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OPTIMIZATION MODELS FOR A LOT SIZING AND SCHEDULING PROBLEM
ON PARALLEL PRODUCTION LINES THAT SHARE SCARCE RESOURCES

Willy Alves de Oliveira Soler1,∗, Maristela Oliveira Santos2

and Socorro Rangel3

Abstract. The purpose of this paper is to propose mathematical models to represent a lot sizing
and scheduling problem on multiple production lines that share scarce resources and to investigate the
computational performance of the proposed models. The main feature that differentiates this problem
from others in the literature is that the decision on which lines to organize should be taken consid-
ering the availability of the necessary resources. The optimization criterion is the minimization of the
costs incurred in the production process (inventory, backlogging, organization of production lines, and
sequence-dependent setup costs). Nine mixed integer optimization models to represent the problem are
given and, also, the results of an extensive computational study carried out using a set of instances
from the literature. The computational study indicates that an efficient formulation, able to provide
high quality solutions for large sized instances, can be obtained from a classical model by making the
binary production variables explicit, using the facility location reformulation as well as the single com-
modity flow constraints to eliminate subsequences. Moreover, from the results, it is also clear that the
consideration of scarce resources makes the problem significantly more difficult than the traditional
one.
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1. Introduction

The lot sizing problem has been studied since 1913 when it was introduced by Ford Whitman Harris to
determine the optimal size of production lots [12]. The scheduling problem consists of determining the order in
which the lots are produced in each period of a planning horizon. It was introduced in the 1950s by Johnson’s
research addressing the flow shop problem (e.g., [10]). These two problems are very important for many com-
panies and they can be addressed using hierarchical approach where the solution obtained from solving the lot
sizing problem is used as input data for the scheduling problem. However, as highlighted in [3], this hierarchical
approach might result in sub-optimal or even infeasible solutions (i.e., the production levels obtained solving
the lot sizing problem cannot be sequenced due to setup times and capacity constraints). Therefore, there is a
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Figure 1. Framework of the problem under consideration.

great interest in developing approaches to deal with the simultaneous lot sizing and scheduling problem (LSP).
There are various studies in the literature that address the LSP proposing mathematical optimization models
and/or specific solutions approaches, for example [2, 4, 13, 15–17,26]. Recent reviews of models for the LSP are
presented in [6, 13].

an extension of the LSP in which multiple production lines share the same scarce resources such as workers,
machines, and tools. At the beginning of each period, the resources are assigned to the production lines in
order to organize them. Once the lines are organized, they remain so until the end of that period. As there are
not enough resources to simultaneously organize all production lines, it is necessary to choose a subset of lines
to operate in each period. This aspect of the problem is illustrated in Figure 1: “Requirements of the lines”
presents the resources necessary to organize each one of the three production lines considered in this example,
while “Available resources” presents the production resources available in the factory. Due to the scarcity of the
resources, it is not possible to simultaneously organize all three production lines. Therefore, in each period, the
managers need to choose one of the three production layouts presented in “setting 1”, “setting 2” and “setting
3” to produce the items. Moreover, we suppose that the lines are specialized, in other words, for each product,
only a subset of lines is able to produce it. Thus, the lines chosen to be organized in any given period impacts
the set of products that can be produced in that period. The problem is also characterized by the existence of
backlogging (penalized in the objective function) and sequence dependent setup times and costs.

This problem was introduced in [24] motivated by the production process adopted by some Brazilian food
companies. To handle the problem, mixed integer mathematical optimization (MIP) models and a MIP-based
heuristic were proposed in [24]. The heuristic was able to provide good solutions for the problem, outperforming
the branch-and-cut algorithm of a commercial solver and others MIP-based heuristics from the literature within
a limited running time of several hours. We note that, in [24], only two models were proposed with a lack of
results about their computational efficiency considering alternative formulations. Besides that, the two models
consider specific characteristics of the food industry, such as perishable products. Our paper considers the
sharing of scarce resources across multiple production lines in a general framework that can be easily extended
to deal with problems arising in a range of different production environments. Moreover, among the different
formulations proposed in this paper, there is one that significantly outperforms the models used in [24].
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Summarizing, the problem considered in this paper consists in simultaneously deciding: i) which production
lines to organize in each production period; ii) the sequence in which the items are produced on each line; and iii)
the size of the production lots; ensuring that the capacity constraints of the production resources necessary to
organize the lines and the production capacity constraints of the lines to be used are respected. The optimization
criterion considered is the minimization of the total costs incurred in the production process. The problem is
denoted as Lot sizing and Scheduling Problem on Parallel Lines Sharing Scarce Resources (LSP-PLSR). Besides
the application of this problem to the production planning in a meat company (as described in [24]), the sharing
of scarce resources by multiple production lines also occur in other industrial contexts such as in the automotive
industry [14], semiconductor and soft drinks industries [4], as well as the block erection scheduling problem in
a shipyard [1].

In this paper we propose nine mathematical optimization models for the LSP-PLSR. We begin by extending
the GLSP (General Lot Sizing and scheduling Problem [9]) and the CLSD (Capacitated Lot sizing with Sequence
Dependent setup costs problem [15]), two of the most used models in the literature for the LSP, to consider the
LSP-PLSR. The other seven models are obtained from reformulations of these models (two reformulations for
the GLSP model and five for the CLSD model) in order to study the computational impact of some modeling
strategies regarding three aspects:

– explicit use of binary variables to model the setup states of the lines (for short: binary production variables).
Originally, in the GLSP model these variables are explicit, while in the CLSD model they are implicit.
Therefore, we have developed reformulations making these variables implicit (explicit) in the GLSP (CLSD)
model;

– sequencing modelling strategy. In the CLSD model, constraints are used to eliminate solutions presenting
disconnected sub-sequences and most papers in the literature use the traditional MTZ constraints for this
purpose. In this paper, we also investigate the use of single commodity flow (SCF) constraints proposed in
[11]. Moreover, through the GLSP model, we can study the micro period strategy to model the sequencing
decisions;

– facility location (FL) reformulation of the lot sizing decisions. This strategy was proposed in [8] to model
the production variables associated with the lot sizing decisions. For the LSP-PLSR, the performance of
this reformulation may depends of other aspects. Therefore, we study the FL reformulation for some of the
models obtained.

Besides proposing nine mathematical optimization models combining modeling strategies that has not yet
been considered simultaneously in the literature for the LSP-PLSR, our contributions also comprise an extensive
computational study that includes performance and sensitivity analysis. In the performance analysis, we identify
the most promising formulation and study the computational impact of each adopted modeling strategy, while
in the sensitivity analysis, we study the computational impact of the scarcity rate of the production resources.

