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A NOVEL FUZZY NON-RADIAL DATA ENVELOPMENT ANALYSIS: AN
APPLICATION IN TRANSPORTATION

Deepak Mahla∗, Shivi Agarwal and Trilok Mathur

Abstract. The slack-based measure (SBM) DEA model is a non-radial model used to calculate the
relative efficiency, input, and output targets of the different decision-making units (DMUs) based on
their best peers or efficient frontier. The conventional SBM DEA model used crisp inputs and outputs.
But, it can be observed in real-life problems that sometimes the available data is in linguistic forms
such as “few”, “many”, “small”, or missing data. The DEA technique is frontier based, and therefore,
imprecise data may lead to untenable results. Fuzzy theory, which is already established to handle
uncertain data, can overcome this problem. Furthermore, the sensitivity and stability analysis have
been checked the robustness of fuzzy DEA models. In this study, sensitivity and stability analysis of
the fuzzy SBM DEA has been performed. The lower and upper sensitive bounds for inputs and outputs
variables have been obtained for both the inefficient and efficient DMUs to calculate the input and
output targets. Finally, a real-life transportation problem for the validity of the study is presented for
its depiction.
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1. Introduction

Charnes et al. [10] wrote a revolutionary paper on data envelopment analysis (DEA) [12] which is also one of
the most cited articles of European Journal of Operational Research. It is a methodology to calculate the relative
efficiency and computes the input and output targets, using multiple attributes of various decision-making units
(DMUs). The computation of input and output targets makes DEA differ from other multi-criteria techniques.
These targets are beneficial from the managerial point of view to improve the firms’ relative efficiency. In recent
years, there has been an exponential growth in the number of publications related to theory and applications
of (DEA) [15]. Many researchers have integrated DEA with fuzzy theory to overcome its ineffectiveness on
uncertain data. The uncertain data can incorporate errors in efficiency evolution. Therefore, the sensitivity
analysis is used to check the robustness of the DEA models. Sensitivity and stability analysis often investigate
the robustness of results to changes in the sample size, the number of variables in the analysis. The change in
results with the variation of input data is known as sensitivity analysis, apparently done from the earliest days
for different models. In DEA, Charnes et al. [11] firstly did the sensitivity analysis by varying the single input or
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output. After that, many researchers like Charnes and Neralic [9], Neralic and Wendell [34,35] proposed several
ways for sensitivity analysis of DEA models. Real-life situations are very different, and the available data in
real life can be complex, qualitative, and incomplete. Conventional DEA models cannot handle these situations,
and some integrated DEA models are required to handle these types of data.

To handle these types of data, many researchers like Sengupta [40], Banker [7], and Olesen and Petersen
[36] employed the probability theory to establish stochastic DEA models. Sometimes, when the available data
is in qualitative form, it is transformed into numerical data by inviting subject or domain experts to evaluate
the degree of confidence in all possible situations. Subsequent evidence from various studies in different settings
around the world shows that people routinely inflate small probabilities when answering these types of questions
[21]. Probability theory requires large samples because the smaller the experts’ views, the larger the ideas’
variance. Sometimes, experts’ sample size is small due to economic reasons, or not all experts respond. Therefore,
in this case, probability theory is not the best technique to handle qualitative data. The fuzzy set theory (FST)
[47] handled this situation more effectively and it has been expanded to deal with the concept of partial fact
ranging from correct to incorrect. FST has become the fundamental tool for handling imprecision or vagueness,
aiming at tractability, robustness, and low-cost solutions for real-world problems. Over the three-decade of
research, there are mainly six primary categories [14] of fuzzy DEA models, namely, the tolerance approach,
the α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy arithmetic, and the
fuzzy random/type-2 fuzzy set [23]. The α-level-based approach is the most commonly used technique to solve
the fuzzy DEA model. But it calculates the relative efficiency in the interval form (i.e., lower bound efficiency
and upper bound efficiency), and therefore ranking of the DMUs becomes another task. In this approach, input
and output are obtained in the form of fuzzy numbers and intervals. The DEA model will be useful only when
managers easily understand the results obtained from these models. But, obtained results from the α-level-based
approach are complex and need to be simplified. The possibility approach is also a widely used approach to solve
fuzzy DEA models. The relative efficiency obtained from the possibility approach has a single value at a given
α value. However, it has an inadequacy of self-duality, which is necessary for both theoretically and practically.
Liu [26] introduced the credibility measure, which is self-dual in nature, works convincingly by managing human
degree numerically. In this study, the crediblistic approach on the non-radial SBM DEA [42] model is taken
into account. Wen et al. [44] also used the credibility measure to solve the CCR DEA model. The model is apt
for the constant return to scale, but both primal and dual forms of the CCR model are required to measure
the relative efficiency and efficient targets. Lovell [31] analyzed that DEA should be a variable return to scale
to become translational invariable. Thus, the CCR DEA model is not translational invariable and should not
be used when negative data exist. Therefore, the SBM DEA model has been selected to compute the relative
efficiency, input, and output targets for this study. Other properties of the SBM DEA model can be studied
in Article [42]. The SBM DEA model computes relative efficiency and slacks in inputs/outputs simultaneously.
The slacks are necessary to compute input and output targets. Due to the above properties, the SBM model has
been very applicable in various applications. Many researchers integrate fuzzy set theory with the SBM DEA
model to handle the uncertain data and explore this model in many applications. Jahanshahloo et al. [19] did
an initial study in which they solved the fuzzy SBM DEA model using a membership function to determine the
relationship among two triangular fuzzy numbers. Saati et al. [37] applied the α-cut approach to convert the
fuzzy linear programming problem to an interval programming problem on the fuzzy SBM DEA model. Recently,
Agarwal et al. [3] applied the possibility approach to solving the fuzzy SBM DEA model. Wanke et al. [43] used
fuzzy DEA and stochastic DEA to analyze the Angolan banks and concluded that efficiency scores are similar
to some extent when compared within the ambit of stochastic DEA and fuzzy DEA models. Zhou et al. [49]
constructed a new evaluation fuzzy DEA model for portfolio management. Arana et al. [5] proposed an exciting
approach, which focused not just on the computation of efficiency scores but also on the input and output
improvements. These improvements help managers with some helpful information on the variables, and thus
they can concentrate their efforts by which the progress can be possible. Arana et al. [6] proposed a radial two-
phase input-oriented FDEA approach on the trapezoidal fuzzy numbers. The approach explicitly implements the
LU-fuzzy partial order. They also converted the FFLP model into a multi objective optimization problem using
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Table 1. Comparison with existing approaches.

