
RAIRO-Oper. Res. 55 (2021) 2395–2412 RAIRO Operations Research
https://doi.org/10.1051/ro/2021106 www.rairo-ro.org

BI-LEVEL PRICING AND INVENTORY STRATEGIES FOR PERISHABLE
PRODUCTS IN A COMPETITIVE SUPPLY CHAIN

Naser Rajabi1, Marzieh Mozafari1,∗ and Ali Naimi-Sadigh2

Abstract. This paper aims to develop a new bi-level game model for joint pricing and inventory
decisions in a competitive supply chain consisting of a dominant manufacturer, who produces single
perishable product from deteriorating raw materials, and two follower retailers who face nonlinear price-
dependent demand and operate under Cournot assumptions. Three levels of warehousing including raw
material warehouse, final product warehouse, and retail warehouses with exponential deterioration rates
are considered to explore the joint impact of deterioration rate and price elasticity on the equilibrium
inventory decisions. A Stackelberg–Nash–Cournot model is developed to seek the equilibrium prices,
quantities, and replenishment cycles and is solved through an exact methodology. A numerical example
is presented to validate the proposed model and comprehensive sensitivity analyses are carried out to
measure the impact of the model’s key parameters including the deterioration rate in the producer’s
and the retailers’ warehouses, the retail and competitor price elasticity, and the market scale on the
equilibrium.
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1. Introduction

In recent years, supply chain management has been highly considered by researchers. The globalization of
trade, the increasing trend of competition, the approaching of product quality to the same level are among the
issues persuading the industries and institutes to conduct more studies on more efficient and effective operations
through supply chain management. The supply chain management and developed inventory control models aim
to understand the operational efficiency and minimize the expected costs of the chain. However, it is possible
to control the demand process through the prevailing price. The inventory turnover/production strategy can
control the supply amount of each device while pricing policies control the demand amount of a system. The
processes of managing and specifying price and inventory complement each other and can reduce the risk of
supply-demand mismatch and increase profitability [47].
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Furthermore, an increase in the competition in the market would highlight the importance of the customer
order management. The order management seeks to manage and control orders in the whole life cycle of the
order i.e. from customer’s request to order delivery. In fact, order management is responsible for creating a
primary commitment to the corresponding order. Along with sales, order management defines specific and
justifies allocation policies of supplying products to the customers. In this regard, any changes in the supply,
capacity, and demand require rescheduling the orders to achieve a new justified commitment.

Today, most producers have concluded that controlling the inventories together with pricing decisions can
lead to higher profits [22]. In fact, the production or ordering strategies along with the subsequent pricing
policies are the main factors for profitability at different levels of a supply chain. So far, pricing models in
the revenue management field have been generally developed based on seasonal products or products with a
limited life cycle. The product life cycle and perishability issues makes the inventory and pricing decisions for
the products much harder as the prices can be changed during the lifetime in order to manage the demand and
to increase the profits [17].

Deterioration means the loss of marginal value of a commodity over time so that its usefulness decreases.
Examples of perishable products include medicine, high-tech products, fashion products, food, and agricultural
products. Deterioration affects the inventory system in a supply chain so that the manufacturer has to produce
more than market demand because some products will be deteriorated and the retailer has to consider the
deterioration rate in his inventory level and ordering policies [23]. On the other hand, since pricing can be used
as a great tool to control the level of demand, pricing of perishable to match supply and demand is important.
Although, there are some studies that simultaneously examine the problem of inventory management and pricing
for perishable products [22, 23], to the best knowledge of the authors, such studies have not been presented in
competitive market environments. Competition among retailers who sell homogeneous products can be very
influential in pricing problem. This study investigates the joint problem of pricing and inventory management
for perishable products and deteriorating raw materials in a decentralized supply chain with a dominant producer
and two competing retailers.

The main contribution of this research is the analysis of the simultaneous impact of competition among supply
chain members and product deterioration on the issue of pricing and inventory decisions in a decentralized supply
chain. The focus is on the correlation between perishability of inventories and pricing decisions in a competitive
market. For this purpose, a new Stackelberg–Nash–Cournot equilibrium model is presented to determine the
best prices, quantities, and replenishment cycles in an equilibrium while the demand is assumed as a nonlinear
competitive price-dependent function. This model can be formulated as a bi-level optimization program where
the leader manufacturer decides at the upper level taking into account the reaction of the follower retailers in a
Nash setting. In this setting, the followers operate under the Cournot assumption and accordingly called Cournot
firms. The leader called a Stackelberg firm, which sets production levels in an optimal (profit maximizing) manner
by explicitly taking into account the reaction of the Cournot firms to its output variations [34].