The remainder of the paper is organized as follows. Section 2 presents the related researches with emphasis
on the mathematical optimization models that serve as the basis for the nine proposed MIP models presented
in Section 3. In Section 4 we present the computational study framework and the associated results. Finally,
Section 5 concludes the paper by highlighting our main contributions and indicating potential directions for
future researches.

2. Literature review

The simultaneous lot sizing and scheduling problem (LSP) consists of determining the sizes and the sequence
of production lots in order to minimize the production costs and meet customer demands. The LSP can be
represented by different mixed integer programming models. Some of the most general-purpose models for the
LSP were proposed in [5, 9, 15,20].

In [9], the general lot sizing and scheduling (GLSP) model was introduced considering that multiple items
(with demands known for each period of a finite planning horizon) need to be produced on a single machine. The
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GLSP model also considers sequence-dependent setup costs and production capacity constraints. The main idea
of the GLSP model is to split each period into several smaller periods (micro periods) with varying sizes and
such that only one item can be produced in each micro period. By defining which items are produced in each
micro period, the production lot sequence is then automatically determined. The GLSP model was reformulated
in [25] by using constraints from models for the network flow problem to model the sequencing decisions. In [5],
the GLSP model was also reformulated by suppressing the setup state variables (CC model).

The GLSP model was extended in [21] to consider multiple production lines (GLSPPL model). In the GLSPPL
model, each production line is considered as an automatic flow between production processes and workstations,
so that each production line can be considered as a single machine. In the original GLSPPL model, all products
can be produced on any production line and the lines are always prepared for production.

Instead of splitting the periods into micro periods, the capacitated lot sizing with sequence dependent setup
costs (CLSD) model proposed by [15] uses the structure of the mathematical models for the travelling salesman
problem (TSP) to obtain the sequencing of the lots. More specifically, they used the MTZ (Miller, Tucker and
Zemlim, e.g., [19]) subtour elimination constraints. Recently, in [13], the GLSP, CC, and CLSD models were
studied with respect to the computational performance when they were solved by a Branch-and-Cut algorithm
from a commercial solver. The authors also analyzed the reformulation based on the facility location problem,
proposed in [8] for these models. Additionally, for the CLSD model, different constraints for sub-sequences
elimination were considered instead of the traditional MTZ constraints (used in [15]). The results presented in
[13] indicate that for the single machine LSP:

– the reformulation proposed in [25] performs better than the original GLSP model;
– the CC model performs better than the reformulation proposed in [25];
– the facility location reformulation improves the performance of the CC and CLSD models, but it is not

useful for the GLSP model;
– the CLSD model performs better using the single commodity flow (SCF) constraints than using the MTZ

constraints;
– the performance of the CC and CLSD models are very similar. More specifically, the CC model obtained

better solutions than CLSD model (using the MTZ constraints), while the CLSD model obtained better
solutions than the CC model when the SCF constraints were used instead of the MTZ constraints.

To the best of our knowledge the computational behavior of these different strategies used to obtain the sequence
of lots has not been compared in the case of the LSP with parallel production lines.

In the literature, there are various strategies to mathematically represent problems based on observations
made in real-world production environments. Many of them extend some of the basic models already mentioned
and add variables and constraints to deal with the additional characteristics from the specific production envi-
ronment being considered. For example, in [18], the CLSD model was extended to address an LSP in a yogurt
factory which operates parallel machines and groups the items into product families. In [26], the CLSD model
was adapted to deal with an LSP on parallel machines where each item can be produced on all machines but, for
each item, there is a preferred machine for production and a bonus is computed in the objective function when
an item is produced on its preferred machine. Recently, in [2] the GLSP was extended to consider companies
that produce perishable food products on multiple parallel production lines.

Among the papers addressing problems similar to the LSP-PLSR, we highlight [1, 4]. In [4] the GLSP and
the CLSD models were extended to consider an industrial environment where parallel production lines need
to be equipped with secondary resources (tools) for processing and due to the scarcity of these secondary
resources, their use was synchronized along the production lines. This problem differs from the LSP-PLSR
because all production lines can simultaneously operate, but for each line configuration, only some products
can be produced. Besides that, in [4] only two out of the nine strategies studied here are considered. In [1], a
scheduling problem was addressed in which several production lines share scarce secondary production resources,
such as, labor, tools, pallets, and industrial robots. The aim is to minimize the makespan and the lot sizing
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Table 1. Parameters for the LSP-LPSR.

T,L Number of periods (indexed by t and t′), and of production lines (indexed by l)
Slt Set of micro-periods in period t and on line l (only for the

GLSP model and its reformulations). The micro-periods are indexed by s
J,K Number of products (indexed by i, j), and of resources (indexed by k)
djt, Clt Demand of product j, and production capacity (in minutes) of line l in period t
alj ,mlj Production time per unit and the minimum lot size of product j on line l
hj , bj Inventory and backlogging costs per unit of product j
sclij , stlij Setup cost and time for changeover from product i to j on line l
rkl Amount of resource k necessary to organize production line l
Rkt Capacity of resource k in period t
acl Cost of organizing line l
γlt Maximum number of products that can be produced on line l in period t
Pl Set of products that can be produced on line l

aspect is not addressed. Moreover, only one model was considered without presenting a discussion about the
efficiency of the used modeling strategy and heuristic approaches were developed to find feasible solutions.

The LSP-PLSR was introduced in [24]. The authors have proposed an extension of the CLSD model and a
reformulation exploring only one modeling aspect (explicit use of binary variables to model the setup states of
the lines) the production binary variables) with a lack of results about the efficiency of those models. Moreover,
a very successful relax-and-fix heuristic was developed able to deliver high quality feasible and dual solutions.
In this paper, we study and compare different modeling strategies to represent the LSP-PLSR with the aim of
obtaining models better than the formulations proposed in [24]. In this case, we note that as the relax-and-fix
heuristic proposed in [24] depends of the mathematical formulation of the problem, it might be improved by
using a better model. Moreover, the modeling insights obtained in this study can be used to develop stronger
models to deal with similar problems such as the problems addressed in [1, 4].

In Section 3, the mathematical models mentioned above are extended to represent the LSP-PLSR. Novel
model proposals are presented based on variations of these traditional models exploring modeling aspects related
to: i) expliciting the binary production variables; ii) sequence decisions; and iii) the facility location reformulation
of the lot sizing decisions.

