RATIRO-Oper. Res. 55 (2021) 2491-2524 RAIRO Operations Research
https://doi.org/10.1051/ro/2021107 WWW.rairo-ro.org

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST
BEAMS MULTIPERIOD PRODUCTION PLANNING PROBLEM

KENNEDY ANDERSON (GUMARAES DE ARAUJO'®,
TIBERIUS DE OLIVEIRA E BONATES2® AND BRUNO DE ATHAYDE PRATA®*

Abstract. We introduce a novel variant of cutting production planning problems named Integrated
Cutting and Packing Heterogeneous Precast Beams Multiperiod Production Planning (ICP-HPBMPP).
We propose an integer linear programming model for the ICP-HPBMPP, as well as a lower bound for its
optimal objective function value, which is empirically shown to be closer to the optimal solution value
than the bound obtained from the linear relaxation of the model. We also propose a genetic algorithm
approach for the ICP-HPBMPP as an alternative solution method. We discuss computational experi-
ments and propose a parameterization for the genetic algorithm using D-optimal experimental design.
We observe good performance of the exact approach when solving small-sized instances, although there
are difficulties in finding optimal solutions for medium and large-sized problems, or even in finding
feasible solutions for large instances. On the other hand, the genetic algorithm is shown to typically
find good-quality solutions for large-sized instances within short computing times.

Mathematics Subject Classification. 90C27, 90B30, 90C59, 62P30.

Received March 8, 2021. Accepted July 20, 2021.

1. INTRODUCTION

Nowadays, concrete precast production is increasingly trending in constructions sites. There are great advan-
tages in using such kind of production, such as better and cheaper elements, as well as the potential to severely
shorten construction time as compared to conventional methods. The precast element we consider in this work
is a concrete precast beam, which is a kind of beam that is cast in plants away from the construction site, in a
controlled environment.

These beams are heterogeneous in the sense that they can vary with respect to curing time, length and the
number of traction elements used. We refer to the problem of planning the production of such beams to fulfill
the clients demand within a given time horizon as the Heterogeneous Precast Beams Multiperiod Production
Planning Problem (HPBMPP).

Keywords. Precast beams, modular construction, integer linear programming, metaheuristics, genetic algorithms.

I Department of Applied Mathematics, University of Sdo Paulo, Sdo Paulo, Brazil
2 Department of Statistics and Applied Mathematics, Federal University of Ceard, Fortaleza, Brazil

3 Department of Industrial Engineering, Federal University of Ceard, Fortaleza, Brazil.
*Corresponding author: baprata@ufc.br

© The authors. Published by EDP Sciences, ROADEF, SMAT 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021107
https://www.rairo-ro.org
https://orcid.org/0000-0003-2917-025X
https://orcid.org/0000-0002-3991-1296
https://orcid.org/0000-0002-3920-089X
mailto:baprata@ufc.br
https://creativecommons.org/licenses/by/4.0

2492 K.A.G. DE ARAUJO ET AL.

In [1], the authors proposed four integer programming models for the HPBMPP, considering prestressed
precast beams instead of conventional concrete precast beams. One of the proposed models minimizes the total
idle capacity in the molds along the time horizon, two models minimize the production makespan, and one
model minimizes the total completion time. The authors also proposed several solution methods, in particular a
size reduction heuristic that succeeded in finding high-quality solutions in shorter time and using less memory
compared to exact methods.

In this work, we propose a variant model of the HPBMPP, which consists in the integration of the production
of bars, which are used in the precast beam production, into the problem. We divide the bars into two groups:
standard bars and leftovers. Standard bars are new bars of standardized lengths, and leftovers are a type of
bar that cannot be readily used in the beam production but can be stored in stock to produce other bars in
the future. In this study, we consider that both standard bars and leftovers vary with respect to length. The
production of bars to be used in the beam production can be made by the cutting of standard bars or leftovers
in stock, or by the process of cutting overlapping leftovers. The overlapping process consists in merging two or
more leftovers in order to create a larger bar that can be cut to produce a bar of appropriate length that can be
used in beam production. In this work, we only consider overlapping of two bars. To the best of our knowledge,
the consideration of overlapping bars has not been previously studied.

We consider the integration into a single production planning problem of the cutting process of bars, or of
overlapping bars, which must be packed in the molds for the production of a given demand of beams. We refer
to this problem as the Integrated Cutting and Packing Heterogeneous Precast Beams Multiperiod Production
Planning Problem (ICP-HPBMPP). Note that in this work we consider beams that are not prestressed. The
mathematical model we propose is based on the model by [2], which deals with the cutting stock/leftover
problem, and on the model by [1] for the HPBMPP. We consider that the bars needed to supply the beam
production can be produced by cutting bars or leftovers in stock or by overlapping leftovers in stock. The stock
is static, i.e., we are given an initial stock that is not replenished over the entire time horizon.

The ICP-HPBMPP is of practical interest because optimizing the production of prestressed beams has the
potential effect of speeding up overall construction time, while improving the usage of molds and bar stock,
while minimizing bars loss. An economical usage of bar stock may result in a reduction of unused bars in the
construction site, which can improve production flow. Furthermore, the reduction of concrete and bar loss may
lead to a positive impact in the environment. An optimized process also allows factories to accept additional
orders due to shorter lead times. Moreover, the production cost with an optimized process will be lower, which
may lead to a reduction of the final product’s price, increasing competitiveness.

It is argued in [1] that the HPBMPP is NP-hard since it includes, as a particular case, the classical one-
dimensional cutting stock problem. Thus, the HPBMPP can become too difficult to solve as the dimension
of instances increases. The computational results reported in Section 6 show that the ICP-HPBMPP can be
difficult to solve to optimality, justifying the use of decomposition techniques and heuristic procedures to deal
with the problem. This also suggests that the HPBMPP is interesting to be studied from a theoretical point of
view.

The remainder of this paper is organized as follows. In Section 2, we discuss the literature on similar problems
to the ICP-HPBMPP. In Section 3, we formally define the problem, propose an integer linear programming model
for its solution, argue about its NP-hardness, and propose a lower bound for its optimal objective function
value. In Section 4, we present three constraint programming models for the generation of packing, cutting and
overlapping patterns. In Section 5, we propose a genetic algorithm for the problem under study. In Section 6,
we discuss several computational experiments conducted with artificially generated instances and discuss the
results of the proposed solution methods. In Section 7, we discuss the conclusions and contributions of this
paper, point out research gaps, and suggest future work.

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2493

2. LITERATURE REVIEW

To the best of our knowledge the ICP-HPBMPP is not defined in the literature, even though the problem
has similarities with one-dimensional cutting stock problems (1DCSP) and one-dimensional packing problems
(1DPP). On the order hand, 1IDCSP, 1DPP, and their variants have been substantially studied in the literature.

As far as one-dimensional cutting and packing problems (C&P) are concerned, the studies of [10,11] proposed
a column generation algorithm to solve the linear relaxation of large instances of 1DCSP. Such studies served
as basis for a number of subsequent works. In [18], a heuristic for the 1IDCSP was proposed based on the
solution of the linear relaxation supplemented by a one-pass branching up procedure. The authors validated the
proposed heuristic approach, testing on benchmark instances and on a case study. In [8], the authors introduced
a typology of C&P problems, unifying notions in the literature to guide further research on particular types of
those problems. Two branch-and-price approaches were proposed in [21] to find optimal solutions for the 1IDCSP.
In [24], a new typology was presented to categorize the types of C&P problems in the literature between the
years 1995 and 2004, introducing new categorization criteria. A model was proposed in [20] for the multiperiod
one-dimensional cutting stock problems (M1DCSP), considering the use of objects/leftovers in stock. In [16], an
integer linear model for the M1DCSP was proposed, a column generation procedure was implemented to solve
the linear relaxation, and two rounding heuristics were developed for finding integer solutions to the problem.
In [13], a mathematical model for the general integrated lot-sizing and cutting stock problem was proposed;
additionally, a vast classification of the literature on that problem was performed, providing directions for future
research.

Regarding the C&P problems and optimization approaches in precast production, De Castilho et al. [7]
described the problem of minimizing production costs for slabs of precast prestressed concrete joists and intro-
duced a genetic algorithm to solve it. An integer linear programming model for multiperiod production planning
of precast concrete beams was proposed in [3], which can be seen as a special case of the HPBMPP. In [2], the
authors introduced a mathematical model for the cutting stock/leftover problem and suggested a column gener-
ation technique for finding the problem’s linear relaxation solution. In [22], a mathematical model was proposed
based on the multiperiod cutting stock problem for the production planning problem of joists in trusses slabs
industries. The authors suggested a solution method based on column generation to solve the linear relaxation
of the problem. In [1], several integer linear programming models for the Heterogeneous Prestressed Precast
Beams Multiperiod Production Planning Problem were proposed. The authros established the NP-hardness of
the problem and suggested a constraint programming model for generating cutting patterns for the problem.
The authors also carried out computational experiments to validate the performance of the integer linear pro-
gramming models. In [23], the authors introduced a two-hierarchy simulation-genetic algorithm hybrid model
for precast production to ensure the on-time delivery of precast components minimizing the production cost,
while simultaneously optimizing the resource waste under uncertainty in the processing time of each operation.
The model was validated by means of a case study.

The problem which we study in this work is the integration of the cutting stock/leftover problem proposed
in [2] and the HPBMPP introduced in [1]. We explore its solution via exact methods and heuristics methods in
the case where instances cannot be solved by the state-of-art solvers.

3. PROBLEM STATEMENT

In this section, we formally define the ICP-HPBMPP and propose an integer linear programming model for
its solution based on the models proposed in [2] for the Cutting Stock/Leftover Problem (CSLP) and in [1] for
the Heterogeneous Prestressed Precast Beams Multiperiod Production Planning Problem (HPPBMPP).

The ICP-HPBMPP consists in finding a feasible production planning to cast certain quantities of prestressed
precast concrete beams, possibly of different types, while minimizing the total length of pieces of bars that
cannot be used as leftover. A leftover is understood here as a piece of bar that can be cut or overlapped in the

2494 K.A.G. DE ARAUJO ET AL.

Bar Waste J Concrete Waste }

Leftover Stock New Leftovers
A

Beam Production
Planning H Produced Beams]

FIGURE 1. Cutting and packing production flowchart.

| —

A

Standard Bar Stock

N——
)

Bars and
Overlapping Bars
Cutting Planning

Beam Demand

R

future to meet new demands and is not considered waste. The beam factory has a fixed amount of bars and bar
leftovers with standard lengths in stock that can be used within a given time horizon.

Each mold can only be used to cast one type of beam at a time. It is possible, however, to simultaneously
cast beams of different lengths in the same mold, as long as they are of the same type. The total length of the
beams produced during a given period in a given mold cannot be greater than the mold’s capacity, and the
total number of days required to complete the entire production cannot be greater than a given time horizon.
After the process of cutting bars is finished, they are packed in molds in order to produce the beams. Note
that different beam types can demand different numbers of bars. For this reason, we refer to this problem as a
Cutting and Packing problem. The ICP-HPBMPP process can be seen in Figure 1.

As input of the problem we have a deterministic, static demand of beams, with their respective types and
lengths, stock of bars and stock of bars leftovers, with their respective lengths. The cutting planning of bars
is made for the entire time horizon, resulting in more bars leftovers (which can be used in another production
planning) and, possibly, incurring in bar loss. The bars that are cut are then packed in the molds for the beam
production, along the given time horizon. After the production of all demanded beams is met, there will usually
be concrete waste of the beams and additional loss of bars.