Properties Lotfi et al. [30] Sanei et al. [38] Wen et al. [45] Wen et al. [46] Nerali et al. [35] Arana et al. [5] Proposed approach

Efficiency evaluation BCC-DEA BCC-DEA BCC-DEA BCC-DEA BCC-DEA SBM-DEA SBM-DEA

Environment Fuzzy Fuzzy Fuzzy Fuzzy Crisp Fuzzy Fuzzy

Unit Invariance

Model

7 7 7 7 7 3 3

Translational Model 7 7 7 7 7 3 3

Credibilistic

framework

7 7 3 7 7 7 3

Sensitivity & stability

analysis

3 3 3 3 3 7 3

Simultaneous

computation of

efficiency & efficient

goals

7 7 7 7 7 7 3

the fuzzy Pareto solutions and solved the problem utilizing the lexicographic weighted Tchebycheff method.
Also, for each DMU, a new fuzzy efficiency measure and a fuzzy target has been measured. Heydari et al. [18]
proposed a fully fuzzy approach to handle uncertainty in the data and solved this model using a lexicographic
approach that gives efficiency scores in interval numbers. And then, this obtained multi objective model is used
to calculate compute the 14 Iranian airlines efficiencies. Pankaj et al. [17] proposed portfolio efficiency evaluation
using BCC-DEA and RDM model under fuzzy environments. The application of the model is shown in using
superior risk measures of value at risk and conditional value at risk under a credibility measure. However, so
far, no study exists that can simultaneously tackle uncertain data, efficiency, and efficient goals. The present
study focuses on the fuzzy SBM DEA model’s sensitivity and stability analysis, which has been solved after
transforming into crisp linear programming models using credibility measures. The two theorems for inefficient
DMUs and one theorem for efficient DMUs will be proposed in Section 3. These theorems will be used to
calculate the input and output targets for the DMUs. Further, the proposed study’s application has been shown
for the transport data of State Transport Undertakings (STUs). The study’s novelty is to compute relative
efficiency, input, and output targets using a single model for missing data. The rest of the paper is organized as
follows; Section 2 recalls the basic SBM, fuzzy SBM DEA model, and the credibility measure to solve the fuzzy
SBM DEA model. Section 3 describes the sensitivity and stability analysis for the fuzzy SBM DEA model. A
numerical example has been illustrated for the comparison in Section 4. In Section 5, an application is given
based on the proposed methodology in which the relative efficiency as well as the lower and upper bounds of the
inefficient and efficient State Transport Undertakings (STUs) for which they either become efficient or remain
efficient. In the end, the conclusion about the proposed methodology is given (Tab. 1).

2. Conceptual framework

This section discusses the SBM DEA model, fuzzy numbers, fuzzy SBM DEA model, credibility measure,
some basic results and definitions which will be play the important part in the study.

2.1. SBM DEA model

Tone [42] proposed a non-radial DEA model, named as SBM DEA model, in 2001. The SBM DEA model deals
directly with the input and output slacks and has some significant practical properties. The SBM DEA model’s
objective function is such that it gives relative efficiency and the input and output slacks simultaneously. This
model is units invariant in nature and monotone decreasing with respect to input excess and output shortfall.
Consider there are m-inputs, n-outputs, r-number of DMUs, xiz = amount of ith input used by zth DMU,
yjz = amount of jth output used by zth DMU, s−iz = slack in the ith input of the zth DMU, s+

jz = slack in the
jth output of the zth DMU, and λoz are intensity variables. Then, the SBM DEA model with the variable



2192 D. MAHLA ET AL.

return to scale for DMUz is given by,

min ρz =
1− 1

m

∑m
i=1 s

−
iz/xiz

1 + 1
n

∑n
j=1 s

+
jz/yjz

subject to:
r∑
o=1

λozxio + s−iz = txiz ∀i = 1, · · · ,m

r∑
o=1

λozyjo − s+
jz = tyjz ∀j = 1, · · · , n

r∑
o=1

λo = 1

λoz ≥ 0, s−iz ≥ 0, s+
jz ≥ 0, ∀o = 1, · · · , r.