3. Models for the LSP-PLSR

In this section we present nine models to represent the LSP-PLSR. Two of them are extensions of the general
models GLSP and CLSD to consider the particularities of the LSP-PLSR (Sect. 3.1). These two models were
specifically chosen because they have been extensively and successfully used in the literature to deal with LSPs
and, through these two models, we can study different strategies to model the sequence decisions in the LSP-
PLSR. Another two models are based on reformations of the GLSP as proposed in [5] and in [8] (Sect. 3.3).
The other five models are obtained by reformulations of the CLSD model inspired in the proposals given in
[8,11,13,23] (Sect. 3.6). The main characteristics of the proposed models and a preliminary analysis with respect
to their total number of continuous/binary variables are given in Section 3.8. The constraints (and objective
functions) referring to the GLSP based models are labeled by (G.) while the constraints referring to the CLSD
based models are labeled by (C.). The constraints used in both models are labeled by (B.) and the auxiliary
constraints that are not explicitly used in the models are labeled by (A.).

3.1. General models: GLSP and CLSD

In this section, we extend the general models GLSP [21] and CLSD [15] to consider the LSP-PLSR. Table 1
presents the parameters that are used to define the models, while the decision variables are shown in Table 2.
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Table 2. Decision variables for the GLSP and CLSD models.

Common variables Description

Ijt Inventory level of product j at the end of period t
Bjt Backlogging level of product j at the end of period t
δlt 1 if line l is organized in period t and 0 otherwise

Specific variables Description
GLSP CLSD
xljs xljt Amount of item j produced on line l in micro period s/period t
zlijs zlijt 1 if there is change of production from product i to product j

on line l in micro period s/period t and 0 otherwise
wljs wljt 1 if line l is setup for product j in micro period s/period t

and 0 otherwise
– yljt 1 if item j is the first item produced on line l in period t

and 0 otherwise
– Vljt Order of production of item j on line l in period t

– Objective function. The objective function consists of minimizing the total costs incurred in the production
process. More specifically, we consider the inventory holding, backlogging and setup costs and the costs of
organizing the production lines. Therefore, in the GLSP model, the objective function is given by (3.1),
while, in the CLSD model, it is given by (3.2).

Min
∑
j

∑
t

(hjIjt + bjBjt) +
∑
l

∑
i∈Pl

∑
j∈Pl

∑
s∈Slt

sclijzlijs +
∑
l

∑
t

aclδlt (3.1)

Min
∑
j

∑
t

(hjIjt + bjBjt) +
∑
l

∑
i∈Pl

∑
j∈Pl

∑
t

sclijzlijt +
∑
l

∑
t

aclδlt. (3.2)

– Inventory balance constraints. The inventory balance constraints for the GLSP and CLSD models are given
by (3.3) and (3.4), respectively.

Ijt −Bjt = Ij,t−1 −Bj,t−1 +
∑
l,s∈Slt

xljs − djt, ∀j, t (3.3)

Ijt −Bjt = Ij,t−1 −Bj,t−1 +
∑
l

xljt − djt. ∀j, t (3.4)

Besides that, we need to ensure that the customer demands are fully met until the end of the planning
horizon. Therefore, we include the constraints (3.5) in both models.

BjT = 0. ∀j (3.5)

– Capacity constraints. We consider that each organized production line has a limited production capacity
(time) in each period. For each period t and production line l, constraints (3.6)/(3.7) ensure that the sum of
the time consumed with the production of items and with the setup procedures does not exceed the available
production capacity Clt. ∑

j∈Pl,s∈Slt

aljxljs +
∑

i,j∈Pl,s∈Slt

stlijzlijs ≤ Clt, ∀l, t (3.6)

∑
j∈Pl

aljxljt +
∑
i,j∈Pl

stlijzlijt ≤ Clt. ∀l, t (3.7)
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– Setup state and minimum lot sizes constraints. Constraints (3.8)/(3.9) ensure that each product can only be
produced if the respective production line is setup for that item. Moreover, these constraints introduce the
minimum lot sizes mj , i.e., if line l is set up for item j at least mj units of item j need to be produced on
that line. Note that in the LSP-PLSR addressed here, setup carry-over is not allowed because the resources
can be removed from the lines at the end of the periods, and when this happens, the setup state of the lines
are dropped. Hence, for the first micro period of each period t and line l (flt) constraints (3.10) are used
instead of (3.8).

mj(wljs − wlj,s−1) ≤ xljs ≤
Clt
alj

wljs,∀l, t, j ∈ Pl, s ∈ Slt \ {flt} (3.8)

mj

yljt +
∑

i∈Pl\{j}

zlijt

 ≤ xljt ≤ Clt
alj

yljt +
∑

i∈Pl\{j}

zlijt

 ,∀l, j, t (3.9)

mjwljs ≤ xljs ≤
Clt
alj

wljs,∀l, t, j ∈ Pl, s = flt (3.10)

– Sequencing constraints. In the GLSP model, we include constraints (3.11) to capture the changes of produc-
tion on each line for each period. More specifically, constraints (3.11) ensure that if production line l is set
up for item j in a micro period s (i.e., wljs = 1) and it was set up for item i (with i 6= j) in the previous
micro period s − 1 (wli,s−1 = 1), then there is a change of production from item i to j on line l for micro
period s (i.e., zlijs = 1).

zlijs ≥ wli,s−1 + wljs − 1,∀l, t, i, j ∈ Pl, s ∈ Slt \ {flt}. (3.11)

Since setup carry-over is not allowed, constraints (3.11) are not used in the first micro period of each period
and line. Moreover, we consider that the setup procedures to produce the first product in a given period and
line can be made together with the procedures to organize the lines without increase in time/cost. Hence,
the setup time and cost to produce the first item in each period and line are not considered.

In the CLSD model, the sequencing decisions are modeled using constraints (3.12), (3.13), and (3.14).
More specifically, constraints (3.12) impose that if a production line is organized, only one product can be
the first one to be produced on that line, while constraints (3.13) are the flow balance for sequencing of lots.
Constraints (3.14) are the MTZ constraints, proposed in [22] and originally used by [15] in the CLSD model,
to eliminate solutions presenting disconnected sub-sequences. The auxiliary variables Vljt can be interpreted
as an indication of the position in which product j is produced on line l and period t. Constraints (3.14)
then ensure that if there is change of production from product i to product j, then the position of product
j is greater than the position of product i in the production sequence.∑

j∈Pl

yljt ≤ δlt, ∀l, t (3.12)

yljt +
∑

i∈Pl\{j}

zlijt ≥
∑
i∈Pl

zljit, ∀l, j ∈ Pl, t (3.13)

Vljt ≥ Vlit + 1− γlt(1− zlijt). ∀l, t, i, j, i 6= j (3.14)

– Constraints to ensure that the products are produced only on organized production lines. In the GLSP model,
constraints (3.15) ensure that the products can only be produced on organized lines and that, in each
micro period, the organized lines are set up for exactly one item. Indeed, since wljs ∈ {0, 1},∀l, j, s and
δlt ∈ {0, 1},∀l, t, given line l and period t, by constraints (3.15) wljs = 0,∀j, s ∈ Slt if and only if δlt = 0,
i.e., there is no production on line l when this line is not organized. On the other hand, constraints (3.15)
also ensure that if δlt = 1 then for each s ∈ Slt there exists a product j such that wljs = 1, i.e., the organized
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production lines are always set up for one product.∑
j∈Pl

wljs = δlt. ∀l, t, s ∈ Slt (3.15)

Let Slt = {flt, . . . , ult} the set of micro periods in period t for line l. The assumption that at most γlt
different products can be produced on each line in a given period is stated in the GLSP model ensuring that
ult − flt = γlt − 1,∀l, t in the input data.

