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SYNCHRONIZING ENERGY PRODUCTION AND VEHICLE ROUTING

Fatiha Bendali, Eloise Mole Kamga, Jean
Mailfert, Alain Quilliot and Hélène Toussaint∗

Abstract. The emergence of locally produced renewable energies induces the appearance of a new
generation of local energy players, which are at the same time producers and consumers. In case
of time dependent solar energy production, it raises the question of synchronizing production and
consumption. We deal here with this issue, in the context of an experimental Solar Hydrogen (H2)
production platform. More precisely, we try here to simultaneously schedule a H2 fueled vehicle which
follows a pre-computed route while being compelled to periodically refuel, and the H2 production
micro-plant which is required to produce related energy under time dependent production costs and
productivity rates, both processes being subject to storage capacity constraints. In order to do it, we
design a global dynamic programming (DP) algorithm for the resulting NP-Hard problem. This DP
algorithm involves a 2D time space which links energy consumption by the vehicle and its production
by the micro-plant. Since the number of states induced by this DP algorithm becomes an issue as soon
as the size of the problem increases, we first propose a theoretical Polynomial Time Approximation
Scheme (PTAS), next design several practical pruning devices and finally perform numerical tests in
order to check their efficiency.
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1. Introduction

The rise of renewable energy sources (photovoltaic, wind, hydrogen or biomass based: see [6, 7, 15, 21]),
which aim at replacing CO2 emissions by clean electrical power, together with the current scarcity of related
charge/recharge infrastructures, have been motivating during the last decades an interest from O.R. researchers
to green issues.

Most contributions were related to electric or hybrid vehicles where the goal is to minimize energy consump-
tion (Green VRP, Pollution-Routing Problem and Hybrid Vehicle Problem: see [13, 14, 28]). Related models
consider recharge transactions submitted to time windows or shared access constraints and aim at minimiz-
ing some mixed cost which partially reflects environmental concerns. Green VRP is for instance introduced
in [13] by Erdogan et al. with the purpose of promoting either the minimization of fuel consumption or
the use of alternative-fuel powered vehicles. Their model is an extension of standard VRP involving limited
fuel tank capacities and an objective function which mixes total travel distance and the number of refuelling

Keywords. Scheduling, dynamic programming, energy.

LIMOS CNRS 6158, Labex IMOBS3, Clermont-Ferrand, France.
∗Corresponding author: helene.toussaint@isima.fr

c© The authors. Published by EDP Sciences, ROADEF, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021093
https://www.rairo-ro.org
mailto:helene.toussaint@isima.fr
https://creativecommons.org/licenses/by/4.0


2142 F. BENDALI ET AL.

transactions. Numerical handling relies on a MILP: Mixed Integer Linear Programming formulation and local
search heuristics. In [14], Franceschetti et al. tackle the pollution-routing problem which aims at minimizing a
cost that depends on driver’s wages and fuel consumption while considering time-dependent traffic congestion.
They use an ALNS: Adaptative Large Neighbourhood Search metaheuristic in order to handle a model whose
main complexity lies in the time dependency of the costs of the arcs which define the transit network. In [28],
Raylan et al. address what they call Green Vehicle Routing, which means the problem of routing a fleet of
vehicle inside a network whose arcs are provided with time dependent lengths, while minimizing a cost based on
CO2 emission due to both the routes and the vehicle loads. They manage resulting model through multi-start
ILS. In [17], Kara et al. follow a similar approach and propose a variant of the well-known CVRP: Capaci-
tated Vehicle Routing Problem by setting a new cost function, which also involves the loads of the vehicles and
their impact on energy spending. They propose an ILP to solve their model. In [29], Sachenbacher et al. also
deal with time dependency, but they introduce specific recharging schemes and consequently adapt shortest
path computation through an adaptation of A* algorithm. In [19], Kuo addresses time dependency through the
prism of energy consumption and sets a routing model involving time windows, where the drivers may reach an
optimal tradeoff between energy consumption, transportation distance and transportation time by conveniently
controlling speed. He designs a simulated annealing algorithm which computes routing strategies with lower
fuel consumption but longer transportation times and transportation distances. In [30], Schneider et al. apply a
hybrid VNS&Tabu scheme to the handling of a VRP model with time windows, which includes specific battery
recharging schemes. In [22], Lin et al. provide a survey on the Green Vehicle Routing problem and the Pollution
Routing problem, which both make speed control and traffic jam avoidance part of the models.

In [18], Koç et al. deal with electric vehicle routing problems which refers not only to the assignment of the
customers to the vehicles and their sequencing, but also to where and how much the vehicles are recharged:
The feasibility of the routes is therefore constrained by the characteristics of recharging configurations (kind
of charging functions: linear, piecewise linear, . . . ), and the autonomy of the vehicles. This last issue is also
addressed in our paper. In [18] authors consider customer sequencing as part of the problem, and study an
Electric-VRP model with non-linear charging functions, multiple charging technologies and variable charging
quantities, while explicitly accounting for the number of chargers available at privately managed charging
stations. They handle their model first through a MILP formulation, and next by through a metaheuristic
scheme which alternatively generates routes and schedules the refueling transactions along those routes.

Still, not all contributions put the focus on optimization: In [31], Waraich et al. propose a multi-agent discrete
event simulation model in order to evaluate the impact of the time dependence of both demands and costs on
the behavior of a fleet of last mile electric vehicles. In [20], Lajunen uses a vehicle simulation method in order
to compare the reductions of energy consumption and emissions induced by different configurations of urban
shuttle&bus fleets. They take into account capital costs, operating costs and costs induced by energy storage
devices.

While transportation has been paid most attention by O.R. communities, some authors have been addressing
the issue of scheduling an industrial process (see [4, 11]) while taking into account temporal variations of the
energy costs, access restrictions and environmental concerns. In [24], Moon et al. Deal with parallel machine
scheduling while taking into account time dependent energy costs, and in [25], they address flexible Job Shop
with the same kind of hypothesis. In both case, they use MILP formulation and genetic algorithms. In [26],
Mustapha et al. schedule an industrial production process subject to piecewise linear electric cost while using
MILP models and dynamic programming algorithms. In [27], Pechman and Schöler focus on the management
of energy consumption processes which involve peaks and breaks, as in steel industry or inside large buildings.
In [16], Irani and Pruhs address the specific case of information processing and propose a survey about existing
scheduling models and algorithms for the minimization of energy consumption inside a data center or a cloud
architecture. In [1], Albers deals with the same issue, and provides a survey about algorithmic scheduling
and resource allocation techniques, mostly based on heuristic decision rules designed for dynamic contexts,
for reducing energy consumption of current computers, including techniques like sleep states and power-down
mechanisms, dynamic speed scaling and temperature management.
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While most articles have been related to applications, we should mention the existence of several theoretic
studies which deal with complexity and approximation issues, for models which put at stake the cost of idleness
and the impact of time dependencies (see [1, 8, 16]). Typically, in [2, 3, 11], respectively Angel et al., Baptiste
and Demaine et al., rely on dynamic programming algorithms in order to explore models involving energy costs
induced by set up transactions and gaps in the use of resources, which may be solved in pseudo-polynomial time.
By the same way, in [9,10], Chretienne et al. propose polynomial time algorithms for specific scheduling models
(oven management for the tyre industry, . . . ) whose costs are mainly due to breaks inside energy consumption
processes. On another side, main energy producers have been for a long time carrying on systematic studies
about big grain energy production planning (gas, electricity, dam or nuclear plant management), with the
purpose of meeting large scale uncertain aggregated demands (see [24,25]). In [5], Benini et al. provide a survey
about dynamic power management (DPM), while focusing on multi-level systems which require synchronizing
coarse grain production with distributed fine grain distribution.

A current trend in Energy Economics is towards the decentralization of Energy production. This is due to both
the deregulation of energy markets and to the rise of technologies, which more and more allow local players
to become small energy producers (solar, wind, hydrogen, . . . ), while simultaneously remaining consumers.
Those local producer/consumers may be factories, farms and even individual householders. This raises complex
questions to traditional energy producers, who lost their monopolistic position but remain key players, because
of their control on backbone networks and main hydraulic and nuclear plants. In the context of the activities
of Labex IMOBS3 in Clermont-Ferrand, France, devoted to Innovative Mobility Technologies and Services, we
are participating into a project about the design and control of a local micro-plant for Solar Hydrogen (H2)
production. This micro-plant is asked to provide autonomous vehicles with electrical power obtained from
hydrogen fuel cells. While most H2 production is usually performed through power costly electrolysis processes,
we assume here that it relies on solar power and photolysis (see [7, 15]), which involve a marginal amount of
external electric power but also make the productivity of the process deeply dependent on the intensity of solar
illumination. In [21], one may find a review about both existing and prospective ways to generate hydrogen from
sunlight and water. While Solar Hydrogen currently remains an uncertain goal, at least from a cost perspective,
the scientific principles behind its generation are well understood: Solar Hydrogen is the largest renewable
carbon-free resource among the other renewable energy options, and it may be produced in an almost fully
autonomous way.

