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SOLVING MULTI-LEVEL MULTIOBJECTIVE FRACTIONAL PROGRAMMING
PROBLEM WITH ROUGH INTERVAL PARAMETER IN NEUTROSOPHIC

ENVIRONMENT

Firoz Ahmad1,2 , Shafiq Ahmad3,∗, Ahmed T. Soliman3 and Mali Abdollahian4

Abstract. In this study, a novel algorithm is developed to solve the multi-level multiobjective frac-
tional programming problems, using the idea of a neutrosophic fuzzy set. The co-efficients in each ob-
jective functions is assumed to be rough intervals. Furthermore, the objective functions are transformed
into two sub-problems based on lower and upper approximation intervals. The marginal evaluation of
pre-determined neutrosophic fuzzy goals for all objective functions at each level is achieved by differ-
ent membership functions, such as truth, indeterminacy/neutral, and falsity degrees in neutrosophic
uncertainty. In addition, the neutrosophic fuzzy goal programming algorithm is proposed to attain the
highest degrees of each marginal evaluation goals by reducing their deviational variables and conse-
quently obtain the optimal solution for all the decision-makers at all levels. To verify and validate
the proposed neutrosophic fuzzy goal programming techniques, a numerical example is adressed in a
hierarchical decision-making environment along with the conclusions.
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1. Introduction

Most often, the mathematical programming problems consist of only one decision-maker who takes the deci-
sions all alone. Apart from that, many decision-making problems involve hierarchical decision structures, each
with independent, and most often contradictory. Such decision-making scenarios are termed as decentralized
planning problems. Thus the hierarchical decision-making texture of the problem is formulated as multi-level
programming problems (MLPPs). If there are only two decision-makers, then it becomes bi-level programming
problems, tri-level for three decision-makers, and so on. The fundamental concepts behind the MLPPs optimiza-
tion techniques are that the leader-level decision-maker define his/her goals/target and then seeks the optimal
solution from each sub-ordinate level of the organization that has calculated individually. The follower-level deci-
sions are later submitted and satisfied by the leader-level because of the organization’s overall benefit. There
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may be more than one fractional objective function that is to be optimized by different levels in MLPPs. Such
kind of decentralized decision-making problems is termed as multi-level multiobjective fractional programming
problems (ML-MOFPPs).

Firstly, the concept of rough set theory was introduced by [25] in 1982 as a technique for the collaborative
significance of vagueness and uncertainty. Most often, the rough set theory is highlighted to be a prominent
mathematical device for the analysis and interpretation of a vague knowledges of things called actions in decision
problems [26]. It has been efficiently implemented in many real-life problems including decision sciences, phar-
macology, civil engineering and management sciences [14] etc. Recently, rough linear programming is proposed
by [16,23,24] and they introduced two solutions concepts as surely interval and possibly range for the existance
of optimal solution. Many researchers such as [3,4,17,19,20,28] have worked on intuitionistic fuzzy and neutro-
sophic research domain. The rough set theory is based on fundamental logic that any uncertain quantification
of any objects can be depicted by a pair of specified interval known as the lower and upper approximation
of the uncertain quantification. To any ambiguous knowledge V , a lower approximation is restrained of entire
element that surely associated with the vague knowledge V and an upper approximation is restrained of entire
element that possibly associated with the ambiguous knowledge V . More precisely, the lower approximation is
regarded as the union of all elementary ideas that are incorporated in the vague knowledges V , whereas the
union of all primary ideas having non-empty intersection with the vague knowledges V is identified by the upper
approximation interval respectively.

Many research articles in the domain of ML-MOFPPs utilized either fuzzy or intuitionistic fuzzy based
optimization method that either inherently consider the membership and non-membership functions of the
object into a feasible set. But it may be possible to arise indeterminacy degree while making decisions. Such kind
of issue cannot be dealt with fuzzy and intuitionistic fuzzy based optimization methods. Thus, the extensions
or generalizations of fuzzy set (FS) and intuitionistic fuzzy set (IFS) has been introduced by incorporating
indeterminacy degree and named as neutrosophic set. Smarandache [31] proposed the idea of neutrosophic
set (NS). The word “neutrosophic” conntains two different words, “neutre” from French means, neutral, and
“sophia” from Greek means, skill/wisdom, aving meaning “knowledge of neutral thoughts” and differ from FS and
IFS (see [5–7, 31]). The neutral/indeterminacy ideas of neutrosophic set explores the future research direction
in the real-life application. Many researchers such as [5, 7, 9] and [11, 12] made a contribution in the domain of
neutrosophic optimization techniques along with real-life applications.

The primary aim and objective of the study is to furnish the more realistic framework for ML-MOFPPs to
determine the better solution results under rough intervals. Moreover, the proposed approach has an advantage
that it does not only consider the maximization and minimization of the DM’s satisfaction and dis-satisfaction
level but also optimize the indeterminacy/neutral degree of satisfaction. In this paper, the neutrosophic fuzzy
goal programming (NFGP) algorithm is introduced to solve the multi-level multiobjective fractional program-
ming problems. The propounded NFGP procedures is based on neutrosophic fuzzy decision set and applied
to ML-MOFPPs. To formulate proposed NFGP models of the ML-MOFPPs, neutrosophic goals of the objec-
tives are obtained by individual optimal solutions. The associated membership functions is then depicted for
marginal evaluations of each objective function under the neutrosophic environment. These marginal evluations
are converted into neutrosophic flexible membership goals by employing over and under deviational variables
and allowing highest truth membership value (unity), indeterminacy value (half), and a falsity value (zero)
as aspiration levels to each of them. To determine the membership functions of the constraints monitored by
any level decision-maker, the optimal solution of the corresponding MOFPP is separately solved. A marginal
relaxation of the decisions is prescribed to avoid decision deadlock. The proposed NFGP solution algorithm
provides an extension of the work presented by [1,18,21] and [24] under neutrosophic environment which deals
with multi-level multiobjective fractional programming problems. It also extend the work of [27] by introduc-
ing the NFGP algorithm to MLPPs with a multiple fractional objective at various level. Ultimately, the final
model entertains the marginal evaluations for the described neutrosophic goals of the objective functions and
the constraints at all levels which are determined separately for each level except the follower.
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2. Preliminaries

In this section, some basic definitions related to rough intervals and neutrosophic set is discussed.