3.1. Integer linear programming model

In order to define a model for the ICP-HPBMPP, we make use of the same parameters defined in [1], as
follows:

M: number of molds in which the beams are produced;

— T: number of available periods to complete the production;

— C: number of beam types;

— ¢.: number of distinct lengths of beams of type ¢, with c=1,...,C;

- Il(e,1),...,1(c, qc): real numbers corresponding to the actual lengths of beams of type ¢, with c=1,...,C;
— d(c, k): demand for beams of type ¢ and length I(c, k), withc=1,...,Cand k=1,...,q.;

— te: integer number corresponding to the curing time (in terms of periods) of beams of type ¢, forc =1,...,C;

— Ly,: real number corresponding to the capacity of mold m, with m =1,..., M;

- P = (cl-, (aﬁ, ceey aéc_)>: packing pattern, where ¢; stands for the beam type associated with pattern P; and
at,..., afh represent the quantity of each beam of length i(¢;, 1), . ..,1(c, g,) in patterns P;, withi =1,...,r,
c¢i=1,...,C. Note that r represents the number of packing patterns;

— Py: special pattern, which is used to denote that a mold is currently being used for the casting of a pattern
that began in a previous period and whose production extends at least up to the current period.

Note that an idle mold (in other words, a mold that is not being used during a specific period) is not assigned
the pattern FPy. In fact, it has no pattern assigned to it.

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2495

In order to refer to specific information on a given pattern P; = (ci, (a,..., aq.,)), we define the following
notation:

— N(c, k): number of beams of type ¢ and length I(c, k) that pattern P; includes. If ¢ = ¢;, then N;(c, k) = ax,
with k € {1,..., ¢, }; otherwise, N;(c, k) = 0, for any k.

— w(P;): capacity used by P;, i.e., u(P;) = S5t I(ci, k) - Pi(ci, k), with i = 1,...,7.

— E;: number of periods required to produce the beams in P;, with ¢ = 1,...,r. This number equals the
quantity of consecutive periods in which P; remains occupying a mold and is precisely the curing time of
beams of type ¢;, given by t,.

Given a set of patterns P = {Py, ..., P.}, not including Py, we define some important sets as follows:

— Q(m): set containing the indices of the patterns in P whose capacity does not exceed the capacity of the
m-th mold: Q(m) = {i € {1,...,7} : w(P;) < Ly}, for m = 1,..., M. Note that the same pattern can
belong to Q(m) and Q(m’), with m and m’ being two different molds of potentially distinct lengths.

~ Q*(m) = Q(m) U {0};

— 5(j): set of indexes of the patterns that have curing time j € {1,..., R}, with R = max{t. : ¢ =1,...,C}
being the largest curing time of all beam types present in the problem instance.

In what follows, we present the parameters that concern bars and bars leftover:

— W: number of different bar lengths;

— V: number of different bar leftover lengths;

— H: number of cutting patterns;

— O: number of overlapping patterns;

— I': number of different mold lengths;

— by,...,by: bar lengths;

— bw41,...,bwyv: bar leftover lengths allowed. Note that this data narrows the types of cutting, and over-
lapping patterns;

— Lq,...,Lr: mold lengths. Note that this data narrows the types of cutting, and overlapping patterns;

— G(L,) = set of molds which are of length £, vy =1,...,T}

— H,,: set of cutting patterns for bar of length b,, that do not include leftovers.

— Hy,(v): set of cutting patterns for bar type w that include leftovers of length by 4,;

— O: set of overlapping patterns;

— O(7): set of overlapping patterns that produce bars of length £.,.

- I = (wh, (a'f, ceey a{i, a{iH, . ,a1@+v)): cutting pattern used to cut a bar of index wy, = 1,..., W4V, with
h=1,...,H. Note that a?,...,al are the number of bars of lengths L1, ..., Lr and a{iﬂ, e ,a{iJrV are the
number of bars of lengths by 1,...,bwiv;

— 04 = (W, (@, ..., al,)): overlapping pattern that generates a bar of length £, , with v, = 1,...,T and
p=1,...,0. Note that af,...,a}, are the number of bars of lengths by 41, ..., bwiv;

— D., = number of bars that a pattern P; with beam type ¢; demands;

— e, = number of bars of length b, in stock, leftover or otherwise, with w=1,... W + V;

~ @y, = number of leftovers of length by 4, in overlapping pattern O, with p=1,...,0.

~ Gy,hw = number of objects of length £, cut from a bar of length b, following a cutting pattern I; that
generates no leftover, with with w=1,... W4+ V;

~ Qy,hw, = number of objects of length £, cut from a bar of length b,, following a cutting pattern I, that
generates a leftover of length by 4, withw=1,... Wandv=1,...,V.

— fn,w = waste resulting from using a cutting pattern I to cut a bar of length b,, generating no leftover, with
w=1,..., W+V.

— fhwe = waste resulting from using a cutting pattern Ij, to cut a bar of length b,, generating a leftover of
length by 4y, with w=1,..., Wandv=1,...,V.

— fu = waste of bar produced by overlapping pattern O,, with u=1,...,0.

2496 K.A.G. DE ARAUJO ET AL.

We present the decision variables below:

1, if the packing pattern P; starts to be used in
mit mold m at period ¢ (and its usage, naturally,
d lasts for E; periods);

0, otherwise.

= 1, if as least one mold is used at period t, fort =1,...,T;
£t 10, otherwise.

Yh,w: number of bars of length b,, cut following a cutting pattern I, € H,,.

Yhw,: number of bars of length w cut following a cutting pattern I;, € H,,(v) generating a leftover of length

bw -
o0, : number of times the overlapping pattern O, was used, u € Q.

Note that variables yn w,Yn,w,0, and o, are nonnegative integer decision variables. We present the integer

linear programming model proposed for the ICP-HPBMPP as follows:

(ICP) min

T w
)\1 Z zt +)\2 Z Z fh,wyh,w
t=1

w=1heH,

w v
+ A3 Z Z Z fh,w,vyh,w,v

w=1v=1 heH,,(v)

W+Vv

+ A4 Z Z fh,wyh,w + Z f,uo,u

w=W+1heH,, pne0
s.t.

m=1icQ(m) t=1

Ei—l
(Bi —1) 2™ < > aghtte, m=1,..., M,
a=1
t=1,....T—E;+1
i€ Q(m)
xg”’lzo m=1,...,M,

R
ng’tSZZ Z A m=1,..., M, t=2,...

R

7=2 j=v i€{Q(m)NS;}

m:l 1EQ* (7n)
m t m t+1

- 9

ieQ*(m) i€ Qr (m)

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2497

th,w+2aw,#0#§ew, w=W+1,.... W+V (3.9)
h€H,, o)
1%
Z yh,w+z Z yh,w,v S Cw, w = 17"'7W (310)
heH, v=1heH, (v)
W+V w Vv
Z Z Gy hywYh,w + Z Z Z Qry hyw,vYh,w,v
w=1 heH, w=1v=1 he H,, (v)
T
+ > o= > > Y Dea™, y=1,...,T (3.11)
HED(7) meG (L) t=1ieQ(m)
™t € {0,1}, m=1,...,M, t=1,...,T, i € Q*(m)
(3.12)
z € {0, 1}, t=1,...,T (3.13)
Yhw € Ly, w=1,....W, h € Hy, (3.14)
Yhww € Ly, w=1,.... W, v=1,...,V, h € Hy,(v)
(3.15)
oy €72y, we€ Q. (3.16)

The objective function (3.1) is divided into 4 terms. The first term is the makespan value. The second term
defines the waste related to the use of new bars to produce the demand of bars. The third term describes the
waste associated to the use of new bars to produce the bars required by beam production while creating new
leftovers. Finally, the fourth term specifies the waste corresponding to the bar leftovers in stock that are used
to produce the amount of bars required. Note that each term of (3.1) could alternatively be regarded as an
independent objective function to be minimized. We obtain (3.1) using the weighted sum method, in which the
parameters \; € Ry, with ¢ = 1,...,4, indicate the weight of each objective function term. A solution that
minimizes (3.1) is, therefore, a Pareto optimum [12].

Constraints (3.2) ensure that at most one pattern must be assigned to mold m at period ¢, with the possibility
of this pattern being Py. Constraint set (3.3) requires that all demands must be satisfied. Constraints (3.4) force
that, if pattern P; is initiated at period ¢, then the next F; — 1 periods shall have the pattern P, assigned to
them (the right-hand side of the constraint remains unconstrained, in case " = 0). Constraint sets (3.5) and
(3.6) establish that P, shall only be used in mold m if there is some pattern associated with a previous period
in the same mold, whose production has not yet been completed.

Each constraint in set (3.7) ensures that variable z; must be 1 if period ¢ is used to produce beams. Constraints
(3.8) force that there is no inactive period during beam production in the molds. This means that the production
is continuous, i.e., if a mold is used it will be used with no interruption; in other words, if the production stops
at a given mold and period, it will not resume in that mold at a subsequent period.

Constraints (3.9) establish that the number of bar leftovers cut plus the number of leftover bars used to
produced bars via overlapping does not exceed the stock, note that the cutting of a leftover does not generate
leftovers. Constraint set (3.10) ensures that the number of bars cut does not exceed the stock. Constraints (3.11)
force that the amount of bars necessary to produce the beams is achieved, assuming that the required amount
of bars is the number of bars used by the forms in the entire time horizon. Constraints (3.12)—(3.16) define the
domains of the decision variables.

The model (ICP) has O(MTr + WV H + O) variables and O(¢ + MTr +V + W + T') constraints, with
q = 220:1 gc- Thus, depending on the total number of possible packing, cutting, and overlapping patterns,
there may be an excessive number of variables and constraints in the model. We choose to limit the number
of packing patterns, which are the more numerous type of pattern, in practice, by using only maximal packing

2498 K.A.G. DE ARAUJO ET AL.

patterns, used successfully by [1,21]. We say that a pattern P; contains a pattern P; if ¢; = ¢; and af€ > ai,
with k=1,...,q-

Proposition 3.1. Restricting the model (ICP) to using only maximal packing patterns does not modify its set
of optimal solutions.

Proof. The proof can be found in [1]. O

3.2. NP-hardness

To argue the ICP-HPBMPP hardness note that for instances where D, = 0, for all c =1, ..., C, constraints
(3.9)-(3.11) are naturally fulfilled and all variables yp ., Ynw,o and o, are set to zero, reducing an instance
of ICP-HPBMPP to an HPPMBPP instance involving the minimization of the makespan, up to a constant
multiplicative factor. Consequently, the ICP-HPBMPP is a generalization of HPPMBPP, which is already
known to be NP-hard [1].

3.3. Objective function lower bound

Since the ICP-HPBMPP is a NP-hard problem, a lower bound for the optimal objective function value may
help in evaluating the quality of feasible solutions in heuristic and exact methods. In order to simplify the
presentation of our proposed lower bound for objective function (3.1) optimal value, we present the following
notation. For a given vy € {1,...,T'} we define the following sets:

- Cly ={fhw/tyhw:hE€Hy N aypw>0 AN 1<w<W}

- C2y ={d fhwov/tyhwe :h € Hy(v) AN aypwe>0 A 1<w<W A 1<v<V}h
- O3y ={d" fhw/0yhw: h€Hy N aypw>0 N WH+1<w<W4+V}

- C4y ={d"f : p € O()}-

- C,=C1,UC2,UC3,UC4,.

An upper bound on the optimal value of model (ICP) is given by equation (3.17).