(2.1)

Sometimes, the data available in real life is in qualitative form, or the data is missing. The traditional SBM
DEA model does not work on missing data. This problem is handled by converting missing data into fuzzy
numbers using the algorithm given in Section 4. The fuzzy numbers, credibility measure, and fuzzy SBM DEA
models will be discussed in the next subsection.

2.2. Fuzzy number

The fuzzy set and fuzzy number were introduced by Zadeh [47] to handle the vague data in a precise way.
A fuzzy set on universal set M is defined by M̃ = {(x, µM̃ (x))|x ∈ M ; µM̃ (x) ∈ [0, 1]} in which µM̃ (x) is
called the membership function of the fuzzy set. Fuzzy numbers are the generalization of real numbers whose
weight function lies between 0 and 1, and this weight function is known as the membership function. The fuzzy
numbers are a special kind of fuzzy sets defined on real numbers R. The fuzzy numbers satisfy the following
properties:

(1) Fuzzy numbers are normal (i.e., ∃x ∈ R : µM̃ (x) = 1).
(2) Fuzzy numbers are convex (i.e., µM̃ (x) ≥ min{µM̃ (b), µM̃ (a)} ∀ a ≤ x ≤ b).
(3) The membership function of fuzzy numbers is an upper semi-continuous function.

Several types of fuzzy numbers present in literature, like L-fuzzy numbers, triangular fuzzy numbers,
trapezoidal fuzzy numbers, etc.; However, a triangular fuzzy number is used in this study. A triangular
fuzzy number M̃ is a special kind of fuzzy number. It is considered as fuzzy variable determined by triplet
(r, s, u) such that (r < s < u), with membership function as,

µ(M̃) =
x− r
s− r

, if r ≤ x ≤ s

=
u− x
u− s

, if s ≤ x ≤ u

= 0, otherwise.

(2.2)

2.3. Credibility measure

In this study, the fuzzy SBM DEA model is approached by credibility measure, and the credibility measure
is defined as,
Credibility measure: Consider ξ be a nonempty set with P{ξ} be the power set of ξ. Liu and Liu [29] defined
the credibility set function Cr{.} as a credibility measure if it holds the following conditions:

(1) Cr{ξ} = 1,
(2) Cr{Y } ≤ Cr{Z} whenever Y ⊂ Z ∈ ξ,
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(3) Cr{Y }+ Cr{Y }C = 1 for any event Y ∈ ξ,
(4) Cr{∪iYi}= SupiCr{Yi} for any events Yi with SupiCr{Yi} < 0.5.

The triplet (ξ, P (ξ), Cr) are called the credibility space.

2.4. Fuzzy SBM DEA model

Model (2.1) assumed that all input and output data are exactly known. But, in a real-world problem, this
is only an ideal situation that rarely occurs. Therefore, the SBM DEA model is converted into a fuzzy SBM
DEA model by assuming the input and output as a fuzzy number. Consider, ith input of the zth DMU be
indicated by x̃iz and the jth output of the zth DMU be indicated by ỹjz, are fuzzy input and output for DMUz,
respectively. Then, the fuzzy SBM DEA model with the variable return to scale for DMUz is given by,

min ρz =
1− 1

m

∑m
i=1 s

−
iz/x̃iz

1 + 1
n

∑n
j=1 s

+
jz/ỹjz

subject to:
r∑
o=1

λozx̃io + s−iz = tx̃iz ∀i = 1, · · · ,m

r∑
o=1

λoz ỹjo − s+
jz = tỹjz ∀j = 1, · · · , n

r∑
o=1

λo = 1

λoz ≥ 0, s−iz ≥ 0, s+
jz ≥ 0, ∀o = 1, · · · , r.

(2.3)

The theory of credibility of fuzzy events and chance-constrained programming (CCP) is used in this study
to solve the fuzzy SBM DEA model. Wen et al. [44] has given the following results, which are used in solving
the process of our fuzzy model.

Theorem 2.1. Consider ψ1 and ψ2 are two fuzzy variables defined on credibility space (ξ, P (ξ), Cr). If Cr{ψ1 =
y} and Cr{ψ2 = y} are quasi concave, then

(1) Cr{ψ1 + ψ2 ≤ d} ≥ α iff (ψ1)U2(1−α) + (ψ2)U2(1−α) ≤ d,
(2) Cr{ψ1 + ψ2 ≤ d} ≤ α iff (ψ1)U2(1−α) + (ψ2)U2(1−α) ≥ d. Here, 0.5 ≤ α ≤ 1.

Theorem 2.2. Consider (ψ)Lα and (ψ)Uα are the lower and upper bounds of α-cut of ψ, respectively. Then,

(1) if k ≥ 0, then (kψ)Uα = k(ψ)Uα and (kψ)Lα = k(ψ)Lα,
(2) if k ≤ 0, then (kψ)Uα = k(ψ)Lα and (kψ)Lα = k(ψ)Uα .