According to this paradigm, energy production/consumption becomes endogenous, and performed according
to a kind of closed loop. It induces a need for high level synchronization between both heterogeneous production
and consumption processes. Still, very few works address the issue of synchronizing endogenous transportation
and energy production processes (see for instance the survey of Drexl [12], in order to get a review of the
contributions related to synchronization in the case of vehicle routing alone). It comes that present work is
about the simultaneous management of, on one side, a fleet of small electric vehicles provided with H2 power
cells, which are required to perform local logistic tasks inside a restricted area, and, on the other side, a micro-
plant in charge of producing the H2 fuel which is going to be periodically loaded into those vehicles. Taken as a
whole, this management involves forecasting, safety (related to vehicle autonomy) ensuring and synchronizing:
one must match the pickup and delivery activity of the vehicles with the H2 production/stock strategy of the
micro-plant. Nevertheless, we only address a very specific part of this problem: we consider only one vehicle,
which is required to perform tasks according to a pre-fixed order. This vehicle starts its route with some H2 fuel
load, and its tank has a limited capacity. Therefore, it must as in [18] periodically go back to the micro-plant in
order to refuel. The micro-plant has a limited production/storage capacity, which depends on solar illumination.
Our goal is to simultaneously schedule both the refueling transactions of the vehicle and the production/storage
activity of the micro-plant, while minimizing production economical cost and the duration of the vehicle tours.

As mentioned in the title of the paper, we focus here on synchronization, and neither deal with uncertainty nor
with the design of the vehicle route. Still, since this very generic word synchronization may refer to very distinct
contexts, among them real time contexts where agents involved into the process are provided with some level
of autonomy, we must explain what we mean here: We do not deal here with real time synchronization of both
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players (vehicle and micro-plant) and on the various protocols required in order to ensure those players to meet
when necessary, even in the case of unforeseen events. Our point of view here remains a standard Combinatorial
Optimization one, and suppose the existence of a central manager in charge of a priori scheduling the activity
of both the vehicle and the micro-plant. It comes that Synchronization refers here to the design of a centralized
static scheduling algorithm and to the way we link together decisions related to the vehicle with those related
to the micro-plant in order to ensure that refueling transactions will be performed in a way consistent with
production, consumption and storage constraints.

So the first contribution of the paper consists of a static model related to resulting collaborative scheduling
problem. We check that this model is NP-Hard, and propose a dynamic programming scheme (DPS), close
to the schemes designed in [3, 11] for energy consumption planning models involving break and set up costs.
Synchronization is contained here into the specific structure of this DPS, which involves compound time and
state sets in order to link together the vehicle and micro-plant processes.

Then this DPS allows us to state a PTAS (Polynomial Time Approximation Scheme) result. Still, in practice,
this theoretical result does not keep it from generating to many states as soon as the size of the model increases.
So we introduce pruning devices, close to the ones which were introduced in [23] by Lozano and Medeglia in their
Pulse algorithm for the Constrained Shortest Path problem. They are either logical based devices, which aim
at anticipating inconsistencies, or upper bound based, involving the pre-computation of a lower bound together
with a feasible initial solution. Part of the study is devoted to an experimental evaluation of the filtering power
of those devices.

The paper is organized as follows: Section 2 provides the Synchronous Management of Energy Production
and Consumption (SMEPC) model, together with an ILP formulation. Section 3 first checks that the SMEPC
model is NP-Hard, next proposes a global DPS for this model, and finally states a Polynomial Time Approxi-
mation Scheme (PTAS) like result. Section 4 introduces the filtering devices: logical ones, lower/upper bound
based filtering devices and heuristic ones. Section 5 is devoted to numerical experiments, which mainly aim at
evaluating the impact of the various filtering devices and the quality of the upper bound heuristic.

2. Synchronized Management of Energy Production and Consumption
(SMEPC)

2.1. The model

We consider here some vehicle which has to perform internal logistics tasks, while following a route Γ which
starts from some Depot node and ends in the same way after going through stations j = 1, . . . ,M , according
to this order. Start-node Depot has label 0 and End-node Depot has label M + 1. The time required by the
vehicle in order to go from j to j + 1 is equal to tj , taking into account the time spent by the vehicle in order
to perform local tasks. The vehicle may leave Depot at time 0 and should finish its route no later than some
threshold time TMax.

It happens now that our vehicle is powered by hydrogen (H2) fuel. The capacity of its tank is denoted by
CVeh and we know, for any j = 0, . . . ,M , the H2 amount ej required in order to move from station j to station
j+ 1. The initial H2 load of the vehicle is denoted by E0, and the vehicle is required to end its trip with at least
the same energy load E0. It comes that the vehicle will have to periodically refuel. Refueling transactions take
place at a micro-plant, close to Depot : The time required by the vehicle in order to move from station j to the
micro-plant (from the micro-plant to j) is denoted by dj (d∗j ); by the same way, the energy required in order to
move from j to the micro-plant (from the micro-plant to j) is denoted by εj(ε∗j ). Quantities dj , d∗j and tj , as
well as quantities ej , εj , ε∗j are non null and satisfy the Triangle Inequality (see Fig. 1).

Figure 2 displays an example of trip performed by the vehicle along station Depot = 0, 1, 2, 3, 4, 5, 6 = Depot,
while refueling between station 1 and station 2, and next between station 3 and station 4. The capacity CVeh

of the vehicle is supposed to be equal to 15 and its initial load E0 is supposed to be equal to 8.
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Figure 1. Notations regarding time and energy values for 2 consecutive stations j and j+1(j =
1, . . . ,M).
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Figure 2. A vehicle trip, with its refueling transactions with M = 5.

On another side, the micro-plant produces H2 in situ from water through a combination of photolysis and
electrolysis. Resulting H2 is stored inside a tank located directly in the micro-plant, whose capacity (in energy
units) is denoted by CMP. We suppose that:

– The time space {0, . . . , TMax} is divided into periods Pi = [p.i, p.(i+ 1)], i = 0, . . . , N − 1, all with a same
length equal to p such that TMax = N.p. For the sake of simplicity, we identify index i and period Pi. If the
micro-plant is active at some time during period i, then it is active during the whole period i, and produces
Ri hydrogen fuel units, with production rate Ri depending on period i. At time 0, the current load of the
micro-plant tank is equal to H0 ≤ CMP and the micro-plant is not active. We impose that the same situation
holds at time TMax.
Figure 3 displays an example of production performed by the micro-plant: periods that are underlined in
red corresponds to the periods when the micro-plant is activated. Periods in blue corresponds to the periods
when the micro-plant is active.

– Because of safety concerns, the vehicle cannot refuel while the micro-plant is producing. Any vehicle refueling
transaction should start at the beginning of some period i = 0, . . . , N − 1, and end at the end of period i.
Since vehicle refueling and energy production are mutually exclusive, the vehicle may wait at the micro-plant
before being allowed to refuel.

– Producing H2 fuel has a cost, which may be decomposed into 2 components:
• An activation cost, constant and denoted by CostF , which is charged every time the micro-plant is

activated. This activation cost is due to the fact that ensuring the safety of activation requires some
human intervention.
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Figure 3. An example of micro-plant activity, with N = 15.

Figure 4. Production rates and time-dependent production costs for the micro-plant of Figure 3.

• A time-dependent production cost CostV
i , which corresponds to the power consumed during period i,

provided that the micro-plant is active during this period: CostV
i is independent on the amount of

hydrogen really produced during period i and is only related to the cost of the electrolysis process which,
combined to some photolysis process, will derive hydrogen from water. The electricity amount required by
this electrolysis process is independent on the amount of hydrogen effectively produced, which depends on
the efficiency of the photolysis process (the lightning). It comes that CostV

i only reflects the time-indexed
prices charged by the electricity provider at period i.

Figure 4 displays production rates and time-dependent production costs for the micro-plant of Figure 3.
Then our Synchronized Management of Energy Production and Consumption (SMEPC) Problem consists in

scheduling both the vehicle and the micro-plant in such a way that:

– The vehicle starts from Depot = 0, visits all stations j = 1, . . . ,M and comes back to Depot at some time
T ∈ [0, TMax], while moving to the micro-plant in order to refuel every time it is necessary.

– The micro-plant produces and stores in time the H2 fuel needed by the vehicle.
– Both induced H2 production cost Cost and time T are the smallest possible. We merge both above criteria

into a unique one: Cost +α.T , where α is a conversion factor from time into economical cost.