As for the CLSD model, constraints (3.16) ensure that at most γlt − 1 changes of products can be made
on each organized line and period while there are no changes of products on lines not being used. Therefore,
constraints (3.16) together with constraints (3.14) ensure that a maximum of γlt products can be produced
on each organized line and period and that there is no production on lines not being used.∑

i,j∈Pl

zlijt ≤ (γlt − 1)δlt. ∀l, t (3.16)

– Capacity constraints of the production resources. In this problem, we need to ensure that the amount of
each resource k used in each period to organize the production lines does not exceed the availability of that
resource. Therefore, we include constraints (3.17) in the both models.∑

l

rklδlt ≤ Rk. ∀k, t (3.17)

– Domain of the decision variables. Constraints (3.18)–(3.20) and (3.21)–(3.23) define the domain of the specific
variables used in the GLSP and CLSD models, respectively.

xljs ≥ 0, ∀l, j, s (3.18)
wljs ∈ {0, 1}, ∀l, j, s (3.19)
0 ≤ zlijs ≤ 1, ∀l, i, j, s (3.20)
xljt ≥ 0, ∀l, j, t (3.21)
yljt ∈ {0, 1}, ∀l, j, t (3.22)
zlijt ∈ {0, 1}. ∀l, i, j, t (3.23)

Note that, in constraints (3.20) the variables zlijs are defined as continuous even though they can only
assume the values 0 or 1. As discussed in [9] this is possible due to constraints (3.11) and (3.19) and the fact
that the variables zlijs are penalized in the objective function.

Finally, the domain of the common variables are given by constraints (3.24) and (3.25).

Ijt ≥ 0, Bjt ≥ 0, ∀j, t (3.24)
δlt ∈ {0, 1}. ∀l, t (3.25)

– Optional constraints for the GLSP model. In [9], the authors have observed that the GLSP model admits
undesirable redundancy. If a set of consecutive micro periods within a given period is assigned to the
same product, then the production quantity of this lot could be distributed among these micro periods
without change in the objective function value and the production sequence. Therefore, to avoid this type
of redundancy we have extended the constraints proposed in [9] as described in (3.26) and (3.27).∑

i∈Pl

∑
j∈Pl\{i}

zlijs−1 ≥
∑
i∈Pl

∑
j∈Pl\{i}

zlijs, ∀l, t, s = flt + 2, . . . , ult (3.26)

xljs ≤
Clt
alj

(
2−

∑
i∈Pl

zlijs−1 − zljjs

)
. ∀l, j, t, s ∈ Slt \ {flt} (3.27)
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3.2. Summary of the models GLSP and CLSD for the LSP-PLSR

In this section we have extended two general models from the literature (based on [15, 21]) to repre-
sent the LSP-PLSR. For simplicity, in this paper we denote the models obtained here using the same ini-
tials as those for the original models from the literature, i.e., GLSP and CLSD. The complete models are:

GLSP: Min (3.1) s.t.: (3.3)–(3.27), and (3.5)–(3.25);
CLSD: Min (3.2) s.t.: (3.4)–(3.23), and (3.5)–(3.25).

3.3. Reformulations of the GLSP model

Two reformulations for the GLSP model are given in this section. The first one, presented in Section 3.3.1, is
an extension of the CC model proposed in [5] and it is denoted in this paper by GLSPCC. The GLSPCC model
is built by eliminating the binary variables that define the setup states of the lines (wljs). The second one,
presented in Section 3.4.1, is a reformulation of the GLSPCC model using the structure of the facility location
problem as proposed in [8] and it is denoted by FL-GLSPCC.

3.3.1. The GLSPCC model

The GLSPCC model is an extension of the CC model proposed in [5]. This model is characterized by sup-
pressing the binary setup state variables wljs. Note that, item j is produced on line l in period t if, and only if
a change of product is performed from any item i to item j, i.e.,

wljs =
∑
i∈Pl

zlijs, ∀l, j ∈ Pl, s. (3.28)

Therefore, the GLSPCC model is obtained from the GLSP model using the equation (3.28) to suppress the
variables wljs. More specifically:
– The setup state and maximum lot sizes constraints (3.8) and (3.10) are replaced by (3.29) and (3.30). As

we have observed in Section 3.1, setup carry-over is not allowed. Therefore, in the first micro period of each
period and line, the minimum lot sizes need to be respected independent of the product that was produced
in the previous micro period (last micro period of the previous period). That is why we have addressed the
minimum lot sizes of the first micro periods in constraints (3.30) instead of (3.29).

mlj

∑
i∈Pl,i6=j

zlijs ≤ xljs ≤
Clt
alj

∑
i∈Pl

zlijs, ∀l, j ∈ Pl, t, s ∈ Slt \ {flt} (3.29)

mlj

∑
i

zlijs ≤ xljs ≤
Clt
alj

∑
i∈Pl

zlijs. ∀l, j ∈ Pl, s = flt (3.30)

– The sequencing constraints (3.11) are replaced by constraints (3.31).∑
i

zlij,s−1 =
∑
i

zljis,∀l, t, i ∈ Pl, j ∈ Pl, s ∈ Slt \ {flt}. (3.31)

Constraints (3.31) ensure that a changeover from item j to another item can only occur in micro period s
if a changeover from some other item to item j has occurred in the previous micro period s− 1.

– The constraints (3.15) are replaced by constraints (3.32) in order to ensure that the items can only be
produced on organized production lines. These constraints also ensure that for the lines being used, only
one changeover can occur in each micro period.∑

i∈Pl

∑
j∈Pl

zlijs = δlt. ∀l, t, s ∈ Slt (3.32)

– As the binary variables wljs are suppressed in the GLSPCC model, we need to ensure that the variables zlijs
assume only the values 0 or 1. Therefore, we replace constraints (3.20) by constraints (3.33).

zlijs ∈ {0, 1}. ∀l, i, j, s (3.33)
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3.4. Summary of the model GLSPCC for the LSP-PLSR

GLSPCC: Min (3.1) s.t.: (3.3), (3.6), and (3.29)–(3.32), (3.18),
(3.33), (3.26), (3.27) and (3.5)–(3.25).