C qc M C qc R
{Ztc- (Zl(c,k:)-d(c, k))/z me + {min }HZ D, - (Zl(c, k:)-d(c,k:)) /cww -min{C’v}}.
=1 k=1 m=1 ve{ll c=1 k=1
(3.17)

The first part of equation (3.17) corresponds to a lower bound for the makespan, while the second part stands
for the minimum waste resulting from using molds of some fixed length L.

4. PATTERNS GENERATION

Instead of carrying out exhaustive enumerations, we generated the desirable packing, cutting, and overlapping
patterns for a given instance using constraint programming models, which are described in the remainder of
this section.

4.1. Packing patterns generation
Consider the following notation, in addition to the notation presented in Section 3:

— K: the largest number of different lengths among beam types, i.e., maxq. with ¢ = 1,...,C. For example,
in an instance with 2 beam types, in which type 1 has 6 distinct beam lengths and type 2 has 4 distinct
beam lengths, we have K = 6.

— v; € {1,...,C}: a decision variable that corresponds to the type of beam used by the pattern FP;.

- v € {1,...,T'}: auxiliary decision variable for generating patterns that will be maximal in at least one mold
of the problem. It defines in which mold capacity the generated pattern P; is maximal.

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2499

— A® € ZX: a vector of decision variables, with A; representing the number of beams of the length /(v j),
for all j € {1,...,K}. Given a pattern P; of type v, the nonzero components of vector A’ correspond to
Nz,

— Py = (v;,(A3,..., AL)): the gencrated pattern.

For the generation of a packing pattern P; we propose the model, which is adapted from [1].

1S’Ui§0a (41)
A;:O, if v; =¢, c=1,...,C,
j=q+1,.. K (4.3)
dc
Ly — min (I(c, 7)) <Zl(c,j)~A§- < Ly, if (v =cAvy;=m), c=1,...,C,
Jj=1,....qc et
m=1,...,T, (4.4)
Al ey, k=1,...,K. (4.5)

Constraint (4.1) implies that the pattern type has domain € {1,...,C}. Constraint (4.2) defines the length of
the molds in which the generated pattern should be maximal. Constraint set (4.3) implies that if the generated
pattern is of type v then it includes no beam of size [(v, j), such that j > g,. Constraint set (4.4) imposes that
the capacity used by the generated pattern is simultaneously larger than the mold length minus the shortest
beam length from its type and no larger than the length of the actual mold. The empty pattern is, therefore,
not generated and has to be manually included in the final set of patterns. We utilized the solver CPLEX CP
Optimizer to enumerate all the solutions of model (4.1)—(4.5).

4.2. Cutting patterns generation

In this section, we propose a constraint programming model for cutting patterns generation. The decision
variables are given below:

— wyp,: index of the bar that will be cut in the generated cutting pattern Ip;

— Al number of items of length £; cut in the pattern, for i € {1,...,T'};

— AP: number of items of length by ; cut in the pattern, fori € {[+1,..., T + V};
- I = (wh, (A?, co AR A{i_H, . ,Alfi+v)): the generated pattern.

The proposed constraint model for generating a cutting pattern Hy, is given by equations (4.6)—(4.10).

1<w, <W+V, (4.6)
T |4

Zﬁi Al wa+i - AR, < element(wy, b), (4.7)
=1 =1

#lic{T+1,....T+V}HAr >0} =1, (4.8)
Al =0, if wy, > W, i=T+1,....T+V (4.9)
Al ez, i=1,...., [+V. (4.10)

Constraint (4.6) defines the domain of each decision variables wy,. Each wy, variable determines defines the
bar that will be cut in the current pattern to generate items. If 1 < w < W, the bar that will be cut is a
new bar. If W+ 1 < w < W 4V, the bar that will be cut is a bar leftover. Constraint (4.7) states that the
total length of items cut in the pattern must be shorter than the length of the bar used to cut such pattern,
with expression element(wy,,b) standing for the wy-th element of array b [4]. Constraint set (4.8) implies that
a cutting pattern only generates one type of leftover. Constraint (4.9) implies that a leftover does not generate
more leftovers. We utilized the CPLEX CP Optimizer to enumerate all the solutions of model (4.6)—(4.10).

2500 K.A.G. DE ARAUJO ET AL.

4.3. Overlapping patterns

In order to enrich the problem by allowing the possibility of using overlapping bars, we recall that an
overlapping pattern O, is a tuple O, = (v, (af,...,al;)). Note that v is associated to the length of the bar
that is generated in such pattern. Such length must be equal to the capacity of some mold, since we are only
required to produce bars via overlapping that are used for beam production. A bar produced by overlapping is
only produced from leftovers in stock.

In order to simplify the model’s notation, consider the following decision variables:

— A": decision variable that represents the number of items by y; used in the overlapping pattern,
forie{1,...,V}.

— v, € {1,...,T}: decision variable that defines the length of the bar produced by the overlapping pattern.

— f > 0: decision variable that expresses the waste of bar associated to the overlapping pattern to produce a
bar of length L.

- 0, = (7, (AY,..., A})): the generated pattern.

The following constraint programming model can be used to produce an overlapping pattern:

1<y, <T, (4.11)
\%4
> Albw i > Ly, +e, (4.12)
=1
\4
oAl =2, (4.13)
i=1
v
f=Ly =Y Albw . (4.14)
=1

Constraint (4.11) ensures that the length of the bar produced is one of the possible mold lengths. Constraint
(4.12) forces that the total length of the chosen leftovers is greater than the length of the bar produced via
overlapping plus a constant € which is the loss of the bar resulting from the overlapping process. Constraint
(4.13) defines that only 2 leftovers are used in the production of the bar made via overlapping. Constraint (4.14)
defines the bar waste resulting from the overlapping pattern.

The constraint programming model for overlapping pattern generation is sufficiently flexible to accommodate
the production planner’s necessities. In a more general setting, we could require that a bar made via overlapping
can only be produced by using more than 2 and no more than a predefined number of leftovers and specify the
€ value to be proportional to the number of leftovers used in such pattern.

5. GENETIC ALGORITHM FOR THE ICP-HPBMPP

In this section, we propose a genetic algorithm to solve the ICP-HPBMPP, formalize the solution representa-
tion chosen, the solution fixing procedure, the selection, mutation, and crossover operators, as well as the initial
population generation, population restart, and local search.

5.1. Solution representation

The solution representation consists of a 2-row matrix, in which each column j consists of the genes a; and
x4, where a; is a pattern index and z; is the number of times the pattern represented by a; is used. The number
of columns of this representation is variable and can be at most » + H + O. The a; genes can have values in
{1,...,7+ H+ O}, in which the values 1, ..., r represent the packing patterns indices, the values r+1,...,r+H
correspond to the cutting patterns indices, and the values r + H + 1,...,7 + H + O are associated with the
indices of overlapping patterns. In Figure 2, we show a generic scheme of the solution representation in which
the number of columns is exactly r + H + O.

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2501

ay a; Arspio-1 | @rsnso

Xy Xz Xrspso-1 | Xrsnso

FIGURE 2. Solution representation.

TABLE 1. Description of instance cwp000.

Instance cwp000
c=1 M=5 T=3
wWw=1 V=4
L = (5.95,5.95,5.95,5.95,11.95)

t1 =

Q=2

D=1

I(1,-) = (1.12,3.3)
d(1,-) = (5,10)
b=(12,2,5,6,8)

e = (30,16, 28, 25, 29)
e=0.3

TABLE 2. Packing patterns for instance cwp000.

1D ge;i;n Capacity af d}
1 1 5.6 5 0
2 1 5.54 2 1
3 1 11.2 10 0
4 1 11.14 7 1
5 1 11.08 4 2
6 1 11.02 1 3

In order to illustrate the solution representation we first present, in Table 1, the cwp000 instance, which was
randomly generated. Its respective packing, cutting, and overlapping patterns are presented in Tables 2, 3, and 4,
respectively.

Note that ID is associated with the pattern indices. An optimal solution for the cwp000 instance is shown as
the chromosome in Figure 3.

In the solution shown in Figure 3, we obtain an objective function value of 2.1, with makespan of 2 periods
and bar waste of 0.1 m. Figure 4 shows that packing patterns with indices 2 and 6 were used 4 and 2 times,
respectively. Due to the fact that we are restricted to using only maximal packing patterns in their respective
molds and a given packing pattern is maximal with respect to only one particular length of mold, we infer
that packing pattern 2 is associated with molds of length 5.95m, and packing pattern 6 is associated with
molds of length 11.95m. Therefore, we need to produce a total number of 2 bars of length 5.95m and 6 bars of
length 11.95, since the beam type produced by each solution packing pattern requires only one bar. The cutting
patterns used are those with indices 11, 15 and 16, and their frequencies are 2, 1, and 2, respectively. None of
the overlapping patterns was selected in the solution.

2502 K.A.G. DE ARAUJO ET AL.

TABLE 3. Cutting patterns for instance cwp000.

1D CBjtr Capacity a? ab aff o af ab
7 1 595 1 0 0 0 0 0
8 1 795 1 0 1 0 0 0
9 1 9.95 1 0 2 0 0 0
10 1 1195 1 0 3 0 0 0
1 4 595 1 0 0 0 0 0
12 5 595 1 0 0 0 0 0
13 1 1195 1 0 0 0 1 0
14 1 1095 1 0 0 1 0 0
15 1 11.9 2 0 0 0 0 0
16 1 1195 0 1 0 0 0 0

TABLE 4. Overlapping patterns for instance cwp000.

Bar Waste
D generated of bar af ay a4y aj
17 1 1.05 1 1 0 0
18 1 4.05 0 2 0 0
19 1 2.06 1 0 1 0
20 1 6.05 0 0 2 0
21 1 505 0 1 1 0
22 1 8.05 0 0 1 1
23 1 4.05 1 0 0 1
24 1 7.0 0 1 0 1
25 1 10.05 0 0 0 2
26 2 4.05 0 0 0 2
27 2 1.05 0 1 0 1
28 2 2.05 0 0 1 1

16) 2 |11 | 15

FiGURE 3. Example of a feasible solution for instance cwp000.

The production planning consists of the specification of the exact quantity of bars required for the beam
production, as long as the available stock of bars is not violated. Thus, the solution encoded in the chromosome
in Figure 3 is feasible.

5.2. Initial population generation

Since we typically need a large quantity of individuals to generate a population, deterministic methods are
not the best choice, despite the high-quality solutions produced by them. We propose a pseudorandom approach
to generate a large quantity of solutions, which is described in Algorithm 1.

We call this method pseudorandom because we choose the patterns to add to the solution randomly, although
each pattern frequency in the solution is computed in such a way as to respect stock and satisfy the demand.

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2503

EN Typel

Time

FIGURE 4. Gantt chart for an optimal solution of instance cwp000.

Algorithm 1: Generate pseudo-random solution.

[I VN

© N o

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Data: Instance, Set of Packing Patterns, Set of Cutting Patterns, Set of Overlapping Patterns
Result: Feasible solution
Initialize solution with all patterns with their respective frequencies set to zero.
while Beam demands is not fulfilled do
pac, +— random packing pattern that has not yet been selected.
if There is some beam in pac, whose demand is unfulfilled then
Increment the number of times that pac, is used in solution until all beams in pac, have their demands

fulfilled.
end

end

Calculate the number of bars needed according to the packing patterns frequencies

for each mold length v do

while (number of bars of length L needed was not reached) V (there is at least one cutting pattern not
selected) do

cut, < random cutting pattern that generates bars of length £, that has yet not been selected.
bars_needed « number of bars of length £, required.

n «— number of times cut, can be added to solution without violating bars stock.