The credibility distribution of triangular fuzzy number M̃ given in (2.2) is defined as,

Cr(M̃ ≤ b) = 0, if r ≥ b

=
b− r

2(s− r)
, if r ≤ b ≤ s

=
b− 2s+ u

2(u− s)
, if s ≤ b ≤ u

= 1, r ≤ b. (2.4)

Cr(M̃ ≥ b) = 1, if r ≥ b

=
2s− r − b
2(s− r)

, if r ≤ b ≤ s
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=
u− b

2(u− s)
, if s ≤ b ≤ u

= 0, r ≤ b. (2.5)

According to credibility measure, converting fuzzy-chance constraints into their equivalent crisp ones at a
particular confidence level α ≥ 0.5 is as equation (2.6):

Cr(M̃ ≤ b) ≥ α ⇐⇒ (2− 2α)s+ (2α− 1)u

Cr(M̃ ≥ b) ≥ α ⇐⇒ (2− 2α)s+ (2α− 1)r
(2.6)

The SBM DEA model becomes the credibility SBM DEA model with the help of model given by Wen et al.
[44, 45] as, 

min fz
subject to:

Cr
{

1− 1
m

∑m
i=1 s

−
iz/x̃iz

1+ 1
n

∑n
j=1 s

+
jz/ỹjz

≤ fz
}
≤ α

Cr
{∑r

o=1 λozx̃io + s−iz ≤ x̃iz
}
≥ α ∀i = 1, · · · ,m

Cr
{∑r

o=1 λoz ỹjo − s
+
jz ≥ ỹjz

}
≥ α ∀j = 1, · · · , n∑r

o=1 λo = 1

λoz ≥ 0, s−iz ≥ 0, s+
jz ≥ 0, ∀o = 1, · · · , r.

(2.7)

If the membership functions of fuzzy variable are normal and convex. The lower α-cut of triangular fuzzy number
ã
b̃
, given as, { ã

b̃
}Lα = ãLα ∗ 1/(b̃Uα ). The model (2.7) transformed to model (2.8) [32] as follows:

min
{
t− 1

m

∑m
i=1 S

−
iz/x̃iz

}L
2(1−α)

subject to:{
t+ 1

n

∑n
j=1 S

+
rz/ỹjz

}U
2(1−α)

= 1{∑r
o=1,o 6=z Λozx̃io

}U
2(1−α)

+ {Λozx̃iz}L2(1−α) + S−iz ≤ {tx̃iz}
L
2(1−α) ∀i = 1, · · · ,m{∑r

o=1,o 6=z Λoz ỹjo
}L

2(1−α)
+ {Λoz ỹjz}U2(1−α) + S+

jz ≤ {tỹjz}
U
2(1−α) ∀j = 1, · · · , n∑r

o=1 Λo = t

Λoz ≥ 0, S−iz ≥ 0, S+
jz ≥ 0, t > 0 ∀o = 1, · · · , r.

(2.8)

Here, S−iz = ts−iz, S
+
jz = ts+

jz, Λoz = tλoz, Λo = tλo. Model (2.8) is a linear programming model at every α,
and thus, it can be solved using any software like MATLAB, LINGO, PYTHON, etc. The model (3.2) is used
to solve the numerical problem where the input and output slacks is calculated as, s−iz = S−iz/t and s+

jz = S+
jz/t,

respectively. The study’s primary objective is to do the sensitivity and stability analysis of the model (2.7) and
use the analysis to compute the input and output targets for both inefficient and efficient DMUs. The efficient
DMUs already performed as the reference set for the inefficient DMUs therefore, the input and output targets
for the efficient DMUs are defined as follows:

2.5. Definitions

Some important definitions which will be used in the solving process of our fuzzy SBM DEA model.
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Definition 2.3. DMUz is efficient if s−∗i and s+∗
j are zero for i = 1, 2, · · · ,m and j = 1, 2, · · · , n where s−∗i

and s+∗
j are optimal solutions of model (2.1).

Definition 2.4 (α-efficiency). DMUz is α-efficient if s−∗i (α) and s+∗
j (α) are zero for i = 1, 2, · · · ,m and j =

1, 2, · · · , n where s−∗i (α) and s+∗
j (α) are optimal solutions of model (2.6) at fixed value of α.

Definition 2.5 (Target input). The lower bound for the input for which inefficient DMUs will becomes efficient.

Definition 2.6 (Target output). The upper bound for the output for which inefficient DMUs will becomes
efficient.

Definition 2.7 (Input target for efficient DMUs). Maximum output values for which efficient DMUs will remain
efficient.

Definition 2.8 (Output target for efficient DMUs). Minimum output values for which efficient DMUs will
remain efficient.

3. Sensitivity analysis

Sensitivity and stability analysis has been done in the next subsections for the fuzzy SBM DEA models. Since
DEA is data-based, it is fascinating to assess possible input and output changes (data perturbation) of a DMU
such that its obtained efficiency classification does not change.

3.1. Sensitivity analysis of inefficient DMUs

In this section, the two theorems are proposed based on which the slacks for the inefficient DMUs are
calculated.

Theorem 3.1. If DMUz is α-inefficient, then the optimal solution satisfying λ∗z(α) = 0.