3.4.1. The FL-GLSPCC model

In [8], the lot sizing problem was modeled using the structure of the facility location problem. The authors
observed that the linear relaxation of this model is very effective in generating good dual bounds. The compu-
tational study reported in [13] showed that the facility location reformulation also provided good results for the
single machine lot sizing and scheduling problem. In this paper, we investigate the performance of the facility
location reformulation of the GLSPCC model to address the LSP-PLSR (model FL-GLSPCC).

To obtain the new model, the variables xljs are replaced by xljst to indicate the amount of item j produced
on line l during micro period s to met the demand in period t. Using this approach, there is no need to include
the variables that explicitly account for the inventories (Ijt) and the backloggings (Bjt) of the items. These
values are given by the non-negative difference between the sum of the production of item j in the previous
periods and the sum of the demands previously met, as stated in equations (3.34) and (3.35) for the inventory
and for the backlogging levels of product j in each period t respectively.

Ijt = max

∑
l

∑
s∈∪t′≤tSlt′

xljst −
∑
t′≤t

djt′ , 0

 , ∀j, t (3.34)

and

Bjt = max

∑
t′≤t

djt′ −
∑
l

∑
s∈∪t′≤tSlt′

xljst, 0

 . ∀j, t (3.35)

To compute the inventory or backlogging costs (hcljst) incurred in producing a unit of item j on line l during
micro period s to meet the demand in period t, let λls be the period that contains the micro period s of line l,
i.e., λls = t if and only if s ∈ Slt. Then for λls ≤ t, hcljst = hj(t − λls) is the inventory cost, and for λls > t,
hcljst = bj(λls − t) is the backlogging cost. The FL-GLSPCC model is obtained from the GLSPCC model by
modifying the objective function (3.1) and some constraints as follows.

– The objective function (3.1) is rewritten in terms of the new set of variables xljst and is replaced by (3.36).
Note that the inventory and backlogging costs are computed in the first sum of (3.36).

Min
∑
l,j,s,t

hcljstxljst +
∑
l,i,j,s

sclijzlijs +
∑
l,t

aclδlt. (3.36)

– As in the FL-GLSPCC we do not consider the variables Ijt and Bjt, the inventory balance constraints (3.3)
need to be adapted according to (3.37).∑

l

∑
s∈∪tSlt

xljst = djt. ∀j, t (3.37)

– The capacity constraints (3.6) also need to be adapted due to the redefinition of the production variables
xljst. ∑

j∈Pl,s∈Slt

aljxljst′ +
∑

i,j∈Pl,s∈Slt

stlijzlijs ≤ Clt. ∀l, t (3.38)
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– The setup state and maximum lot sizes constraints (3.29) and (3.30) are replaced by constraints (3.39) and
(3.40) due to the redefinition of the production variables.

mlj

∑
i∈Pl,i6=j

zlijs ≤
∑
t′

xljst′ ≤
Clt
alj

∑
i∈Pl

zlijs, ∀l, j, t, s ∈ Slt \ {flt} (3.39)

mlj

∑
i

zlijs ≤
∑
t′

xljst′ ≤
Clt
alj

∑
i∈Pl

zlijs. ∀l, j ∈ Pl, s = flt (3.40)

– The domain constraints (3.18) are replaced by (3.41).

xljst ≥ 0. ∀l, j, s, t (3.41)

– The optional constraints (3.27) are slightly modified and replaced by constraints (3.42).∑
t′

xljst′ ≤
Clt
alj

(
2−

∑
i∈Pl

zlijs−1 − zljjs

)
. ∀l, j, t, s ∈ Slt \ {flt}, t′ (3.42)

3.5. Summary of the model FL-GLSPCC for the LSP-PLSR

FL-GLSPCC: Min (3.36) s.t.: (3.37), (3.38), (3.39), (3.40), (3.31),
(3.32), (3.41), (3.33), (3.26),
(3.42), (3.17), (3.25)

3.6. Reformulations for the CLSD model

The five reformulations for the CLSD model presented in this section are based on three main ideas: i)
including binary variables to indicate explicitly if a line is (or is not) set up to produce an item in each period
as suggested in [23] (Sect. 3.6.1), ii) using the SCF constraints instead of the MTZ constraints to eliminate
subsequences as suggested in [13] (Sect. 3.7.1), and iii) using the facility location reformulation based on [8]
(Sect. 3.7.2).

3.6.1. The CLSDw model

In the CLSD model we do not use explicit binary variables to indicate the set up state of the lines. This
information is implicitly considered through the variables (ylit, zlijt). However, as seen in [23], the explicit
utilization of set up variables can help the Branch-and-cut algorithm to explore the feasible set of the problem
more efficiently as is explained next.

Consider that the set up states of the lines in each period are captured using the variables wljt as defined in
(3.43).

wljt = yljt +
∑
i∈Pl

zlijt. ∀l, j, t. (3.43)

Suppose that, in a node of the search tree of a Branch-and-cut algorithm we have fixed wljt = 0 for some l, j, t.
Then, by (3.43) together with (3.22) and (3.23) we have that yljt = 0 and zlijt = 0, ∀i. Besides that, yljt = 0 and
zlijt = 0, ∀i together with (3.13) imply that zljit = 0 ∀i. Therefore, fixing the value of the binary variable wljt
to zero implies that the value of the other 1 + 2|Pl| binary variables are also zero. The Branch-and-cut algorithms
from some commercial solvers (like Cplex) can identify this structure of the model and might use it to branch on the
binary variables wljt before the others, so reducing the running time and average GAPs (e.g., [23]).

The CLSDw model can be obtained from the CLSD model by:

– introducing the constraints (3.43) and constraints (3.44) in order to define the domain of the new decision
variables;

wljt ∈ {0, 1}, ∀j, t (3.44)
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– replacing the setup state and minimum lot sizes constraints (3.9) by (3.45);

mjwljt ≤ xljt ≤
Clt
aj
wljt, ∀l, j, t (3.45)

– replacing the constraints to ensure that the products are produced only on organized production lines (3.16)
by (3.46). ∑

j∈Pl

wljt ≤ γltδlt, ∀l, t (3.46)

3.7. Summary of the model CLSDw for the LSP-PLSR

CLSDw: Min (3.2) s.t.: (3.4), (3.7), (3.45), (3.12), (3.13), (3.14),
(3.46), (3.21)–(3.44), and (3.5)–(3.25)

3.7.1. The CLSDSCF and CLSDw
SCF models

The CLSD model was introduced in [15] using the MTZ constraints in order to eliminate subsequences in
the production sequence. However, in the literature, there are a broad range of other constraints that also do
the same job, among which we highlight the single commodity flow (SCF) constraints proposed in [11]. As
observed in [13], the SCF constraints can improve the computational performance of the single machine CLSD
model. As far as we know this strategy has not been applied to the context of parallel machines. In this paper
we investigate the computational impact of using the SCF constraints rather than the MTZ constraints in the
CLSD and CLSDw models for the LSP-PLSR.