Figure 5 below shows the synchronization between the vehicle and the micro-plant of Figures 1–3, which allows
us to get a feasible solution in case p = 2, E0 = 8, H0 = 4, TMax = 30, CostF = 7, CMP = 15, CVeh = 15, α = 1.
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Figure 5. A feasible solution related to Figures 2 and 3.

The global resulting activation cost is 3*7 = 21. The time T is equal to 30. The time-dependent production cost
is equal to 9. Thus, the global cost is equal to 21 + 9 + 30 = 60.

Remark 2.1. We focus here on synchronization mechanisms and so consider a deterministic version of our
problem. Still, in practice, a key issue is about the uncertainty related to the production ratio Ri, i = 0, . . . , N−1.
This issue will be addressed in a future work.

The following Table 1 summarizes the input data for the SMEPC problem.

2.2. A Mathematical Programming oriented formulation

Though Integer Linear Programming is not well-fitted to SMEPC handling, we first propose a Mathematical
Programming oriented formulation, which allows to clearly identify main variables and constraints, and which
comes as follows:

– Production variables.
• z = (zi, i = −1, . . . , N − 1), with {0, 1} values: zi = 1 ∼ the micro-plant is active during period i(i = −1

corresponds to a fictitious period).
• y = (yi, i = 0, . . . , N − 1), with {0, 1} values: yi = 1 ∼ the micro-plant is activated at the beginning of

period i.
• V Tank = (V Tank

i , i = 0, . . . , N − 1), with non negative integer values: V Tank
i is the H2 load of the micro-

plant tank at the beginning of period i.
• δ = (δi, i = 0, . . . , N − 1), with {0, 1} values: δi = 1 ∼ the vehicle is refueling during i.
• L = (Li, i = 0, . . . , N − 1), with non negative integer values: in case δi = 1, Li is the quantity of H2

loaded by the vehicle during period i.
– Vehicle variables.
• x = (xj , j = 0, . . . ,M), with {0, 1} values: xj = 1 ∼ the vehicle refuels while traveling from station j to

station j + 1.
• L∗ = (L∗j , j = 0, . . . ,M), with non negative integer values: if xj = 1, L∗j is the H2 quantity loaded by the

vehicle while traveling from j to j + 1.
• T = (Tj , j = 0, . . . ,M + 1), with non negative integer values: Tj is the time when the vehicle at j.
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Table 1. Input data for the SMEPC problem.

Vehicle related input

M : number of stations (Depot excluded)
Γ = (Depot = 0, 1, . . . ,M , Depot = M + 1): vehicle tour (without refueling)
TMax: maximal time for the vehicle to achieve its tour
CVeh: vehicle tank capacity
E0: initial vehicle hydrogen load
tj : required time to go from station j to station j + 1
dj : required time to go from station j to the micro-plant
d∗j : required time to go from the micro-plant to station j
ej : required energy to go from station j to station j + 1
εj : required energy to go from station j to the micro-plant
ε∗j : required energy to go from the micro-plant to station j
Micro-plant production related input

CMP: micro-plant tank capacity
N : number of production periods
p: duration (in time units) of one production period
H0: initial micro-plant hydrogen load
CostF : activation cost
Pi = [p.i, p.(i+ 1)[: time interval related to production period i
Ri: production rate related to period i
CostV

i : production cost related to period i

• T ∗ = (T ∗j , j = 0, . . . ,M + 1), with non negative integer values: if xj = 1, T ∗j is the time when the vehicle
starts refueling while traveling from j to j + 1.

• V Veh = (V Veh
j , j = 0, . . . ,M + 1), with non negative integer values: V Veh

j is the H2 load of the vehicle
tank when the vehicle arrives in j.

Those variables will be constrained as follows (we use here ILP: Integer Linear Program formalism, and
explain the way some of those constraints must be understood as the linearization of logical implications Big M
technique):

– Objective function. Minimize ∑
i=0,...,N−1

(
CostF .yi + CostVi. .zi

)
+ α.TM+1.

– Production constraints.
• For any i = 0, . . . , N − 1:
◦ −yi + zi ≥ 0;
◦ yi + zi−1 ≤ 1;
◦ zi − zi−1 ≤ yi.

Explanation. Those 2 constraints express the logical equivalence: yi = 1⇔ (zi = 1 ∧ zi−1 = 0).
• For any i = 0, . . . , N − 1 : zi + δi ≤ 1.
• z0 = y0.
• V Tank

0 = H0;V Tank
N ≥ H0.

• For any i = 0, . . . , N − 1 : V Tank
i ≤ CMP.

• For any i = 0, . . . , N − 1 :
◦ V Tank

i+1 = V Tank
i + zi.Ri − Li;

◦ Li ≤ δi.CMP.
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Explanation. Those 3 constraints linearize the quadratic constraint: V Tank
i+1 = V Tank

i + zi.Ri − δi.Li.

– Vehicle constraints.
• T0 = 0;V Veh

0 = E0;V Veh
M+1 ≥ E0.

• For any j = 1, . . . ,M + 1 : V Veh
j ≤ CVeh.

• For any j = 0, . . . ,M : V Veh
j ≥ εj . (E1)

• For any j = 0, . . . ,M :
◦ Tj+1 − (Tj + tj) ≥ −2.xj .TMax;
◦ Tj+1 − (T ∗j + p+ d∗j+1) ≥ −2.TMax.(1− xj).

Explanation. Those 2 constraints linearize, through Big M technique, the quadratic constraint:

Tj+1 ≥ (1− xj). (Tj + tj) + xj .
(
T ∗j + p+ d∗j+1

)
.

• For any j = 0, . . . ,M : T ∗j ≥ Tj + dj .
• For any j = 0, . . . ,M :
◦ L∗j ≤ xj .C

Veh;
◦ L∗j ≤ CVeh + εj − V Veh

j ;
◦ V Veh

j+1 = V Veh
j − ej + xj .(ej − εj − ε∗j+1) + L∗j .

Explanation. Those 3 constraints are the translation of the following logical implication:
◦ xj = 0→ V Veh

j+1 = V Veh
j − ej.;

◦ xj = 1→ V Veh
j+1 = V Veh

j − εj − ε∗j+1 + L∗j .
• TM+1 ≤ TMax.

Remark 2.2. Constraint (E1) means that at any time, the vehicle must be able to go to the micro-plant and
refuel, and relies on the Triangle Inequality for energy coefficients ej and εj .

In order to get a complete formulation, we must explain the way the activities of both the vehicle and the
micro-plant are synchronized. This requires introducing a synchronization variable U = (Ui,j , i = 0, . . . , N −
1, j = 0, . . . ,M) with {0, 1} values, which will tell us, in case the vehicle decides to refuel between station j
and station j + 1, during which period i it will do it.

– Synchronization variables: U = (Ui,j , i = 0, . . . , N − 1, j = 0, . . . ,M) with {0, 1} values: Ui,j = 1 ∼ the
vehicle is going to refuel during period i while traveling from j to j + 1.

Then, we complete our SMEPC formulation with the following synchronization constraints:

– Synchronization constraints:
• For any j = 0, . . . ,M : Σi=0,...,N−1Ui,j = xj .
• For any i = 0, . . . , N − 1, δi = Σj=0,...,MUi,j .
• For any j = 0, . . . ,M, T ∗j ≥ Σi=0,...,N−1p.i.Ui,j .
• For any i = 0, . . . , N − 1 : Li ≤ Min(V Tank

i ,Σj=0,...,MUi,j .(CVeh + εj − V Veh
j )). (E2)

• For any j = 0, . . . ,M : L∗j = Σi=0,...,N−1Ui,j .Li.
• For any j = 0, . . . ,M : Σi=0,...,N−1p.i.Ui,j ≥ Tj + dj − 2.TMax.(1− xj).
• Explanation: This constraint is the linearization, through Big M technique, of the following implication:
xj = 1→ Σi=0,...,N−1p.i.Ui,j ≥ Tj + dj .

Remark 2.3. In practice, we should be able to replace the “≤” in constraint (E2) by a “=” symbol, since in
most case, a good strategy for the vehicle will make it to refuel as much as possible. Still we must be sure that
we avoid producing more than necessary.
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Time value Energy value
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M+1

Q, (H-1)/2Q, (H-1)/2
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1, 1

Figure 6. Vehicle trip (the vehicle refuels at the micro-plant during p = 1 time unit).

3. A Dynamic Programming (DPS) Scheme

We first easily check that, even when CostF is null, SMEPC can be reduced to a Knapsack problem, and so
we state:

Theorem 3.1. SMEPC is NP-Hard.