Proof. For fixed α, the optimal solution of model (2.5) is (λ∗j , s
−∗
i , s+∗

j ). Consider λ∗z > 0 then there exists at
least one s−∗i > 0 or s+∗

j > 0 because DMUz is not efficient. Assume s−∗i > 0. If λ∗z = 1, then Cr{x̃io + s−iz = x̃iz}
is zero. But, Cr{x̃io + s−iz = x̃iz} ≥ α, which implies that λ∗z 6= 1. This implies 0 < λ∗z < 1 and it can be obtained
that, 

Cr
{∑r

o=1 λ
∗
ox̃io + s−∗iz ≤ x̃iz

}
≥ α ∀i = 1, · · · ,m

Cr
{∑r

o=1,o6=z λ
∗
ox̃io + λ∗zx̃iz + s−∗iz ≤ x̃iz

}
≥ α ∀i = 1, · · · ,m

Cr
{

(1−λ∗z)
∑r

o=1,o 6=z λ
∗
ox̃io

(1−λ∗z) ≤ (1− λ∗z)x̃iz − s−∗iz
}
≥ α ∀i = 1, · · · ,m

Cr
{∑r

o=1,,o 6=z λ
∗
ox̃io

(1−λ∗z) ≤ (1−λ∗z)x̃iz−s−∗iz

(1−λ∗z)

}
≥ α ∀i = 1, · · · ,m

Cr
{∑r

o=1,o 6=z λ
∗
ox̃io

(1−λ∗z) ≤ x̃iz −
s−∗iz

(1−λ∗z)

}
≥ α ∀i = 1, · · · ,m.

Thus,
{

λ∗1∑r
o=1,o 6=z λ

∗
o
, · · · , λ∗2∑r

o=1,o 6=z λ
∗
o
, 0, λ∗r−1∑r

o=1,o 6=z λ
∗
o
,

λ∗r∑r
o=1,o 6=z λ

∗
o

}
is also a feasible solution and the objective value

is fz

1−λ∗z
> fz, which leads to a contradiction. Thus, λ∗z(α) = 0. �

Theorem 3.2 ([44]). An α-inefficient DMUz becomes α-efficient if (xz, yz) = (xz − s−∗i (α), yz + s+∗
j (α)), in

which s−∗i (α) and s+∗
j (α) are optimal solutions of model (2.5) at fixed value of α.
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3.2. Stability analysis of efficient DMUs

Theorem 3.3. An α-efficient DMUz stays α-efficient if (xz, yz) = (xz + t+∗iz (α), yz − t−∗jz (α)), in which t+∗iz (α)
and t−∗jz (α) are optimal solutions of model (2.7) at α.

Proof. A new fuzzy model (3.1) is proposed to do the stability analysis for the efficient DMUs.

min fz

subject to:

Cr
{

1+ 1
m

∑m
i=1 t

+
iz/x̃iz

1− 1
n

∑n
j=1 t

−
jz/ỹjz

≤ fz
}
≤ α

Cr
{∑r

o=1,o6=z λox̃io − t
+
iz ≤ x̃iz

}
≥ α ∀i = 1, · · · ,m

Cr
{∑r

o=1,o6=z λoỹjo + t−jz ≥ ỹjz
}
≥ α ∀j = 1, · · · , n∑r

o=1 λo = 1

λo ≥ 0, t+iz ≥ 0, t−jz ≥ 0 ∀o = 1, · · · , r.

(3.1)

Convert (x̃z, ỹz) into the (x̃z + t+∗iz , ỹz − t
−∗
jz ) in the model (3.1). Then, the model (3.1) is equivalent to model

(3.2). 

min fz

subject to:

Cr
{

1+ 1
m

∑m
i=1 s

−
i /(x̃iz+t+iz)

1− 1
n

∑n
j=1 s

+
r /(ỹjz−t−jz)

≤ fz
}
≤ α

Cr
{∑r

o=1,o6=z λox̃io + λz(x̃iz + t+iz) + s−iz ≤ x̃iz + t+iz

}
≥ α ∀i = 1, · · · ,m

Cr
{∑r

o=1,o6=z λoỹjo + λz(ỹoz − t−jz)− s
+
jz ≥ ỹjz − t

−
jz

}
≥ α ∀j = 1, · · · , n∑r

o=1 λo = 1

λo ≥ 0, s−iz ≥ 0, s+
jz ≥ 0 ∀o = 1, · · · , r.

(3.2)

Assume that the DMUz is inefficient therefore, λ∗z = 0 (Thm. 3.1). Then, the model (3.2) transformed to model
(3.3) as, 

min fz

subject to :

Cr
{

1+ 1
m

∑m
i=1 s

−
i /(x̃iz+t+iz)

1− 1
n

∑n
j=1 s

+
r /(ỹjz−t−jz)

≤ fz
}
≤ α

Cr
{∑r

o=1,o 6=z λox̃io − t
+∗
iz + s−i ≤ x̃iz

}
≥ α ∀i = 1, · · · ,m

Cr
{∑r

o=1,o 6=z λoỹjo + t−∗jz − s
+
j ≥ ỹjz

}
≥ α ∀j = 1, · · · , n∑r

o=1 λo = 1

λo ≥ 0, s−iz ≥ 0, s+
jz ≥ 0 ∀o = 1, · · · , r.

(3.3)
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Table 2. Guo and Tanaka’s [16] fuzzy data.

