
RAIRO-Oper. Res. 55 (2021) 2129–2140 RAIRO Operations Research
https://doi.org/10.1051/ro/2021096 www.rairo-ro.org

ON STAR FAMILY PACKING OF GRAPHS

Mengya Li and Wensong Lin∗

Abstract. Let H be a family of graphs. An H-packing of a graph G is a set {G1, G2, . . . , Gk} of
disjoint subgraphs of G such that each Gj is isomorphic to some element of H. An H-packing of a
graph G that covers the maximum number of vertices of G is called a maximum H-packing of G. The
H-packing problem seeks to find a maximum H-packing of a graph. Let i be a positive integer. An
i-star is a complete bipartite graph K1,i. This paper investigates the H-packing problem with H being
a family of stars. For an arbitrary family S of stars, we design a linear-time algorithm for the S-packing
problem in trees. Let t be a positive integer. An H-packing is called a t+-star packing if H consists
of i-stars with i ≥ t. We show that the t+-star packing problem for t ≥ 2 is NP-hard in bipartite
graphs. As a consequence, the 2+-star packing problem is NP-hard even in bipartite graphs with
maximum degree at most 4. Let T and t be two positive integers with T > t. An H-packing is called a
T \ t-star packing if H = {K1,1, K1,2, . . . , K1,T } \ {K1,t}. For t ≥ 2, we present a t

t+1
-approximation

algorithm for the T \ t-star packing problem that runs in O(mn1/2) time, where n is the number of
vertices and m the number of edges of the input graph. We also design a 1

2
-approximation algorithm

for the 2+-star packing problem that runs in O(m) time, where m is the number of edges of the input
graph. As a consequence, every connected graph with at least 3 vertices has a 2+-star packing that
covers at least half of its vertices.

Mathematics Subject Classification. 05C70, 68R10.

Received March 16, 2021. Accepted June 23, 2021.

1. Introduction

Let H be a set of graphs. An H-packing Γ of G is a collection of vertex-disjoint subgraphs of G in which
each subgraph is isomorphic to some element of H. The vertices in Γ are said to be covered and the other
vertices of G are said to be exposed. The cardinality of Γ is the number of vertices covered by Γ. An H-packing
of maximum cardinality is called a maximum H-packing of a graph. The H-packing problem seeks to find a
maximum H-packing of a graph. An H-factor (or perfect H-packing) of a graph is an H-packing that covers all
vertices of the graph. The H-factor problem is to determine whether a graph has an H-factor.

Let i be a positive integer. We denote by Pi (resp. Ci, Ki) the path (resp. cycle, complete graph) on i vertices.
Denote by K1,i the complete bipartite graph with 1 vertex in one part and i vertices in the other. A complete
bipartite graph K1,i is called an i-star, denoted by Si. For the case i ≥ 2, the vertex of degree i in Si is called
the center of Si and a vertex of degree 1 in Si is called a leaf of Si.

Keywords. Star, tree, H-packing, star family packing, t+-star packing, T \ t-star packing.

School of Mathematics, Southeast University, Nanjing 210096, P.R. China.
∗Corresponding author: wslin@seu.edu.cn

c© The authors. Published by EDP Sciences, ROADEF, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021096
https://www.rairo-ro.org
mailto:wslin@seu.edu.cn
https://creativecommons.org/licenses/by/4.0

2130 M. LI AND W. LIN

Let H = {K2, F1, . . . , Fk}. It was proved in [7] that if each Fi is hypomatchable then there is a polynomial-
time algorithm to find a maximum H-packing of any input graph. Let H be any subset of {Kt | t ≥ 1}. It
was mentioned in [7] that if K1 ∈ H or K2 ∈ H, then the H-packing problem can be solved in polynomial
time, otherwise it is NP-complete. A complete classification of the complexities of H-packing problems for
H = {K2, F} was given in [11]. Let H be a set of cycles. Then the H-packing problem is NP-complete unless H
is composed of all cycles, all cycles except C3, or all cycles except C4 (see [1,9]). A k-piece is a connected graph
with maximum degree equal to k. If H is the family of all k-pieces, then the H-packing problem can be solved
in polynomial time [6].

Hell and Kirkpatrick [8] studied H-packing problems for H being a set of complete bipartite graphs. In
particular, they showed that a graph has a {K1,1,K1,2, . . .}-factor if and only if it contains no isolated vertices.
A set of stars is called a sequential star set if it is of the form {K1,1,K1,2, . . .} or {K1,1,K1,2, . . . ,K1,k} for some
k ≥ 1. LetH be a set of stars. They proved that theH-factor problem is NP-complete unlessH is a sequential star
set. For any fixed integer k ≥ 2, using a method involving augmenting configurations similar to augmenting paths
in the maximum matching problem, they designed an algorithm for the {K1,1,K1,2, . . . ,K1,k}-packing problem
running in time O(|V | · |E|). In 2011, Bahenko and Gusakov [2] reduced the {K1,1,K1,2, . . . ,K1,k}-packing
problem to the maximum flow problem and thus obtained an exact algorithm that runs in time O(

√
|V | · |E|).