Proof. Let us consider the following specific instance of SMEPC:

– N is given as an even number N = 3.Q+ 1, where Q is some parameter supposed to be ≥ 2.
– p = 1.
– Scaling parameter α is null.
– Activation cost CostF = 0; Time-Dependent costs CostV

i are null as soon as i ≥ Q.
– TMax = N = 3.Q+ 1.
– Production levels Ri are null as soon as i ≥ Q.
– Both capacities CVeh and CMP are infinite.
– Initial micro-plant load H0 = 0 and initial vehicle load E0 = 1.
– M = 1 and the route Γ = {Depot, 1, Depot} and:
• d1 = d∗1 = Q; d0 = d∗0 = 1;
• t0 = t1 = Q;
• ε1 = ε∗1 = (H − 1)/2, where H is some parameter supposed to be ≥ 2;
• ε0 = ε∗0 = 1;
• e0 = e1 = (H − 1)/2.

Then, we see that the micro-plant must produce H hydrogen energy units during periods 0, . . . , Q − 1, in
such a way that vehicle may leave at date Q − 1 and achieve its tour in 2Q + 1 periods (including p = 1 time
unit to refuel, see Fig. 6) and return to Depot with a tank loaded with one hydrogen energy unit. It comes
then that under those hypothesizes, minimizing the economic cost of the process means solving the following
Knapsack instance:

{Compute a {0, 1}-valued vector Z = (Z0, . . . , ZQ−1) such that:
– Σi=0,...,Q−1Ri.Zi ≥ H;
– Min = Σi=0,...,Q−1CostVi .Zi}.

We conclude. �

Still, as we shall see now, SMEPC lies at the frontier of Time-Polynomiality.
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3.1. The DPS (dynamic programming scheme)

DPS time space and states. The time space of our DPS is the set ∆ of time pairs (i, j), i = 0, . . . , N, j =
0, . . . ,M + 1, provided with its standard partial ordering. We may extend this partial ordering into a linear
ordering in several ways, providing every time pair (i, j) with a successor Succ∆(i, j), for example by setting:

Succ∆(i, j) = (i+ 1, j) if i ≤ N − 1 and Succ∆(i, j) = (0, j + 1) else.

We link periods i and stations j by introducing relations (�, �, ==) which express the relative positioning
of period i and the time T at which the vehicle is at station j. Namely, for any i ∈{0,. . . , N − 1} and T ∈ {0,
. . . , TMax}, we set:

– T � i if T < p.i;
– T � i if T ≥ p.(i+ 1);
– T == i if p.i ≤ T < p.(i+ 1).

Those relations are going to help us in defining the state variables of our DPS scheme. As a matter of fact,
we say that, for any such a time pair (i, j), a state is a 4-uple s = (Z, T, V Tank, V Veh), with:

– Z = 1 ∼ the micro-plant is active at the end of period i− 1, that means at time p.i.
– V Tank and V Veh are respectively the loads of the micro-plant tank at the beginning of period i and the load

of the vehicle tank when it arrives at station j.
– T is a value in 0, . . . , TMax with the meaning:
• if T � i, then the vehicle is on the road to j, which it shall reach at time T ;
• if T � i, then the vehicle is between j and the micro-plant, possibly waiting for being refueled;
• if T == i, then the vehicle is in j, and must choose between keeping on to j + 1 or moving to the

micro-plant in order to refuel.

Remark 3.2. We see that according to this explanation, relative positioning of T and i with respect to the
==, � and � relations acts as an implicit state variable, which will help us in identifying the decisions which
may be associated with a current time pair (i, j) and a current state s, together with their impact.

Decisions. Then a decision D related to a time pair (i, j) and a state s = (Z, T , V Tank, V Veh) is a 3-uple
D = (z, x, δ) in {0, 1}3, with the meaning:

– z = 1 ∼ the micro-plant decides to produce during period i;
– x refers to a decision taken as soon as T == i: in such a case, x = 0 means that the vehicle moves from

station j to station j+1 without refueling; and x = 1 means that it refuels at the micro-plant while traveling
from j to j+1. In the case when x = 0, the induced transition will turn j into j′ = j+1 and i into i′ = i+1,
except in the case when T +tj == i: in this last case, no real decision is taken with respect to the production
and z is equal to 0 by default. If Not (T == i) then x becomes irrelevant and its value is by default equal
to 0, no transition being associated with it.

– δ = 1 ∼ the vehicle is located at the micro-plant and decides to refuel during period i, forbidding the
micro-plant to be active during this period. This means that T � i and that the difference p.i−T is at least
equal to the time required in order to move from j to the micro-plant.

Decision is taken at the end of period i−1. Before providing the detail of preconditions, transitions and costs
related to those states and decisions, we may come back to the example of Section 2.1 and describe the way
states and decisions will evolve according to the feasible solution described in Figure 7 below.

Then Table 2 provides us with the evolution of time pairs (i, j), states s = (Z, T, V Tank, V Veh), decisions
D = (z, x, δ) and costs Cost +α.T , induced by this solution.
Preconditions, transitions and costs related to decisions and states. We are going now to consider
time pair (i, j) a current state s = (Z, T, V Tank, V Veh), and scan the set of all possible decisions D = (z, x, δ).
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Figure 7. A feasible solution related p = 2, E0 = 8, H0 = 4, TMax = 30, CostF = 7, CMP =
15, CVeh = 15, α = 1, together with t, d, e, ε, R coefficients as in Figures 2 and 3.

Table 2. Simulation of the evolution of (i, j), s,D and Cost+ α.T related to Figure 7.

Time pair (i, j) State s = (Z, T, V Tank, V Veh) Solution cost W Decision D = (z, x, δ)

i j Z T V Tank V Veh W = Cost +T z x δ
0 0 0 0 4 8 0 + 0 0 0 0
1 1 0 4 4 3 0 + 4 1 0 0
2 1 1 4 9 3 8 + 4 1 1 0
3 1 1 4 13 3 9 + 4 0 0 0
4 1 0 4 13 3 9 + 4 0 0 1
5 2 0 12 0 12 9 + 12 1 0 0
6 3 1 19 3 9 18 + 19 1 0 0
7 3 1 19 8 9 20 + 19 1 0 0
8 3 1 19 12 9 22 + 19 0 0 0
9 3 0 19 12 9 22 + 19 0 1 0
10 3 0 19 12 9 22 + 19 0 0 0
11 3 0 19 12 9 22 + 19 0 0 0
12 3 0 19 12 9 22 + 19 0 0 1
13 4 0 27 0 12 22 + 27 1 0 0
14 5 1 29 4 10 30 + 29 0 0 0
15 6 0 30 4 8 30 + 30 * * *

For every such a decision D we are going to detail the conditions which will ensure the feasibility of D, the
resulting transition ((i, j), s)→ ((i′, j′), s′) and the cost CT of this transition.

– z = 1, x = 0, δ = 0: the micro-plant produces during period i while the vehicle keeps on as previously. It
requires:
• V Tank +Ri ≤ CMP;
• if T == i, then V Veh − ej − εj+1 ≥ 0 and T + tj � i;
• if T � i then p.(i+ 1) + p+ d∗j+1 + Σk≥j+1tk ≤ TMax.
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If Not (T == i), then x = 0 does not refer to any true decision. We shift from (i, j) to (i+1, j) and resulting
state is s′ = (1, T, V Tank +Ri, V

Veh). Transition cost is (CostF .(1− Z) + CostVi. ).
If (T == i), then the vehicle starts travelling from j to j + 1. We shift from (i, j) to (i + 1, j + 1) and
resulting state is s′ = (1, T + tj , V Tank +Ri, V Veh − ej). Transition cost is (CostF .(1−Z) + CostVi. ) + α.tj .

– z = 1, x = 1, δ = 0: the micro-plant produces during period i and the vehicle decides to move from j to the
micro-plant in order to refuel. It requires:
• T == i;
• V Tank +Ri ≤ CMP;
• Sup(p.(i+ 1), T + dj) + d∗j+1 + p+ Σk≥j+1tk ≤ TMax.

We shift from (i, j) to (i + 1, j) and resulting state is s′ = (1, T, V Tank + Ri, V
Veh). Transition cost is

(CostF .(1− Z) + CostVi ).
– z = 0, x = 0, δ = 0: the micro-plant does not produce during period i and the vehicle keeps on its way. It

requires:
• if T == i, then x = 0 means that the vehicle is fueled enough in order to move from j to j + 1:
V Veh − ej − εj+1 ≥ 0;

• if T + di ≤ p.i then the vehicle previously decided to refuel between j and j+ 1, and is currently located
at the micro-plant. Decision δ = 0 is feasible if the vehicle has enough time to keep waiting, that means:
p.(i+ 1) + p+ d∗j+1 + Σk≥j+1tk ≤ TMax.