To define the CLSDSCF and CLSDw
SCF models, for each production line and period, we identify the products

as nodes in a complete graph. In this graph, only the nodes associated with the products produced in the
respective line and period are visited. Therefore, a production sequence consists of a simple path that contains
only the nodes that are associated with the produced items. Suppose that at the beginning of each period there
is an amount of a general commodity available (this quantity needs to be equal to the number of different items
that are produced in the current period and line) and, for each visited node, exactly one unit of the commodity
needs to be left at the node. At the end of the period, the final balance of the commodity needs to be equal to
zero. An artificial node indexed by 0 is introduced acting as the source of the flow, i.e., the initial amount of the
commodity comes from the artificial node. In this model, the auxiliary variables Vljt become Vlijt to indicate
the amount of the commodity that is transferred on line l from node i to j in period t.

The CLSDSCF and CLSDw
SCF models can be obtained from the CLSD and CLSDw models, respectively, using

constraints (3.47), (3.48), (3.49), and (3.50) rather than the MTZ constraints (3.14).∑
j∈Pl

Vl0jt =
∑
j∈Pl

wljt, ∀l, t (3.47)

Vl0jt ≤ γltyljt, ∀l, j, t (3.48)∑
i∈Pl∪{0}

Vlijt −
∑
i∈Pl

Vljit = yljt +
∑
i∈Pl

zljit, ∀l, j ∈ Pl, t (3.49)

Vlijt ≤ (γlt − 1)zlijt, ∀l, i, j ∈ Pl, t (3.50)
Vlijt ≥ 0. ∀l, i, j, t (3.51)

For each line, constraints (3.47) ensure that the amount of commodity available at the beginning of each period
is exactly the number of items to be produced. Given the minimum lot size imposed by constraints (3.45) this infor-
mation is captured through the variables wljt in the RHS of (3.47). Constraints (3.48) ensure that the commodity
from the artificial node can only be transferred to the node associated to the first item produced in line l. Constraints
(3.49) controls the balance of the commodity at the nodes, i.e., the quantity of commodity that leaves each visited
node is equal to the quantity that enters node minus one. Constraints (3.50) ensure that commodity flow only occurs
between nodes visited consecutively. Finally, constraints (3.51) define the domain of the variables Vlijt.



OPTIMIZATION MODELS FOR A LSP WITH SCARCE RESOURCES 1961

Summary of the models CLSDSCF and CLSDw
SCF for the LSP-PLSR

CLSDSCF: Min (3.2) s.t.: (3.4)–(3.13), (3.16)–(3.23), (3.47)–
(3.50) and (3.5)–(3.25)

CLSDw
SCF: Min (3.2) s.t.: (3.4), (3.7), (3.45), (3.12), (3.13), (3.46),

(3.21)–(3.51) and (3.5)–(3.25)

3.7.2. FL-CLSDw and FL-CLSDw
SCF models

In Section 3.4.1 we presented the facility location reformulation for the GLSPCC model. In this section, we
describe the facility location reformulation for the CLSDw and CLSDw

SCF models (denominated FL-CLSDw

model and FL-CLSDw
SCF model, respectively).

Let xljtt′ be the amount of item j produced on line l in period t in order to meet the demands due to period
t′. The objective function (3.2) and constraints (3.4), (3.7) and (3.45) need to be reformulated as follows.

– The objective function (3.2) is adapted according to the redefinition of the production variables, i.e., we use
the objective function (3.52) instead (3.2).

Min
∑
l,j,t,t′

hcljtt′xljtt′ +
∑
l,i,j,t

sclijzlijt +
∑
l,t

aclδlt. (3.52)

– The inventory balance constraints (3.4) are replaced by constraints (3.53).∑
l

∑
t′

xljt′t = djt. ∀j, t (3.53)

– The capacity constraints (3.7) are slightly modified to consider the redefinition of the production variables
as described in (3.54). ∑

j∈Pl

∑
t′

aljxljtt′ +
∑
i,j∈Pl

stlijzlijt ≤ Clt. ∀l, t (3.54)

– The setup state and minimum lot sizes constraints (3.45) also need to be updated by (3.55).

mjwljt ≤
∑
t′

xljtt′ ≤
Clt
aj
wljt. ∀l, j, t (3.55)

– Constraints (3.56) define the domain of the new variables.

xljtt′ ≥ 0. ∀l, j, t, t′ (3.56)

3.7.3. Summary of the models FL-CLSDw and FL-CLSDw
SCF for the LSP-PLSR

FL-CLSDw: Min (3.52) s.t.: (3.53), (3.54), (3.55), (3.12), (3.13),
(3.14), (3.46), (3.56), (3.22)–(3.44),
(3.5), (3.17), and (3.25)

FL-CLSDw
SCF: Min (3.52) s.t.: (3.53), (3.54), (3.55), (3.12), (3.13),

(3.46), (3.56), (3.22)–(3.51),
(3.5), (3.17), and (3.25)

3.8. The main characteristics of the proposed models

In Sections 3.1, 3.3, and 3.6 we have proposed nine MIP models to represent the LSP-PLSR. In general, the
proposed models consist of extensions of models presented in the literature for the traditional LSP to consider
the decisions regarding organizing production lines taking into account the availability of scarce resources. In
this section, we summarize and analyze the main characteristics of the proposed models.



1962 W. ALVES DE OLIVEIRA SOLER ET AL.

Table 3. Summarizing the proposed models. Best values are marked in bold.

Model CV BV SD SU RB

GLSP LJγT+LJ2γT+2JT LJγT MP E [9,21]
GLSPCC LJγT+2JT LJ2γT + LT MP I [5, 21]
FL-GLSPCC LJγT2 LJ2γT + LT MP I [5, 8, 21]
CLSD 2LJT+2JT LJT + LJ2T + LT MTZ I [15]
CLSDw 2LJT+2JT 2LJT + LJ2T + LT MTZ E [15,23]
FL-CLSDw LJT2+LJT 2LJT + LJ2T + LT MTZ E [8,15,23]
CLSDSCF LJ2T+LJT+2JT LJT + LJ2T + LT SCF I [11,13,15]
CLSDw

SCF LJT+2JT+LJ2T 2LJT + LJ2T + LT SCF E [15,23],
[11, 13]

FL-CLSDw
SCF LJT2+LJ2T 2LJT + LJ2T + LT SCF E [11,15,23],

[8, 13]

Table 3 presents, for each model, the total number of continuous (CV) and binary (BV) variables as functions
of the parameters described in Table 1. It also shows, for each proposed model, the strategy used to model the
sequencing decisions (column SD), the explicit use (E) or not (I) of binary variables to model the setup states
of the lines (column SU), and the references that served as the basis for each proposed model (column RB). In
the SD column, MP indicates the utilization of micro periods as the sequencing strategy, while MTZ (or SCF)
indicates that the structure of the travelling salesman problem was used to model the sequencing decisions and
the type of constraints that are used to eliminate subsequences. For simplicity, we have considered that each
product can be produced on every production line and that each production period is composed of γ micro
periods for all production lines.