DMUs 1 2 3 4 5

Input1 (3.5, 4.0.4.5) (2.9, 2.9, 2.9) (4.4, 4.9, 5.4) (3.4, 4.1, 4.8) (5.9, 6.5, 7.1)
Input2 (1.9, 2.1, 2.3) (1.4, 1.5, 1.6) (2.2, 2.6, 3.0) (2.1, 2.3, 2.5) (3.6, 4.1, 4.6)
Output1 (2.4, 2.6, 2.8) (2.2, 2.2, 2.2) (2.7, 3.2, 3.7) (2.5, 2.9, 3.3) (4.4, 5.1, 5.8)
Output2 (3.8, 4.1, 4.4) (3.3, 3.5, 3.7) (4.3, 5.1, 5.9) (5.5, 5.7, 5.9) (6.5, 7.4, 8.3)

Table 3. Comparison between the sensitivity analysis results of inefficient & efficient DMUs.

STUs Wen et al. [45] Proposed approach
s+∗

1 s+∗
2 s−∗1 s−∗2 Efficiency s+∗

1 s+∗
2 s−∗1 s−∗2 Efficiency

DMU1 0.15 0.00 0.00 0.60 Inefficient 0.5227 0.2710 0 0.5331 0.6422
DMU2 1.20 0.66 0.00 0.00 Efficient 0.00 0.00 0.06 0.00 1.0269
DMU3 0.47 0.05 0.00 0.83 Inefficient 0.6490 0.3381 0 0.5445 0.6494
DMU4 0.00 0.17 0.00 1.01 Efficient 0.00 0.00 0.00 0.6882 1.1395
DMU5 0.00 0.00 2.42 1.92 Efficient 1.42 1.62 0.00 0.00 2.104

The optimal solution of model (3.3) is feasible solution of model (3.1). Hence, t+∗iz −s
−∗
i ≥ t

+∗
iz and t−∗jz −s

+∗
j ≥ t

−∗
jz ,

which means that s−∗i = 0 and s+∗
j = 0, ∀i = 1, 2, · · · ,m and j = 1, 2, · · · , n. Which is contradiction.

=⇒ DMUz stays α-efficient if (xz, yz) = (xz + t+∗iz (α), yz − t−∗jz (α)), in which t+∗iz (α) and t−∗jz (α) are optimal
solutions of model (3.3) at fixed value of α. Thus, model (3.1) will compute the efficient targets for the efficient
DMUs at different values of alphas.

�

4. Numerical illustration

A numerical experiment is depicted here for the comparison between Wen et al. [45] and the proposed study.
The data used for the comparison is fuzzy, which has been taken from Guo and Tanaka’s [16] study. The data
has two inputs and two outputs which are fuzzy triangular numbers. Table 2 displays the data for all DMUs.

The relative efficiency and slacks have been computed at α = 0.6. Table 3 shows the comparison between
the results obtained by Wen et al. [45] and the proposed study. It is clear from Table 3 that from both the
methods, DMU1, DMU3 are inefficient and DMU2, DMU4, and DMU5 are efficient. The slacks for both efficient
and inefficient DMU are approximately comparable. But, there is a crucial difference between both studies; the
proposed approach can compute the efficiency value while Wen et al. [45] is only capable of determining whether
the DMUs are efficient or inefficient. For efficiency score, a dual form is needed for Wen et al. [45]. In addition,
the applicability of the proposed research in the transport sector is illustrated in the following section.

5. An application in transportation

DEA has been used in many applications of transportation, and so we selected input and output variables
based on previous research; for the full list of applications, see [33]. The transport data of State Transport
Undertakings (STUs) [4] has been collected, and the proposed model has been applied to calculate the relative
efficiency and the stable regions for efficient STUs. The transport sector has been chosen because the transport
sector’s development directly contributes to the country’s economic growth as it links with exporting commodi-
ties, production, etc. STUs are one of the primary sources for people’s mobility in a developing country like
INDIA. The respective state government controls the STUs. The STUs allow the public to use non-profitable
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social services. Therefore, it is imperative to screen their relative performance to improve output efficiency con-
sistently. The data of STUs for the annual year 2015–2016 of 30 STUs has been collected. Various factors can
affect transportation, but the study considers four important criteria: Fleet Size, Total Staff, Fuel Consumption
(inputs), and Passenger kilometers (output).

– Fleet size. The total number of buses on-road in an STU; this attribute is defined as capital input.
– Total staff. Total employees who worked in an STU are the entire staff; this attribute is set as a labor

input.
– Effective kilometer per litre. The fuel consumed, which is measured by dividing the total effective

kilometer per liter kilometer; this attribute is defined as a material input.
– Passenger-kilometers. It is a measure of service utilization, representing the overall sum of the distances

ridden by each passenger. This attribute is computed by taking the sum of the passenger load times with
the gap between individual bus stops.

All the data is collected from the report published by the Central Institute of Road Transport (CIRT) for
the year 2015–2016. But still, some data is missing in this publication. The fuzzy numbers have been used as a
replacement for the missing data with the help of the following algorithm:

– Clustering of data into 6 clusters.
– Assumed missing value as a triangular fuzzy number.
– The triangular fuzzy number is, (Minimum value from the cluster from the respective cluster from which

the missing value belongs, Mean of Minimum and Maximum, Maximum value from the cluster from the
respective cluster from which the missing value belongs).