Kelmans [10] investigated the induced star packing problem of graphs. Let G be a graph and f a function from
V (G) to the positive integers. An (f)-star packing of G is a subgraph H of G such that each component of H
is a star and if some vertex v is the center of the star then dH(v) ≤ f(v), where dH(v) is the number of edges
incident with v in H. Ning [12] investigated the (f)-star packing problem of graphs. There is also some results
on oriented star packings of digraphs [3].

The above results motivate us to investigate star family packing of graphs, where the star family is different
from {K1,1,K1,2, . . . ,K1,k}. In Section 2, for an arbitrary family S of stars, we design a linear-time algorithm for
the S-packing problem in trees. Let t be a positive integer. An H-packing is called a t+-star packing if H consists
of i-stars with i ≥ t. In Section 3, we show that the t+-star packing problem for t ≥ 2 is NP-hard in bipartite
graphs. As a consequence, the 2+-star packing problem is NP-hard even in bipartite graphs with maximum
degree at most 4. Let T and t be two positive integers with T > t. An H-packing is called a T \ t-star packing if
H = {K1,1,K1,2, . . . ,K1,T } \ {K1,t}. In Section 4, for t ≥ 2, we present a t

t+1 -approximation algorithm for the
T \ t-star packing problem that runs in O(mn1/2) time, where n is the number of vertices and m the number
of edges of the input graph. We also design a 1

2 -approximation algorithm for the 2+-star packing problem that
runs in O(m) time, where m is the number of edges of the input graph. As a consequence, every connected
graph with at least 3 vertices has a 2+-star packing that covers at least half of its vertices.

Let G be a graph. For a vertex v of G, denote by N(v) the set of all neighbors of v. If W is a subset of N(v)
then we use S(v;W) to denote the star of G with center v and leaf set W . In case W = N(v), S(v;W) is simply
written as S(v).

2. A linear-time algorithm for arbitrary star family packing problems in
trees

Let I be a set of positive integers. An I-star packing of a graphG is anH-packing ofG withH = {i-star: i ∈ I}.
In this section, we design a linear-time algorithm for the I-star packing problem in trees for any set I of positive
integers.

Let T (r) be a tree rooted at r. The level of a vertex v, denote by l(v), is the length of the path rTv. Let u
and v be two vertices such that u is on the path rTv. Then we say u is an ancestor of v and v is a descendant of
u. An ancestor or descendant of a vertex is proper if it is not the vertex itself. The immediate proper ancestor
of a vertex v other than the root is its parent, denoted by F (v). If F (v) 6= r, then the parent of F (v) is called
the grandparent of v, denoted by GF(v). The vertices whose parent is v are its children. Denote by CHD(v) the
set of all children of v. For any two vertices u and v, if F (u) = F (v) then they are siblings. We denote by B[v]
the set of all siblings of v including itself.

ON STAR FAMILY PACKING OF GRAPHS 2131

For a vertex v of T (r), by T (v) we denote the subtree of T (r) rooted at v that is induced by all descendants
of v. If v 6= r, by T ∗(v) we denote the subtree of T (r) obtained from T (v) by adding the vertex F (v) and the
edge vF (v).

Problem 1. Maximum I-star Packing in Trees.
Input: A rooted tree T (r) and a set I of positive integers.
Output: A maximum I-star packing of T (r).

Denote by f0
v the number of vertices covered by a maximum I-star packing of T (v) − v, f+

v the maximum
number of vertices covered by an I-star packing of T (v) with v being a center of some star, f∗v the maximum
number of vertices covered by an I-star packing of T ∗(v) with v being a center of some star and F (v) being
covered, and f−v the maximum number of vertices covered by an I-star packing of T (v) with v being a leaf of
some star.

Accordingly, we denote by F 0
v a maximum I-star packing of T (v)− v, F+

v an I-star packing of T (v) with v
being a center of some star that covers f+

v vertices of T (v), F ∗v an I-star packing of T ∗(v) with v being a center
of some star and F (v) being covered that covers f∗v vertices of T ∗(v), and F−v an I-star packing of T (v) with v
being a leaf of some star that covers f−v vertices of T (v).

Let g = min{i : i ∈ I} and h = max{i : i ∈ I}. W.l.o.g. we also assume h ≤ ∆(T), where ∆(T) is the
maximum degree of T .

Remark. It is clear that if v is a leaf of T (r), then f0
v = f+

v = f∗v = f−v = 0 and F 0
v = F+

v = F ∗v = F−v = ∅. If
dT (v)(v) < g, then T (v) has no I-star packing with v being a center of some star and so f+

v = 0 and F+
v = ∅.