Since 2 ≤ γ ≤ J , we can see that the GLSP model uses the smallest number of binary variables, while the
CLSD and CLSDw models use the smallest numbers of continuous variables (marked in bold in Table 3). On the
other hand, the GLSPCC and FL-GLSPCC models use the largest number of binary variables (considering the
values that will be presented in Sect. 4.1) and the GLSP model uses the largest number of continuous variables.

The computational results presented in Section 4 shows that the number of binary and continuous variables
present in a model is not the only factor that explains its computational performance. Models with the smallest
number of variables (binary and/or continuous) do not necessarily present the best results. Other elements of
the modeling approach have a greater influence on the computational behaviour of the models.

Finally, we note that the nine models listed in Table 3 do not cover all possible combinations among the
modeling strategies analysed in this work. More specifically, we have excluded three models: FL-GLSP, FL-CLSD
and FL-CLSDSCF. In a preliminary computational experiment we observed that the GLSPCC, the CLSDw and
the CLSDw

SCF models perform better than the GLSP, the CLSD and the CLSDSCF models, respectively, with
respect to the ability to find feasible solutions and/or to the quality of the solutions found. Hence, we have only
considered the facility location reformulation for the more promising models with respect to the first criterion
analysed (explicit use of binary variables to model the setup states of the lines).

4. Computational results

The nine mathematical optimization models summarized in Table 3 were implemented in the C++ language
using the Concert Technology library of the Cplex 12.6 solver. The instances described in Section 4.1 were solved
by the branch-and-cut algorithm of the Cplex solver using default settings and with the maximum running time
fixed at 3600 seconds (i.e., an hour). They were executed on a computer with two Intel Xeon 2.8 GHz processors
and 128 GB DDR3 RAM memory.
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Table 4. Characteristics of the five classes of instances.

Class |T | |L| |J | |K| ϕd ϕr
k ϕr

0 φb φe γ

1 10 7 45 5 100 0.8 0.6 0 0 6
2 10 10 80 6 100 0.8 0.6 0 0 8
3 14 10 90 6 90 0.6 0.5 0 0 8
4 12 10 110 7 90 0.6 0.55 100 150 8
5 14 10 110 7 90 0.6 0.55 50 150 8

4.1. Main features of the instances

Two sets of instances were used to evaluate the computational performance of the proposed models. One set
is composed of 100 random generated instances divided into five classes as proposed in [24]. The data used to
generate these instances are based on the parameter settings observed in some food industries. In this paper,
we denote these 100 instances as the default data set and use them to study the main properties of the nine
models proposed in Section 3.

For this set of instances, the number of periods |T | belongs to the set {10, 12, 14}, the number of production
lines |L| to the set {7, 10}, and the product catalogue are composed by |J | ∈ {45, 80, 90, 110} products. The
number of considered resources |K| ranges from 5 to 7. The other parameters were generated using uniform
distributions (indicated as p ∈ U [a, b]) as described next. Table 4 shows the specific parameter values adopted
for each class of instances. A detailed description about the parameter values adopted in the default data set
can be found in [24].

– Demands: djt ∈ U

0,
Clt−min

i,j
{stlij}γ − ϕd

|Pl|

, with ϕd as specified in Table 4.

– Production capacity: Clt = 480 (minutes in a production day of eight hours);
– Unit processing times: alj = 1;
– Minimum lot sizes: mlj = 2;
– Inventory holding and backlogging costs: hj ∈ U [1, 10] and bj = 10hj ;
– Setup times and costs: stlij ∈ U [15, 45] and sclij = 2stlij ;
– Amount of each resource necessary to organize the lines: rkl ∈ U [0, 2] when k > 0 and r0l ∈ U [5, 10]. In [24],

the authors have distinguished the resource k = 0 from the others (k > 0). More specifically, they considered
that k = 0 represents the workers, while k = 1, · · · , |K|−1 represent various types of machines as illustrated
in Figure 1;

– Capacity of the production resources: Rkt = max

 max
l=1,...,L

{rkl}, ϕrk
∑
l∈[L]

rkl

, with ϕrk as specified in Table 4.

We note that the parameters ϕrk define the maximum percentage of production lines that can operate
simultaneously;

– Costs to organize the lines: acl =
∑
k rckrkl, where rck ∈ U [φb, φe] with φb and φe as specified in Table 4.

The parameter rck represents the unit price of resource k;
– Maximum number of different products that can be produced on each line and period: γlt = γ, with γ as

specified in Table 4;
– Assignment of products to the lines: For each product, there is only one production line able to produce it.

This line was randomly selected.

The second set of instances is used to perform a sensitivity analysis with respect to the parameter ϕrk
that differentiates the LSP-PLSR from the traditional LSP. If ϕrk = 1,∀k, we obtain the traditional LSP on
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parallel machines in which all production lines operate during all periods. Moreover, the lower the values of the
parameters ϕrk, the fewer the number of lines that can operate simultaneously.

The instances in the default data set were generated using values for the parameter ϕrk in line with the specific
application addressed in [24]. In order to fully evaluate the impact of this parameter, we perform a sensitivity
analysis considering five different values. By setting ϕrk = ϕ,∀k, we have successively fixed the value of the
parameter ϕ to 0.6; 0.7; 0.8; 0.9; and 1; to obtain, for each value, 100 instances. The other parameters used are
the ones shown in Table 4. So, a total of 500 instances make up the second set of instances that is used in the
sensitivity analysis described in Section 4.4.

4.2. Analysis of the modeling strategies

In this section, we present the results of a computational experiment designed to study the different mod-
eling strategies proposed in Section 3 for the LSP-PLSR. More specifically, in this section, we analyze the
computational impact of the following aspects:
– Explicit binary production variables (Sect. 4.2.1). The models that explicit the zero-or-one variables to

indicate if the products are or are not produced on each line in each period (variables wljs in the GLSP
and wljt in the CLSD based models) have a greater number of binary variables. However, sometimes, this
strategy can improve the computational performance of the model as discussed in [23];

– Sequencing strategy (Sect. 4.2.2). We compare the performance of the MP, MTZ, and SCF strategies used
to model the sequencing decisions;

– Facility location reformulation (Sect. 4.2.3). We study the efficiency of the facility location reformulation
combined with other modeling strategies.

