], for second consignee, [q12, q22, q32] =
[104.70503, 102.54538, 80.836474], for third consignee, [q13, q23, q33] = [111.80159, 106.69594, 82.509551],
profit of first consignee on three items, [P 11

1 , P 21
1 , P 31

1 ] = [3637.5498, 2382.1809, 1706.8041], for sec-
ond consignee, [P 12

1 , P 22
1 , P 32

1 ] = [2172.4448, 2847.7495, 2207.3677], for third consignee, [P 13
1 , P 23

1 , P 33
1 ] =

[1044.9304, 1678.4404, 1419.3938], the profit of three consignee is [7726.5348, 7227.5621, 4142.7646], the overall
profit of the supply chain is 19096.861.
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Table 3. Input parameter for trapezoidal fuzzy number.

Fuzzy i i i i

parameter g j 1 2 3 g 1 2 3 g 1 2 3 g 1 2 3

1 25 24 22 12 18 16 20 17 11 24 21 18

ϕObijg
1 2 26 22 20 2 24 18 14 3 17 16 10 4 25 19 15

3 21 17 23 17 15 18 15 18 14 19 24 22

1 6 6 6 4 4 4 3 3 3 5 5 5

ϕccijg
1 2 6 6 6 2 4 4 4 3 3 3 3 4 5 5 5

3 6 6 6 4 4 4 3 3 3 5 5 5

1 5 5 5 3 3 3 1.5 1.5 1.5 3 3 3

ϕcbijg
1 2 4.8 4.8 4.8 2 4 4 4 3 1.2 1.2 1.2 4 2 2 2

3 3.8 3.8 3.8 2 2 2 0.4 0.4 0.4 1 1 1

1 6 6 6 3 3 3 2 2 2 5 5 5

ϕh
p
rijg

1 2 6 6 6 2 3 3 3 3 2 2 2 4 5 5 5

3 6 6 6 3 3 3 2 2 2 5 5 5

1 14 14 14 10 10 10 9 9 9 13 13 13

ϕh
p
mijg

1 2 14 14 14 2 10 10 10 3 9 9 9 4 13 13 13

3 14 14 14 10 10 10 9 9 9 13 13 13

1 6.9 6.6 6 6 5.8 4.8 5 4 6 6 5.6 6.7

ϕh
p
dijg

1 2 7 6.5 6 2 4.8 3.7 5.7 3 6 6.7 4 4 8 7 5.6

3 6 6.6 6.4 4.4 4.7 5.4 5.2 6 5.5 6 6.3 6.8

1 0.45 0.40 0.35 0.38 0.35 0.28 0.34 0.34 0.30 0.48 0.44 0.40

ϕ
h

f
mijg

1 2 0.48 0.35 0.25 2 0.38 0.28 0.18 3 0.27 0.35 0.25 4 0.30 0.40 0.35

3 0.45 0.38 0.30 0.38 0.28 0.26 0.38 0.34 0.32 0.40 0.46 0.47

1 0.6 0.4 0.57 0.45 0.34 0.35 0.35 0.25 0.34 0.48 0.58 0.68

ϕctijg
1 2 0.65 0.43 0.58 2 0.28 0.36 0.42 3 0.34 0.25 0.45 4 0.68 0.43 0.57

3 0.61 0.72 0.62 0.31 0.45 0.45 0.25 0.19 0.28 0.48 0.46 0.58

Table 4. Lead time components.