Similarly, if dT∗(v)(v) < g, then f∗v = 0 and F ∗v = ∅. If each child of v in T (v) has degree less than g, then
f−v = 0 and F−v = ∅.

For each v ∈ V (T (r)), let

fv = max
{
f−v , f

0
v , f

+
v

}
and

Fv = F−v
(
resp.F 0

v or F+
v

)
if fv = f−v

(
resp.f0

v or f+
v

)
.

Then it is clear that F (v) is a maximum I-star packing of T (v). In particular, F (r) is a maximum I-star
packing of T (r).

For a positive integer k, denote by [k] the set of integers 1, 2, . . . , k. In our algorithm, for a vertex v, ∆F+
v ,

∆F ∗v and ∆F−v are three sets of stars. If f+
v = 0 (resp. f∗v = 0 and f−v = 0), then ∆F+

v = ∅ (resp. ∆F ∗v = ∅ and
∆F−v = ∅). If f+

v 6= 0 (resp. f∗v 6= 0 and f−v 6= 0), then ∆F+
v (resp. ∆F ∗v and ∆F−v) contains the unique star in

∆F+
v (resp. ∆F ∗v and ∆F−v) that covers v.

Algorithm 1. An algorithm for I-star Packing in Trees.

Input: a rooted tree T (r) and a set I of positive integers
Output: a maximum I-star packing of T (r)
1: set g := min{i : i ∈ I} and h := max{i : i ∈ I}
2: set all vertices uncolored
3: while there is an uncolored leaf l of T (r) do
4: set f0

l := 0, f+
l := 0, f∗l := 0, f−l := 0, fl := 0

5: ∆F+
l := ∅, ∆F ∗l := ∅, ∆F−l := ∅

6: color l red
7: end while
8: while there is an uncolored vertex v with CHD(v) 6= ∅ and all its children being red do
9: let all children of v be w1, w2, . . . , wk

2132 M. LI AND W. LIN

10: set J := {i | fwi
= f0

wi
, i ∈ [k]}

11: for i := 1 to k do
12: set δi := fwi − f0

wi

13: call Algorithm 2 to sort δ1, δ2, . . . , δk (so we assume δ1 ≤ δ2 ≤ · · · ≤ δk hereafter)
14: end for

15: set f0
v :=

k∑
i=1

fwi

16: Call Subroutine 1.1 to compute f+
v and ∆F+

v

17: Call Subroutine 1.2 to compute f∗v and ∆F ∗v
18: Call Subroutine 1.3 to compute f−v and ∆F−v
19: set fv := max{f0

v , f
+
v , f

−
v }, and color v red

20: end while
21: Call Subroutine 1.4 to retrieve the maximum I-star packing of T (r)

Subroutine 1.1 (compute f+
v and ∆F+

v)
1: if k < g then
2: set f+

v := 0 and ∆F+
v := ∅

3: else if |J | ∈ I then

4: set f+
v :=

k∑
i=1

fwi
+ |J |+ 1 and ∆F+

v := {S(v; {wi|i ∈ J})}

5: else if |J | > h then

6: set f+
v :=

h∑
i=1

f0
wi

+
k∑

i=h+1

fwi
+ h+ 1 and ∆F+

v := {S(v; {w1, w2, . . . , wh})}

7: else if |J | < g then

8: set f+
v :=

g∑
i=1

f0
wi

+
k∑

i=g+1

fwi + g + 1 and F+
v := {S(v; {w1, w2, . . . , wg})}

9: else
10: set g1 := max{j | j < |J |, j ∈ I} and h1 := min{j | j > |J |, j ∈ I}

11: set m1 :=
k∑

i=1

fwi + g1 + 1 and n1 :=
h1∑
i=1

f0
wi

+
k∑

i=h1+1

fwi + h1 + 1

12: set f+
v := max{m1, n1}

13: if f+
v := m1 then

14: set ∆F+
v := {S(v; {w1, w2, . . . , wg1})}

15: else
16: set ∆F+

v := {S(v; {w1, w2, . . . , wh1)}}
17: end if
18: end if

Subroutine 1.2 (compute f∗v and ∆F ∗v)
1: if v 6= r then
2: if k + 1 < g then
3: set f∗v := 0 and ∆F ∗v := ∅
4: else if |J |+ 1 ∈ I then