Increment cut, frequency in solution by maz(bars_needed,n) times.

end

while number of bars of length L., needed was not reached do

ove, <« random overlapping pattern that generates a bar of length £, that has not yet been selected.
bars_needed «+ number of bars of length £, required.

n < number of times ove, can be added to solution without violating bars stock.

Increment ove, frequency in solution by maz(bars_needed, n) times.

end

end
Remove from solution the genes associated to patterns that are not used
return solution

The time complexity of the Algorithm 1 is O(Pgq. + I'(H + O)). Generating the initial population consists of
creating of a number of individuals with the use of Algorithm 1 and selecting the best of them based on their
fitness value according to the required population size.

5.3. Fitness function and selection operator

We use the objective function (3.1) from the mathematical model (ICP) as the fitness function to evaluate

the solution quality of a given chromosome. The selection operator consists of the process of selecting the best
distinct solutions with respect to their respective fitness function value, i.e., the individuals with the lowest
fitness values.

2504 K.A.G. DE ARAUJO ET AL.

5.4. Crossover operators

In this subsection, we propose two alternatives to use as crossover operators: types 1 and 2. Given two parents,
both crossover types generate one offspring, which consists of a new solution (chromosome).

In crossover type 1, we preserve all pattern indices from both parents, but the number of times each pattern is
used in the offspring corresponds to the mean of the number of times they are used by the parents rounded to the
largest integer. For each gene there is a probability of mutation. When the mutation occurs the number of times
that the current pattern is used in such gene is set to zero. After this crossover process, if the generated offspring
results in an infeasible solution, an iterative procedure, shown in Algorithm 6, is applied for its correction. If
some pattern from the current offspring is used zero times, the gene associated to it is removed from the
chromosome.

In crossover type 2, we first initiate the offspring using all patterns that used in both parents with their
respective frequencies set to zero. For the genes that have patterns that are part of both parents simultaneously,
their respective frequencies are set as the mean of their frequencies in the parents rounded to the largest integer.
For each remaining gene we have a probability of 50% of setting its respective frequency to be equal to the
originating parent frequency or keeping it equal to zero. If the resulting offspring is not feasible, the fixing
procedure, shown in Algorithm 6, is applied to it and all patterns with final frequencies equal to zero have their
respective genes removed from the chromosome.

5.5. Mutation operator

The mutation of an individual consists of (a) choosing one pattern p; that is in the solution, and (b) adding
one pattern ps, chosen randomly, that is not part of the solution. The number of times that p, is used becomes
the number of times that p; is used, and the number of times that p; is used is set to zero. If the solution is
infeasible after this procedure we apply a fixing phase to the solution. This process is frequently required in
practice and is described in the next subsection.

5.6. Infeasible solution fixing

Since the proposed genetic operators of crossover and mutation can compromise the feasibility of solutions,
we must define a procedure to fix infeasible solutions, turning them into feasible ones.
A chromosome may be an infeasible solution due to different reasons, as follows:

(1) Infeasibility type 1, due to beam demand: the frequencies of packing patterns in the solution are not enough
to fulfill the beam demands;

(2) Infeasibility type 2, due to bar stock: the number of bars which are used in cutting and overlapping patterns
exceeds the bar stock;

(3) Infeasibility type 3, due to inconsistent number of bars produced and required: the number of necessary bars
generated by cutting and overlapping patterns is different from the number of bars that beam production
requires.

If we detect any of those kinds of infeasibility, we must apply the infeasible solution fixing phase, which
consists of Algorithm 6. Each infeasibility type is treated in a particular procedure: Algorithms 3, 4, and 5 are
used to fix infeasibility types 1, 2, and 3, respectively.

The unnecessary packing patterns procedure, shown in Algorithm 2, works like a solution treatment phase,
which is not a necessary part of the solution fixing process, although applying such procedure may improve
solution quality and simplify the fixing process, i.e., it would be less likely that the modified solutions could not
be fixed. The procedure consists of decreasing the frequency of packing patterns after the beam demands are
already fulfilled if there are beam surplus.

In Figure 5, we show an example of the crossover operators, with offspring 1 as the solution generated by
crossover operator type 1, and offspring 2 as the solution created by crossover operator type 2. Note that the
fixing procedure was applied to offspring 2 and not to offspring 1. In Figure 6, we show an example of the

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS

2505

Algorithm 2: Remove unnecessary packing patterns.

Data: Infeasible chromosome

Result: Potentially modified chromosome
Initialize produced beams with zeros;

demand _fulfilled « false;

for each packing pattern P; in Chromosome do

if demand_fulfilled = false then
for cont = 1,..., frequency(P;) do
Update produced beams;
if produced beams fulfill the beam demands then
demand_fulfilled < true;
frequency(P;) < cont;
break;
end

end

else

| frequency(P;) < 0
end

end
return Chromosome

Algorithm 3: Fix chromosome with respect to infeasibility type 1.

© 0 N O A W N

10
11
12
13

Data: Infeasible chromosome
Result: Potentially feasible chromosome
while Infeasibility type 1 = true do

for each beam type ¢ do
for each beam length l. whose demand is not fulfilled do
for each packing pattern P; with type ¢ in Chromosome do
if frequency of l. in P; s 0 then
Increment frequency(P;) until the demand of [, is achieved;
break;
end
end
end

end

end
return Chromosome

proposed mutation operator. The resulting chromosome is infeasible; therefore, the solution fixing procedure
must be applied. If the application of the solution fixing procedure to a given chromosome could not turn it
into a feasible solution, the chromosome is discarded.

5.7. Population restart

The population restart consists of the creation of a new population to compose the next generation after

a predefined number of epochs. We apply a population restart after a given number of generations with no
improvement of the best-fitness value. We divide such procedure into three parts, as follows: (1) selecting
a certain number of the best-fitness individuals from the current population; (2) generating a number new
pseudo-random individuals; (3) creating a new population with individuals from steps 1 and 2 and applying the
selection operator to form the next population.

2506 K.A.G. DE ARAUJO ET AL.

Algorithm 4: Fix chromosome with respect to infeasibility type 2.

Data: Infeasible chromosome

Result: Potentially feasible chromosome
1 Calculate the #bars used;
2 for each standard bar or bar leftover w do

3 if #bars w used 4 stock of w bars then
4 for each cutting pattern Iy that uses w in Chromosome do
5 rt < #bars w used — stock of w bars;
6 frequency(I) < frequency(I;) — min(frequency(I), rt);
7 Update the #bars w used;
8 if #bars w used > stock of w bars then
9 | break;
10 end
11 end
12 for each overlapping pattern O, that uses w in Chromosome do
13 rt < #bars w used — stock of w bars;
" rt
1 e {#bars w in O,LJ
15 frequency(O,,) < frequency(O,) — min(frequency(O,),rt);
16 Update the #bars w used;
17 if #bars w used > stock of w bars then
18 ‘ break;
19 end
20 end
21 end
22 end

23 return Chromosome

Parent 1 Parent 2
5 | 16
5 | s
Offspring 1 Offspring 2
5 16 | 5
3 5 |1

FIGURE 5. Crossover operators.

2 |13 2 |13 2
10 | 10 E> 10) 0 . ¢ 10

Mutation Fixing

FIGURE 6. Mutation operator and solution correction.

5.8. Local search

In order to improve the quality of final solutions, we apply a local search to every individual of the final
population. For the local search we use the insert movement, which consists of, given two genes indices ¢ and
k, with ¢ < k, inserting the gene ¢ one position in front of k-th gene, i.e., all the genes between positions ¢ and

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS

2507

Algorithm 5: Fix chromosome with respect to infeasibility type 3.

Data: Infeasible chromosome
Result: Potentially feasible chromosome

1 Calculate the #bars generated by cutting and overlapping patterns;
2 Calculate the #bars that beam production requires according to the frequency of packing patterns;
3 for each bar vy generated do
4 if #bars v generated s #bars v that beam production requires then
5 for each cutting pattern I that generates only bars v do
6 rt < #bars v generated — #bars v that beam production requires;
rt
7 rt «—
"#bars ~ generated by Ih-‘
frequency(I) < frequency(In) — min(frequency(Ix), rt);
9 Update the #bars v generated;
10 end
11 end
12 if #bars v generated > #bars vy that beam production requires then
13 for each overlapping pattern O, that generates a bar v do
14 rt < #bars v generated — #bars v that beam production requires;
15 frequency(O,,) < frequency(O,) — min(frequency(O,), rt);
16 Update the #bars v generated;
17 end
18 end
19 if #bars v generated < #bars v that beam production requires then
20 for each cutting pattern I that generates only bars v do
21 rt < #bars v that beam production requires — number bars 7 generated;
" rt
22 e {#bars ~ generated by IhJ
23 frequency (1) < frequency(I) + min(rt, stock of v bars remaining) ;
24 Update the #bars v generated;
25 end
26 end
27 if #bars v generated < #bars v that beam production requires then
28 for each overlapping pattern O, that generates a bar v do
29 Increment frequency(O,) until (#bars v generated > #bars v that beam production requires) or the
stock is violated with new increment;
30 Update the #bars =y generated;
31 end
32 end
33 end

34 return Chromosome

k + 1 are moved one position to the right after the insertion of the k-th gene. In Figure 7 an insert movement

neighbor is shown for a given solution after inserting 2nd gene in front of 5th gene.

Considering the function INSERT (solution, i, k) as the movement of insertion given indices ¢ and k, we

describe the local search procedure in the Algorithm 7.

5.9. Algorithm description

In order to describe the proposed genetic algorithm we define the following parameters: population size
(TP), number of generations (NG), crossover type (CRS), number of pseudo-random solutions generated for
the initial population and restart selections (AS), mutation probability (MUT), number of generations with

2508 K.A.G. DE ARAUJO ET AL.

Algorithm 6: Solution fixing procedure.

Data: Infeasible chromosome

Result: Possible feasible chromosome

if Infeasibility type 1 = true then
‘ Call Algorithm 3;

else
| Call Algorithm 2;

end

if Infeasibility type 2 = true then
‘ Call Algorithm 4;

end

if Infeasibility type 8 = true then

© 00 N0 U W N

=
N = O

‘ Call Algorithm 5;

end

return chromosome

6 1 12 | 16 5
2 1 1 5 3
Solution chromosome

6 |12 116] 5 1
2 1 5 3 1

Insert movement neighbor

FIGURE 7. Insert movement.

Algorithm 7: Insert neighborhood.

Data: InitialSolution
Result: BestSolution
BestSolution «— InitialSolution;
fori=1,...,n{—1do
for k=k+1,...,nf do
neighbor «— INSERT (Initial Solution, i, k);
if makespan(neighbor) < makespan(BestSolution) then
‘ BestSolution «— neighbor;
end
end

© 0 N O A W N

end
return BestSolution;

[
(=]

no fitness improvement to apply population restart (RST), and the number of individuals from the current
population selected to be used in restart operator procedure (TER).

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2509

Initialize
parameters

Generate pseudo- Mutate the generated
random individuals uu offspging
? and form the
population
l false
Ye
Selection

v

Pt,he:gx-srgrﬂig, Choose two parents| |
individuals I orEsover

The offspring
fitness is better than the
worst individual in the
urrent population,

Replace worst
true-»| individual with the
offspring

false

Local search for every
l_’individual in the population

|

Return the best-fitness
individual in the population

true

lax number
of generations
achieved

Population
Restart

Ficure 8. Simplified flowchart of proposed genetic algorithm.

The proposed genetic algorithm can be seen as a steady-state model since only one new individual is created
per generation, even though we create several individuals in the formation of the initial population and in a
population restart process. A simplified scheme of the proposed genetic algorithm is shown in the flowchart in
Figure 8.