Consignee Lead time components Normal duration Minimum duration Unit crashing cost
j k nj,k (year) mj,k (year) ej,k ($/year)

1 20/365 = 0.05479 6/365 = 0.01644 0.1× 365 = 36.5
1 2 20/365 = 0.05479 6/365 = 0.01644 1.2× 365 = 438

3 16/365 = 0.04383 9/365 = 0.02465 5.0× 365 = 1825
1 20/365 = 0.05479 6/365 = 0.01644 0.5× 365 = 182.5

2 2 16/365 = 0.04383 9/365 = 0.02465 1.3× 365 = 474.5
3 13/365 = 0.035616 6/365 = 0.01644 5.1× 365 = 1861.5
1 25/365 = 0.06849 11/365 = 0.03013 0.4× 365 = 146

3 2 20/365 = 0.05479 6/365 = 0.01644 2.5× 365 = 912.5
3 18/365 = 0.04931 11/365 = 0.03013 5.0× 365 = 1825

Example 7.2. For Case 2.
(
hpmij > hprij

)
. Parameters related to Consignor: Ivij = [0.1, 0.1, 0.1; 0.1, 0.1,

0.1; 0.1, 0.1, 0.1] ($/year), General parameters: αij = [0.2, 0.2, 0.2; 0.2, 0.2, 0.2; 0.2, 0.2, 0.2], βij = [0.1,
0.1, 0.1; 0.1, 0.1, 0.1; 0.1, 0.1, 0.1]. The rest of the parameteric values are same as in the Example 7.1. The
optimum solution, lj = [0.0767, 0.0767, 0.0959], B(lj) = [18.2000, 16.1000, 40.6000], mij = [1, 1, 1], nij =
[3, 3, 3], the optimal order quantity is given in the Table 6 the profit on three items for three consignee
are [P 11

2 , P 21
2 , P 21

2 ] = [3738.91, 2467.3379, 1764.9678], [P 12
2 , P 22

2 , P 22
2 ] = [2254.8835, 2929.1406, 2273.6092],

[P 13
2 , P 23

2 , P 23
2 ] = [1112.6775, 1743.5042, 1470.9505], the profit of three consignee is [7971.2157, 7457.6333,

4327.1322] the overall profit of the supply chain is 19 755.981.
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Table 5. Summarized lead time data.

Consignee j Lead time (year) B(lj) ($/shipment)

56/365 = 0.15342 0
1 42/365 = 0.11506 1.4

28/365 = 0.076712 18.2
21/365 = 0.05753 53.20
49/365 = 0.13424 0

2 35/365 = 0.095890 7
28/365 = 0.076712 16.1
21/365 = 0.057534 51.8
63/365 = 0.1726 0

3 49/365 = 0.13424 5.6
35/365 = 0.09589 40.6
28/365 = 0.076712 75.6

Table 6. Optimal values.

Example/ Consignee Item i = [1, 2, 3]
Case j lj kij mij nij qij Profit

1 0.0767 [1, 1, 1] [3, 3, 3] [128.84105, 96.193021, 68.123938]

1 2 0.0767 – [1, 1, 1] [3, 3, 3] [104.70503, 102.54538, 80.836474] 19 096.861
3 0.0959 [1, 1, 1] [3, 3, 3] [111.80159, 106.69594, 82.509551]

1 0.0767 [1, 1, 1] [3, 3, 3] [134.41367, 100.4769, 70.809769]
2 2 0.0767 – [1, 1, 1] [3, 3, 3] [109.4138, 106.88374, 84.518569] 19 755.981

3 0.0959 [1, 1, 1] [3, 3, 3] [115.34919, 109.70609, 84.961654]

1 0.1151 [4, 4, 4] [1, 1, 1] [5, 5, 5] [76.399709, 57.672644, 39.242718]

3 2 0.0959 [4, 4, 4] [1, 1, 1] [5, 5, 5] [61.565756, 62.568235, 47.485165] 17 179.512
3 0.1342 [4, 4, 4] [1, 1, 1] [5, 5, 5] [60.549037, 61.549789, 44.872583]

1 0.1151 [5, 5, 5] [1, 1, 1] [6, 6, 6] [70.557926, 53.168928, 35.554063]

4 2 0.0959 [5, 5, 5] [1, 1, 1] [6, 6, 6] [56.473436, 58.181526, 43.846176] 17832.472

3 0.1342 [5, 5, 5] [1, 1, 1] [6, 6, 6] [54.848228, 56.1366, 40.588412]

Notes. The results of the four examples/cases are given in Table 6. Of those four results, we have bolded the value (i.e.,
“19755.981”) to show that Example 7.2/Case 2 results are more profitable compared to the other three examples/cases
results.