5: set f∗v :=
k∑

i=1

fwi
+ |J |+ 2 and ∆F ∗v := {S(v; {F (v)} ∪ {wi|i ∈ J})}

ON STAR FAMILY PACKING OF GRAPHS 2133

6: else if |J |+ 1 > h then

7: set f∗v :=
h−1∑
i=1

f0
wi

+
k∑

i=h

fwi
+ h+ 1 and ∆F ∗v := {S(v; {F (v), w1, w2, . . . , wh−1})}

8: else if |J |+ 1 < g then

9: set f∗v :=
g−1∑
i=1

f0
wi

+
k∑

i=g

f0
wi

+ g + 1 and ∆F ∗v := {S(v; {F (v), w1, w2, . . . , wg−1})}

10: else
11: set g2 := max{j | j < |J |+ 1, j ∈ I} and h2 := min{j | j > |J |+ 1, j ∈ I}

12: set m2 :=
k∑

i=1

fwi + g2 + 1 and n2 :=
h2−1∑
i=1

f0
wi

+
k∑

i=h2

fwi + h2 + 1

13: set f∗v := max{m2, n2}
14: if f∗v := m2 then
15: set ∆F ∗v := {S(v; {F (v), w1, w2, . . . , wg2−1})}
16: else
17: set ∆F ∗v := {S(v; {F (v), w1, w2, . . . , wh2−1})}
18: end if
19: end if
20: else
21: set f∗v := 0 and ∆F ∗v := ∅
22: end if

Subroutine 1.3 (compute f−v and ∆F−v)
1: if dT (v)(wi) < g for all i = 1, 2, . . . , k then
2: set f−v := 0 and ∆F−v := ∅
3: else
4: set J1 := {i | dT (v)(wi) ≥ g, i ∈ [k]}

5: set f−v := max
i∈J1

{
f∗wi

+
∑

j∈[k]\{i}
fwj

}

6: set s := arg max
i∈J1

{
f∗wi

+
∑

j∈[k]\{i}
fwj

}
7: set ∆F−v := ∆F ∗ws

8: end if

Subroutine 1.4 (retrieve the maximum I-star packing of T (r))
1: set Fr := ∅
2: label r with]
3: while there is a vertex v labeled with], CHD(v) 6= ∅ and all its children are unlabeled do
4: if fv = f0

v then
5: label each vertex in CHD(V) with]
6: else if fv = f+

v then
7: set Fr := Fr ∪∆F+

v

8: let S be the star in ∆F+
v

9: label each vertex in CHD(v) \ V (S) with]

2134 M. LI AND W. LIN

10: for each vertex u in CHD(v) ∩ V (S) do
11: label each vertex in CHD(u) with]
12: end for
13: else
14: set Fr := Fr ∪∆F−v
15: let S be the star in ∆F−v
16: let u ∈ CHD(v) be the center of S
17: label each vertex in CHD(v) \ {u} with]
18: for each vertex w in CHD(u) do
19: label each vertex in CHD(w) with]
20: end for
21: end if
22: end while
23: return fr and Fr

In Algorithm 1 line 13, it calls Algorithm 2 to sort δ1, δ2, . . . , δk. Because each δi is a nonnegative integer
that is less than or equal to k, Algorithm 2 can sort them in linear time.

Algorithm 2. Sort Algorithm.
Input: q integers k1, k2, . . . , kq with 0 ≤ ki ≤ q for i = 1, 2, . . . , q
Output: 2q nonnegative integers l1, l2, . . . , lq, b1, b2, . . . , bq s.t. l1 ≤ l2 ≤ · · · ≤ lq and li = kbi for i = 1, 2, . . . , q
1: for j := 0 to q do
2: set pj := 0
3: end for
4: for i := 1 to q do
5: set j := ki

6: set P1[j, pj] := ki and P2[j, pj] := i
7: increment pj by 1
8: end for
9: set t := 1

10: for j := 0 to q do
11: if pj > 0 then
12: for s := 0 to pj − 1 do
13: set lt := P1[j, s] and bt := P2[j, s]
14: increment t by 1
15: end for
16: end if
17: end for

Lemma 2.1. Let k1, k2, . . . , kq be q integers with 0 ≤ ki ≤ q for i = 1, 2, . . . , q. Then Algorithm 2 correctly
sorts k1, k2, . . . , kq in increasing order within time O(q).

Lemma 2.2. Let I be a set of positive integers. Let T (r) be any rooted tree of order n. Then Algorithm 1 will
find an I-star packing of T (r) within O(n) time steps.

Proof. It obviously takes O(n) time steps to execute Algorithm 1 from lines 1 to 7.
In each iteration of the second “while” loop, let v be a vertex with children w1, w2, . . . , wk. The computations

of J and δ1, δ2, . . . , δk require k comparisons and k substractions. By Lemma 2.1, the sorting of δ1, δ2, . . . , δk
is completed within O(k) time steps. It is not difficult to check that the number of time steps in computing
f0

v , f
+
v , f

∗
v and f−v is at most O(k). Because

∑
v∈V (T) d(v) = 2n− 2, the total number of time steps in executing

the second “while” loop is within O(n).