Tables 4 and 6 show the relative efficiencies of all the STUs at a different level of credibility by the proposed
fuzzy SBM DEA model using MATLAB R2019b.

5.1. Sensitivity analysis for inefficient STUs

The relative efficiency of all the STUs is calculated at credibility level 0.5 and 1. After that, the input and
output slacks values are calculated using the model (2.6) for all the inefficient STUs.

It is evident from Table 4 that the total of 18 STUs out of 30 STUs are credibilisitically inefficient STUs. The
input and output targets are also can be computed from table. For example, STU SBSTC is credibilisitically
inefficient at 0.5 and remained inefficient for the following region: (x̂A1, x̂A2, x̂A3, ŷA1) = (x̃A1 − rx1, x̃A2 −
rx2, x̃A13 − rx3, ỹA1 + ry1), where 0 ≤ rx1 < 336.6735, 0 ≤ rx2 < 121.5703, rx3 = 31.5164 and ry1 = 0.
The STU SBSTC becomes efficient when both inputs and outputs reach simultaneously at their target values.
Similarly, the target inputs and target outputs for the other STUs is also calculated. Similarly, the target values
for both inputs and outputs at different credibility level can be calculated. The efficient targets give an excellent
observation about the efficiency improvements to the transport’s operator. They can follow from the obtained
results which variables influence most the efficiency and how can they improve it by minimum effort. Operators
might not control some variables like fleet size, but they can enhance the other attributes. The proposed study
has the characteristic that it can simultaneously compute the relative efficiency and efficient target, which is
helpful for fast computations (Tab. 5).

5.2. Stability analysis for efficient STUs

The stability analysis results for the efficient DMUs for which the efficient DMUs remains efficient is calculated
using model (2.8) and given in Table 6.

From Table 7, STU TNSTC-VPM remained efficient for the interval, (x̂B1, x̂B2, x̂B3, ŷB1) = (x̃B1 +tx1, x̃B2 +
tx2, x̃B3 + tx3, ỹB1 − ty1), where tx1 = 231.96, tx2 = 0, tx3 = 96.92 and ty1 = 0.

Similarly, the stability analysis results for efficient STUs for which the STUs remains credibilisitically efficient
can also be calculated.
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Table 4. Slacks for inefficient DMUs.

STUs 0.5 1

Efficiency s−∗1 s−∗2 s−∗3 s+∗1 Efficiency s−∗1 s−∗2 s−∗3 s+∗1

KDTC 0.5829 342.3833 705.531 23.821 0 1 0 0 0 0

NBSTC 0.5594 421.6821 1476.1888 51.1888 0 0.5594 421.6821 1476.1888 51.1888 0

SBSTC 0.7134 336.6735 121.5703 31.5164 0 0.7134 336.6735 121.5703 31.5164 0

OSRTC 1 0 0 0 0 1 0 0 0 0

TMTU 0.5177 198.1867 968.5598 20.9996 0 0.5177 198.1867 968.5598 20.9996 0

KMTU 1 0 0 0 0 1 0 0 0 0

NMMT 0.5469 181.2749 1083.3143 37.5339 0 0.5469 181.2749 1083.3143 37.5339 0

APSRTC 1 0 0 0 0 1 0 0 0 0

TSRTC 0.8613 2180.3771 10 250.6604 101.0549 0 0.8613 2180.3771 10 250.6604 101.0549 0

MSRTC 1 0 0 0 0 1 0 0 0 0

RSRTC 0.7847 1424.3288 1338.4327 310.1936 0 0.7847 1424.3288 1338.4327 310.1936 0

NWKnRTC 0.5975 2098.6161 9364.5317 413.9542 0 0.5975 2098.6161 9364.5317 413.9542 0

TNSTC-KUM 1 0 0 0 0 1 0 0 0 0

TNSTC-VPM 1 0 0 0 0 1 0 0 0 0

TNSTC-CBE 1 0 0 0 0 1 0 0 0 0

NEKnRTC 0.6117 2092.6197 7615.3933 NW19 298.6089 0 0.6117 2092.6197 7615.3933 298.6089 0

SETC-TN 1 0 0 0 0 1 0 0 0 0

ASMSTC 0.3387 2679.3235 1847.0076 146.3528 0 0.3387 2679.3235 1847.0076 146.3528 0

HRTC 0.3854 1920.7207 4852.5578 305.3603 0 0.3854 1920.7207 4852.5578 305.3603 0

UTC 1 0 0 0 0 1 0 0 0 0

PMPML 0.4181 1372.4782 5945.2721 171.0854 0 0.4181 1372.4782 5945.2721 171.0854 0

GSRTC 0.7492 2432.9731 8218.0189 458.2274 0 0.7492 2432.9731 8218.0189 458.2274 0

UPSRTC 1 0 0 0 0 1 0 0 0 0

KnSRTC 0.8193 2139.8912 3339.5699 381.5114 0 0.8193 2139.8912 3339.5699 381.5114 0

TNSTC-MDU 1 0 0 0 0 1 0 0 0 0

TNSTC-SLM 1 0 0 0 0 1 0 0 0 0

DTC 0.4639 2708.0051 20 435.6894 262.8264 0 0.4792 1914.9247 16 123.5977 0 52 838.7525

MTC 0.7616 1014.131 9751.5489 47.9188 0 0.7616 1014.131 9751.5489 47.9188 0

KSRTC 0.8296 1747.6148 1456.9822 173.7345 0 1 0 0 0 0

BMTC 0.542 3446.1061 18 893.3766 365.1995 0 0.542 3446.1061 18 893.3766 365.1995 0

Table 5. Lower bounds for inputs and upper bounds for outputs for STU SBSTC.