6. COMPUTATIONAL EXPERIMENTS

In this section, we present computational experiments on a set of benchmark instances that were produced
with the intent to mimic real-world scenarios, in order to evaluate the solution methods proposed in this study.
The instances used in this work were randomly generated based on an existing order arising from a real-world
production plant [1,3]. For privacy reasons, we are not allowed to use or provide here the actual data coming
from the aforementioned instance.

The patterns corresponding to each test instance were generated using the constraint programming solver
IBM ILOG CPLEX 12.8 CP Optimizer. For the integer programming model implementation we adopted the
solver IBM ILOG CPLEX 12.8. Both solvers were used with Concert technology using the C++ programming
language. The genetic algorithms were also developed with the C++ programming language.

We carried out every test in this paper on a Linux Ubuntu 18.04 64 bits machine with 8 GB of memory
and Intel Core i5-3470 CPU 3.20 GHz x4 processor. We compiled the created codes with the GNU GCC 7.3.0
compiler using Code::Blocks 17.12 IDE. Note that, for different values of \; we can form the Pareto front and
may have different behaviors of the proposed model and algorithms. However, for the purpose of the study,
we did not approach the multi-objective nature of the problem and considered, for each test described in this
section, \; = 1, withi=1,...,4.

6.1. Test instances generation

In this subsection, we describe how we generate the set of benchmark instances used in this section. We
introduce a set of instances that are based on data arising from a possible real-world scenario. The different

2510 K.A.G. DE ARAUJO ET AL.

TABLE 5. Description of test instances.

Instance C M T r H O Instance C M T r H O
cwp001 1 15 6 145 10 12 cwp036 4 30 20 715 10 12
cwp002 1 15 6 199 10 12 cwp037 4 30 24 679 10 12
cwp003 1 15 6 236 10 12 cwp038 4 30 15 702 10 12
cwp004 1 15 6 210 10 12 cwp039 4 30 14 732 10 12
cwp005 1 15 6 236 10 12 cwp040 4 30 30 750 10 12
cwp006 1 30 3 257 10 12 cwp041 5 15 68 966 10 12
cwp007 1 30 3 257 10 12 cwp042 5 15 57 927 10 12
cwp008 1 30 3 199 10 12 cwp043 5 15 66 985 10 12
cwp009 1 30 3 218 10 12 cwp044 5 15 59 983 10 12
cwp010 1 30 3 199 10 12 cwp045 5 15 75 1046 10 12
cwp011 2 15 15 414 10 12 cwp046 5 30 29 974 10 12
cwp012 2 15 21 395 10 12 cwp047 5 30 29 926 10 12
cwp013 2 15 21 361 10 12 cwp048 5 30 24 949 10 12
cwp014 2 15 14 387 10 12 cwp049 5 30 30 1008 10 12
cwp015 2 15 17 451 10 12 cwp050 5 30 27 1062 10 12
cwp016 2 30 8 466 10 12 cwp051 6 15 62 1249 10 12
cwp017 2 30 8 352 10 12 cwp052 6 15 51 1204 10 12
cwp018 2 30 9 459 10 12 cwp053 6 15 51 1221 10 12
cwp019 2 30 8 500 10 12 cwp054 6 15 62 1291 10 12
cwp020 2 30 9 466 10 12 cwp055 6 15 65 1371 10 12
cwp021 3 15 29 662 10 12 cwp056 6 30 21 1324 10 12
cwp022 3 15 36 643 10 12 cwp057 6 30 33 1279 10 12
cwp023 3 15 30 614 10 12 cwp058 6 30 33 1305 10 12
cwp024 3 15 29 671 10 12 cwp059 6 30 35 1052 10 12
cwp025 3 15 35 684 10 12 cwp060 6 30 32 1165 10 12
cwp026 3 30 15 58 10 12 cwp061 7 15 60 1427 10 12
cwp027 3 30 18 560 10 12 cwp062 7 15 86 1396 10 12
cwp028 3 30 18 433 10 12 cwp063 7 15 113 1211 10 12
cwp029 3 30 17 620 10 12 cwp064 7 15 53 1438 10 12
cwp030 3 30 20 557 10 12 cwp065 7 15 89 1395 10 12
cwp031 4 15 45 952 10 12 cwp066 7 30 36 1243 10 12
cwp032 4 15 50 650 10 12 cwp067 7 30 45 1568 10 12
cwp033 4 15 45 896 10 12 cwp068 7 30 38 1403 10 12
cwp034 4 15 41 839 10 12 cwp069 7 30 39 1487 10 12
cwp035 4 15 41 783 10 12 cwp070 7 30 39 1494 10 12

instances represent a sample of the variability of the problem’s parameters, such as number of beam types,
number of molds, and mold lengths.

In Table 5, we present details about each test instance parameter. We can see that the number of packing
patterns increases as the number of beam types increases. However, the number of cutting and overlapping pat-
terns remains constant because of the fact that we expect that the possible distinct bar lengths are standardized
in real-world scenarios and therefore do not lead to variability.

We consider mold capacities of 5.95m and 11.95 m, while we take 1.12m, 1.45m, 2.35m, 2.5m, 2.65m, 2.95m,
and 3.3 m as possible beam lengths. For each instance, the possible curing times may be 1, 2, or 3 periods, chosen
randomly when instances have more than 3 beam types. In addition, if the instance has up to 3 beam types, we
associate the curing time to the beam type index, for example the beam type 2 needs a curing time of 2 periods.
With respect to the number of bars that some beam type demands, we choose randomly a value between 1 and
3 for each beam type. We choose the beam demands uniformly between 17 and 50. For total time horizon T,

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2511

we calculate it as the ceiling of 150% of the optimal makespan lower bound, defined in equation (6.1).

C qc M
T= {1.5 Y e (Zl(c, k) - d(c, k))/z me . (6.1)
i=1 k=1

m=1

For all instances, we consider an unique length of new bars as 12m and the possible lengths of bar leftovers
as 2m, 5m, 6 m, and 8 m. We do not vary such lengths along the test instances since, in practice, it is expected
that they are standardized. For generating realistic bar stocks we introduce an upper bound for the number of
bars needed to fulfill the beam demand as UB (see Eq. (6.2)).

UB=2-T-M- DCISE?F,,C{DC}. (62)

We set the stock of new bars of length 12 m equal to UB, whilst we choose the stock of each leftover randomly
between [UB/5] and UB following an uniform distribution. We implemented the instance generator using the
MATLAB programming language.

6.2. Computational experiments with the mathematical model

In this subsection, we discuss the results of the computational tests with the benchmark instance set that we
generated following the scheme described in Section 6.1. In Table 6, we show the results of the computational
experiments for the model (ICP) and its linear relaxation. The solution time was limited to 3600s. As regards
to notation in Table 6, we consider LB, IP, and LP standing for the optimal objective function value lower
bound, best solution value by CPLEX for model (ICP), and its linear relaxation value, respectively. When we
say gap we mean the relative percentage deviation between the best integer objective and the objective of the
best node remaining in the CPLEX B&C' tree, calculated like this: gap = 100 - |bestbound — bestinteger|/(le —
10 + |bestinteger|) (0% means a proven optimal solution). We denote by “B&C nodes” the number of nodes
generated in the branch-and-cut tree in the solution process, and ¢(s) as the solution time in seconds.

Table 6 shows that the linear relaxation of all instances could be solved, with the average time of 53.21s,
and with 624.61s being the longest time to get to the optimal solution. On the other hand, only 11 instances
could be solved to optimality by the integer programming model (4 of them solved in the root node of the
B&C tree). For 23 instances CPLEX could not even find a single feasible solution, a situation that we denote
by “=”. Moreover, for 36 instances feasible solutions were found by CPLEX, but the search was not completed
within the time limit. The computational test results show that the larger the instance parameter values are,
the harder it is to find solutions for the resulting problem. With increased values of the instance parameters,
when solutions are found, the optimality gap tends to be worse, i.e., the solutions achieved within the time limit
are further from the optimal solution, in terms of objective function value.

We compare the results of the integer linear model (ICP), its linear relaxation, and our lower bound, in
equation (3.17), for the optimal value of objective function in the chart in Figure 9.

In Figure 9, the lower bound proposed in this work for the optimal objective function value was greater than
the linear relaxation for all test instances and highly close to the objective function values obtained by CPLEX.

6.3. Experimental design and computational experiments with the proposed genetic
algorithm

In order to achieve a better parameterization for the robustness of the proposed genetic algorithm, we apply
fractional factorial parameter design. The authors of [9] used Taguchi experimental design (see [15]) to achieve
improved robustness of the genetic algorithm which they proposed. In this method the optimal parameter choice
is found with the analysis of different level combinations of the control factors in an orthogonal array, with no
necessity of testing all of the possible level combinations. Table 7 displays the proposed levels for the genetic
algorithm parameters (control factors) introduced in Section 5.

K.A.G. DE ARAUJO ET AL.