ON STAR FAMILY PACKING OF GRAPHS 2135

The number of time steps needed in executing Subroutine 1.4 consists of the times spending in labeling
vertices and constructing the I-star packing Fr, which is clearly at most O(n).

Thus Algorithm 1 finds an I-star packing of T (r) within O(n) time steps. �

Theorem 2.3. Let I be a set of positive integers and let T (r) an input rooted tree. Then Algorithm 1 returns
a maximum I-star packing of T (r) within O(n) time steps, where n is the order of T (r).

Proof. The time complexity has been determined in Lemma 2.2. We next prove that the output Fr is a maximum
I-star packing of T (r). It is clear from Subroutine 1.4 that Fr covers exactly fr vertices. Thus we only need to
show that in each iteration of the second “while” loop, it computes f0

v , f
+
v , f

∗
v , f

−
v and fv correctly. Let v be a

vertex of T (r) with children w1, w2, . . . , wk. Suppose it has computed the correct values of f0
wi
, f+

wi
, f∗wi

, f−wi
and

fwi for i = 1, 2, . . . , k. Then it is clear from the algorithm that f0
v is computed correctly. We next show that so

is f+
v .

Recall that f+
v is defined as the maximum number of vertices covered by an I-star packing of T (v) with v

being a center of some star. Since v must be a center of some star S, we have to find a set A ⊆ [k] with |A| ∈ I
such that the set of leaves of S is {wi|i ∈ A}. Thus

f+
v = max

∑
i∈A

f0
wi

+
∑

i∈[k]\A

f(wi) + |A|+ 1 : A ⊆ [k] and |A| ∈ I


= max

{
k∑

i=1

fwi
+ 1 + |A| −

∑
i∈A

δi : A ⊆ [k] and |A| ∈ I

}

=
k∑

i=1

fwi
+ 1 + max

{
|A| −

∑
i∈A

δi : A ⊆ [k] and |A| ∈ I

}
.

To obtain the correct value of f+
v , the key is to choose a set A ⊆ [k] with |A| ∈ I that maximize the value of

|A| −
∑

i∈A δi. If |J | ∈ I, then it is obvious that

|J | −
∑
i∈J

δi = max

{
|A| −

∑
i∈A

δi : A ⊆ [k] and |A| ∈ I

}
.

Thus

f+
v =

∑
i∈J

f0
wi

+
∑

i∈[k]\J

fwi
+ |J |+ 1 =

k∑
i=1

fwi
+ |J |+ 1.

Note that δ1, δ2, · · · , δk have been sorted so that δ1 ≤ δ2 ≤ · · · ≤ δk. If |J | > h, then the set A = {1, 2, · · · , h}
maximizes the value |A| −

∑
i∈A δi. Therefore f+

v =
∑h

i=1 f
0
wi

+
∑k

i=h+1 fwi
+ h + 1. If |J | < g, then the set

A = {1, 2, · · · , g} maximizes the value |A|−
∑

i∈A δi, and so f+
v =

∑g
i=1 f

0
wi

+
∑k

i=g+1 fwi + g+ 1. Now suppose
g < |J | < h and |J | /∈ I. Let A1 = {1, 2, · · · , g1} and B1 = {1, 2, · · · , h1}. If |A| < g, then |A| −

∑
i∈A δi <

|A1| −
∑

i∈A1
δi, and if |A| > h, then it is clear that |A| −

∑
i∈A δi ≤ |B1| −

∑
i∈B1

δi. It follows that

max

{
|A| −

∑
i∈A

δi : A ⊆ [k] and |A| ∈ I

}
= max

{
|A1| −

∑
i∈A1

δi, |B1| −
∑
i∈B1

δi

}
.

And f+
v is computed correctly.

The proof of f∗v is similar to that of f+
v , so we omit it. And it is very clear that the algorithm computes f−v

and fv correctly. Thus the theorem follows. �

2136 M. LI AND W. LIN

3. Hardness of the t+-star packing problem in bipartite graphs

Let t ≥ 2 be an integer. An H-packing with H = {i-star | i ≥ t} of a graph G is called a t+-star packing of
G. Let G be a graph. A subset K of V (G) is called a vertex cover of G if each edge of G has an end vertex in
K. A vertex cover of G with minimum number of vertices is called a minimum vertex cover of G.

Problem Vertex Cover
Instance: A graph G and an integer k.
Question: Is there a vertex cover of G of cardinality at most k?

It is well known that the problem Vertex Cover is NP-complete, see [5].

Problem t+-Star Packing
Instance: A graph G and an integer p.
Quesion: Is there a t+-star packing of G that covers at least p vertices?

Suppose X and Y are two sets of vertices. We denote by E(X,Y) the set of all edges xy with x ∈ X and
y ∈ Y , that is E(X,Y) = {xy | x ∈ X and y ∈ Y }.