Fleet size (661− 336.6735, 661− 336.6735, 661− 336.6735 = 324.3265, 324.3265, 324.3265)
Total staff (2117− 121, 2117− 121, 2117− 121 = 1996, 1996, 1996)
Effective KMPL (107.57− 31.5164, 107.57− 31.5164, 107.57− 31.5164 = 76.0536, 76.0536, 76.0536)
Passenger kilometers (16 626.34 + 0, 16 626.34 + 0, 16 626.34 + 0 + 1 = 16 626.34, 16 626.34, 16 626.34)

Table 6. Slacks for efficient DMUs.

STUs 0.5 1

Efficiency t+∗1 t+∗2 t−∗3 t−∗1 t+∗1 t+∗2 t−∗3 t−∗1

OSRTC 1.0026 0 12.6082 0 1.0026 0 12.6082 0
KMTU 2.3824 224 1105 28.11 2.3824 224 1105 28.11
APSRTC 1.1682 1647.8549 16 080.9807 330.4939 1.1714 1647.8549 16 660.2367 330.4939
TNSTC-KUM 1.0487 231.96 0 96.92 1.0487 231.96 0 96.92
TNSTC-VPM 1.0203 17.21 1281.1 0 1.0203 17.21 1281.1 0
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Table 7. Stability analysis for efficient STU TNSTC-VPM.

Fleet size (3680 + 231.96, 3680 + 231.96, 3680 + 231.96 = 3911.96, 3911.96, 3911.96)
Total staff (22 741, 22 741, 22 741)
Effective
KMPL

(1151.71 + 96.92, 1151.71 + 96.92, 1151.71 + 96.92) = (1248.63, 1248.63, 1248.63)

Passenger
kilometers
(in lakhs)

(269 338, 269 338, 269 338)

6. Managerial implications

One of the edges of the proposed approach other than the more complicated approaches is that it is not
limited to efficiency computation. It focuses on the input and output improvements that are called slacks in
the DEA language. These improvements are also expressed as efficient targets and are helpful to managers.
Most existing fuzzy DEA approaches, especially those that use multiplier models, do not provide efficiency.
Thus, the goals to their managerial utility are limited. Various methods to solve fuzzy SBM DEA models from
which α-cut approach, possibility approach, and credibility approach are the most often used techniques. The
relative efficiency from the α-cut approach gives two different values (lower bound and upper bound) at different
values of α. Thus, the input and output targets will also have been two different values. It becomes complex to
implement these obtained results in real life for the managers. On the other hand, the possibility and credibility
approach will lead only to one relative efficiency. The self-dual property of the credibility approach makes it
more significant and can be useful in real-life problems. The study proposed how the fuzzy SBM DEA model
can calculate input and output targets for both efficient and inefficient firms under the credibility approach. The
applicability of the study to the transport problem is also shown. The data of Indian STUs has been collected
for the year 2015–2016. There has been some data missing for some STUs. Fuzzy numbers then replace the
missing data. 18 inefficient and 12 efficient STUs out of 30 STUs have been obtained after computing the relative
efficiency from the fuzzy SBM DEA model. The input and output targets are also computed for both efficient
and inefficient STUs. The proposed study can compute both relative efficiency and input and output targets
under a fuzzy environment using the credibility approach.

7. Conclusions

The study proposed a novel approach to calculate the target inputs and target outputs for inefficient and
efficient DMUs using a crediblistic approach. The credibility approach, which manages human conviction numer-
ically, has been used to compute these targets. The proposed method simultaneously computes the relative
efficiency of DMUs and targets with simple computation under fuzzy conditions. A comparison between Wen
et al. [45]’s approach and the proposed method is presented in the Numerical illustration section. The results
are comparable, but the simultaneous calculation of efficiency and efficient targets provides sovereignty to the
proposed study. The applicability of the proposed approach has been shown in the transport sector for real-
world application. For this, data from Indian STUs have been collected from the CIRT report 2015–2016. Some
of the data is missing in the CIRT report due to unknown reasons. The fuzzy numbers are used to fulfill the
missing data, and then relative efficiency and efficient targets are calculated. A total of 12 STUs out of 30 are
credibilisitically efficient at all credibility levels. Some of the STUs are credibilisitically inefficient at credibility
level 0.5 but credibilisitically efficient at one, e.g., KDTC. The slacks are shown in Tables 1 and 3 for the
inefficient and efficient DMUs, respectively. These slacks are helpful in the calculation of fuzzy input and output
targets at different credibility levels. The study proposed sensitivity and stability analysis for the fuzzy SBM
DEA model. The number of efficient DMUs is more than one, and the ranking of these DMUs can be difficult.
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Stability analysis of efficient DMUs can be a help to rank efficient DMUs. The hierarchy of efficient DMUs using
the fuzzy SBM DEA model under the credibility approach could be the future of this research.
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