Example 7.3. For Case 3.
(
hpmij < hprij

)
. This example takes the data from the Example 7.1 excluding the

physical holding cost of consignor hpmij and consignee hprij . Instead we take hpmij = [7, 6.8, 7; 8, 7, 8; 8.5,
7, 7.8] ($/unit/year), hprij = [15, 14.5, 16; 14.8, 16.7, 15.9; 15, 15.7, 16] ($/unit/year), ϕhp

rij4
= [13, 13,

13; 13, 13, 13; 13, 13, 13], ϕhp
rij3

= [9, 9, 9; 9, 9, 9; 9, 9, 9], ϕhp
rij2

= [10, 10, 10; 10, 10, 10; 10, 10, 10],
ϕhp

rij1
= [14, 14, 14; 14, 14, 14; 14, 14, 14], ϕhp

mij4
= [5, 5, 5; 5, 5, 5; 5, 5, 5], ϕhp

mij3
= [2, 2, 2; 2, 2, 2;

2, 2, 2], ϕhp
mij2

= [3, 3, 3; 3, 3, 3; 3, 3, 3], ϕhp
mij1

= [6, 6, 6; 6, 6, 6; 6, 6, 6]. The optimum values, lj =
[0.1151, 0.0959, 0.1342], B(lj) = [1.4000, 7.0000, 5.6000], kij = [4, 4, 4], mij = [1, 1, 1], nij = [5, 5, 5], the profit
on three items for three consignee are [P 11

3 , P 21
3 , P 21

3 ] = [3299.3444, 2145.4999, 1539.6257], [P 12
3 , P 22

3 , P 22
3 ] =

[1902.2614, 2615.3974, 1949.3164], [P 13
3 , P 23

3 , P 23
3 ] = [834.41271, 1615.2576, 1278.3967], the total profit earned by

the each conisgnee is [6984.4699, 6466.9752, 3728.067], the overall profit of supply chain is 17 179.512.

Example 7.4. For Case 4.
(
hpmij < hprij

)
. The parametric values of Ivij , αij , βij are same as in the

Example 7.2 and the values of hpmij , h
p
rij are taken in account from Example 7.3. The remaining

data are same as from the Example 7.1. The optimum values, lj = [0.1151, 0.0959, 0.1342], B(lj) =
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[1.4000, 7.0000, 5.6000], kij = [5, 5, 5], mij = [1, 1, 1], nij = [6, 6, 6], the profit on three items for three consignee
are [P 11

4 , P 21
4 , P 21

4 ] = [3410.6661, 2239.1973, 1581.7952], [P 12
4 , P 22

4 , P 22
4 ] = [1980.9267, 2716.1003, 1999.9991],

[P 13
4 , P 23

4 , P 23
4 ] = [901.17809, 1689.6391, 1312.9704], the total profit of three consignee is [7231.6586, 6697.0261,

3903.7877], the overall profit of supply chain is 17 832.472.

The optimal solution for all four examples (four cases) are given in Table 6 and the profit obtained from the
above four examples are compared in graphical representation 5.

8. Discussion of the results

This section describes the discussion of the numerical results of the proposed model.

(1) The results of the four Examples 7.1–7.4 demonstrate that the supply chain achieves more profitability if
the consignor has a higher physical holding cost hpmij than the consignee’s physical holding cost hprij .

(2) If hpmij is less than hprij , the proposed model yields a lower profit, as is clear from the results of Cases 3 and 4.
(3) The delay in shipment affects the profitability of the supply chain, which can be clearly seen in Figure 5.
(4) From the results of Example 7.2, it is evident that delaying the payment strategy can lead to higher profits.