Theorem 3.1. Let t ≥ 2 be an integer. Then the problem t+-Star Packing in bipartite graphs is NP-complete.

Proof. It is clear that the problem is in NP since it can be checked in polynomial time that whether a t+-star
packing covers at least p vertices. We prove the theorem by reducing Vertex Cover to t+-Star Packing. Let (G, k)
be an instance of Vertex Cover, where V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}. We construct from
(G, k) an instance (H, p) of t+-Star Packing as follows.

For i = 1, 2, . . . , n, let Ui = {ui,1, ui,2, . . . , ui,t−1}, Wi = {wi,1, wi,2, . . . , wi,t−1}, and Ei =
{ej | ej is incident with vi inG}. Then the graph H is defined as

V (H) = V (G)
⋃
E(G)

⋃(
n
∪

i=1
Ui

)⋃(
n
∪

i=1
Wi

)
,

E(H) =
n⋃

i=1

(
E ({vi}, Ei ∪ Ui) ∪ E ({ui,1},Wi)

)
.

Please see Figure 1 for an illustration. It is clear that H is bipartite and |V (H)| = m+ n(2t− 1).
Let p = m+ n(t+ 1)− k. We next show that G has a vertex cover of cardinality at most k if and only if H

has a t+-star packing covering at least p vertices of H.

Figure 1. The construction of H.

ON STAR FAMILY PACKING OF GRAPHS 2137

Suppose G has a vertex cover of cardinality at most k. W.l.o.g., suppose K = {v1, v2, . . . , vq} with q ≤ k is
a minimum vertex cover of G. Because K is a minimum vertex cover, for each vi ∈ K, there is an edge ei ∈ Ei

such that ei /∈
⋃

j∈[q]\{i}Ej . Set

Si =

{
S
(
vi;
{
ei
}
∪ Ui

)
, i = 1, 2, . . . , q

S (ui,1; {vi} ∪Wi) , i = q + 1, · · · , n.

Let e be any edge in E(G) \ {e1, e2, . . . , eq}. Suppose the two end vertices of e are vi and vj . Since K is a
vertex cover of G, at lease one of vi and vj is in K. W.l.o.g., assume vi ∈ K. Then we add e to the leaf set of
the star Si. After all edges in E(G) \ {e1, e2, . . . , eq} have been deposed, we still write the resulting q stars as
S1, S2, . . . , Sq. Then S1, S2, . . . , Sq cover all vertices of H in E(G). Thus the t+-star packing {S1, S2, . . . , Sn}
covers m+ n(t+ 1)− q ≥ m+ n(t+ 1)− k = p vertices of H.

Now suppose H has a t+-star packing covering at least p vertices. We shall prove that G has a vertex cover
of cardinality at most k. For a t+-star packing Γ of H, denote by C(Γ) the set of all centers of stars in Γ and
by V (Γ) the set of vertices covered by Γ. We first prove the following claim.

Claim. Let Γ be a maximum t+-star packing of H such that |V (Γ) ∩ E(G)| is as large as possible. Then, (1)
C(Γ) ∩ E(G) = ∅; (2) |C(Γ) ∩ {vi, ui,1}| = 1 for i = 1, 2, . . . , n; (3) E(G) ⊆ V (Γ).

Proof. (1) If t > 2 then it is obvious that C(Γ)∩E(G) = ∅. Thus we assume t = 2. Let ej be any edge in E(G)
with two end vertices vi and vs. If ej ∈ C(Γ), then all vertices in Ui ∪Wi ∪ Us ∪Ws are exposed under Γ.
Let Γ′ = (Γ \ {S(ej ; {vi, vs})}) ∪ {S(vi; {ej} ∪ Ui), S(us,1; {vs} ∪Ws)}. Then Γ′ is a t+-star packing of H
with |V (Γ′)| > |V (Γ)|, contradicting the assumption that Γ is a maximum t+-star packing of H. Therefore
ej /∈ C(Γ), and so C(Γ) ∩ E(G) = ∅.

(2) For each i ∈ [n], since vi and ui,1 are adjacent in H, |C(Γ) ∩ {vi, ui,1}| ≤ 1. If C(Γ) ∩ {vi, ui,1} = ∅, then
all vertices in {vi} ∪Ui ∪Wi are exposed. It follows that Γ′ = Γ∪ {S(ui,1; {vi} ∪Wi)} ia a t+-star packing
of H larger than Γ. Thus we conclude that |C(Γ) ∩ {vi, ui,1}| = 1 for i = 1, 2, . . . , n.

(3) Let ej be any edge in E(G) with end vertices vi and vs. If ej /∈ V (Γ), then both ui,1 and us,1 are in
C(Γ) by (2). Let Γ′ = (Γ \ {S(ui,1; {vi} ∪Wi)}) ∪ {S(vi; {ej} ∪ Ui)}. It is clear that |V (Γ)| = |V (Γ′)| and
|V (Γ′) ∩ E(G)| > |V (Γ) ∩ E(G)|, contradicting the choice of Γ. Thus E(G) ⊆ V (Γ).