The rest of the paper organizes as follows: Section 2 reviews the related literature. Section 3 describes the
problem and presents the bi-level mathematical model of the Stackelberg–Nash–Cournot game. A numerical
example is examined in Section 4 and sensitivity analyses are carried out. Finally, Section 5 is devoted to
concluding remarks and future works.

2. Literature review

The supply chain management coordinates all supply chain decisions and activities. The ultimate goal of
supply chain management is to minimize the total cost of the chain, including transport costs, shortages, and
maintenance while satisfying the level of service required [35]. In other words, supply chain management presents
some ways of configuring a supply chain and collaboration across companies to provide services for customers in a
desirable manner [24]. In general, proper supply chain management strategies can improve financial performance
throughout the system [13].
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So far, a large number of studies have been conducted on coordinated pricing and inventory decisions in supply
chains. Inventory control is a flow that guarantees the accessibility of products in an organization by considering
factors such as time, location, quantity, quality, and cost. The ultimate goal of any inventory control system is
to examine and maintain a level of inventory that minimizes the system costs. Whitin [40] was first explored the
theory of pricing and inventory planning simultaneously and formulated the news vendor model by considering
the price effects. In this model, demand is assumed dependent on the sale price as a decision variable. Donaldson
[9] presented a model in which the increased demand was observed in an increasing inventory period while the
reduced demand occurred in a decreasing inventory period. In order to examine the joint product pricing and
the inventory control issue for a single product in a limited horizon, Tavana et al. [38] proposed a model for
coordinating pricing decisions and the order quantity in a supply chain including a producer and a retailer while
discussed the advantages and disadvantages of this coordination from different aspects. Zhang et al. [47] provided
an analytical model to investigate the optimal decisions coordinated with pricing, advertising, and inventory
control. In this model, they studied a unit part, a limited horizon, and a periodic review model, in which the
demand was affected by the price and promotion to maximize total chain profits. Hsieh and Wu [15] reviewed
the process of making coordinated decisions in a decentralized supply chain, including the main equipment
manufacturer, a producer, and a distributor with unknown supply and demand. Mo et al. [25] studied the
inventory and pricing decisions considering a price-dependent demand. Liu et al. [20] examined an online dual-
channel supply system and its joint decisions on production and pricing under the asymmetry of information.
First, the optimal production and pricing strategies were determined according to a centralized system. Then,
two types of contracts were designed for the decentralized system to coordinate the system completely and
ultimately, the production and pricing decisions were extracted by using an operating principle method for
asymmetric information in the traditional channel. In another study, Chen et al. [6] investigated the research data
by focusing on pricing aspects while integrating the inventory and production decisions. Mokhlesian and Zegordi
[26] investigated a bi-level supply chain consisting of a producer and several retailers in a competitive situation
with different market powers. In this research, the producer developed various interchangeable products and the
demand for each product was a linear function of cost, aiming to coordinate the pricing and inventory control
decisions in a multi-dimensional bi-level system. Cardenas-Barron and Sana [4] suggested a bi-level inventory
system for the optimal inventory decisions and transport policies based on nonlinear price-dependent demand
for a coordinated and non-coordinated supply chain. Kumar et al. [18] highlighted the price adjustment decision
a retailer who splits orders between an unreliable producer with a cheap price and a reliable producer with a
high price while considering a non-linear demand under disruption sourcing risk. Ghashghaei and Mozafari [12]
studied the newsboy problem combined with the cooperative advertisement problem in the presence of uncertain
demand which depends on retail price as well as local and national advertising expenditures. They determined
the equilibrium pricing, ordering, and advertising decisions in a manufacturer-retailer supply chain under three
different game scenarios. In a similar study, Mozafari et al. [29] developed a possibilistic model to coordinate
pricing, ordering and advertising policies in a decentralized supply chain under different power structures.

In terms of pricing competition, Yang and Zhou [43] proposed a pricing model with one producer as a
leader and two retailers as the followers with a competitive demand function, using Stackelberg game theory.
They investigated the sale prices and the number of orders independently, as well as the constructional pricing
plan. Game theory seeks to use mathematics to evaluate or estimate the behavior in the strategic conditions
or in a competition that the success of a player in decision depends on the choice of others. Therefore, this
theory is widely used for predicting the behavior of the supply chain members in competitive conditions. Naimi-
Sadigh et al. [30] addressed the coordination of pricing, inventory, and marketing decisions in a multi-product
multi-echelon supply chain composed of multiple suppliers, single manufacturer, and multiple retailers. They
assumed that the demand of each product is non-linearly influenced by retailing price and marketing expenditure.
Mozafari et al. [28] developed a differential Stackelberg–Nash game to find the equilibrium production, price
and routing decisions in a system consisting of one dominant producer and multiple oligopolistic transporters
over a planning horizon. Chen and Xiao [6] explored the linear competition in a two echelon supply chain with
one supplier and two retailers deciding on price and replenishment policies. In another study, Chen et al. [6]
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analyzed the retailers’ decisions by creating a new channel and using the Stackelberg competition theory. They
concluded that the two-channel supply chain has higher profitability compared to the single channel supply
chain. Considering a supply chain with a dominant manufacturer and a population of retailers, Hafezalkotob
et al. [14] investigated a Cournot duopoly equilibrium of a pricing problem using the evolutionary game theory
approach. Li et al. [21] studied the coordination strategies in a competitive supply chain through the Cournot
and Stackelberg game methodology while investigating the impact of retailer innovation investment. Naimi-
Sadigh et al. [31] proposed a Stackelberg–Nash equilibrium model by taking into account the dominant power of
the manufacturer and the suppliers’ oligopoly competition to coordinate pricing, advertising, and production-
inventory decisions in a multi-product three-echelon supply chain.