9. Managerial insights

This article analyzes the best strategy to maximize profits through late shipments and late payments. More-
over, it gives a comparison in four cases with respect to delay in payment and delay in shipment under a
controllable lead time, and the managerial insights from those comparisons are as follows:

(1) The CS agreement policy favours both the consignor and the consignee, who can save funds by sharing the
cost of holding the goods physically and financially.

(2) The manager will get more profit if case 2 (CS policy with DIP – NDIS under CLT) is established than the
other three cases.

(3) In order to relate this model to reality, all basic inventory costs for y items and z consignees are considered
to be imprecise, which can be very helpful for managers in dealing with ambiguous situations.

(4) Under the CS policy, the consignee is not required to pay until the products are sold. Whereas, if the
consignee is unable to sell all those products, they can return the products to the consignor, therefore, the
consignor has to face the risks and rewards of ownership.

10. Conclusion and future directions

This article has considered a single-consignor multi-consignee for multi-item under controllable lead time in
a fuzzy environment. This paper adopts the CS policy, in particular, which is more beneficial for the consignor.
This paper compares four different cases to show which cases are the most profitable for the supply chain.
Moreover, this paper studies the impacts of controllable lead time for multiple consignees, which is a more
critical and practical factor, and this never been studied under CS policies. The numerical results showed that
the supply chain players (consignor and consignee) attain the highest profit in case 4 compared to case 3, and
case 1 attains higher profit than case 4. However, case 2 was shown to be the most profitable when compared
to all other cases. This model can be extended in many ways; basically, this model has some limitations, so it
is possible to develop this model by resolving these limitations. Primarily in this model, we assume that the
production process is perfect, so it can be extended by turning this model into an imperfect production process.
Another extension is possible by relaxing the equal-sized shipment and fixed demand rate in the proposed model
(refer, [11,38] and Ganesh Kumar and Uthayakumar [10] for unequal-sized shipments, Sarkar et al. [29] for price
and advertisement-dependent demand, Karthick and Uthayakumar [19, 20] for fuzzy demand). Exploring the
changes that occur in this model by combining concepts such as learning and forgetting can be considered an
extension (refer, [13]). The production rate is assumed to be constant in this model, so considering the production
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Figure 5. Total profit d0(P̃c, 0̃) with respect to number of shipments (nij).

rate as a variable for a flexible production process is another extension (refer, [17,27]). The incorporation of the
consignee’s royalty reduction (refer, [28]) and radio frequency identification (refer, [31]) in the CS policy would
be a reasonable extension of this model.
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[8] N. Çömez-Dolgan, L. Moussawi-Haidar and M.Y. Jaber, A buyer–vendor system with untimely delivery costs: traditional
coordination vs. VMI with consignment stock. Comput. Ind. Eng. 154 (2021) 107009.

[9] S. Ebrahimi, S.M. Hosseini-Motlagh and M. Nematollahi, Proposing a delay in payment contract for coordinating a two-echelon
periodic review supply chain with stochastic promotional effort dependent demand. Int. J. Mach. Learn. Cybern. 10 (2019)
1037–1050.

[10] M. Ganesh Kumar and R. Uthayakumar, Modelling on vendor-managed inventory policies with equal and unequal shipments
under GHG emission-trading scheme. Int. J. Prod. Res. 57 (2019) 3362–3381.

[11] B. Ganguly, B. Sarkar, M. Sarkar, S. Pareek and M. Omair, Influence of controllable lead time, premium price, and unequal
shipments under environmental effects in a supply chain management. RAIRO:OR 53 (2019) 1427–1451.