2512

69°LET 6€°9% 0°009¢ - - - 0G'29 0L0dmd L9°¢t €€°LT 0°009¢ - - - qe'ev geodmd
29°L6 8T'VE 0°009¢ — - - 90'T1¢ 690dmd 199 94°7¢C 0°009¢ %16°¢ c0T1C oT'vy 0L 0% 7eodmd
G8'19 68°LY 0°009¢ %9T°S¢€ 70T Gq'z8 G9°C9 890dmd 98°C¥ 92'v¢T 0°009¢ %L0°CT 009¢ 0T°0¢ 0g'v¥ £e0odmd
0€'921T 96°0% 0°009¢ — - - G6°09 L90dmd V.L€C 12°8¢ 0°009¢ %TYV V1 q9¢ 01°8¢ 0v°0g ze0dmd
9L°L8T 9L.°€€ 0°009¢ — - - SV'8¥ 990dmd 88 VT 88°CC 0°009¢ %¥0°6 0€ST 00°LY 08¢y 1€0dmo
19'%29 9¢°a¥ 0°009¢ — - - 09°98 G90dmo [N 9G°8T 0°009¢ %60°T 7208 00°0¢ 06°92 0g0dmd
8€°GC 98'8¥% 0°009¢ %V8'C €01 0c'eL G819 790dmd 6.9 2991 0°009¢ %GT' 9 6CGL 08°¢¢C 0G°€T 650dmd
8.°€0T cL’EeS 0°009¢ — - - 99°80T £€90dmd €V'9 GT'8T 0°009¢ %90°8 €LT6 0€°9¢ 0v°¢c 8g0dmd
08769 c0'0¥ 0°009¢ - - - 0¥'9L 290dmd €0'g €0°GT 0°009¢ %¢T6°S 92Tl a1've 09°¢c Lg0dmd
6€°9¢€€ G8'9% 0°009¢ %GELT 1¢ 08°64 G1'69 190dmd 1€°¢ 9T°GT 0°009¢ %IT'C G60¢CT Vi 744 02'1¢ 9g0dmd
7oy 8L°6C 0°009¢ %1C 8T 0 ge'c9 0g'ey 090dmd v0°¢ 7861 0°009¢ %Yy 9 G6¥.L ov°LE q9ve Ggodmd
6EVS 62°9¢€ 0°009¢ - - - 02’19 650dmd 0g'e €e'el 0°009¢ %8¢€°0 98¢ ¢cl av° LT 0L°G¢T 7godmd
6L°TL 6C°7E 0°009¢ — - - 0€'8¥% 8G0dmd €C°L 9€°6T 0°009¢ %6¢°9 (423 0g g€ 0g'1€ £g0dmd
89°GET 8¥°8¢C 0°009¢ — - - QT'EVy L60dmd L€°¢ 18°0C 0°009¢ %860 88T9 G8°6¢ 0¥'9¢ zg0dmd
0v'€c G8'8C 0°009¢ %TY' v 68CT ar'6€ 0g'¢€ 950dmd TL°¢ €4'81 0°009¢ %6T°CT 125515 00°€ee 00°0€ 1g0dmd
9¢°G¥ €979¢ 0°009¢ — - - 0679 Ggodmo 280 OV'1T 0°009¢ %201 €86 907 0¥°LT G6'VI 0g0dmd
68°6€T £9°6¢ 0°009¢ — - - Gge 09 eodmo 740 7O'TT 0°009¢ %650 LV6 LSV 09°LT 09°¢€T 6T0dmd
76°0C 66°€E 0°009¢ %.L8°C 6LET 0€°LG 08°'1¢ €50dmd 6470 €911 0°009¢ %reT VIE€GLL 08'8T G0'eT 8T0dmd
€0°99 TL°6€ 0°009¢ — - - 99'ce 2G0dmo 09°0 G411 9°¢e %0070 TTLT 04°GT SOvI L70dmd
08°9¥% 76°G¢ 0°009¢ %60°LT 0 0T LL 0L°T9 1g0dmo 61°T ¥8°G 8°6¥% %00°0 (4444 06’8 av'8 910dMmd
var LG 78°9¢ 0°009¢ — - - 0¥'8¢ 0g0dmd 68°0 G8'Cl 0°009¢ %670 6€L 199 00°1¢C GL'8T GTodmd
OV'1T IT've 0°009¢ %T9°€CT [4 G0°LY qgrLe 670dmd 88°0 GL'6 0°009¢ %6£°0 0SL7G9L 0671 G6°€T Todmd
67°6C 6€°VC 0°009¢ %TT'TT CITT g1'8¢ 08°¢€e 870dmd GL°0 €V'a1 0°009¢ %TE0 0€6 799 08°9¢C 0T°€T €10dmd
€E€61 06°6T 0°009¢ %60°C ovee 06°¢€ G9'1€ Ly0dmd 79°0 VL VT 0°009¢ %TE0 ST 1Sy G8'9¢ G8'CC cT0dmd
9.°92 68°8¢C 0°009¢ — - - 00TV 9%0dmd 99°0 T¢Ct 0°009¢ %290 09€ 12T 0L°6T 0€°LT T10dmo
T9'8TT 08'cE 0°009¢ - - - 42’69 Sy0dmd G0'0 €8°¢ e %00°0 agve 00°4 ge'9 0T0dMmd
98°LET [474n89 0°009¢ — - - QLLe Frodmd 80°0 ve'g 0°009¢ %690 78Y 079 € 0T’ L qT'9 600dmd
19766 69°LE 0°009¢ — - - 009 £r0dmo 700 elend L0 %00°0 0 0g'g ov'g 800dmd
¥6°19 6L°6C 0°009¢ — - - 00°6g Trodmd 700 9L.°¢C €1 %00°0 0 ar'y 0L'€ L00dmd
C0'8VT 96°G¢ 0°009¢ — - - 9199 170dmo 200 T9°L T'T %0070 0 a1'8 q1'8 900dmd
01°0¢ £¥°0T 0°009¢ — - - q9've 0p0dmd 60°0 8€°L 1'c %00°0 QL 0476 av'8 G00dmd
(489 96°6¢C 0°009¢ %Te 1 G96 6L 00°ce G0'6¢C 6£0dmd 700 08°¢ €'C %00°0 989 0T'8 0g°L 700dmd
T0°C 98°6T 0°009¢ %LE°0 09¢ 99 0€°9¢ 0€'ve 8e0dmd 80°0 L9°L 8T %0070 68T 0476 qz'6 £00dmd
AN ¥6°CC 0°009¢ — - - 09°€€ Le0dmo 700 c0'9 [t %00°0 0 0r'8 09°L z00dmd
6€°8 09°GT 0°009¢ %T0°CT 76€T 08°¢¢C G6°CC 9g0dmd c0°0 8G°¢ (48 %0070 186 G0'9 qg'g 100dmd
wmﬁD: w@@OE
(s) 7 d1 (s)2 dep ome dI a1 souejsur (s) 7 a1 (s) 1 dep ome d1 g1 eouejsu]
Homexersd [opow [ROIjRWIDYIRIN HOmEXeaL [opow [ROIjRWDYIRIN
reaurr| : Ieaul| :

“UOTJeXe[ol IedUI[S1I puR [Ppow Jurtrure1sold 189Ul Jo s)Msoy "9 ATV,

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2513

100 4 —— LB

80 -

60

40

Objective function value

20 A

0 10 20 30 40 50 60 70
Instance

FI1GURE 9. Objective function values for integer model solutions, linear relaxation solutions
and proposed lower bound value for test instances.

TABLE 7. Factor levels.

Factors Index of levels Levels

TP 1 25

2 50
NG 1 500-r

2 1000-r
MUT 1 0.01

2 0.025

3 0.05
RST 1 [0.1- NG|

2 [0.2- NG
AS 1 100-r

2 500-r
CRS 1 Type 1

2 Type 2
TER 1 [0.1-Tr]

2 [0.2-T7r]

We must have one degree of freedom for total mean, one degree of freedom for each factor with two levels, and two
degrees of freedom for the factor with 3 levels amounting to a total of nine degrees of freedom (1+1x6+2x 1 = 9).
However, with the control factors and respective levels that we defined, there is no orthogonal array aside from the
full factorial array. Thus, we are not able to use a classical Taguchi orthogonal array design. In such circumstances
one alternative is to use a D-optimal design approach [6], which aims at minimizing the generalized variance of the
estimated regression coefficients. Note that D-optimality is only one possible criterion to choose a particular design.
We obtain the D-optimal design, by Fedorov algorithm [19] using R programming language for 9 trials for the chosen
factors and their respective levels, illustrated in Table 8.

Furthermore, the effectiveness characteristic of the genetic algorithms proposed is the expected fitness value,
which we seek to minimize, i.e., “the lower is better principle”. Thus, for increased robustness of the algorithm
we use the S/N (signal-to-noise) ratio, defined as follows. Note that the larger the value of S/N ratio the better.

N
1
S/N ratio: 7; = —10In (N ZFIT%), (6.3)
i=1

2514 K.A.G. DE ARAUJO ET AL.

TABLE 8. D-optimal design with 9 trials.

Trial TP NG MUT RST AS CRS TER
1 1 1 1 2 2 1 1
2 1 2 3 1 1 2 1
3 1 2 2 1 2 1 2
4 1 1 2 2 1 2 2
5 2 2 2 2 1 1 1
6 2 1 2 1 2 2 1
7 2 1 3 1 1 1 2
8 2 2 1 1 1 2 2
9 2 2 3 2 2 2 2

with ¢ and j denoting index of trial and index of replication, while FIT stands for the best objective function
value obtained by running the GA. We denote by “trial” a certain combination of the control factor levels.

We define a replication as one GA run of some trial for a given instance, and N as the number of test instances
multiplied by the number of replications. Since we have an instance set of size 70 and we run each instance 10
times, we perform 700 replications for each trial.

Since CPLEX could not find optimal or even a feasible solution for most instances, we are unable to use the
relative percentage deviations from the optimal solution as a performance indicator for the GA. Thus, we use
the lower bound relative percentage deviations (LBD) of the fitness values for such purpose. Given a trial ¢ and
a replication j the LBD value is defined as follows:

FIT,;; — LB,

LBD;; = — =,
J

(6.4)
where LB; stands for the lower bound of the optimal objective function value for the test instance used in
replication j. The LBD for a given trial ¢, denoted by LBD;, is the average LBD for all replications of instance
set, as we can see in the following equation:

N

1

LBD; = - > LBDy;, (6.5)
j=1

The remainder of the experimental design procedure consists of three phases:

(1) Evaluate the impacts of the control factors on the S/N ratios and on the LBD values.

(2) For each factor, which has significant impact on the S/N ratios values, we choose the level which increases
the S/N ratios.

(3) For the factors, which do not have significant impact on the S/N ratios and have significant impact the
LBD values, we choose the level which better approximate the lower bound values.

(4) For the factors, which have significant impact neither on the S/N ratios nor on the LBD values, we select
the factor levels regarding the more economic manner, that is, we choose the levels which have less impact
on the algorithm running time.

Table 9 shows the results after carrying out the computational tests for each trial with the test instance set.
The value of N is 700, which corresponds to 10 replications to each one of the 70 test instances.

In Figure 10, we can see the main effects plot for the control factors using S/N ratios as the response variable.
In Figure 11, we show the boxplots for each factor also using S/N ratios as the response variable. The mean
response is clearly influenced by the type of crossover, while it is not so clear to affirm whether or not the other
factors influence the response variable (Tab. 10).

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS

TaBLE 9. LBD, S/N ratio, and average execution time results for each trial.

Trial Control factors LBD S/N Average
TP NG MUT RST AS CRS TER values ratios time (s)
1 1 1 1 2 2 1 1 0.23719 —80.01779 274.7
2 1 2 3 1 1 2 1 0.28382 —80.88757 149.5
3 1 2 2 1 2 1 2 0.21597 —79.52707 589.7
4 1 1 2 2 1 2 2 0.33001 —81.74368 69.0
5 2 2 2 2 1 1 1 0.20842 —79.28486 245.7
6 2 1 2 1 2 2 1 0.31188 —81.62437 482.4
7 2 1 3 1 1 1 2 0.20360 —79.18351 180.1
8 2 2 1 1 1 2 2 0.32368 —81.78923 255.1
9 2 2 3 2 2 2 2 0.28475 —80.88293 344.0
-79
-80 \\
\
SNR -80.5 — o / \‘

-81

-82

NG

AS

FIGURE 10. Main effects plot for S/N ratio for lowerbound deviation values.

-80.0

-81.5

-80.0

815

FIGURE 11. Boxplots for S/N ratio values with each factor.

L1111

-81.5

| T |

815

L1 1 1 1

e - . -
o | D o 7 o T
o — o - o
@ @ @
B 0 7]] o 7 B o] E
L % o o] L o —
T T T T T T
1 2 1 2 1 2 1 2
TP NG RST AS
i —— h
= o o i
., o [=1
o o

pu—
.
T
1
TE

R

T
2

-

T
2

MUT

w -

2515

2516 K.A.G. DE ARAUJO ET AL.

TABLE 10. ANOVA table for S/N ratios for linear regression model fit considering all 7 factors.

Factor df Sum Sq Mean Sq F value P-value
TP 1 0.0002 0.0002 0.0125 0.9290
NG 1 0.0640 0.0640 4.5126 0.2801
MUT 1 0.3786 0.3786 26.6784 0.1218
RST 1 0.0749 0.0749 5.2817 0.2613
AS 1 0.0292 0.0292 2.0585 0.3875
CRS 1 8.5564 8.5564 602.9946 0.0259 *
TER 1 0.0196 0.0196 1.3807 0.4489
Residuals 1 0.0142 0.0142

Total 8 9.1371

Signif. codes: “70.05

TABLE 11. ANOVA table for S/N ratio for linear regression model fit considering most signif-
icant factors.