If T � i or T � i, then we shift from (i, j) to (i + 1, j), resulting state is s′ = (0, T, V Tank, V Veh), and
transition cost is null.
If T == i then we shift from (i, j) to (i+ 1, j + 1) but in the case when T + tj == i: in this case i remains
unchanged. In any case resulting state is s′ = (0, T + tj , V Tank, V Veh − ej) and transition cost is α.tj .

– z = 0, x = 1, δ = 0: the micro-plant does not produce during period i and the vehicle moves towards the
micro-plant in order to refuel. It requires:
• T == i;
• Sup(p.(i+ 1), T + dj) + d∗j+1 + p+ Σk≥j+1tk ≤ TMax.

Then we shift from (i, j) to (i+ 1, j) and resulting state is s′ = (0, T, V Tank, V Veh). Transition cost is null.
– z = 0, x = 0, δ = 1: the micro-plant does not produce during period i and the vehicle decides to refuel during

period i. It requires:
• T + dj ≤ p.i;
• εj+1 + ε∗j+1 ≤ Inf(CVeh, V Tank + V Veh − εj).

Then we shift from (i, j) to (i+ 1, j + 1) and resulting state is s′ = (0, p.(i+ 1) + d∗j+1, V Tank − Inf(V Tank,
CVeh − V Veh + εj), Inf(CVeh − ε∗j+1, V Tank + V Veh − εj − ε∗j+1)). Transition cost is α.(p.(i+ 1) + d∗j+1 − T ).

Remark 3.3. In the specific case when the energy amount V ∗ the vehicle needs to fuel in order to achieve its
trip until depot with a load at least equal to initial load E0 is less than Inf(V Tank, CVeh − V Veh + εj) then the
resulting s′ is (0, T , V Tank − V ∗, V Veh − εj + V ∗ − ε∗j+1). In such a case, we see that this loading transaction
will be the last one.

– z = 0, x = 1, δ = 1 as well as z = 1, x = 0/1, δ = 1 are forbidden.

Initial and final states. Initial state corresponds to time pair (0, 0) and 4-uple s0 = (0, 0, H0, E0). Final state
corresponds to any time pair (i ≤ N,M + 1), and any 4-uple (Z, T ≤ TMax, V Tank ≥ H0, V Veh ≥ E0).

Bellman equations. With every time pair (i, j) and any state s = (Z, T, V Tank, V Veh), we associate the value
W equal to the smallest possible cost of a sequence of feasible transitions from initial state s0 = (0, 0, H0, E0) at
time (0, 0) to state s = (Z, T, V Tank, V Veh) at time (i, j). Then we implement our DPS according to a forward
driven strategy. For any current time pair (i, j) we denote by S(i, j) what the state subset related to (i, j)
and which is a set of 3-uples (s, W , Father) where W is the above defined value and Father means the pair
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((if , jf ), sf ) where sf is the state related to the time pair (if , jf ) which allowed us to reach the state s at time
pair (i, j).

We scan related state subset S(i, j), and for any such a state s = (Z, T, V Tank, V Veh), we generate the related
feasible decision set Dec((i, j), s). Then, for every such a decision D = (z, x, δ), we generate resulting time pair
(i′, j′) and state s′ = (Z ′, T ′, V Tank′

, V Veh′
), together with the value W + CT, where CT means the cost of the

transition from ((i, j), s)→ ((i′, j′), s′) and W is the value associated with (i, j) and s:

– If state s′ does not appear yet in S(i′, j′) then we insert it into S(i′, j′), together with value W + CT.
– If state s′ already appears in S(i′, j′) with a value W ∗>W + CT, then W + CT becomes the value associated

with (i′, j′) and s′.
– If state s′ already appears in S(i′, j′) with a value W ∗≤W + CT, then we discard s′.

We denote by DPS-SMEPC the dynamic network algorithm designed this way, whose full description may
be summarized as follows.

DPS-SMEPC algorithm.

Input: N,M, TMax, H0, E0, C
MP, CVeh

Output: Current-Sol, Current-Value
Initialization: i← 0; j ← 0;W ← 0;S(0, 0)← {(s0 = (0, 0, H0, E0),W = 0, Father = Undefined)};
Current-Sol←Undefined; Current-Value ← +∞;

Main Loop:
While j + i ≤ N +M + 1 do

For (s, W , Father) in the list S(i, j) do
Generate the feasible Decision Set Dec((i, j), s);
For D = (z, x, δ) in Dec((i, j), s) do

Compute resulting time pair (i′, j′) and state s′ = (Z ′, T ′, V Tank′
, V Veh′

),
together with transition cost CT;
If some 3-uple (s′,W ′, Father ′) already appears in S(i′, j′) and if W ′ > W + CT then

Replace (s′,W ′, Father ′) by (s′,W + CT, (s, i, j));
Else

Insert (s′,W + CT, (s, i, j)) into S(i′, j′); (I1)
EndIf
If (j′ = M + 1) & (T ′ ≤ TMax) & (V Tank ≥ H0) & (V Veh ≥ E0) & (Current-Value > W + CT)
then

Current-Value ← W + CT; Current-Sol ← (s′, (s, i, j));
EndIf

EndFor
EndFor
(i, j) ←Succ∆ (i, j); (I2)

EndWhile

The solution is the sequence of decisions induced by the father field of Current-Sol.
Explanation. Instructions (I1) and (I2).

– As shall be discussed in next Section 4, instruction (I1) has to be strengthened by filtering devices, which
are going to allow us to kill (s′, W ′, Father ′) in case some kind of infeasibility may be forecasted, or in case
we may check that keeping on with the trajectory defined by (i′, j′) and (s′, W ′, Father ′) will not yield a
better solution than an already existing one.

– Instruction (I2) tells us about the way we scan the time space ∆, in a way which is consistent with its
standard partial ordering. Several functions Succ∆ may be involved, which scan ∆ according to rows i, to
columns j, or to diagonal layers.
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Complexity of DPS-SMEPC. The size of the time space of DPS-SMEPC is in O(N.M). The size of its state
space is in O(2.TMax.CVeh.CMP). The size of the decision space related to given time pair (i, j) and given state
s is no more than 8. Testing the feasibility of such a decision and computing resulting state can be performed in
constant time. It comes that the (worst case) time complexity of DPS-SMEPC is in O(N.M .TMax.CVeh.CMP).
This statement raises the issue of the control of values TMax, CVeh, CMP, and provides the motivation for
Sections 3.2 and 4, respectively related to the design of some theoretical PTAS: Polynomial Time Approximation
Scheme and the implementation of some practical filtering devices.

3.2. A Polynomial Time Approximation Scheme

DPS-SMEPC may be in trouble as soon as M and N are large: every state is a 4-uple, with T , V Veh and
V Tank with potentially large values. Still, we may notice that if we consider TMax, CMP and CVeh as bounded
by polynomial functions of N and M , then DPS-SMEPC becomes time-polynomial since the number of states
it involves also becomes bounded by a polynomial function of N and M .

As a matter of fact, we may go further and introduce a FPTAS like rounding scheme as follows.

Rounding States inside the DPS-SMEPC Scheme. L being some integer, then, for any integer n with
binary decomposition n = a0 + a1.2 + . . .+ aq.2q, we set:

– If q ≤ L then Round(n,L) = n else Round(n,L) = aq−K .2q−L + . . .+ aq.2q.
– If q ≤ L then Round* (n,L) = n else Round* (n,L) = aq−K .2q−L + . . .+ aq.2q + 2q−L.

We say that two integral numbers n and m are equivalent modulo the L largest bits if
Round(n,L) = Round(m,L).

Let us come back now to our DPS-SMEPC algorithmic scheme. We first assume that all inputs d, t, e, ε,
Ri, CostF , CostV

i , TMax, CMP and CVeh of our SMEPC model are integers. L being an integral number,
s1 = (Z, T1, V

Tank
1 , V Veh

1 ) and s2 = (Z, T2, V
Tank
2 , V Veh

2 ) being two states of our DPS-SMEPC algorithmic
scheme, we say by extension that they are equivalent modulo the L largest bits if Round(T1, L) = Round(T2, L),
Round(V Tank

1 , L) = Round(V Tank
2 , L), Round(V Veh

1 , L) = Round(V Veh
2 , L).