Perishability plays an important role in inventory control systems because it reduces the inventory level.
The term “deterioration” is used for products that lose their inherent value over time. With this definition,
perishable products include not only food and medicine, but also a wide range of products such as electronic
equipment, clothing, etc. Ghare and Schrader [11] was firs that introduced corruptibility issue into the economic
order quantity inventory model assuming fixed deterioration rate. Afterward, the model was expanded in 1966,
and the demand-based pricing was added to the model [10]. Covert and Philip [8] extended the inventory
control model for perishable products considering a Weibull’s two-parameter distribution with the assumption
of constant demand rate and not-allowed deficiency. A time-dependent demand is then proposed by Wu [41]
to investigate different phases of the product’s life cycle in the store. Yang and Wee [42] developed a model
for production-inventory integrated planning of corruptible products, aiming to investigate a single-product
and a system consisting of a producer and few retailers. Yin and Rajaram [46] considered a periodical review
inventory model assuming that pricing and ordering decisions are made at the beginning of each period and
all deficiencies are re-entered into the system. The immediate deterioration means that the products start to
deteriorate immediately after entering into the system. In contrast, the products that start to deteriorate after
a specific time are considered as non-immediate deteriorating products [44]. Soon [36] presented a probabilistic
inventory model, in which demand is dependent on price and a random variable. The inventory control and
pricing model was developed for perishable products with non-immediate deterioration. A bi-level supply chain
model faces a risk-tolerant producer and a retailer who sells a deteriorating item with price-dependent random
demand has been presented in Li et al. [19]. The producer and retailer would negotiate with each other about
the wholesale price, retail price, and the number of orders. In this regard, Taleizadeh and Nematollahi [37] under
the conditions of allowed deficiency and backorder suggested an inventory control model and optimal economic
order of perishable products. Furthermore, it is possible to pay for the products purchased by the seller later
than replenishment. The maximum payment delay time was previously determined and assumed constant by the
supplier. In a single-product system, the demand rate is constant and the delivery time is zero. Mokhtari et al.
[27] proposed an Economic Production Quantity (EPQ) model to determine production-inventory policies for
perishable products while the demand rate is stochastic-and stock-dependent. They proposed a simulation-based
optimization algorithm by combining a grid search and a simulation model to solve the problem. Otrodi et al. [32]
addressed a joint pricing and lot-sizing problem in a supply chain where a distributer sells a single perishable
product at different prices to various markets and offers a varied credit period to customers. Chernonog [7]
investigated a two-echelon supply chain Stackelberg game in which they set the terms of a wholesale price
contract for a perishable product. Product demand is assumed dependent on the selling price, the investment
in advertising, and the time a unit spends on the shelf before being sold. Salmasnia and Talesh-Kazemi [33]
investigated the joint inventory planning, pricing, and maintenance decisions for perishable products in a parallel
system including two components. Aiming at optimizing operational performance of a retailer, Wang et al. [39]
provided a time and price sensitive market strategy for perishable products.

According to the above literature, although many researchers have studied coordination of pricing and inven-
tory decisions, few have considered the perishability of both product and raw materials throughout the supply
chain. However, pricing and inventory decisions are highly influenced by product and raw material deteriora-
tion. Another gap is the issue of competition and market structure in the joint pricing-inventory problem for
deteriorating items. To better model ground truth, this paper adopts the bi-level programming approach to
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Figure 1. The supply chain scheme.

coordinate pricing and inventory decisions for perishable products and raw materials in a two-echelon supply
chain including a dominant producer and two Cournot follower retailers with non-linear price-dependent demand
and exponential deteriorating inventory.

3. Problem description and formulation

A leader-follower supply chain is modeled as a bi-level problem with a dominant producer at upper level and
two follower retailers under Cournot assumption at lower level. Hence, the relationships among supply chain
members form a Stackelberg–Nash–Cournot game in which the demand is assumed a nonlinear price-dependent
function and the inventory is deteriorated exponentially with a constant rate. Shortage is not allowed. Three
level of warehousing are considered throughout the chain in which materials face deterioration over time; the
primary raw material warehouse, the producer’s final product warehouse, and the retailers’ warehouses; as
illustrated in Figure 1.