Factor df Sum Sq Mean Sq F value P-value

NG 1 0.0627 0.0627 5.2218 0.08431 .
MUT 1 03671 0.3671 30.5578 0.00523 **
RST 1 0.0794 0.0794 6.6076 0.06195 .
CRS 1 85799 8.5799 714.2988 0.00001 ***
Residuals 4 0.0480 0.0120

Total 8 9.1371

Signif. codes: Q “RkRr ek 001 R 0.06 “ 0.1

Adjusting the linear regression model for all seven factors and performing an ANOVA test, we observe that
only CRS is statistically significant with P-value 0.0259. Then we remove, one by one, the factors whose P-
value is the greatest and readjust the regression model until all factors are statistically significant obtaining the
ANOVA results in Table 11.

The number of generations, mutation rate, restart, and type of crossover showed to be statistically significant,
meaning that we chose the levels whose average S/N ratios are the greater. The parameter levels chosen as a
result of the ANOVA test are 1000r generations, 0.05 of mutation rate, [0.2r] generations with no improvement
to apply restart, and crossover type 1.

As regards to the LBD as response variable to the linear regression model. We observe in the main effects
plot in Figure 12 and in boxplots in Figure 13 that LBD have a similar behavior on the control factors. However,
we note that, in this case, the lower the LBD value the better.

Adjusting the linear regression model for all the seven factors and performing an ANOVA test using the LDB
as response variable, we conclude that only CRS is statistically significant with P-value 0.03219. Therefore, we
remove from the regression model the variables, one by one, whose P-value is the greatest and readjust the
model until all factors are statistically significant achieving the ANOVA results illustrated in Table 11.

Taking into consideration the LBD as response variable to the regression model, only the mutation rate,
and type of crossover are statistically significant, meaning that we would choose the mutation rate 0.05, and
crossover type 1. However, these variables were already fixed at the S/N ratios analysis, and no factors that were
not statistically significant for the S/N ratios showed to be statistically significant with LBD values. This leads
us to choose the levels that would spend less computational time, for the factors whose level was not selected
yet. Therefore, the most robust parameterization of the levels for the proposed control factors is: population size
25, 1000r generations, 200r generations with no improvement to apply restart, 100r pseudo-random solutions

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2517

0.33

LBD

._.
~
-
~
-
~
w
-
~
-
~
-
~
-
~

F1GURE 12. Main effects plot for lowerbound deviation.

& 8§ = —+ & I = T &
o o _| 1 o | o -
1
© o | © ©
N N~ [I3
° D_HD D_EB ° B
— - ==
& & L= & L= = &
. b2 T T 2 T T a
1 2 1 2 1 2 1 2
TP NG RST AS
& E & B & ==
o o _| ™ o]
T I —
N N~ o~ -
o o _| o |
- T
= — 1
g 1= I 9 1
s T o T T 5 T T T
1 2 1 2 1 2 3
CRS TER MUT

F1cURrRE 13. Boxplots for LBD values with each factor.

generated in the initial population and restarts, crossover type 1, 5 preserved individuals upon restart, and
mutation rate of 0.05 (Tabs. 12 and 13).

6.4. Relax-and-fix heuristics

Aiming to compare our proposed GA with other methods developed to closely related cutting and packing
problems, we adapt the relax-and-fix (RF) matheuristic proposed by Signorini et al. [17] to the problem of
one-dimensional multi-period cutting stock problem for the production of precast beams. In the RF approach,
a group of integer decision variables in a mixed-integer linear programming model is partitioned into mutually
exclusive sets in which the number of partitions determines the number of iterations of the heuristic [25].

In each iteration, only the variables of a given partition are defined as integer decision variables, and the
other decision variables are relaxed. The resulting sub-model is then solved, and two situations can occur:
infeasibility and feasibility. In the case of infeasibility, the execution is stopped. In the case of feasibility, the
decision variables in the previous partition are fixed in their current values, and the process is repeated for the
other partitions.

We extend three RF strategies, adapted from Signorini et al. [17], to solve the ICP-HPBMPP. We decompose
variables z;,; and z; together according to dimension of periods, since they are the most numerous set of

2518 K.A.G. DE ARAUJO ET AL.

TABLE 12. ANOVA table for LBD values for linear regression model fit considering all 7 factors.

Factors df Sum Sq Mean Sq F value P-value
TP 1 0.00000 0.00000 0.00340 0.96270
NG 1 0.00012 0.00012 2.39350 0.36531
MUT 1 0.00058 0.00058 11.48800 0.18265
RST 1 0.00006 0.00006 1.23330 0.46669
AS 1 0.00021 0.00021 4.22270 0.28833
CRS 1 0.01960 0.01960 390.49990 0.03219 *
TER 1 0.00011 0.00011 2.27660 0.37261
Residuals 1 0.00005 0.00005

Total 8 0.02074

Signif. codes: “*7.0.05

TABLE 13. ANOVA table for LBD values for linear regression model fit considering most
significant factors.

Factors df Sum Sq Mean Sq F value P-value
MUT 1 0.00063 0.00063 6.02770 0.04944 *
CRS 1 0.01949 0.01949 187.86960 0.00001 ***
Residuals 6 0.00062 0.00010

Total 8 0.02074

Signif. codes: WRRE? 0 9K 0.05

variables. Variables y and o remain integer in all subproblems, since they are less numerous and cannot be
partitioned according to dimension of periods.

RF1 Numbers of partitions is 7', no overlap is considered, all variables in the current window have their values
fixed in the next subproblem.

RF2 Numbers of partitions is 7', variables are fixed only if their values are 1, then variables with value 0 are
overlaped and reoptimized in the next subproblem.

RF3 Numbers of partitions if [7'/3], no overlap is considered.

6.5. Experimental results and discussion

In order to illustrate the behavior of the genetic algorithm, we run the GA with instance cwp021. Figure 14
illustrates the best fitness and mean fitness of the populations along all generations. The z-azis of the Figure 14
is on logarithmic scale. The largest improvement takes place during the first generations of the GA, while in
the last ones the best fitness is stagnant with some improvement upon the first restart.

In Figure 15, the best fitness values obtained by running the GA were better than CPLEX in five instances,
while solutions were obtained for all instances which CPLEX could not solve.

In Figures 16 and 17, the time spent by the GA on solving each instance was significantly better than the
CPLEX solution time on the large and medium-sized instances. Thus, CPLEX was faster than the GA in the
small-sized instances. The y-azis Figure 17 is in logarithmic scale.

In Table 14, “nfsol”, “nbsol”, and “ave 1bd” stand for number of feasible solutions, best solutions, and average
lower bound deviation, respectively. Based on Table 15, we can observe that GA was the only method able to find
feasible solutions for all the evaluated test instances. Aiming to provide a fair statistical comparison between
the evaluated methods, we consider a lower bound deviation of 100% for a method that has not returned a
feasible integer solution for a given test instance (Figs. 18 and 19).

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS

FIGURE 14. Average and best objective function value curves for instance cwp021 along gen-

Objective Funtion Value

48 {—p==s==c=- S

46

44

42 A

404

38 A
—=- Best

36 1

—-—-- Mean

0 10°

10!

102 10°

Generation

erations of the selected genetic algorithm parameterization.

FIGURE 15. Lower bound relative deviations for CPLEX and GA with the selected
parameterization.

FIGURE 16. Mean time for each instance solved by CPLEX and GA with the selected param-

eterization.

LBD

time (s)

—eo— GA

0.3 1
NI AT Y Y
o Gl
: w "W | 34 {

3500 T
3000 A
2500 A
2000 A —— GA
—e— |P
1500 A
1000 A
500 A
e0s®*%yesageed >
O -
0 10 20 30 40 50 60 70
Instance

2519

2520 K.A.G. DE ARAUJO ET AL.

103 4

10t 4 f/\-
—— GA
10° 1 —— IP

0 10 20 30 40 50 60 70
Instance

FIGURE 17. Mean time for each instance solved by CPLEX and GA with the selected param-
eterization, with y-axis in logarithmic scale.

TABLE 14. Overview of results with relax-and-fix methods, genetic algorithm and MILP model
by instance groups.

Method RF1 RF2 RF3 MILP GA
nfsol 16 22 14 47 70
All groups nbsol 2 5 5 43 29
ave Ibd 21.38% 17.69% 14.81% 12.70% 17.36%
nfsol 10 10 10 10 10
Group 1 nbsol 2 5 5 10 1
ave Ibd 16.70% 9.71% 14.13% 8.59% 11.97%
nfsol 5 10 3 10 10
Group 2 nbsol 0 0 0 10 0
ave Ibd 31.21% 25.86% 15.88% 14.76% 20.35%
nfsol 0 0 0 10 10
Group 3 nbsol 0 0 0 10 0
ave lbd - - - 8.33% 14.53%
nfsol 1 2 1 7 10
Group 4 nbsol 0 0 0 7 3
ave Ibd 19.10% 16.81% 18.42% 11.09% 17.27%
nfsol 0 0 0 3 10
Group 5 nbsol 0 0 0 3 8
ave lbd — - - 17.20% 18.48%
nfsol 0 0 0 4 10
Group 6 nbsol 0 0 0 2 8
ave lbd — - - 22.74% 18.31%
nfsol 0 0 0 3 10
Group 7 nbsol 0 0 0 1 9
ave lbd - - - 20.01% 20.62%

In order to achieve a pairwise comparison between the evaluated methods (RF1, RF2, RF3, MILP, and GA),
we performed an ANOVA procedure, followed by a Tukey’s test [14]. Lower bound deviations of the five methods
are statistically different with p-value of 0.001578 in the ANOVA test. Figure 20 illustrates the Tukey multiple
comparisons of means with 95% family-wise confidence level. Based on the results obtained, we can observe that
GA outperforms all the other methods under comparison.

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2521

TABLE 15. List of notable related publications of FTP.Lower bound deviation for each test

instance.
Instance RF1 RF2 RF3 MILP GA Instance RF1 RF2 RF3 MILP GA
cwp001 9.91% 13.51% 16.22% 9.01% 9.91% cwp036 - - - 12.42% 16.12%
cwp002 27.63% 6.58% 14.47% 6.58% 7.89% cwp037 - - - - 23.96%
cwp003 10.81% 6.49% 15.68% 4.86% 11.35% cwp038 - 22.43% - 8.23% 16.46%

cwp004 13.33% 10.67% 29.33% 9.33% 10.67% cwp039 19.10% 11.19% 18.42% 10.15% 17.38%

cwp005 24.26% 17.16% 24.26% 14.79% 24.26% cwp040 24.39%
cwp006 0.00% 0.00% 0.00% 0.00% 1.84% cwp041 - — — - 12.93%
cwp007 27.03% 13.51% 12.16% 12.16% 14.86% cwp042 - — - - 16.00%
cwp008 20.37% 1.85% 1.85% 1.85% 3.70% cwp043 - — — - 14.10%
cwp009 17.07% 17.07% 17.07% 17.07% 17.07% cwp044 - - - - 13.77%
cwp010 16.54% 10.24% 10.24% 10.24% 18.11% cwp045 - — - - 15.02%
cwp011 - 33.53% - 13.87T% 21.97% cwp046 — - - - 24.15%
cwp012 - 29.76% 20.79% 17.51% 21.88% cwp047 - - - 13.43% 19.59%
cwp013 - 30.74% - 10.39% 13.42% cwp048 — — - 12.87T% 18.93%
cwp014 40.50% 18.64% 11.11% 6.81% 10.39% cwp049 - - - 25.30% 25.30%
cwp015 35.73% 25.07% 15.73% 12.00% 17.60% cwp050 — - - - 25.00%
cwp016 36.69% 13.02% - 5.33% 8.28% cwp051 - — - 25.12% 19.04%
cwp017 22.06% 22.06% - 11.74% 16.73% cwp052 — - — - 8.36%
cwp018 - 31.23% - 24.92% 31.89% cwp053 - — - 10.62% 16.70%
cwp019 - 33.46% - 28.68% 38.97% cwp054 — - — - 10.11%
cwp020 21.07% 21.07% - 16.39% 22.41% cwp055 - — - - 22.96%
cwp021 - — - 10.00% 12.50% cwp056 — - - 11.22% 17.61%
cwp022 - - ~ 948% 17.45% cwpO5T - - - ~ 18.42%
cwp023 - - - 11.75% 19.37% cwp058 - - — - 19.46%
cwp024 — — — 6.81% 16.73% cwp059 — - — - 24.22%
cwp025 - - - 7.94% 9.96% cwp060 - - - 44.00% 26.21%
cwp026 - - - 5.66% 12.97% cwp061 — — — 15.40% 13.74%
cwp027 - - - 6.86% 12.39% cwp062 - - — - 13.81%
cwp028 - - - 3.54% 7.87% cwp063 - - - - 21.79%%
cwp029 - - - 9.79% 16.60% cwp064 - - - 12.88% 21.36%
cwp030 - — - 11.52% 19.52% cwp065 — - — - 16.40%
cwp031 - — - 9.81% 14.49% cwp066 - - - - 13.52%
cwp032 - - — 15.28% 20.44% cwp067 - - - - 24.12%
cwp033 - - - 13.35% 16.63% cwp068 - - - 3L.76% 29.61%
cwp034 — — — 8.35% 12.78% cwp069 - — - - 26.54%
cwp035 - - - - 10.03% cwp070 - - — - 25.28%