The DPS-SMEPC (K) Approximation Scheme. Then, being some integer K ≥ 1, we turn the DPS-
SMEPC algorithm of previous Section 3.1 into a parametrized algorithm DPS-SMPEPC (K) by proceeding as
follows:

– We compute L(N,M), with minimal value such that 2L(N,M) ≥ N +M + 1.
– We extend the notion of state, by considering that any state s is a 5-uple (Z,Ω, T, V Tank, V Veh) associated

to a time pair (i, j), where Ω tells us whether T � i(Ω = 0), T == i(Ω = 1), (T � i) ∧ (T + dj>p.i)(Ω =
2), (T � i) ∧ (T + dj ≤ p.i)(Ω = 3): This clearly means that we want to take into account here the fact
(see Rem. 3.2) that relative positioning of T and i through relations �,� and == acts as an implicit state
variable. Because of the rounding effects, which are likely to perturb those relations, we introduce variable
Ω, whose purpose is to explicit the information provided by those relative positioning.

– We do in such a way that, at any iteration of the main loop of our algorithm, the set S(i, j) does not contain
two 3-uples (s1,W1, Father1) and (s2,W2, Father2) such that respectively s1 and s2, as well as W1 and W2,
are equivalent modulo the K + 2.L(N,M) largest bits; We do it while giving priority to the 3-uple (sq,Wq,
Fatherq), q = 1, 2, related to the smallest Wq value.

– We replace initial values H0 and E0 by respectively Round*(H0,K + 1) and Round*(E0,K + 1).
– We relax the time capacity constraint by replacing TMax by Round*(TMax, K); By the same way we relax

the H2 capacity constraints related to both the micro-plant and the vehicle by replacing capacities CMP and
CVeh respectively by Round*(CMP,K) and Round*(CVeh,K): this means that (i, j) being current time pair,
and s being current state, we compute Decision Set Dec((i, j), s) (Instruction (I3) below) in such a way that
the feasibility of any decision D = (z, x, δ) is checked with respect to the time capacity Round*(TMax,
K) and that H2 capacity constraints are checked with respect to H2 capacities Round*(CMP,K) and
Round*(CVeh,K).
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DPS-SMPEPC (K) may be summarized as follows:

DPS-SMEPC (K) algorithm.

Input: N,M, TMax, H0, E0, C
MP, CVeh,K

Output: Current-Sol, Current-Value
Initialization: L ← L(N,M); i ← 0; j ← 0;W ← 0;S(0, 0) ← {(s0 = (0, 0, H0, E0),W = 0, Father =
Undefined)};
TMax ← Round*(TMax, K); CMP ← Round*(CMP,K); CVeh ← Round*(CVeh,K);
H0 ← Round*(H0,K + 1); E0 ← Round*(E0,K + 1);
Current-Sol ← Undefined; Current-Value ← +∞;

Main Loop:
While j + i ≤ N +M+1 do

For (s,W , Father) in the list S(i, j) do
Generate the feasible Decision Set Dec((i, j), s); (I3)
For D = (z, x, δ) in Dec((i, j), s) do

Compute resulting time pair (i′, j′) and state s′ = (Z ′, T ′, V Tank′
, V Veh′

), together with transition
cost CT;
If some 3-uple (s′′,W ′′, Father ′′) already appears in S(i′, j′) such that:
− Respectively s′ and s′′, as well as W+CT and W ′′, are equivalent modulo the K +L largest bits
− W + CT <W ′′,

then
Replace (s′′,W ′′, Father ′′) by (s′,W + CT, (s, i, j));

Else
Insert (s′,W + CT, (s,W , Father)) into S(i′, j′); (I1)

EndIf
If (j′ = M +1)&(T ′ ≤ TMax) & (V Tank ≥ H0) & (V Veh ≥ E0) & (Current-Value > W +CT) then

Current-Value ←W + CT; Current-Sol ← (s′, (s, i, j));
EndIf

EndFor
EndFor
(i, j)← Succ∆(i, j); (I2)

EndWhile

Then we may state.

Theorem 3.4 (Polynomial Time Approximation Scheme). K being fixed, DPS-SMEPC(K) is time-polynomial.
Besides, for any value ε > 0, we may choose K large enough in such a way that in case SMEPC admits an
optimal solution with value WOpt, then DPS-SMEPC(K) yields a solution which is feasible with regards to
initial values (1 +ε/2).H0 and (1 +ε/2).E0, threshold values (1 +ε).CMP,(1 +ε).CVeh and (1 +ε).TMax and
whose cost value Current-Value is no larger than WOpt.

Proof. K being fixed, the fact that algorithm DPS-SMEPC (K) is time-polynomial comes the same way as
when TMax, CMP and CVeh are supposed to be bounded by polynomial functions of N and M : the number
of possible 3-uples (s,W , Father) in the list S(i, j) which we deal with at every iteration of the main loop is
bounded by a polynomial function of N,M and the encoding size of TMax, CMP and CVeh. By the same way,
ε being given, we see that if K is large enough, then the relative error (Round*(TMax, K) − TMax)/TMax
induced by replacing TMax by Round*(TMax, K) does not exceed ε. The same thing holds for capacities CVeh

and CMP.
In order to achieve the proof of Theorem 3.4, we need now to consider an optimal solution SolOpt given

together with its value WOpt. The solution SolOpt may be associated with a sequence of time values (ihjh)h =
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0, . . . H ≤ N +M a sequence of states s0, s1 . . . sH with related value W0, . . . ,WH and a sequence of decisions
D0, . . .DH−1 which induces transitions ((ih, jh), sh),→ ((ih+1, jh+1), sh+1), h = 0 . . . H − 1 and to check that if
K is large enough DPS-SMEPC (K) computes a solution Current-Sol which is feasible with regards to threshold
values (1+ε).CMP, (1+ε).CVeh and (1+ε).TMax and whose cost value Current-Value is no larger than WOpt+ε.
In order to do it, we fix K and prove by induction on h that, for any h = 0, . . . ,H:

– There exists in the set S(ih, jh) computed by DPS-SMEPC (K) some 3-uple (s = (Z, T, V Tank, V Veh),W ,
Father) such that, if we set sh = (Zh, Th, V

Tank
h , V Veh

h ): (E3)
• W ≤Wh;
• Zh = Z;T ≤ Th.(1 + h.2−K/(N +M)); (E3-1)
• V Tank.(1 + h.2−K/2(N +M)) ≤ V Tank

h ≤ V Tank.(1 + h.2−K/(N +M)); (E3-2)
• V Veh.(1 + h.2−K/2(N +M)) ≤ V Veh

h ≤ V Veh.(1 + h.2−K/(N +M)). (E3-3)
We suppose it is true for a given h and try to apply the decision Dh to state sh. We derive from (E3-1) that
applying Dh will not contradict the Round*(TMax, K) threshold. Because of (E3-2), Dh will not make the
load in the micro-plant become negative or exceed Round*(CMP,K). By the same way, (E3-3) implies that
Dh will not make the load in the vehicle be negative or exceed Round*(CVeh,K). It comes that this decision
is going to be feasible Then we see that state s′ = (Z ′, T ′, V Tank′

, V Veh′
) resulting at time value (ih+1, jh+1)

from application of Dh to state s and related value W ′ are going to be such that: (E3’)

• Zh+1 = Z ′;T ′ ≤ Th+1.(1 + h.2−K/(N +M)); (E3-1′)
• V Tank′

.(1 + h.2−K/2(N +M)) ≤ V Tank
h+1 ≤ V Tank′

.(1 + h.2−K/(N +M)); (E3-2′)
• V Veh′

.(1 + h.2−K/2(N +M))) ≤ V Veh
h+1 ≤ V Veh′

.(1 + h.2−K/(N +M)). (E3-3′)
• W ′ ≤Wh+1.

But (E3-1′, E3-2′, E3-3′) combined with propagation rules related to relative errors imply that if (s∗, W ∗,
Father*) is the element equivalent to (s′,W ′) modulo the K + L largest bits which remains in S(ih+1, jh+1)
according to DPS-SMEPC (K) then we have: (E3*)

• Zh+1 = Z∗;T ∗ ≤ Th+1.(1 + (h+ 1).2−K/(N +M)); (E3-1*)
• V Tank ∗ .(1 + (h+ 1).2−K/2(N +M)) ≤ V Tank

h+1 ≤ V Tank ∗ .(1 + (h+ 1).2−K/(N +M)); (E3-2*)
• V Veh ∗ .(1 + (h+ 1).2−K/2(N +M)) ≤ V Veh

h ≤ V Veh ∗ .(1 + (h+ 1).2−K/(N +M)). (E3-3*)
• W∗ ≤Wh+1.