The producer determines the number of orders for each raw material as well as the wholesale price for
each retailer while maximizing his own profit at the upper level given the best responses from the lower level
Nash equilibrium. Then, the retailers, as the followers, try simultaneously to maximize their own profits in a
horizontal competition by choosing their best replenishment cycles and retail prices. The mathematical notations
are illustrated in Table 1.

It is assumed that the process has a production cycle in which the primary materials are purchased as raw
materials while the production rate is constant and definite. Figure 2 illustrates the inventory replenishment
process related to the three level warehouses during a production cycle.

In each period, it is assumed that retailer i orders qi unit of the finished product that produced by the
producer and sells them during the same period. It is presumed that remaining inventory at the end of each
period deteriorates such that the inventory level vanishes. Equation (3.1) represents the inventory level changes
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Table 1. Notations.

Indices

i Retailers
j Type of raw material
Parameters
um Production rate of finished product
θi Deterioration rate of products in the retailer i’s warehouse
β Deterioration rate of products in the producer’s warehouse
σj Deterioration rate of raw material type j in the producer’s warehouse
Di = Di (PRi) Price-dependent demand function for the final product for retailer i
Pj Purchase price for raw material j
wj Proportion of raw material j used in the final product
chi Holding unit cost of products in the retailer i’s warehouse
chm Holding unit cost of products in the producer’s warehouse
chaj Holding unit cost of products in raw material warehouse for type j
cdi Deterioration unit cost of products in the retailer i’s warehouse
cdm Deterioration unit cost of products in the producer’s warehouse
cdaj Deterioration unit cost for raw material type j
C Production cost per unit of finished product
Ai Fixed ordering cost for retailer i
Aaj Fixed ordering cost for raw material type j
Sm Setup cost for the producer
γi Self-price sensitivity coefficient for retailer i
αi Competitive price sensitivity coefficient
ki Market scale for retailer i
Decision variables
qi Quantity of final product ordered by retailer i in each purchase
Qj Quantity of raw material j ordered in each purchase
ti The producer’s lead time to fulfill the retailer i’s order
Taj Consumption period of raw material j
Ti Replenishment cycle for retailer i
nj The number of orders for raw material j per period
pmi Wholesale price to retailer i
PRi Retail price of retailer i
Functions
πri Retailer i’s profit
πm Producer’s profit
IRi (t) Inventory level of retailer i’s warehouse
IM (t) Inventory level of finished products in the producer’s warehouse
Ij (t) Inventory level of raw material type j

in retailer i’s warehouse due to the demand rate as well as the product deterioration rate at time t.

d IRi (t)
dt

+ θi · IRi (t) = −Di (PRi) = −Di, 0 ≤ t ≤ Ti. (3.1)

The inventory level of retailer i’s warehouse at time t can be obtained by solving the differential equation in
equation (3.1) with initial condition IRi (0) = qi, as follows:

IRi (t) =
−Di

θi
+
Di

θi
eθi·t. (3.2)
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Figure 2. Inventory levels at different warehouses.

Since IRi (Ti) = 0, we have:

IRi (t) =
−Di

θi
+
Di

θi
eθi(Ti−t) =

Di

θi

(
eθi·(Ti−t) − 1

)
. (3.3)

Retailers compete with each other in the final product market. The demand for each retailer is defined as a
price-dependent Cobb Douglas function as follows:

Di (PRi) = ki · PR−γi
i · PRαi

3−i, i = 1, 2, 0 < αi < 1, γi > 1, ki > 0 (3.4)

where ki denotes the firm i’s market scale; γi denotes the absolute elasticity of retailer i’s demand with respect
to its own price; αi denotes the cross-elasticity with respect to the competitor retailer’s price. In this Cobb–
Douglas model, the price elasticities γi and αi are both price-independent constants [16]. For some applications
and examples, refer to Allon and Federgruen [1] and Bernstein and Federgruen [3].