Definition 2.1 ([16]). (Rough Interval (RI)) Any qualitative value V is said to be a rough interval if and only
iff one can assign two closed intervals V∗ and V ∗ on IR to it where V∗ ⊆ V ∗. Furthermore,

1. If y ∈ V∗ then V definitely takes y (depicted as y ∈ V ).
2. If y ∈ V ∗ then V probably takes y.
3. If y /∈ V ∗ then V surely does not take y (depicted as y /∈ V ).

V∗ and V ∗ are known as the lower approximation interval (LAI) and the upper approximation interval (UAI)
of V , respectively. Moreover, V is represented by V = (V∗, V ∗). It should be noted that the intervals V∗ and V ∗

are not complement of each other.

Definition 2.2 ([16]). (Arithmetic Operations on RIs) The arithmetic operations on RIs fully depends on
interval arithmetic. Now, some of the well-known arithmetic operations can be presented as follows:

Let V =
([
vL, vU

]
,
[
vL, vU

])
and W =

([
wL, wU

]
,
[
wL, wU

])
be two RIs. Then, we have

1. (Addition): V +W =
([
vL + wL, vU + wU

]
,
[
vL + wL, vU + wU

])
.

2. (Subtraction): V −W =
([
vL − wU , vU − wL

]
,
[
vL − wU , vU − wL

])
.

3. (Negation): −V =
([
−vL,−vU

]
,
[
−vL,−vU

])
.

4. (Union): V ∪W =
([

min
(
vL, wL

)
,max

(
vU , wU

)]
,
[
min

(
vL, wL

)
,max

(
vU , wU

)])
.

5. (Intersection): V ∩W =
([

max
(
vL, wL

)
,min

(
vU , wU

)]
,
[
max

(
vL, wL

)
,min

(
vU , wU

)])
.

Remark 2.3. Using the properties of RIs, we have[
vL, vU

]
⊆
[
vL, vU

]
→ vL ≤ vL ≤ vU ≤ vU

.Definition 2.4 ([8]). Suppose a universal discourse Y such that y ∈ Y , then a neutrosophic set A in Y can be
depicted by truth µA(y), indeterminacy λA(y) and a falsity νA(y) membership functions in the following form:

A = {< y, µA(y), λA(y), νA(y) > | y ∈ Y }

where µA(y), λA(y) and νA(y) are real standard or non-standard subsets belong to ]0−, 1+[, also given as,
µA(y) : Y → ]0−, 1+[, λA(y) : Y → ]0−, 1+[, and νA(y) : Y → ]0−, 1+[. There is no restriction on the sum of
µA(y), λA(y) and νA(y), so we have

0− ≤ sup µA(y) + λA(y) + sup νA(y) ≤ 3+

Definition 2.5 ([8]). A single valued neutrosophic set A over universe of discourse Y is defined as

A = {< y, µA(y), λA(y), νA(y) > | y ∈ Y }

where µA(y), λA(y) and νA(y) ∈ [0, 1] and; 0 ≤ µA(y) + λA(y) + νA(y) ≤ 3 for each y ∈ Y .

Definition 2.6 ([8]). The complement of a single valued neutrosophic set A is represented as c(A) and defined
by µc(A)(y) = νA(y), λc(A)(y) = 1− νA(y) and νc(A)(y) = µA(y) respectively.
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3. Problem Formulation

Assume that a t-level multiobjetive programming problems with maximization-type fractional objective func-
tions at different level. Consider that DMi represents the i-th level decision-maker and control over the decision
variable yi = (yi1, yi2, ..., yini) ∈ IRni for all i = 1, 2, ..., t. Where y = (y1, y2, ..., yt) ∈ Rn such that
n = n1 +2 +...+ nt. Furthermore, we assume that

Oi(y) = Oi(y1, y2, ..., yt) : IRn1 × IRn2 × · · · × IRnt → IRmi , ∀ i = 1, 2, ..., t (3.1)

represents the vector-set of a well-defined fractional objective functions to the i-th decision makers, i = 1, 2, ..., t.
The equivalent mathematical expressions for the ML-MOFPP with rough intervals under maximization-type
objectives can be stated as follows:

[1st level]
Max
y1

O1(y) = Max
y1

(o11(y), o12(y), ..., o1m1(y))

where y2, y3, ..., yt solves
[2nd level]

Max
y2

O2(y) = Max
y2

(o21(y), o22(y), ..., o2m2(y))

· · ·
where yt solves

[t− th level]
Max
yt

Ot(y) = Max
yt

(ot1(y), ot2(y), ..., otmt(y))

(3.2)

subject to

y ∈ S = {y ∈ IRn|G1y1 + G1y1 + · · ·+ Gtyt(≤ or = or ≥) q, y ≥ 0, q ∈ IRm} 6= φ

where

oij(y) =
Nij(y)
Dij(y)