We deduce (E3) for any h = 0, . . . ,H. We conclude by choosing K in such that 2K ≥ (N +M + 1)/ε. �

4. Filtering devices

In spite of above result, we face an issue related to the large number of states when N and M increase, and
so we must think into filtering devices. Clearly, the following strong dominance rule may be applied:

– Strong Dominance rule: for a given time pair (i, j), if 2 related states s1 = (Z1, T1, V
Tank
1 , V Veh

1 ) and
s2 = (Z2, T2, V

Tank
2 , V Veh

2 ) given together with values W1 and W2 are such that:
• W1 ≤W2;T1 ≤ T2;Z1 ≥ Z2;V Tank

1 ≥ V Tank
2 ;V Veh

1 ≥ V Veh
2 ;

• at least one among above inequalities is strict;
then s1 strongly dominates s2, and we kill s2 (i.e. we remove it from the list S(i, j)).

This Strong Dominance rule has little filtering power, since it is too restrictive. Still, other filtering devices
may be implemented, close to the ones which were introduced in [23] by Lozano and Medeglia in their Pulse
algorithm for the Constrained Shortest Path problem, and which are: Heuristic Weak Dominance rule, Logical
filtering rules and Upper/lower Bound based filtering rule.
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4.1. The weak dominance rule

The idea here is to design a flexible device which will help us in keeping the number of states under some
threshold NS. Let A,B,C,D,E be some positive parameters. We proceed in such a way that for any time pair
(i, j), we only keep the NS states with smallest: A.W + B.T − C.Z1 − D.V Tank − E.V Veh. Choosing ad hoc
values (A,B,C,D,E) is an issue by itself. We consider the following money conversion values:

(A,B,C,D,E) = (1, α, CostF , CostV , CostV ), where CostV is the average of CostV
i. , values, i = 0, . . ., N −1.

4.2. Logical filtering rules

Given a time pair (i, j), and a related state s = (Z, T, V Tank, V Veh), the idea here is to anticipate the non
feasibility of a trajectory starting from state s at time (i, j). This non feasibility might be related either to a lack
of time (impossible to achieve the vehicle tour before deadline TMax) or to energy production (impossible to
get enough fuel in order to achieve the tour). More precisely, for any j = 0, . . . , M , we get a rough estimation of
both energy and time required in order to allow the vehicle to return from j to Depot by proceeding as follows:

– Apply the following process:
H ← Σk≥j ej + E0; Not Stop; Refuel ← 0;
While Not Stop do;

Refuel-Aux ← bH/CVehc;
If Refuel-Aux = Refuel then Stop Else
H ← H + Σq=Refuel,...,Refuel−Aux; Refuel ← Refuel-Aux.

The vehicle will have to load at least H − V Veh in order to achieve its journey from j and perform at least
Refuel refueling transactions.

– Denote by Ω0, . . . , ΩM−j , the quantities (εk + ε∗k+1 − ek),M ≥ k ≥ j, labeled in increasing order.
– Denote by ∆0, . . . , ∆M−j , the quantities (dk + d∗k+1 − tk),M ≥ k ≥ j, labeled in increasing order: for any

station j, we denote ∆j = Σk≥jtk + Σq=0,...,Refuel−1∆q: the vehicle needs at least ∆j time units in order to
achieve its trip from j to Depot.

– Denote by Prod-Max (i) the quantity Σk≥iRk: the micro-plant cannot produce more than Prod-Max (i) from
time p.i.

This allows us to state the following filtering rules:
(1) Makespan Based filtering rule: if (∆ ≥ TMax − T + 1) then kill state s = (Z, T, V Tank, V Veh) related to

time pair (i, j), since there is not enough time left for the vehicle to achieve its trip.
(2) Energy Based filtering rule: if H > V Veh+ Prod-Max (i) + V Tank then kill state s = (Z, T, V Tank, V Veh)

related to time pair (i, j), since there won’t be enough energy for the vehicle to achieve its trip.
If we refer to the description of the DPS-SMEPC algorithm of previous Section 3.1, then we see that instruc-

tion (I1): Insert (s′,W + CT, (s,W , Father)) into S(i′, j′), has then to be turned into the following instruction
(I1 1):

Instruction I1 1:
Successively apply to s′ the Strong Dominance rule, the Makespan Based rule and the
Energy Based rule.
If s′ has not been killed then insert (s′,W + CT, (s,W,Father)) into S(i′, j′); (I1 1)

Remark 4.1 (About (worst case) complexity). Though logical filtering devices as those applied in (II 1) will
have a strong impact on the running times of the algorithm, it is not clear that they have also an impact on its
theoretical worst case complexity. In order to prove such an impact, we should be able to quantify the number of
states s which are going to survive in state set S(i, j) for every time pair (i, j), and this is really a difficult issue.
It comes that, at the current time, we must consider that the theoretical worst case complexity of DPS-SMEPC
strengthened by instruction (I1 1) is the same as the complexity which we got in Section 3.1. The same remark
will hold in the case of upper/lower bound based filtering rules.
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4.3. Upper/lower bound based filtering rule

We easily characterize, for any energy amount V and any period number i, the minimal cost Cost-Min(i, V, Z)
required from the micro-plant to produce V energy units between time p.i and time TMax, Z denoting the
state of the micro-plant at the end of period i− 1:

Cost-Min(N,V, Z) = 0 if V = 0 and undefined else;
Cost-Min(i, V, Z) = Inf

[
Cost-Min(i+ 1, V, 0),Cost-Min (i+ 1, V −Ri, 1) +

(
CostF .(1− Z) + CostVi.

)]
.

We implement it through backward driven DPS, and keep in memory the values Cost-Min(i, V, Z), provided
that the scope of values for V is not too large (else we perform some rounding of V values).

Given now a time pair (i, j) and some related state s = (Z, T, V Tank, V Veh) with value W . Then we get a lower
bound LB of the best SMEPC value which may be derived from (i, j) and s by setting: LB((i, j), s) = α.∆j+
Cost-Min(i, (H − V Tank)+, Z).

If we suppose now that we are provided with some SMEPC feasible value Current-Value ,then we may imple-
ment the following filtering rule:

(3) Upper/Lower Bound Based filtering rule: if W + LB((i, j), s) ≥ Current-Value, then kill state s =
(Z, T, V Tank, V Veh), related to time pair (i, j).

If we refer now to the the DPS-SMEPC algorithm of previous Section 3.1, then we replace instruction: (I1):
Insert (s′,W + CT, (s,W , Father)) into S(i′, j′), by the following instruction (I1 2):

Instruction I1 2:
Successively apply to s′ the Strong Dominance rule, the Makespan Based rule and the
Energy Based rule.
If s′ has not been killed then apply to s′ the Upper/Lower Bound Rule.
If s′ has not been killed then insert (s’, W + CT, (s,W , Father)) into S(i′, j′). (I1 2)

4.4. Computing an upper bound through a greedy adaptation of DPS-SMEPC

Turning DPS-SMEPC into a greedy algorithm can be done by using our dynamic programming scheme and
performing a forward driven route in the SMEPC state network according to the best LB value. As a matter of
fact, we only need to apply the weak dominance filtering mechanism of previous Section 4.1 with NS = 1. Once
it has been done, we shall modify the Initialization step of the DPS-SMEPC algorithm of previous Section 3.1,
by setting: Current-Value ← Val-Greedy ; Current-Sol ← Sol-Greedy.

As usual, it will be possible, by introducing some random sorting device inside the procedure in charge of
choosing an ad hoc decision D, to make this greedy algorithm work in a non deterministic way and perform it
according to the multi-start paradigm.

Still, while adapting DPS-SMEPC in order to restrict the weak dominance rule of Section 4.1 to the case
when NS = 1, we must take care of avoiding deadlock strategies which would make both the micro-plant and
the vehicle wait for better prices CostV

i and production values Ri. Since our ability to anticipate inconsistencies
related to a lack of time or a lack of energy refueling capacity only derives from approximation devices, there is
a risk that such waiting strategies may make our process fail in computing some feasible solution. So, in order
to make this risk of failure decrease, we forbid:

– decision (z = 0, x = 1) related to situations when T == i and the micro-plant tank is not loaded enough in
order to allow to fully refuel the vehicle;

– decision (z = 0, x = 0) related to situations when T � i and (p.i− T ) ≤ dj , and the micro-plant tank is not
loaded enough in order to allow to fully refuel the vehicle;

– decision (z = 0, x = 0, δ = 0) related to situations when T � i and (p.i− T ) ≥ dj .