Thus, considering equations (3.3) and (3.4), the inventory level of retailer i’s warehouse at time t can be
inferred as follows:

IRi (t) =
ki · PR−γi

i · PRαi
3−i

θi

(
eθi(Ti−t) − 1

)
. (3.5)

Each retailer aims to maximize his profit during a replenishment cycle that defined as:

πri = PRi

∫ Ti

0

Di (PRi) dt− chi
∫ Ti

0

IRi (t) dt−Ai − pmi · qi − cdi
∫ Ti

0

θi · IRi (t) dt

= Ti · PRi ·Di (PRi)− chi ·Di (PRi) ·
(

eθi·Ti − θi · Ti − 1
θ2i

)
−Ai − pmi ·

Di (PRi)
θi

(
eθi·Ti − 1

)
− cdi

Di

(
eθi·Ti − θi · Ti − 1

)
θi

, (3.6)
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where the first term shows retailer i’s revenue as the product of retail prices and realized demand during a
replenishment cycle. The second and the third terms indicate holding and ordering costs during a replenishment
cycle, respectively. The forth term shows purchasing costs as a function of retailer i’s order quantity (qi) which
equals to the initial inventory level at each replenishment cycle IRi (0) = Di

θi

(
eθi.Ti − 1

)
. The last term depicts

the deterioration costs.
In order to reach the best responses of each retailer in the Nash competition at the lower level game, the

best values of the retailers’ variables (PR∗
i and T ∗i ) can be determined by differentiating each retailer’s profits

regarding to these variables and solving the nonlinear equation system resulted by vanishing the derivatives as
follows:

∂πri
∂PRi

= −
(
ki · PRαi

3−i

(
chi · γi + θi · cdi · γi + θi · pmi · γi − chi · γi · eθi·Ti − θ2i · Ti · PRi + θ2i · Ti · cdi · γi

+ θ2i · Ti · PRi · γi + θi · Ti · chi · γi − θi · cdi · γi · e(θi·Ti) − θi · pmi · γi · eθi·Ti
))

/
(
θ2i · PR(γ+1)

3−i

)
= 0

(3.7)

∂πri
∂Ti

=
ki · PRαi

3−i
(
chi + θi · cdi + θi · PRi − chi · eθi·Ti − θi · cdi · eθi·Ti − θi · pmi · eθi·Ti

)
θi · PRγi

i

= 0. (3.8)

By solving the nonlinear equations system of equations (3.7) and (3.8), we have:

PR∗
i = −

(
γi

(
chi + θi · cdi + θi · pmi − chi · e(θi·Ti) + θi · Ti · chi − θi · cdie(θi·Ti)

− θi · pmie(θi·Ti) + θ2i · Ti · cdi
))

/
(
θ2i · Ti · (γi − 1)

)
(3.9)

T ∗i = ln
(
chi + θi · cdi + θi · PRi

chi + θi · cdi + θi · pmi

)
/θi. (3.10)

Proposition 3.1. The lower level Nash game of the rival retailers has a unique equilibrium as (PR∗
i , T

∗
i ).

Proof. Definition 3.2. Considering equations (3.7)–(3.10), the hessian matrix of πri is calculated as matrix
A.

A =

 ∂2πri
∂PR2

i

∂2πri
∂PRi∂Ti

∂2πri
∂Ti∂PRi

∂2πri
∂T 2

i

 =
[
a11 a12

a21 a22

]
(3.11)

where,

a11 =
Ti · ki · PRαi

3−i · γi (γi + 1)

PRγi+1
i

−
2Ti · ki · PRαi

3−i · γi
PRγi+1

i

−
ki · PRαi

3−i · pmi · γi
(
e(θi·Ti) − 1

)
(γi + 1)

θi · PRγi+2
i

+
cdi · ki · PRαi

3−i · γi (γi + 1)
(
θi · Ti − eθi·Ti + 1

)
θi · PRγi+2

i

+
chi · ki · PRαi

i · γi (γi + 1)
(
θi · Ti − eθi·Ti + 1

)
θ2i · PRγi+2

i

a12 =
(
ki · PRαi

3−i

(
θi · PR3−i − chi · γi − θi · cdi · γi − θi · PR3−i · γi + chi · γi · e(θi·Ti)

+ θi · cdi · γi · eθi·Ti + θi · pmi · γi · eθi·Ti
))
/
(
θi · PRγi+1

i

)
θi

a21 =
(
ki · PRαi

3−i
(
θi · PR3−i − chi · γi − θi · cdi · γi − θi · PR3−i · γi + chi · γi · eθi·Ti

+ θi · cdi · γi · eθi·Ti + θi · pmi · γi · eθi·Ti
))
/
(
θi · PRγi+1

i

)
a22 = −

(
ki · PRαi

3−i · e(θi·Ti)(chi+θi·cdi+θi·pmi)
)

PRγi
i

·
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Definition 3.3. A is negative semi-definite in (PR∗
i , T

∗
i ), if and only if XT ·A ·X ≤ 0 [2].