A SINGLE-CONSIGNOR MULTI-CONSIGNEE MULTI-ITEM MODEL 2467

[12] A. Gharaei, M. Karimi and S.A.H. Shekarabi, An integrated multi-product, multi-buyer supply chain under penalty, green,
and quality control polices and a vendor managed inventory with consignment stock agreement: the outer approximation with
equality relaxation and augmented penalty algorithm. Appl. Math. Modell. 69 (2019) 223–254.

[13] B.C. Giri and M. Masanta, A closed-loop supply chain model with uncertain return and learning-forgetting effect in production
under consignment stock policy. Oper. Res. 20 (2020) 1–29. DOI: 10.1007/s12351-020-00571-9.

[14] B.C. Giri, A. Chakraborty and T. Maiti, Effectiveness of consignment stock policy in a three-level supply chain. Oper. Res.
17 (2017) 39–66.

[15] R.M. Hill, The optimal production and shipment policy for the single-vendor single-buyer integrated production-inventory
problem. Int. J. Prod. Res. 37 (1999) 2463–2475.

[16] Q. Huang and J. Chen, A note on “Modelling an industrial strategy for inventory management in supply chains: the ‘Consign-
ment Stock’case”. Int. J. Prod. Res. 47 (2009) 6469–6475.

[17] R. Jamshidi, S.F. Ghomi and B. Karimi, Flexible supply chain optimization with controllable lead time and shipping option.
Appl. Soft Comput. 30 (2015) 26–35.

[18] J.K. Jha and K. Shanker, Single-vendor multi-buyer integrated production-inventory model with controllable lead time and
service level constraints. Appl. Math. Model. 37 (2013) 1753–1767.

[19] B. Karthick and R. Uthayakumar, Optimizing an imperfect production model with varying setup cost, price discount, and
lead time under fuzzy demand. Process Integr. Optim. Sustain. 5 (2021) 13–29.

[20] B. Karthick and R. Uthayakumar, A multi-item sustainable manufacturing model with discrete setup cost and carbon emis-
sion reduction under deterministic and trapezoidal fuzzy demand. Process Integr. Optim. Sustain. 5 (2021) 1–39. DOI:
10.1007/s41660-021-00159-6.

[21] N. Kazemi, E. Ehsani and M.Y. Jaber, An inventory model with backorders with fuzzy parameters and decision variables. Int.
J. Approximate Reasoning 51 (2010) 964–972.

[22] L.Y. Ouyang and J.S. Yao, A minimax distribution free procedure for mixed inventory model involving variable lead time with
fuzzy demand. Comput. Oper. Res. 29 (2002) 471–487.

[23] S. Rani, R. Ali and A. Agarwal, Fuzzy inventory model for deteriorating items in a green supply chain with carbon concerned
demand. Opsearch 56 (2019) 91–122.

[24] B. Sarkar, An EOQ model with delay in payments and stock dependent demand in the presence of imperfect production. Appl.
Math. Comput. 218 (2012) 8295–8308.

[25] S.K. Sardar and B. Sarkar, How does advanced technology solve unreliability under supply chain management using game
policy? Mathematics 8 (2020) 1191.

[26] B. Sarkar, B. Mandal and S. Sarkar, Quality improvement and backorder price discount under controllable lead time in an
inventory model. J. Manuf. Syst. 35 (2015) 26–36.

[27] B. Sarkar, A. Majumder, M. Sarkar, N. Kim and M. Ullah, Effects of variable production rate on quality of products in a
single-vendor multi-buyer supply chain management. Int. J. Adv. Manuf. Technol. 99 (2018) 567–581.

[28] B. Sarkar, C. Zhang, A. Majumder, M. Sarkar and Y.W. Seo, A distribution free newsvendor model with consignment policy
and retailer’s royalty reduction. Int. J. Prod. Res. 56 (2018) 5025–5044.

[29] B. Sarkar, M. Omair and N. Kim, A cooperative advertising collaboration policy in supply chain management under uncertain
conditions. Appl. Soft Comput. 88 (2020) 105948.