Then the Greedy-SMEPC greedy algorithm comes as follows:
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Greedy-SMEPC algorithm

Input: N,M, TMax, H0, E0, C
MP,CVeh

Output: Current-Sol, Current-Value
Initial state s← (0, 0, H0, E0); Related value W ← 0; Time pair (i, j)← (0, 0); Not Stop;
While Not Stop do

Set current state s = (Z, T, V Tank, V Veh), related value = W and current time pair = (i, j);
Pick up a feasible (in the sense of Sect. 3) decision (z, x, δ) such that:
− Decision (z, x, δ) is not forbidden according to above prohibition rules;
− Resulting state s1 = (Z1, T1, V

Tank
1 ,V Veh

1 ) is not killed at resulting time (i1, j1) by the above
logical filtering devices;

− W+ Transition-Cost + LB((i1, j1), s1) is the smallest possible, where Transition-Cost means the cost
of the transition induced by applying (z, x, δ) to s at time pair (i, j)

If (z, x, δ) does not exists then
Stop (Failure); Sol-Greedy ← Undefined ; Val-Greedy ← +∞;

Else If j1 = M+ 1 then
Stop (Success);
Derive Val-Greedy = W+ Transition-Cost and related solution Sol-Greedy = (s1, (s, i, j));
Else Apply decision (z, x, δ): Update i, j, s and W accordingly.
EndIf

EndIf
EndWhile

Clearly we may make this greedy algorithm work in a non deterministic way and perform it according to the
multi-start paradigm.

5. Numerical experiments

Purpose. What we want here is to get an evaluation of the impact of the filtering devices described in Section 4
and the quality of the greedy procedure described in Section 4.2. This impact is two-sided: (1) It makes decrease
the number of states which are handled throughout the process. (2) It may induce a gap to optimality.
Technical context. Algorithms were implemented in C++, on a computer running Windows 10 Operating
system with an IntelCore i5-6500@3.20 GHz CPU, 16 GB RAM and Visual Studio 2017 compiler.
Instances. Instances are generated as follows:

– We fix N,M and p and randomly generate stations j and Depot and the Micro-Plant as point of the R2

space.
– Then dj , d

∗
j and tj , ej , εj , ε

∗
j respectively corresponds to Euclidean distance and Manhattan distance round-

ings, in such a way they take integral values.
– Then we fix CMP, CVeh and TMax, in such a way it ensures the existence of a feasible solution.
– Finally, we fix the cost coefficients, in such a way that the fixed cost CostF is at least equal to the largest

coefficient CostV
i , i = 0, . . . , N − 1.

In the case of this experimental section, we use a package of 15 instances, while making vary N,M, p, as well
as the economic costs CostF and CostV

i , i = 0, . . . , N − 1, and fixing CVeh = 20, and CMP = 50, TMax = 200.
Main characteristics of the 15 instances package, where Mean CostV denotes the average value CostV

i for
i = 0, . . . , N − 1, may be summarized inside the following Table 3.
Instance website. Instances are available at the following address:
https://perso.limos.fr/~hetoussa/doc/Instances_RAIRO_2021.zip.
Outputs. For any instance, optimality is achieved through exact DPS-SMEPC and so:

https://perso.limos.fr/~ hetoussa/doc/Instances_RAIRO_2021.zip
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Table 3. Instances.

Instance M N p CostF Mean CostV

1 4 15 4 1 1.0
2 8 25 4 21 1.1
3 8 26 4 12 4.1
4 8 26 4 15 2.8
5 8 27 4 22 2.1
6 8 30 4 22 3.5
7 10 17 4 9 5.4
8 10 19 4 9 2.1
9 10 20 4 8 2.3
10 10 36 2 25 4.6
11 10 50 4 7 3.3
12 10 57 2 13 1.9
13 10 78 1 3 4.2
14 12 32 4 31 4.7
15 14 45 4 22 6.2

(A) We first run a multi-start version of Greedy-SMEPC with 50 replications, and compute related gap G G to
optimality (in %), together with related CPU time G T (in seconds).

(B) Next we run heuristic DPS-SMEPC (NS), with NS as described in Section 4.1 and ranging from 20 to
100, in such a way that no more than NS states are allowed for every time pair (i, j). DPS-SMEPC (NS)
involves the filtering rules described in Sections 4.2 and 4.3. For every instance, we compute gap W G(NS)
to optimality (in %), together with related CPU time W G(NS) (in seconds).

(C) Finally we run exact DPS-SMEPC according to the prospect of evaluating the impact of the filtering rules
described in Sections 4.2 and 4.3. It comes that we successively run DPS-SMEPC :
(1) while only using the Strong Dominance rule: then, ST(1) denotes the maximal number of states which

have been generated this way for a given time pair (i, j) and T (1) denotes related CPU time (in seconds);
(2) while using the Strong Dominance rule as well Logical Filtering rules: then, ST(2) denotes the maximal

number of states which have been generated this way for a given time pair (i, j) and T (2) denotes related
CPU time (in seconds);

(3) while using the Strong Dominance rule as well Logical Filtering rules and Upper/Lower Bound based
filtering rule, implemented while using the best value (according to Tab. 2) W G(100): then, ST(3)
denotes the maximal number of states which have been generated this way for a given time pair (i, j)
and T (3) denotes related CPU time (in seconds). ST(0) means the maximal number of possibly existing
states for a given (i, j).

Results. Results related to (A) and (B) are summarized in Table 4. Results related to (C) are summarized in
Table 5.

Comments. One sees that, while the filtering rules based on Strong Dominance have little filtering impact,
those based upon logical anticipation and optimistic estimation are significantly more efficient. The introduction
of the lower/upper bound filtering device has a very strong impact when the quality of the upper bound is good,
as it is the case with the W G(100) values of Table 4. Still, we keep on handling a large amount of states as soon
as M and N become large. As for the greedy algorithm, it happens that in some cases, it applies excessively
waiting strategies, and thus fails into getting good results, even through randomization. We should now try to
make the process become more robust by applying an approximation DPS scheme involving a smaller number
of states. It will be the purpose of a fore coming study.
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Table 4. Values G-Gap,W -Gap(x).

Inst. G G
(%)

G T
(s)

W G(20)
(%)

W T (20)
(s)

W G(50)
(%)

W T (50)
(s)

W G(100)
(%)

W T (100)
(s)

1 2.2 0.1 2.2 0.1 0 0.1 0 0.2
2 33 0.3 31.5 0.4 10.2 0.6 0 1.0
3 5.2 0.4 5.2 0.4 0 0.7 0 1.2
4 31.2 0.2 30.5 0.3 19.9 0.4 0 0.7
5 0 0.1 0 0.1 0 0.1 0 0.2
6 12.1 0.3 12.1 0.3 21.6 0.5 0 0.9
7 23.1 0.2 10.8 0.3 0 0.5 0 0.8
8 19.6 0.1 19.6 0.2 15.9 0.3 0 0.4
9 2.5 0.2 0.8 0.2 0.8 0.3 0 0.4
10 44.3 0.3 42.3 0.4 37.1 0.6 0 1.1
11 6.9 0.4 6.9 0.6 6.9 1.1 6.1 2.0
12 11.3 0.6 10.6 0.8 9.2 1.3 6.4 2.2
13 47.9 0.7 42.6 1.0 35.1 1.7 9.6 2.8
14 6.4 0.3 6.4 0.4 5.7 0.7 2.7 1.2
15 17.7 0.8 19.0 1.0 14.8 1.6 1.3 2.7

Table 5. Values ST(0),ST(1),ST(2),ST(3).

Inst. ST(3) T (3) (s) ST(2) T (2) (s) ST(1) T(1 ) (s) ST(0)

1 28 0.1 421 0.2 974 0.4 576 000
2 1350 2.1 16 658 49.2 33 424 103.3 705 600
3 916 1.7 13 476 22.0 30 023 50.01 718 848
4 121 0.2 10 989 11.5 38 261 40.1 2 416 128
5 312 0.2 48 501 181.4 97 751 373.6 876 096
6 3014 4.0 13 608 27.3 29 650 63.1 1 614 720
7 35 0.1 6013 10.0 13 141 22.8 199 920
8 101 0.1 887 0.7 4573 3.8 291 840
9 403 0.3 1718 1.1 3854 3.3 291 600
10 49 0.1 28 876 140.5 59 568 299.5 1 559 520
11 9675 66.7 118 795 1227.7 238 753 247.5 3 136 000
12 1988 11.7 16 028 135.7 36 244 292.3 1 206 120
13 10 329 121.9 31 810 492.9 74 802 1059.6 1 137 240
14 10 260 19.1 11 589 32.2 31 347 84.4 602 112
15 11 202 70.6 28 073 243.8 57 645 529.9 2 903 040

6. Conclusion

We have been presenting here a dynamic programming scheme in order to solve a scheduling problem which
requires synchronizing tasks performed by vehicles with an energy production process. Many issues remain to
be addressed:

– Extending our approach to several vehicles.
– Dealing with uncertainties related to H2 production.
– Casting the routing issue into the decision process.

Most of all, we plan adapting the previously described DPS scheme in order to make it work in a more robust
way and involve a smaller number of states.
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