According to Definition 3.2, we have:

H =
[
PRi, Ti

]





∂2πri
∂PR2

i

∂2πri
∂PRi∂Ti

∂2πri
∂Ti∂PRi

∂2πri
∂T2
i





[
PRi

Ti

]
(3.12)

=
Ti ·

(
ki · PR

αi
3−i

(
θi · PR3−i − chi · γi − θi · cdi · γi − θi · PR3−i · γi + chi · γi · eθi·Ti + θi · cdi · γi · eθi·Ti + θi · pmi · γi · eθi·Ti

))

θi · PR
γi
i

−
T2
i · ki · PR

αi
3−i · e

(
θi·Ti

)(
chi+θi·cdi+θi·pmi

)

PR
γi
i

+ PR2
3−i ·



PR3−i ·




Ti · ki · PR

αi
3−i · γi

(
γi + 1

)

PR
γ1+1
i

−
2Ti · ki · PR

αi
3−i · γi

PR
γi+1
i

−

(
ki · PR

αi
3−i · pmi · γi

(
eθi·Ti − 1

) (
γi + 1

) )

θi · PR
γi+2
i

+

(
cdi · ki · PR

αi
3−i · γi

(
γi + 1

) (
θiTi − eθi·Ti + 1

) )

θi · PR
γi+2
i

+
chi · ki · PR

αi
3−i · γi

(
γi + 1

) (
θi · Ti − eθi·Ti + 1

)

θ21 · PR
γ1+2
i





+
Ti · ki · PR

αi
3−i

(
θi · PR3−i − chi · γi − θi · cdi · γi − θi · PR3−i · γi + chi · γi · eθi·Ti + θi · cdi · γi · eθi·Ti + θi · pmi · γi · eθi·Ti

)

θi · PR
γi+1
i



 /PRi.

(3.13)

Since the non-positivity of the nonlinear equation H cannot be easily proved, we employed the following grid
search procedure as a numerical method to analyze the H values inside the feasible region. Since cdi, γi, αi,
ki, θi are all positive constants, we change the values for variables PRi, Ti, and pmi, such that PRi ∈

[
1, 108

]
,

pmi ∈
[
1, 108

]
, and Ti ∈

[
1, 102

]
.

Step 1. Initialize the open list.
Step 2. Calculate H
Step 3. If H > 0 stop, otherwise go to step 4.
Step 4. Update the open list and go to step 2.
Step 5. If all the feasible points on the grid network have been opened and checked, stop the proce.

Given any nonnegative PRi, pmi and Ti have shown that H is always non-positive and A is a negative definite
matrix. Thus, according to Definition 3.2, (PR∗

i , T
∗
i ) is the unique Nash equilibrium of the lower level’s Nash

game and the proof is complete. �

On the producer’s side, we consider that production operations begin at t = 0 with no initial inventories.
Given qi as the product quantity ordered by retailer i in each replenishment cycle, the producer needs ti unit of
time to deliver the orders in a timely manner. Presuming that the finished product inventory level deteriorates
at a certain rate β, so we have:

d IM (t)
dt

+ β · IM (t) = um, 0 ≤ t ≤ ti. (3.14)

By solving the first-order linear differential equation (3.14) with initial condition IM (0) = 0, the inventory level
of producer’s warehouse at time t is obtained as follows:

IM (t) =
um

β
− e−β·t · um

β
= e−β·t

[
um · eβ·t

β
− um

β

]
· (3.15)

The producer’s profit function at the upper level can be defined as follows:

πm = Rm− n · Sm− chm ·
n∑
i=1

∫ ti

0

IM (t) dt− cdm ·
∫ ti

0

β · IM (t) dt−

(
C · um ·

n∑
i=1

ti

)
− TJ (3.16)
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=
n∑
i=1

qi · pmi − n · Sm−
chm

(∑n
i=1 um ·

(
e(−β·ti) + β · ti − 1

))
β2

− cdm ·

[
n∑
i=1

(
um ·

(
e(−β·ti) + β · ti − 1

))
β

]
−

(
C · um ·

n∑
i=1

ti

)
− TJ. (3.17)

The first term of equation (3.17) depicts the producer’s revenue from which the following costs are deducted
respectively: setup costs, holding costs, deterioration costs, variable production costs, and raw material costs.

In order to define TJ at the raw material warehousing level, let consider Qj be the quantity of raw material
j received by the producer per purchase and consumed during Taj , nj be the material order frequency. Hence,
the changes in the inventory level of raw material j can be calculated as:

dIj (t)
dt

+ σj · Ij (t) = −wj · um 0 ≤ t ≤ Taj . (3.18)

By solving differential equation (3.18) with the final condition that Ij (Taj) = 0, the inventory level of raw
material j at time t is derived as follows:

Ij (t) = e−σj ·t
[
−wj · um · eσj ·t

σj
+
wj · um · eσj ·Taj

σj

]
=
−wj · um

σj
+
wj · um · eσj(Taj−t)

σj
· (3.19)

Then we can introduce TJ as follows:

TJ =
m∑
j=1

nj ·

[
Aaj + chaj

∫ Taj

0

Ij (t) dt+Qj · Pj + cdaj ·
∫ Taj

0

σjIj (t) dt

]
(3.20)

where nj denotes the number of orders for the raw material j per cycle which is multiplied by the ordering
costs, holding costs, purchasing costs, and deterioration costs, respectively. Replacing the levels of holding and
deteriorated inventory in equation (3.20), we have:

TJ =
m∑
j=1

nj ·

[
Aaj + chaj

(
−um · wj

(
Taj · σj − eTaj ·σj + 1

)
σ2
j

)

+ Qj · Pj + cdaj

(
−um · wj

(
Taj · σj − eTaj ·σj + 1

)
σj

)]
· (3.21)

Since the quantity received by retailer i in each cycle is equal to his initial inventory level, IRi (0) = qi. According
to equation (3.3), it is inferred that:

qi = −Di

θi
+
Di · eθi·Ti

θi
=
Di

θi

(
eθi·Ti − 1

)
. (3.22)

On the other side, the inventory at the producer’s warehouse reaches to the level qi at time ti and we have
IM(ti) = qi. So, according to equation (3.14), qi can be calculated as:

qi =
um

β
− um · e−β·ti

β
= e−β·ti

[
um · eβ·ti

β
− um

β

]
=
um

β

(
1− e−β·ti

)
. (3.23)

Putting equations (3.22) and (3.23) equal, the value ti (in terms of Ti) can be reached as follows:

ti = − 1
β

ln
(
Di · β
θi · um

− Di · eθi·Ti · β
θi · um

+ 1
)
. (3.24)
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Table 2. Parameter values.

i = 1, 2 j = 1, 2 θ1 = 0.04 θ2 = 0.02 β = 0.08
w1 = 0.7 P2 = 410 P1 = 405 σ1 = 0.04 σ2 = 0.02
w2 = 0.8 ch1 = 22 ch2 = 18 chm = 40 cha1 = 15
cd1 = 30 cd2 = 28 cdm = 30 cda1 = 25 cha2 = 16
cda2 = 23 C = 12 000 A1 = 1000 A2 = 1200 Aa1 = 1000
Aa2 = 2000 Sm = 1000 γ1 = 1.5 γ2 = 1.25 α1 = 0.75
um = 900 n = 2 k2 = 17 500 k1 = 17 000 α2 = 0.5

At the raw material warehousing level, the initial raw material inventory is Ij (0) = Qj . Thus according to
equation (3.19), it is concluded that

Qj =
−wj · um

σj
+
wj · um · eσj ·Taj

σj
· (3.25)

Since the average raw material consumption duration is
∑n
i=1 ti
nj

; by substituting ti from equation (3.24), we
have:

Taj =
∑n
i=1 ti
nj

=
1
nj

[
− 1
β

n∑
i=1

ln
(
Di · β
θi · um

− Di · eθi·Ti · β
θi · um

+ 1
)]

. (3.26)

Regarding equations (3.9) and (3.10), the lower level Nash equilibrium is expressed implicitly as a function of
the upper level variables. Since the uniqueness of the Nash equilibrium at the lower level is guaranteed via
Proposition 3.1, we can transform the bi-level Stackelberg–Nash–Cournot game model into an equivalent single
level model by adding the Nash equilibrium point of the lower level retailers’ competition to the producer’s
model at the upper level. Furthermore, we replace qi, ti, Qj , and Taj with their equivalents according to
equations (3.23)–(3.26). Since the equivalent single level model is an unconstrained nonlinear model, we solve
it utilizing the Secant algorithm. Therefore, the solution procedure to find the Stackelberg–Nash–Cournot
equilibrium is summarized in the following steps:

Step 1. Calculate the lower level Nash equilibrium as a function of the upper level variables according to
equations (3.9) and (3.10).

Step 2. Transform the bi-level Stackelberg–Nash–Cournot game model into an equivalent single level model
by adding the Nash equilibrium point of the lower level problem to the producer’s objective function at the
upper level.

Step 3. Replace qi, ti, Qj , and Taj with their equivalents according to equations (3.23)–(3.26).
Step 4. Solve the resulting unconstrained nonlinear model using the Secant algorithm.

4. Numerical results

In this paper, the numerical example suggested by Yang et al. [45] is used with some modifications to evaluate
the proposed bi-level game model and to analyze the sensitivity of the equilibrium to the main parameters
variations. Consider a supply chain consisting of two competing retailers, one dominant producer, and two
types of raw materials. The parameter values are reported in Table 2.

The bi-level mathematical model of the Stackelberg–Nash–Cournot game between the supply chain’s players
is addressed by the solution procedure and the equilibrium values of the decisions are listed in Table 3.