�

Now let Γ be a maximum t+-star packing of H such that |V (Γ) ∩ E(G)| is as large as possible. Let K =
C(Γ) ∩ V (G). Since E(G) ⊆ V (Γ) by Claim (3) and each ej in E(G) can only be covered by some star with its
center in K, we conclude that K is a vertex cover of G. On the other hand, since

|V (Γ)| = m+ |K|t+ (n− |K|)(t+ 1)
= m+ n(t+ 1)− |K|
≥ p = m+ n(t+ 1)− k ,

we have |K| ≤ k. Thus K is a vertex cover of G of cardinality at most k.
Now the NP-completeness of t+-Star Packing in bipartite graphs follows from that of Vertex Cover. �

The minimum vertex cover problem in cubic graphs remains NP-complete [4]. Note that, in the proof of
Theorem 3.1, if t = 2 and G is a cubic graph then the graph H constructed from G is a bipartite graph with
maximum degree 4. Thus we immediately have the following corollary.

Corollary 3.2. The problem 2+-Star Packing is NP-complete in bipartite graphs with maximum degree 4.

2138 M. LI AND W. LIN

4. Approximation algorithms for T \ t-star packing and 2+-star packing
of graphs

Let T be a positive integer. A {K1,1,K1,2, . . . ,K1,T }-packing a called a T -star packing. A {K1,T ,K1,T+1, . . .}-
packing a called a T+-star packing. Let T and t be two positive integers with t < T . A {K1,1,K1,2, . . . ,K1,T } \
{K1,t}-packing a called a T \ t-star packing.

In this section, we use different strategies to design approximation algorithms for maximum T \ t-star packing
(with t ≥ 2) and 2+-star packing of general graphs. In Algorithm 3, we first find an optimal T -star packing
of the input graph and then modify it into a T \ t-star packing. While in Algorithm 4, we first find a rooted
spanning tree T (r) of the input graph G and then find a 2+-star packing of T (r) and use it as an approximation
solution.

Algorithm 3. Algorithm for T \ t-star packing.
Input: a graph G and two positive integers T and t with 2 ≤ t < T
Output: a T \ t-star packing of G
1: find a maximum T -star packing Γ of G
2: let Γ = {H1, H2, . . . , Hk}
3: for i := 1 to k do
4: if |V (Hi)| = t + 1 then
5: delete one leaf from Hi

6: end if
7: end for
8: return {H1, H2, . . . , Hk}

For a graph G, we use opt(G,T) (resp. opt(G,T \ t), opt(G, 2+)) denote the number of vertices covered by a
maximum T -star packing (resp. T \ t-star packing, 2+-star packing) of G.

Theorem 4.1. Let T and t be two positive integers with 2 ≤ t < T . Algorithm 3 finds a T \ t-star packing of
the input graph G which covers at least t

t+1opt(G,T \ t) vertices of G. The running time is O(m
√
n), where m

is the number of edges and n is the number of vertices of G.

Proof. Algorithm 3 first finds a maximum T -star packing Γ = {H1, H2, . . . ,Hk} of the input graph G. This can
be done by applying an algorithm designed in [2] within O(m

√
n) time steps. If some Hi is a t-star then the

algorithm deletes one vertex from it and obtains a (t − 1)-star of G. This clearly spends at most O(n) time
steps. Thus the overall running time of the algorithm is O(m

√
n). It is also obvious that the resulting T \ t-star

packing of G covers at least t
t+1opt(G,T) ≥ t

t+1opt(G,T \ t) vertices of G. �

Let T (r) be a tree rooted at r. Let v be any vertex of T (r). Recall that, in Section 2, we define the notations
l(v), T (v), T ∗(v), F (v), GF(v), B[v] and CHD(v).

Algorithm 4. Algorithm for 2+-star packing.

Input: a connected graph G
Output: a 2+-star packing of G
1: find a rooted spanning tree T (r) of G
2: set H := T (r) and Γ := ∅
3: while |V (H)| ≥ 3 do
4: while there is a leaf v of H with highest level that has siblings do
5: find a leaf v of H with highest level
6: if |V (H) \ T (F (v))| = 0 or |V (H) \ T (F (v))| ≥ 3 then

ON STAR FAMILY PACKING OF GRAPHS 2139

7: set Γ := Γ ∪ {SH(F (v);B[v])} and H := H − T (F (v))
8: else
9: set Γ := Γ ∪ {SH(F (v))} and H := H − T ∗(F (v))