=

∑mi
j=1

([
cLij , c

U
ij

]
,
[
cLij , c

U
ij

])
yj +

([
vLij , v

U
ij

]
,
[
vLij , v

U
ij

])∑mi
j=1 dijyj + wij

(3.3)

such that
([
cLij , c

U
ij

]
,
[
cLij , c

U
ij

])
are the rough intervals co-efficients of the objective function,

([
vLij , v

U
ij

]
,
[
vLij , v

U
ij

])
denotes the rough intervals constants of the numerator part. Further, S is the multi-level convex constraints in
feasible decision set under multi-level multiobjective programming problems. It is assumed that Dij(y) > 0 ∀ y ∈
S, also wij are constants of denominator. The notation mi, i = 1, 2, ..., t denotes the number of objective function

under i-th decision maker, m is the number of constraints, cijk =
(
cijk1, c

ij
k2, · · · , c

ij
knk

)
, k = 1, 2, ..., t, cijknk are

constants and the co-efficients matrices of size m× ni are depicted as Gi, ∀ i = 1, 2, ..., t.

3.1. Transformation of ML-MOFPP with rough co-efficients into upper and lower
approximations

The transformation process of ML-MOFPPs with rough coefficient in objective functions into upper and
lower approximations is quite tough job in many cases, but conversion phenomenon takes the advantages of
Remark 2.3. The equivalent problems of the ML-MOFPP with rough coefficients in objective functions with the
aid of specified intervals can be represented as follows:

The surely optimal range of ML-MOFPP (3.2) can be obtained by solving the following two classical LFPPs:
After solving the above classical four ML-MOFPPs simultaneously, the neutrosophic fuzzy goal programming

algorithm will be applied.
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The lower approximated intervals in the objective functions (LAI)
FPP-I FPP-II

[1st level] [1st level]
Max

y1
O1(y) = Max

y1
(o11(y), o12(y), ..., o1m1(y)) Max

y1
O1(y) = Max

y1
(o11(y), o12(y), ..., o1m1(y))

where y2, y3, ..., yt solves where y2, y3, ..., yt solves
[2st level] [2st level]
Max

y2
O2(y) = Max

y2
(o21(y), o22(y), ..., o2m2(y)) Max

y2
O2(y) = Max

y2
(o21(y), o22(y), ..., o2m2(y))

where yt solves where yt solves
[t− th level] [t− th level]
Max

yt
Ot(y) = Max

yt
(ot1(y), ot2(y), ..., otmt(y)) Max

yt
Ot(y) = Max

yt
(ot1(y), ot2(y), ..., otmt(y))

subject to subject to
y ∈ IRn|G1y1 + G1y1 + · · ·+ Gtyt(≤ or = or ≥) q, y ∈ IRn|G1y1 + G1y1 + · · ·+ Gtyt(≤ or = or ≥) q,
y ≥ 0, q ∈ IRm 6= φ y ≥ 0, q ∈ IRm 6= φ
where where

oij(y) =
Nij(y)

Dij(y)
=

∑mi
j=1 c

L
ij + vL

ij∑mi
j=1 dijyj + wij

, i = 1, 2, · · · , t. oij(y) =
Nij(y)

Dij(y)
=

∑mi
j=1 c

U
ij + vU

ij∑mi
j=1 dijyj + wij

, i = 1, 2, · · · , t.

The upper approximated intervals in the objective functions (UAI)
FPP-III FPP-IV

[1st level] [1st level]
Max

y1
O1(y) = Max

y1
(o11(y), o12(y), ..., o1m1(y)) Max

y1
O1(y) = Max

y1
(o11(y), o12(y), ..., o1m1(y))

where y2, y3, ..., yt solves where y2, y3, ..., yt solves
[2st level] [2st level]
Max

y2
O2(y) = Max

y2
(o21(y), o22(y), ..., o2m2(y)) Max

y2
O2(y) = Max

y2
(o21(y), o22(y), ..., o2m2(y))

where yt solves where yt solves
[t− th level] [t− th level]
Max

yt
Ot(y) = Max

yt
(ot1(y), ot2(y), ..., otmt(y)) Max

yt
Ot(y) = Max

yt
(ot1(y), ot2(y), ..., otmt(y))

subject to subject to
y ∈ IRn|G1y1 + G1y1 + · · · + Gtyt(≤ or = or ≥) q,
y ≥ 0,q ∈ IRm 6= φ

y ∈ IRn|G1y1 + G1y1 + · · · + Gtyt(≤ or = or ≥) q,
y ≥ 0,q ∈ IRm 6= φ

where where

oij(y) =
Nij(y)

Dij(y)
=

∑mi
j=1 c

L
ij + vL

ij∑mi
j=1 dijyj + wij

, i = 1, 2, · · · , t. oij(y) =
Nij(y)

Dij(y)
=

∑mi
j=1 c

U
ij + vU

ij∑mi
j=1 dijyj + wij

, i = 1, 2, · · · , t.

4. Proposed Neutrosophic Fuzzy Goal Programming Approach

The real-life complexity most often creates the indeterminacy situation or neutral thoughts while making
optimal decisions. Apart from the acceptance and rejection degrees in the decision-making process, the inde-
terminacy degree also has much importance. Thus to cover the neutral thoughts or indeterminacy degree of
the element into the feasible solution set, [31] investigated a neutrosophic set. The NS considers three sorts of
membership functions, such as truth, indeterminacy, and falsity degrees into the feasible solution set. The idea
of independent, neutral thoughts differs the NS with all the uncertain decision sets such as FS and IFS. The
updated literature work solely highlights that many practitioners or researchers have shown the deep research
keen in the neutrosophic field (see, [6–8,13,29]). The NS research domain would get exposure in the future and
assist in dealing with indeterminacy degrees in neutrosophic uncertainty.