Here, we conduct sensitivity analyses on the main parameters of the proposed model. In order to investigate
the sensitivity of the equilibrium to the deterioration rate parameter in the retailers’ warehouses, we change θi
value on the interval [0.5θi, 1.5θi] while all the other parameters are fixed. The results are illustrated in Figure 3.
As expected, an increase in deterioration rate at retail warehouses reduces the inventory levels and as a result,
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Table 3. Equilibrium values.

Raw material Final product Retail warehouses Profits
warehouse warehouse

n∗1 Q∗
1 Ta∗1 pm∗

1 t∗1 T ∗
1 PR∗

1 q∗1 π∗m π∗r1 π∗r2

5 36.2419 0.0575 20 986 0.1321 16 48 078 118.29 296 833 1 557 100 1 466 249

n∗2 Q∗
2 Ta∗2 pm∗

2 t∗2 T ∗
2 PR∗

2 q∗2
5 41.3955 0.0575 28 350 0.1552 21 48 598 138.78

Figure 3. The impact of θi.

retailers offer lower prices to receive more demand and prevent the loss of product deterioration. As prices fall
and deterioration costs rise, profits decline at the retail tier. Higher levels of demand cause higher levels of
production and consequently higher inventory at the producer’s warehouse. This increase in costs reduces the
profitability of the producer so that the producer’s profit turns even negative at 1.5θi. In Figure 3, note that
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Figure 4. The impact of ki.

the number −0.5 on the horizontal axis indicates a 50% decrease and the number +0.5 indicates 50% increase
in θi’s value, respectively.

In a similar way, to investigate the sensitivity of the Stackelberg–Nash–Cournot equilibrium to the market
scale factor, we change ki on the interval [0.5ki, 1.5ki] while all the other parameters are fixed. As it is observed
in Figure 4, both the retailers offer higher prices, achieve more demand, and consequently more benefit when
they have larger market scale. Although the producer increases wholesale prices to the retailers, his benefit
declines due to the higher level of increase in production, purchasing and inventory costs at the producer’s
echelon.

Here, we examine how any changes in each retailer’s self-price elasticity can influence the equilibrium point
of the game. We alter γi on the interval [1.15γi, 1.75γi]. As can be observed in Figure 5, a growth in parameter
γi implies a reduction in the pricing power of retailer i. Hence, the lower pricing power causes lower retail prices
and consequently lower profits for the whole chain.

In general, an increase in competitor price sensitivity coefficient (αi) increases the amount of demand and
inventory levels of each retail warehouse, resulting in increasing the profitability of the retailer due to increased
demand and retail prices, while it is only at specific times. The reason for the lack of increase in the producer
profit is the costs increased more than the revenue, as the producer has two warehouses of raw materials and the
final product holding and production costs. The costs of the aforementioned factors will reduce profit. Figure 6
shows the sensitivity analysis of the competitor’s price sensitivity coefficient (αi).
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Figure 5. The impact of γi.

By increasing the product deterioration rate in the producers’ warehouse, the inventory level of the producer
is increased due to the faster deterioration rate of products in the warehouse. Therefore, the producer and
the retailers reduce prices to increase sales and raise consumer’s demand, resulting in increasing demand.
The decrease in price will reduce retailers’ profit, although the producers’ profit will be further decreased by
increasing production costs and reducing producer revenue. Figure 7 depicts the sensitivity analysis of the
products deterioration rate for producer (β).

5. Conclusion

In this study, a bi-level programming model was presented to coordinate pricing and inventory decisions in a
competitive supply chain consisting of a dominant producer and two Cournot follower retailers with nonlinear
price-dependent demand. The supply chain produces perishable products from perishable raw materials that
decay at a certain rate inside the warehouses. Three levels of warehousing including raw material warehouse, final
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Figure 6. The impact of αi.

product warehouse, and retail warehouses with exponential deterioration rates were considered. A Stackelberg–
Nash–Cournot game model was developed and equilibrium wholesale and retail prices, order quantities, lead
times and replenishment cycles were obtained using an exact methodology. The effectiveness of the modeling
approach was evaluated through a numerical experiment, the sensitivity of the equilibrium is analyzed in terms of
the deterioration rate in the producer’s, and the retailers’ warehouses, the retail and competitor price elasticities,
and the market scale.

The results showed the following. An increase in deterioration rate at retail warehouses forces the retailers to
offer lower prices to raise demand and prevent the product loss. As prices fall and deterioration costs increase,
the chain’s profit declines. Higher levels of demand can cause higher levels of production and inventory costs
for the producer so that the producer’s profit decreases. A growth in the price elasticities implies a reduction in
pricing power of the retailer, which can consequently lead to a lower profit for the whole chain. Future studies
can consider multiple complementary products and several producers. Different types of demand function such
as inventory level-dependent demand or uncertain demand function can be also considered.
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Figure 7. The impact of products deterioration rate for the producer (β).
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