10: end if
11: end while
12: find a leaf v of H with highest level
13: if F (v) has siblings then
14: if |V (H) \ T (GF(v))| = 0 or |V (H) \ T (GF(v))| ≥ 3 then
15: set Γ := Γ ∪ {SH(GF(v);B[F (v)])} and H := H − T (GF(v))
16: else
17: set Γ := Γ ∪ {SH(GF(v))} and H := H − T ∗(GF(v))
18: end if
19: else
20: set Γ := Γ ∪ {SH(F (v))} and H := H − {v, F (v),GF(v)}
21: end if
22: end while
23: return Γ

Theorem 4.2. Let G be a connected graph with at least three vertices. Algorithm 4 finds a 2+-star packing of
G that covers at least 1

2 |V (G)| vertices. The running time is O(m), where m is the number of edges of G.

Proof. Suppose H is the current tree dealt with by the algorithm at some stage of the execution. If |V (H)| ≥ 3,
then it is going to find a star, say S. Let H ′ be the tree obtained from H by deleting some vertices immediately
after S is selected. Then it is not difficult to see that in any cases we have |V (S)| ≥ |V (H)|−|V (H′)|

2 . If S is the
last star the algorithm selects, then |V (H ′)| ≤ 2 and it is easy to check that in any cases |V (S)| ≥ |V (H)|

2 . Thus
in overall the algorithm outputs a 2+-star packing of G that covers at least 1

2 |V (G)| vertices.
It spends at most O(m) time steps to find a spanning tree of G. The process that the algorithm selects stars

will be completed within time O(n). Thus the running time of the algorithm is O(m). �

It is worth to point out that the lower bound 1
2 |V (G)| in this theorem is sharp. Let G be a tree obtained

from a star by adding a new vertex for each leaf and an edge between them. It is not difficult to see that the
maximum 2+-star packing of G covers exactly 1

2 (|V (G)|+ 1) vertices.

5. Conclusion & future work

Hell and Kirkpatrick [8] proved that the H-factor problem is NP-complete unless H is a sequential star set
and designed a polynomial-time algorithm for the {K1,1,K1,2, . . . ,K1,k}-packing problem in general graphs.
We investigate star family packing which is not a sequential star set. We design a linear-time algorithm to
compute the maximum I-star packing of trees and prove that the t+-star packing problem for t ≥ 2 is NP-hard
in bipartite graphs. We also design approximation algorithms for the T \ t-star packing problem and the 2+-star
packing problem.

As we can see, there is little research on star family packing of graphs in the literature. It will be meaningful
to design algorithms for certain star family packing of some special classes of graphs. In particular, it is very
important to investigate the cases when the star family consists of a single or two small stars.

Acknowledgements. We would like to give our thanks to anonymous reviewers for careful reading of this paper and many
valuable suggestions. Supported by NSFC 11771080.

2140 M. LI AND W. LIN

References

[1] R. Anstee, Personal Communication to Pavol Hell (1996).

[2] M. Bahenko and A. Gusakov, New exact and approximation algorithms for the star packing problem in undirected graphs.
In: 28th International Symposium on Theoretical Aspects of Computer Science, STACS 2011. March 10–12, 2011, Dortmund,
Germany (2011) 519–530.

[3] R.C. Brewster, P. Hell and R. Rizzi, Oriented star packings. J. Combin. Theory, Ser. B 98 (2008) 558–576.

[4] M. Chleb́ık and J. Chleb́ıková, Complexity of approximating bounded variants of optimization problems. Theoret. Comput.
Sci. 354 (2006) 320–338.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman,
San Francisco (1979).

[6] D. Hartvigsen, P. Hell and J. Szabó, The k-piece packing problem. J. Graph Theory 52 (2006) 267–293.

[7] P. Hell and D.G. Kirkpatrick, Packing by cliques and by finite families of graphs. Discrete Math. 49 (1984) 45–59.

[8] P. Hell and D.G. Kirkpatrick, Packing by complete bipartite graphs. SIAM J. Alg. Disc. Meth. 7 (1986) 199–209.

[9] P. Hell, D.G. Kirkpatrick and J. Kratochv́ıl and I. Kř́ıž, On restricted two-factors. SIAM J. Discrete Math. 1 (1988) 472–484.

[10] A. Kelmans, Optimal packing of induced stars in a graph. Discrete Math. 173 (1997) 97–127.

[11] M. Loebl and S. Poljak, Efficient subgraph packing. J. Combin. Theory Ser. B 59 (1993) 106–121.

[12] Q. Ning, On the star packing problem. In: Vol. 576 of Proc. 1st China-USA International Graph Theory Conference (1989)
411–416.

	Introduction
	A linear-time algorithm for arbitrary star family packing problems in trees
	Hardness of the t+-star packing problem in bipartite graphs
	Approximation algorithms for Tt-star packing and 2+-star packingof graphs
	Conclusion & future work
	References