In ML-MOFPPs, if an imprecise aspiration level under the neutrosophic environment is assigned to each of
the objectives at each level of the ML-MOFPPs, then such neutrosophic targets are termed as neutrosophic
goals and dealt with neutrosophic decision-making techniques [2, 10]. Hence the marginal evaluation of each



2572 F. AHMAD ET AL.

neutrosophic target is characterized through truth, indeterminacy, and falsity membership functions, by eliciting
the attainment of their respective satisfaction levels.

4.1. Characterization of different membership functions under neutrosophic environment

In multi-level decision-making problems, each DMs intend to minimize their objectives in each level over the
same feasible region depicted by the system of constraints; hence the individual optimal solutions are obtained
by them and can be regarded as the aspiration levels of their associated neutrosophic goals.

Assume that yij = (yij1 , yij2 , ..., yijt ) and omin
ij , i = 1, 2, ..., t, j = 1, 2, ..., mi be the best individual

optimal solutions of each DMs at each level respectively. Futhermore, consider that lij ≥ omin
ij denotes the

aspiration level assigned to the ij-th objective oij(y) (where ij means that when i = t for t-th level decision
makers then j = 1, 2, ..., mi). Moreover, also consider that yi∗ = (yi∗1 , yi∗2 , ..., yi∗t ), i = 1, 2, ..., t − 1,
be the optimal solutions for the t-th level decision makers of ML-MOFPPs. Consequently, the neutrosophic
goals of each objective function at each level and the vector-set of neutrosophic goals for the decision variables
monitored by t-th level decision makers can be stated as follows:

oij(y) <̃ lij , i = 1, 2, ..., t, j = 1, 2, ..., mi and yi =̃ yi∗i , i = 1, 2, ..., t− 1

where <̃ and =̃ represents the degree of neutrosophy of the aspiration levels.
One can note that the solutions yij = (yij1 ,y

ij
2 , ...,y

ij
t ); i = 1, 2, ..., t, j = 1, 2, ...,mi are probably different

due to the conflicting nature of the objective functions at each level for all the decision makers. Therefore it
can be obvious to consider that the values of ogm(ygm1 ,ygm2 , ...,ygmt ) ≥ omin

ij ; g = 1, 2, ..., t,m = 1, 2, ...,mi, and
∀ij 6= gm with all values greater than ougm = max[oij(y

gm
1 ,ygm2 , ...,ygmt ); i = 1, 2, ..., t, j = 1, 2, ...,mi and

ij 6= gm] are absolutely unacceptable to the objective function ogm(y) = ogm(y1, y2, ..., yt). As a result,
ogm(y) can be taken as the upper tolerance limit ugm(y) of the neutrosophic goal to the objective functions.
The upper and lower bounds for ij-th objective function under the neutrosophic environment can be obtained
as follows:

Uµij = uij , Lµij = lij for truth membership

Uλij = Lµij + aij , Lλij = Lµij for indeterminacy membership

Uνij = Uµij , Lνij = Lµij + bij for falsity membership

where aij and bij ∈ (0, 1) are predetermined real numbers.
Thus the different membership function namely; truth µoij (oij(y)), indeterminacy λoij (oij(y)) and a falsity

νoij (oij(y)) membership functions for the ij-th neutrosophic goals can be stated as follows:

µoij (oij(y)) =


0 if oij(y) ≤ Lµij
oij(y)−Lµij
Uµij−L

µ
ij

if Lµij ≤ oij(y) ≤ Uµij
1 if oij(y) ≥ Uµij

(4.1)

λoij (oij(y)) =


0 if oij(y) ≤ Lλij
oij(y)−Lλij
Uλij−Lλij

if LIk ≤ oij(y) ≤ Uλij
1 if oij(y) ≥ Uλij

(4.2)

νoij (oij(y)) =


0 if oij(y) ≥ Uνij
Uνij−oij(y)

Uνij−Lνij
if Lνij ≤ oij(y) ≤ Uνij

1 if oij(y) ≤ Lνij
(4.3)
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To construct the different membership functions for the decision variables monitered by i-th decision makers,
firstly the optimal solution for the t-th level MOFPPs, yi∗ = (yi∗1 , yi∗2 , ..., yi∗t ), i = 1, 2, ..., t− 1, should be
carried out by using any appropriate method for MOFPPs optimization techniques.
In a neutrosophic decision environment, the neutrosophic goals comprising the decision-makers’ objective func-
tions at a different level and the neutrosophic goals of the decision variable vectors are monitored by leader
(t − 1)-th level decision-makers. The attainment degrees to their aspiration levels to the extent possible are
virtually achieved by the eventual achievement of their respective memberships, namely; truth, indeterminacy,
and falsity membership functions to their utmost degrees. This aspect of the neutrosophic fuzzy programming
approach enables a neutrosophic fuzzy goal programming technique as a justified approach for solving the leader
t-th level MOFPPs and consequently ML-MOFPPs.