Furthermore, we different methods for each instance group using Borda counting [5], as illustrated on Table 16.
We note that we use Borda’s original counting for handling ties. Taking this indicator into account, we can
observe that the proposed GA obtained the largest count of votes of all methods under comparison, pointing to
the superiority of this method.

7. FINAL REMARKS

In this work, we proposed a novel variant of cutting sequencing problems called the integrated cutting and
packing heterogeneous precast beams multiperiod production planning (ICP-HPBMPP), which, to the best of the
authors’ knowledge, has not yet been studied and may have a large impact on both real-world and theoretical
studies. The ICP-HPBMPP consists in integrating the problem of production planning of precast beams with the
problem of cutting the traction elements used in such production, while taking into consideration the generation
of leftovers and bars generated via overlapping.

We argued that the problem is NP-hard and proposed an integer linear programming model for its solution,
in addition to a lower bound on its optimal objective function value. We also showed that restricting the

2522

K.A.G. DE ARAUJO ET AL.

3500 1

3000 A

2500 1

2000 1

time (s)

1500 A

1000 -

I e T
»

==
e e g

S L

GA
—p
RF1
-e- RF2
RF3

-

o
o’ 8

s TP PR il L R
g IN

I oo
. S e
oot rtee o f’ el

0 10 20 30 40 50 60
Instance

FIGURE 18. Mean time for each instance solved by CPLEX, GA, and RF methods.

R
)
\ teedh f 0
S8 I YR R S
ey | A
| .;;'.‘v‘.‘.“ ... "
P22 / \ M e
LIwes | AP L ¥4
s
GA
— P
RF1
- RF2
-e- RF3
0 10 20 30 40 50 60

Instance

FI1GURE 19. Mean time for each instance solved by CPLEX, GA, and RF methods, with y-axis
in logarithmic scale.

formulation to using exclusively maximal packing patterns does not change the optimal solution set of the
problem.

We also proposed three constraint programming models for generating distinct types of beam production
patterns. Additionally, we introduced a set of benchmark instances and carried out computational experiments
in order to evaluate the relative performance of the different solution methods studied.

The experiments showed that the integer programming model can be used to solve small size instances, while
it typically does not reach optimality while solving medium-sized ones. In addition, the model usually does not
find feasible solutions for large size instances. We introduced a genetic algorithm for solving the problem and
fine tuned its parameters by means of a D-optimal experimental design to achieve improved robustness of the
algorithm. The final genetic algorithm is an attractive alternative to the integer programming model, resulting
in high-quality solutions in shorter solution times as compared with the exact model.

There are numerous opportunities for future work regarding the ICP-HPBMPP. In the domain of modeling,
the problem can be modified to take into consideration distinct types of bars varying in matter of diameter or
material, instead of only in matter of length. Also, dynamic demand could be considered, i.e., in each period
a new demand of beams could be included, while not exceeding a prescribed stock of bars. Regarding solution
approaches, multi-objective optimization algorithms can naturally be applied to the problem, since it involves
preferences between makespan and bar waste. Decomposition approaches, such as column generation, or MIP
heuristics, e.g., size-reduction heuristics, can also be interesting methods to be explored in conjunction with the
proposed integer programming model.

THE INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST BEAMS 2523

95% family-wise confidence level

MLFFF1 — T T 1

EEFT T T 1

FFEFRFE — I

MLFFFZ — T T 1

SAEFE T T 1

MLFRFE — T T 1

EEFE T T 1

SAALE T T 1

Differences in mean levels of datfind
F1GURE 20. Tukey test for lower bound deviation.

TABLE 16. Borda counter points of methods for each instance group.

Group RF1 RF2 RF3 MILP GA

1 17 32 23 40 17
2 6 20 8 40 24
3 0 0 0 40 30
4 0 5 1 28 32
5 0 0 0 12 38
6 0 0 0 14 38
7 0 0 0 10 39

Total 23 57 32 184 218

Acknowledgements. This study was financed in part by the Coordenagao de Aperfeicoamento de Pessoal de Nivel Superior
— Brasil (CAPES) — Finance Code 001. This study was financed in part by the National Council for Scientific and
Technological Development (CNPq), through grant 303594,/2018-7.

Conflict of interest. The authors declare that they have no conflict of interest.

REFERENCES

[1] K.A.G. Aratjo, T.O. Bonates, B.A. Prata and A.R. Pitombeira-Neto, Heterogeneous prestressed precast beams multiperiod
production planning problem: modeling and solution methods. TOP 29 (2021) 660-693.

[2] ML.N. Arenales, A.C. Cherri, D.N. do Nascimento and A. Vianna, A new mathematical model for the cutting stock/leftover
problem. Pesquisa Operacional 35 (2015) 509-522.

2524 K.A.G. DE ARAUJO ET AL.

[3] B. Athayde Prata, A.R. Pitombeira Neto and C.J. Moraes Sales, An integer linear programming model for the multiperiod
production planning of precast concrete beams. J. Constr. Eng. Manage. 141 (2015) 1-4.
[4] N. Beldiceanu and M. Carlsson, Global constraint catalog (Nov 2018).
[5] C. Borgers, Mathematics of Social Choice: Voting, Compensation, and Division. Society for Industrial and Applied Mathematics
(SIAM) (2010).
P.F. de Aguiar, B. Bourguignon, M.S. Khots, D.L. Massart and R. Phan-Than-Luu, D-optimal designs. Chemom. Intell. Lab.
Syst. 30 (1995) 199-210.
[7] V.C. de Castilho, M.K. El Debs and M. do Carmo Nicoletti, Using a modified genetic algorithm to minimize the production
costs for slabs of precast prestressed concrete joists. Eng. App. Artif. Intell. 20 (2007) 519-530.
[8] H. Dyckhoff, A typology of cutting and packing problems. Eur. J. Oper. Res. 44 (1990) 145-159.
[9] M. Gholami, M. Zandieh and A. Alem-Tabriz, Scheduling hybrid flow shop with sequence-dependent setup times and machines
with random breakdowns. Int. J. Adv. Manuf. Technol. 42 (2009) 189—-201.
[10] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting-stock problem. Oper. Res. 9 (1961) 849-859.
[11] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem — part II. Oper. Res. 11 (1963)
863—888.
[12] R.T. Marler and J.S. Arora, Survey of multi-objective optimization methods for engineering. Struct. Multi. Optim. 26 (2004)
369-395.
[13] G.M. Melega, S.A. de Aradjo and R. Jans, Classification and literature review of integrated lot-sizing and cutting stock
problems. Eur. J. Oper. Res. 271 (2018) 1-19.
[14] D.C. Montgomery, Design and Analysis of Experiments. John Wiley & Sons (2017).
[15] J.J. Pignatiello Jr, An overview of the strategy and tactics of taguchi. IIE Trans. 20 (1988) 247-254.
[16] K.C. Poldi and M.N. Arenales, O problema de corte de estoque unidimensional multiperiodo. Pesquisa Operacional 30 (2010)
153-174.
[17] C.D.A. Signorini, S.A. de Aradjo and G.M. Melega, One-dimensional multi-period cutting stock problems in the concrete
industry. Int. J. Prod. Res. (2021) 1-18. DOI: 10.1080/00207543.2021.1890261.
[18] H. Stadtler, A one-dimensional cutting stock problem in the aluminium industry and its solution. Eur. J. Oper. Res. 44 (1990)
209-223.
[19] F. Triefenbach, Design of experiments: the D-optimal approach and its implementation as a computer algorithm. Bachelor’s
Thesis in Information and Communication Technology (2008).
[20] P. Trkman and M. Gradisar, One-dimensional cutting stock optimization in consecutive time periods. Eur. J. Oper. Res. 179
(2007) 291-301.
[21] P.H. Vance, Branch-and-price algorithms for the one-dimensional cutting stock problem. Comput. Optim. App. 9 (1998) 211—
228.
[22] A.H.D. Vassoler, S.C. Poltroniere and S.A. Araijo, Modelagem matemdtica para o problema de produgdo de vigotas na
industria de lajes trelicadas. Revista Eletrénica Paulista de Matemdtica 7 (2016) 68-77.
[23] Z. Wang, H. Hu and J. Gong, Framework for modeling operational uncertainty to optimize offsite production scheduling of
precast components. Autom. Constr. 86 (2018) 69-80.
[24] G. Wascher, H. HauBiner and H. Schumann, An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183
(2007) 1109-1130.
[25] L.A. Wolsey, Integer Programming. John Wiley & Sons (2020).

6

Subscribe to Open (S20)

A fair and sustainable open access model

This journal is currently published in open access with no charge for authors under a Subscribe-to-Open model (S20).
Open access is the free, immediate, online availability of research articles combined with the rights to use these articles
fully in the digital environment.

S20 is one of the transformative models that aim to move subscription journals to open access. Every year, as long as
the minimum amount of subscriptions necessary to sustain the publication of the journal is attained, the content for
the year is published in open access.

Ask your library to support open access by subscribing to this S20 journal.

Please help to maintain this journal in open access! Encourage your library to subscribe or verify its subscription by
contacting subscribers@edpsciences.org

We are thankful to our subscribers and sponsors for making it possible to publish the journal in open access, free of
charge for authors. More information and list of sponsors: https://www.edpsciences.org/en/maths-s2o-programme

https://doi.org/10.1080/00207543.2021.1890261
mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Literature review
	Problem statement
	Integer linear programming model
	NP-hardness
	Objective function lower bound

	Patterns generation
	Packing patterns generation
	Cutting patterns generation
	Overlapping patterns

	Genetic algorithm for the ICP-HPBMPP
	Solution representation
	Initial population generation
	Fitness function and selection operator
	Crossover operators
	Mutation operator
	Infeasible solution fixing
	Population restart
	Local search
	Algorithm description

	Computational experiments
	Test instances generation
	Computational experiments with the mathematical model
	Experimental design and computational experiments with the proposed genetic algorithm
	Relax-and-fix heuristics
	Experimental results and discussion

	Final remarks
	References