[30] B. Sarkar, B.K. Dey, M. Sarkar, S. Hur, B. Mandal and V. Dhaka, Optimal replenishment decision for retailers with variable
demand for deteriorating products under a trade-credit policy. RAIRO:OR 54 (2020) 1685–1701.

[31] S.K. Sardar, B. Sarkar and B. Kim, Integrating machine learning, radio frequency identification, and consignment policy for
reducing unreliability in smart supply chain management. Processes 9 (2021) 247.

[32] S. Shabani, A. Mirzazadeh and E. Sharifi, A two-warehouse inventory model with fuzzy deterioration rate and fuzzy demand
rate under conditionally permissible delay in payment. J. Ind. Prod. Eng. 33 (2016) 134–142.

[33] A.K. Sharma, S. Tiwari, V.S.S. Yadavalli and C.K. Jaggi, Optimal trade credit and replenishment policies for non-instantaneous
deteriorating items. RAIRO:OR 54 (2020) 1793-1826.

[34] D. Shin, R. Guchhait, B. Sarkar and M. Mittal, Controllable lead time, service level constraint, and transportation discounts
in a continuous review inventory model. RAIRO:OR 50 (2016) 921–934.

[35] C. Srinivas and C.S.P. Rao, Optimization of supply chains for single-vendor–multibuyer consignment stock policy with genetic
algorithm. Int. J. Adv. Manuf. Technol. 48 (2010) 407–420.

[36] G. Valentini and L. Zavanella, The consignment stock of inventories: industrial case and performance analysis. Int. J. Prod.
Econ. 81 (2003) 215–224.

[37] H. Yi and B.R. Sarker, An optimal consignment stock production and replenishment policy with controllable lead time. Int.
J. Prod. Res. 51 (2013) 6316–6335.

[38] H.F. Yu and W.K. Hsu, An integrated inventory model with immediate return for defective items under unequal-sized ship-
ments. J. Ind. Prod. Eng. 34 (2017) 70–77.

[39] S.K. Zahran, M.Y. Jaber and S. Zanoni, The consignment stock case for a vendor and a buyer with delay-in-payments. Comput.
Ind. Eng. 98 (2016) 333–349.

[40] L. Zavanella and S. Zanoni, A one-vendor multi-buyer integrated production-inventory model: the “Consignment Stock” case.
Int. J. Prod. Econ. 118 (2009) 225–232.

https://doi.org/10.1007/s12351-020-00571-9
https://doi.org/10.1007/s41660-021-00159-6


2468 B. KARTHICK AND R. UTHAYAKUMAR

This journal is currently published in open access with no charge for authors under a Subscribe-to-Open model (S2O).
Open access is the free, immediate, online availability of research articles combined with the rights to use these articles
fully in the digital environment.

S2O is one of the transformative models that aim to move subscription journals to open access. Every year, as long as
the minimum amount of subscriptions necessary to sustain the publication of the journal is attained, the content for
the year is published in open access.

Ask your library to support open access by subscribing to this S2O journal.

Please help to maintain this journal in open access! Encourage your library to subscribe or verify its subscription by
contacting subscribers@edpsciences.org

We are thankful to our subscribers and sponsors for making it possible to publish the journal in open access, free of
charge for authors. More information and list of sponsors: https://www.edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Literature review
	Consignment Stock policy
	Delay in payment
	Delay in shipment
	Controllable lead time
	CS policy under fuzzy environment
	The literature gap in previous research

	Problem definition, notations and assumptions
	Problem definition
	Notations
	Indices
	Parameters
	Decision variables
	Diagram notations

	Assumptions

	Mathematical model
	Trapezoidal fuzzy number
	Signed distance method
	Mathematical formulation
	Consignor's cost formulation
	Consignee's cost formulation


	Defuzzification methodology
	Solution procedure
	Numerical analysis
	Discussion of the results
	Managerial insights
	Conclusion and future directions
	References