4.2. Neutrosophic Fuzzy Goal Programming

In neutrosophic fuzzy goal programming approaches, each marginal evaluations is transformed into neutro-
sophic membership goals with respect to their highest attainment degrees. The maximum limit for attaining the
truth membership function is unity (1). For the indeterminacy membership function, the highest attainment
degree is half (0.5). Similarly, the falsity membership function can achieve the highest attainment degree zero (0).
Thus the converted neutrosophic membership goals is summarized as follows:

µoij (oij(y)) + d−ijµ − d
+
ijµ = 1,

λoij (oij(y)) + d−ijλ − d
+
ijλ = 0.5,

νoij (oij(y)) + d−ijν − d
+
ijν = 0,

∀ i = 1, 2, ..., t, j = 1, 2, ..., mi (4.4)

or equivalently represented as follows:

oij(y)−Lµij
Uµij−L

µ
ij

+ d−ijµ − d
+
ijµ = 1,

oij(y)−Lλij
Uλij−Lλij

+ d−ijλ − d
+
ijλ = 0.5,

Uνij−oij(y)

Uνij−Lνij
+ d−ijν − d

+
ijν = 0,

∀ i = 1, 2, ..., t, j = 1, 2, ..., mi (4.5)

where d−ij·, d
+
ij· ≥ 0; and d−ij· × d

+
ij· = 0, ∀ i = 1, 2, ..., t − 1, k = 1, 2, ..., ni are the over and under

deviations for truth, indeterminacy and a falsity membership goals from their respective aspiration levels under
neutrosophic environment.

In goal programming strategy, the over and/or under deviational variables vectors are considered in the objec-
tive function to minimize them and solely depends on the nature of objective function that are being optimized.
In the proposed neutrosophic goal progrmming technique, the over deviational variables for neutrosophic goals
of each objective function, d+

ij· ∀ i = 1, 2, ..., t, j = 1, 2, ..., mi are needed to be minimized to attain
the neutrosophic fuzzy goals. Hence the proposed final solution model for ML-MOFPPs can be summarized as
follows (4.6):

Min F =
m1∑
j=1

w+
1jµd

+
1jµ +

m2∑
j=1

w+
2jµd

+
2jµ + · · ·+

mt∑
j=1

w+
tjµd

+
tjµ +

m1∑
j=1

w+
1jλd

+
1jλ +

m2∑
j=1

w+
2jλd

+
2jλ (4.6)

+ · · ·+
mt∑
j=1

w+
tjλd

+
tjλ −

m1∑
j=1

w+
1jνd

−
1jν −

m2∑
j=1

w+
2jνd

−
2jν − · · · −

mt∑
j=1

w+
tjνd

−
tjν (4.7)

subject to (4.8)
oij(y)− Lµij
Uµij − L

µ
ij

+ d−tjµ − d
+
tjµ = 1, i = 1, 2, ..., t, j = 1, 2, ..., mi (4.9)
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oij(y)− Lλij
Uλij − Lλij

+ d−tjλ − d
+
tjλ = 0.5, i = 1, 2, ..., t, j = 1, 2, ..., mi (4.10)

Uνij − oij(y)
Uνij − Lνij

+ d−tjν − d
+
tjν = 0, i = 1, 2, ..., t, j = 1, 2, ..., mi (4.11)

G1y1 +G1y1 + · · ·+Gtyt(≤ or = or ≥) q, y ≥ 0 (4.12)
d−ij·, d

+
ij· ≥ 0 and d−ij· × d

+
ij· = 0, ∀ i = 1, 2, ..., t, j = 1, 2, ..., mi. (4.13)

The numerical weights w−ij state the relative importance of achieving the satisfactory levels of the respective
neutrosophic goals. To assign the relative importance of the neutrosophic goals properly, the values of w−ij are
determined as follows (4.14):

w−ij =
1

uij − gij
, ∀ i = 1, 2, . . . , t, j = 1, 2, . . . ,mi. (4.14)

The propounded NFGP procedures are based on a neutrosophic fuzzy decision set and applied to ML-MOFPPs.
To formulate proposed NFGP models of the ML-MOFPPs, neutrosophic goals of the objectives are obtained by
individual optimal solutions. The associated membership functions are then depicted for marginal evaluations
of each objective function under the neutrosophic environment. These marginal evaluations are converted into
neutrosophic flexible membership goals by employing over and under deviational variables and allowing the
highest truth membership value (unity), indeterminacy value (half), and a falsity value (zero) as aspiration
levels to each of them. To determine the membership functions of the constraints monitored by any level
decision-maker, the optimal solution of the corresponding MOFPP is separately solved. A marginal relaxation
of the decisions is prescribed to avoid decision deadlock. Finally, by tuning the weight parameters, one can get
the optimal solutions for all levels in the hierarchical decision-making problems.

4.3. Step-wise solution algorithms for ML-MOFPPs

The proposed neutrosophic fuzzy goal programming (NFGP) algorithm for solving ML-MOFPPs is suggested
under neutrosophic environment. The step-wise solution algorithm can be summarized as follows:
Step-1 Formulate the ML-MOFPPs with rough intervals co-efficients in the objective functions.
Step-2 Transform the ML-MOFPPs into lower and upper aproximated intervals as given in FPP-I, FPP-II,
FPP-III and FPP-IV respectively.
Step-3 Compute uij , gij , w−ij for the problem FPP-I.
Step-4 Elicit the different membership functions under neutrosophic environment as given in Equations (4.1)–
(4.3).
Step-5 Repeat the same steps for solving FPP-II, FPP-III and FPP-IV.
Step-6 Construct the final solvable NFGP model (4.6) and solved using some suitable optimization software.

5. Numerical illustrations

The following numerical example, consisting of tri-level multiobjective interval fractional programming prob-
lems, is depicted to verify and validate the proposed NFGP optimization algorithms. The rough intervals for
the various parameters are randomly generated using the statistical R-software. All the optimization models are
coded in AMPL language and solution results are obtained by solver CONOPT available on NEOS server 5.0.
The access is permitted through on-line medium by Wisconsin Institutes for Discovery, University of Wisconsin,
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Madison, See [15,30].

[1st level]

Max
y1

O1(y) =Max o11(y) =
2([2, 3], [1, 5])y1 + ([3, 5], [2, 7])y2 + y3 + ([2, 3], [1, 4])

2y1 + y2 + y3 + 1
,

Max o12(y) =
([6, 7], [5, 9])y1 − y2 + ([1, 3], [1, 6])y3 + ([1, 3], [0, 5])

y2 + y3 + 3
where y2 and y3 solves

[2nd level]

Max
y1

O2(y) =Max o21(y) =
2y1 + ([5, 6], [3, 8])y2 − 2([0, 3], [0, 6])y3 + ([5, 6], [3, 7])

y1 + y3 + 4
,

Max o22(y) =
y1 − ([3, 4], [2, 6])y2 + ([1, 3], [1, 7])y3 + ([3, 4], [2, 6])

2y1 + y3 + 6
where y3 solves

[3rd level]

Max
y1

O3(y) =Max o31(y) =
([2, 5], [1, 8])y1 − 2y2 + y3 + ([4, 5], [3, 6])

y3 + 2
,

Max o32(y) =
5y1 + 2([1, 2], [1, 4])y2 − y3 + ([6, 7], [5, 8])

y1 + 3y2 + y3 + 7
subject to

3y1 + 5y2 + y3 ≤ 35, 2y1 − y2 + 12y3 ≤ 20,
5y2 + 6y3 ≤ 16, y1, y2, y3 ≥ 0.

For solving the example, it will be transformed into lower and upper intervals problems and can be stated as
follows:

The lower approximated intervals in the objective
functions (LAI)
FPP-I FPP-II

[1st level] [1st level]

Max
y1

(
4y1+3y2+y3+2
2y1+y2+y3+1

, 6y1−y2+y3+1
y2+y3+3

)
Max

y1

(
6y1+5y2+y3+2
2y1+y2+y3+1

, 7y1−y2+3y3+3
y2+y3+3

)

where y2, y3 solves where y2, y3 solves
[2nd level] [2nd level]

Max
y2

(
2y1+5y2+5
y1+y3+4

, y1−3y2+y3+3
2y1+y3+6

)
Max

y2

(
2y1+6y2−6y3+6

y1+y3+4
, y1−4y2+3y3+4

2y1+y3+6

)

where y3 solves where y3 solves
[3rd level] [3rd level]

Max
y3

(
2y1−2y2+y3+4

y3+2
, 5y1+2y2−y3+6

y1+3y2+y3+7

)
Max

y3

(
5y1−2y2+y3+5

y3+2
, 5y1+4y2−y3+7

y1+3y2+y3+7

)

subject to subject to
3y1 + 5y2 + y3 ≤ 35, 2y1 − y2 + 12y3 ≤ 20, 3y1 + 5y2 + y3 ≤ 35, 2y1 − y2 + 12y3 ≤ 20,
5y2 + 6y3 ≤ 16, y1, y2, y3 ≥ 0. 5y2 + 6y3 ≤ 16, y1, y2, y3 ≥ 0.

In Table 1, the best and worst values of each objective function is depicted for three heirarchical level in
MOLPP. To apply the propounded NFGP techniques, the aspiration values can be regarded as the optimal
results.
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The upper approximated intervals in the objective
functions (UAI)
FPP-III FPP-IV

[1st level] [1st level]

Max
y1

(
2y1+2y2+y3+1
2y1+y2+y3+1

, 5y1−y2+y3+1
y2+y3+3

)
Max

y1

(
10y1+7y2+y3+4
2y1+y2+y3+1

, 9y1−y2+6y3+5
y2+y3+3

)

where y2, y3 solves where y2, y3 solves
[2nd level] [2nd level]

Max
y2

(
2y1+3y2+3
y1+y3+4

, y1−2y2+y3+2
2y1+y3+6

)
Max

y2

(
2y1+8y2−12y3+7

y1+y3+4
, y1−6y2+7y3+6

2y1+y3+6

)

where y3 solves where y3 solves
[3rd level] [3rd level]

Max
y3

(
y1−2y2+y3+3

y3+2
, 5y1+2y2−y3+5

y1+3y2+y3+7

)
Max

y3

(
8y1−2y2+y3+6

y3+2
, 5y1+8y2−y3+8

y1+3y2+y3+7

)

subject to subject to
3y1 + 5y2 + y3 ≤ 35, 2y1 − y2 + 12y3 ≤ 20, 3y1 + 5y2 + y3 ≤ 35, 2y1 − y2 + 12y3 ≤ 20,
5y2 + 6y3 ≤ 16, y1, y2, y3 ≥ 0. 5y2 + 6y3 ≤ 16, y1, y2, y3 ≥ 0.

Table 1. Individual minimum and maximum values for each objectives

o11(y) o12(y) o21(y) o22(y) o31(y) o32(y)
maxSoij(y) 2.76 20.33 05.25 0.61 12 3.29
minSoij(y) 1.37 −0.35 0.88 −1.10 0.40 0.50
uij(y) 2.70 20.00 5.00 0.60 12.00 3.20
gij(y) 1.30 −0.35 0.88 −1.00 0.40 0.50
wij(y) 0.71 0.09 0.24 0.62 0.08 0.37

1st level decision-maker’s NFGP model:

Min F = 0.714d−11µ + 0.094d−12µ + 0.714d−11λ + 0.094d−12λ − 0.714d+
11ν − 0.094d+

12ν

subject to
−y1 + 0.214y2 − 1.214y3 + d−11µ − d

+
11µ = 0.50

−y1 + 0.214y2 − 1.214y3 + d−11λ − d
+
11λ = 0.143

−y1 + 0.214y2 − 1.214y3 + d−11ν − d
+
11ν = 0.03

−2y1 − y2 − y3 + d−11µ ≤ 1.00
−2y1 − y2 − y3 + d−11λ ≥ 0.81
−2y1 − y2 − y3 + d−11ν ≥ 1.27
0.294y1 − 1.029y2 − 0.931y3 + d−12µ − d

+
12µ = 2.891

0.294y1 − 1.029y2 − 0.931y3 + d−12λ − d
+
12λ = 1.201

0.294y1 − 1.029y2 − 0.931y3 + d−12ν − d
+
12ν = 1.597

−y2 − y3 + d−12µ ≤ 3
−y2 − y3 + d−12λ ≥ 2.54
−y2 − y3 + d−12ν ≥ 1.96
3y1 + 5y2 + y3 ≤ 35, 2y1 − y2 + 12y3 ≤ 20,
5y2 + 6y3 ≤ 16, y1, y2, y3 ≥ 0,
d−ij·, d

+
ij· ≥ 0 and d−ij· × d

+
ij· = 0, ∀ i = 1, j = 1, 2.

(5.1)

With the help of optimizing software, the optimal solution of the problem given in Equation (5.1) are
y1∗ = (0, 2.33, 0).
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2nd level decision maker’s NFGP model: (5.2)
(5.3)

Min F =0.714d−11µ + 0.094d−12µ + 0.714d−11λ + 0.094d−12λ − 0.714d+
11ν − 0.094d+

12ν (5.4)

+ 0.243d−21µ + 0.625d−22µ + 0.243d−21λ + 0.625d−22λ − 0.243d+
21ν − 0.625d+

22ν (5.5)
subject to (5.6)

− 0.728y1 + 0.214y2 − 0.001y3 + d−21µ − d
+
21µ = 3.641 (5.7)

− 0.728y1 + 0.214y2 − 0.001y3 + d−21λ − d
+
21λ = 2.654 (5.8)

− 0.728y1 + 0.214y2 − 0.001y3 + d−21ν − d
+
21ν = 2.145 (5.9)

− y1 − y3 + d−21µ ≤ 4.00 (5.10)

− y1 − y3 + d−21λ ≥ 3.29 (5.11)
− y1 − y3 + d−21ν ≥ 2.64 (5.12)
− 1.25y1 − 1.875y2 − 2.25y3 + d−22µ − d

+
22µ = 0.375 (5.13)

− 1.25y1 − 1.875y2 − 2.25y3 + d−22λ − d
+
22λ = 0.684 (5.14)

− 1.25y1 − 1.875y2 − 2.25y3 + d−22ν − d
+
22ν = 0.369 (5.15)

− 2y1 − y3 + d−22µ ≤ 6.00 (5.16)

− 2y1 − y3 + d−22λ ≥ 5.31 (5.17)
− 2y1 − y3 + d−22ν ≥ 4.09 (5.18)
y1 = 0, y2, y3 ≥ 0, (5.19)
constraints (5.1) (5.20)
d−ij·, d

+
ij· ≥ 0 and d−ij· × d

+
ij· = 0, ∀ i = 1, j = 1, 2. (5.21)

The optimal solution for the second level NFGP model in Equation (5.2) is obtained as y2∗ = (0.31, 0.00, 0.03).

3rd level decision maker’s NFGP model: (5.22)
(5.23)

Min F =0.714d−11µ + 0.094d−12µ + 0.714d−11λ + 0.094d−12λ − 0.714d+
11ν − 0.094d+

12ν (5.24)

+ 0.243d−21µ + 0.625d−22µ + 0.243d−21λ + 0.625d−22λ − 0.243d+
21ν − 0.625d+

22ν (5.25)

+ 0.086d−31µ + 0.370d−32µ + 0.086d−31λ + 0.370d−32λ − 0.086d+
31ν − 0.370d+

32ν (5.26)
subject to (5.27)

0.172y1 − 0.172y2 − 0.948y3 + d−31µ − d
+
31µ = 1.724 (5.28)

0.172y1 − 0.172y2 − 0.948y3 + d−31λ − d
+
31λ = 1.312 (5.29)

0.172y1 − 0.172y2 − 0.948y3 + d−31ν − d
+
31ν = 0.215 (5.30)

− y3 + d−31µ ≤ 2.00 (5.31)

− y3 + d−31λ ≥ 1.62 (5.32)
− y3 + d−31ν ≥ 1.94 (5.33)
0.665y1 − 2.815y2 − 1.555y3 + d−32µ − d

+
32µ = 0.375 (5.34)

0.665y1 − 2.815y2 − 1.555y3 + d−32λ − d
+
32λ = 0.684 (5.35)
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Table 2. Comparision of optimal solutions

The surely optimal interval The possibly optimal interval
Proposed NFGP Algorithm [24] Approach

[1st level][
oL
11, o

U
11

]
= [2.009,3] [1.1901,3.961] [1.183,4][

oL
12, o

U
12

]
= [0.334,1] [−0.0434, 1.592] [−0.0577, 1.667]

[2nd level][
oL
21, o

U
21

]
= [1.25,1.5] [0.9124,1.682] [0.887,1.75][

oL
22, o

U
22

]
= [0.499,0.667] [0.2934,0.9823] [0.272,1]

[3rd level][
oL
31, o

U
31

]
= [2.003,2.50] [1.3081,2.9632] [1.316,3][

oL
32, o

U
32

]
= [0.858,1] [0.7731,1.1231] [0.71,1.14]

Table 3. Theoritical comparision of proposed NFGP algorithms with others

Proposed NFGP Approach Other Approaches
Proposed approach considers the indeterminacy degree
in decision-making process.

[18, 22–24] and [21] cannot deal with indetermi-
nacy in decision-making processes.

The overall satisfactory degree is achieved by attaining
the neutrosophic fuzzy goals.

In [18, 22–24] and [21] approaches, satisfactory
degree is acheived by attaining the fuzzy goals.

It characterizes neutrosophic membership functions for
both objectives as well as constraints under neutrosophic
environment.

[18, 22–24] and [21] do not cover this aspects.

Additional predetermined parameters in indeterminacy
and falsity degrees make the decisions more flexible
according to decision makers’ choices.

This facility is not provided in [18,22–24] and [21].

0.665y1 − 2.815y2 − 1.555y3 + d−32ν − d
+
32ν = 0.369 (5.36)

− y1 − 3y2 − y3 + d−32µ ≤ 7.00 (5.37)

− y1 − 3y2 − y3 + d−32λ ≥ 6.58 (5.38)
− y1 − 3y2 − y3 + d−32ν ≥ 5.41 (5.39)
y1 = 0, y2 = 0, y3 ≥ 0, (5.40)
constraints (5.2) (5.41)
d−ij·, d

+
ij· ≥ 0 and d−ij· × d

+
ij· = 0, ∀ i = 1, j = 1, 2. (5.42)

The final optimal solutions for the ML-MOFPPs given in Equation (5.22) is obtained as y3∗ =
(0.005, 0.003, 0.000) with the different objectives values o11 = 2.009, o12 = 0.334, o21 = 1.250, o22 = 0.499,
o31 = 2.003 and o32 = 0.858 respectively. Similarly, on implementing the proposed NFGP algorithm, we get FPP-
II,FPP-IIIandFPP-IV in the specified intervals. A comparative study is performed between the proposed NFGP
algorithmand [24]presented in theTable2.FromTable2, it canbeobserved that thepossiblyoptimal rangeobtained
by proposed NFGP algorithm is quite narrow (shorter) than [24] approah. This shows that the possibility of getting
an optimal solution within short specified intervals is very high as compared to longer one. Moreover, the theoritical
contributions in the domain of ML-MOFPPs is also summarized in Table 3.
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From the managerial perspective, the proposed techniques intensely express neutral thoughts during hier-
archical decision-making processes. Rough intervals are valuable and new tools to tackle the uncertainty in
decision-making problems. The method proposed in this paper helps to solve ML-MOFPPs with rough interval
parameters where the DMs present in various levels usually have conflicting objectives. However, there exists no
other method in the literature for solving ML-MOFPPs with the neutrosophic fuzzy concept in the neutrosophic
fuzzy goals. This is the first approach in the neutrosophic fuzzy environment with rough interval parameters
and a weighting scheme. Neutrosophic goal achievement functions are constructed to attain the three different
targeted goals. Since in an ML-MOFPPs, a decision deadlock situation may arise due to conflicting objectives,
each level DM provides preference bounds on the decision variables controlled by him/her. GP strategy is then
employed to obtain the optimal compromise solution of the ML-MOFPPs with rough interval parameters. The
method discussed here can be applied in decision-making in large hierarchical organizations where multiple
DMs have conflicting objectives. The actual decision-making process can be better represented through the
neutrosophic fuzzy concept as it considers all three different aspects of decision making, i.e., truth, falsity, and
indeterminacy. Here indeterminacy/neutral is considered as an independent factor that has a crucial role in
decision making. The novelty of the method lies in its simplicity and efficient handling of indeterminate data.
At the managerial level, each DMs can express their indeterminate degrees independently, making the proposed
approach more efficient and flexible, which is also much closer to reality. The neutrosophic goal programming
strategy discussed here can be helpful to solve real problems in a vast range of fields, including agriculture,
transportation, biofuel production, etc., in a neutrosophic environment.

6. Conclusions

This paper proposes neutrosophic fuzzy goal programming algorithms for the solutions of ML-MOFPPs. The
neutrosophic fuzzy goal programming is constructed to minimize the group tolerance of a satisfactory degrees,
and to attain the highest degree for truth (unity), indeterminacy (half) and a falsity (zero) of each kind of
the prescribed membership functions goals to the utmost possible by minimizing their respective deviational
variables and so that obtain the optimal solutions. The prime advantage of the proposed neutrosophic fuzzy goal
programming algorithms is the chances of refusing the solution repeatedly by the leader-level decision-maker
and re-evaluation of the problem again and again by restating the defined membership functions required to
reach the optimal solution would not arise.

The NFGP algorithm considers the different neutrosophic goals as well as the different membership functions
for the neutrosophic goals for the decision variable vectors at each level except the follower level of the ML-
MOFPPs. It also solves the MOFPPs of ML-MOFPPs by taking into account the decisions of MOFPPs for
the leader level only. A numerical example is shown to verify and validate the proposed NFGP algorithms.
The degree of indeterminacy may arise in the hierarchical decision-making processes and can be overcome by
utilizing the proposed algorithms.

In the future, multi-level multi-objective integer fractional programming problems, multi-level multi-objective
mixed integer fractional decision-making problems, multi-level multi-objective integer quadratic programming
with rough parameters in the objective functions; in the constraints and both would be studied. It can also
be implemented in real-life applications such as transportation, assignment, vendor selection, inventory control
optimization, supply chain planning, etc., problems in multi-level decision-making scenarios. Also, the proposed
work can be extended with different forms of parameters such as fuzzy, stochastic, and uncertain instead of taking
the rough intervals, and the comparative study would be made. Studying more properties of the introduced
models can be a subject for further research. Moreover, applying the new models to deal with real-world problems
is an attractive area for research.
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