Our analysis is based on Table 5 which shows the number of instances in which at least one feasible solution
was found (FS), the number of instances in which the optimal solution (OS) was obtained, the average objective
function value (OF), the average dual bound (DB), the average GAP (AG), the best GAP (BG), the worst GAP
(WG), and the average running time (RT). The best values obtained are highlighted in bold. In this Table, the
GAPs (percentage deviation of OF from DB) were computed as GAP = 100 ∗ FO−DB

FO ·

4.2.1. Explicit production binary variables

Note that, in the GLSP model, the binary production variables (wljs) are explicit while, in the GLSPCC

model, these variables are implicit. Table 5 shows that, for classes 1 and 2, the GLSP provided better feasible
solutions than the GLSPCC while the GLSPCC provided better dual bounds than the GLSP. On average, the
GAPs obtained by the GLSPCC were smaller than those obtained by the GLSP for these classes. However, we
also note that, the GLSP model was not able to find feasible solutions for 34 instances (11 being from class
3, 11 from class 4 and 12 from class 5), while GLSPCC found feasible solutions for all instances. Therefore,
we conclude that the model in which the production binary variables (wljs) are considered implicitly performs
better than the model that gives them explicit, i.e., defining the production binary variables explicitly is not a
good approach when the micro period (MP) strategy is used to model the sequencing decisions.

On the other hand, analyzing the performance of the CLSD and CLSDw models, we can see that, the CLSDw

model produced better results for instances from classes 1, 2, 3 and 4, providing better feasible solutions,
dual bounds and GAPs. Moreover, for classes 1 and 2, the CLSDw model found optimal solutions for more
instances and had significantly shorter running times. Although the CLSDw model provided better dual bounds
for instances from class 5, the CLSD model provided significantly better feasible solutions, resulting in smaller
GAPs for this class and significantly impacting the average performance. In general, we can conclude that
expliciting the binary production variables was a good strategy for the CLSD based models using the MTZ
sequence strategy as is highlighted in the performance profile analysis discussed in Section 4.3.

Finally, considering the CLSDSCF and CLSDw
SCF models, we can see that the CLSDw

SCF model outperforms the
CLSDSCF model with respect to the quality of the feasible solutions and dual bounds obtained (and consequently
with respect to the GAPs) for all classes. Therefore, defining the binary production variables was a good strategy
for the models using the SCF sequence strategy.
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Table 5. Results obtained by the proposed models. Best values are marked in bold.

Class Model FS OS OF DB AG BG WG RT

1 GLSP 20 0 51 869 41 658 19.90 14.80 26.57 3600
GLSPCC 20 0 52 086 46 068 11.22 4.70 19.36 3600

FL-GLSPCC 20 0 51 559 46 415 9.95 1.17 19.42 3600
CLSD 20 5 50 923 50 824 0.18 0.00 0.72 2972

CLSDw 20 18 50 921 50 914 0.01 0.00 0.05 1011

FL-CLSDw 20 14 50 921 50 911 0.02 0.00 0.06 1212
CLSDSCF 20 16 50 921 50 878 0.07 0.00 0.44 1448

CLSDw
SCF 20 20 50 921 50 921 0.00 0.00 0.00 136

FL-CLSDw
SCF 20 20 50 921 50 921 0.00 0.00 0.00 77

2 GLSP 20 0 84 131 41 525 50.19 40.26 60.26 3600
GLSPCC 20 0 93 359 44 574 49.10 35.29 74.97 3600

FL-GLSPCC 20 0 75 171 48 503 35.08 21.26 51.19 3600

CLSD 20 0 63 652 62 647 1.58 0.18 3.71 3600
CLSDw 20 2 63 595 63 554 0.07 0.00 0.12 3402

FL-CLSDw 20 2 63 595 63 548 0.08 0.00 0.22 3361

CLSDSCF 20 3 63 607 63 466 0.22 0.00 0.66 3322
CLSDw

SCF 20 17 63 596 63 503 0.15 0.00 1.09 1439

FL-CLSDw
SCF 20 20 63 595 63 589 0.00 0.00 0.00 427

3 GLSP 9 0 666 242 58 613 89.34 84.21 95.72 3600

GLSPCC 20 0 1 194 620 74 258 93.08 84.21 95.90 3600
FL-GLSPCC 2 0 697 921 95 261 83.34 76.66 90.02 3600

CLSD 20 0 181 857 113 026 33.26 12.49 65.12 3600

CLSDw 20 0 160 403 115 590 24.85 7.23 54.65 3600
FL-CLSDw 20 0 307 369 115 553 50.14 13.65 83.81 3600

CLSDSCF 20 0 147 747 113 392 21.59 9.05 42.77 3600

CLSDw
SCF 20 0 140 899 113 784 17.88 3.41 39.23 3600

FL-CLSDw
SCF 20 0 136 481 116 422 13.50 0.03 37.97 3600

4 GLSP 9 0 746 464 134 924 76.52 50.53 90.10 3600

GLSPCC 20 0 1 000 956 137 739 85.79 82.17 89.70 3600

FL-GLSPCC 0 0 – – – – – –
CLSD 20 0 366 638 172 700 33.26 13.44 72.00 3600

CLSDw 20 0 289 695 175 532 28.88 9.72 76.89 3600

FL-CLSDw 18 0 408 052 176 497 47.76 29.74 71.25 3600
CLSDSCF 20 0 214 687 173 688 18.71 9.37 35.29 3600

CLSDw
SCF 20 0 203 052 174 327 14.02 6.29 22.04 3600

FL-CLSDw
SCF 20 0 196 133 177 612 9.36 1.96 17.20 3600

5 GLSP 8 0 1 161 164 159 855 84.41 73.41 91.29 3600
GLSPCC 20 0 1 148 319 163 438 85.61 80.87 89.07 3600
FL-GLSPCC 0 0 – – – – – –
CLSD 20 0 474 437 209 923 54.67 41.21 66.70 3600

CLSDw 20 0 628 712 213 629 61.18 31.31 81.84 3600

FL-CLSDw 18 0 542 487 215 164 55.18 25.80 78.66 3600
CLSDSCF 20 0 299 022 210 017 20.38 9.70 82.19 3600

CLSDw
SCF 20 0 250 429 211 416 15.30 8.79 21.43 3600

FL-CLSDw
SCF 20 0 242 944 215 031 11.07 4.78 23.43 3600

Mean GLSP 13.2 0 541 974 87 315 64.07 52.64 72.79 3600
GLSPCC 20 0 697 868 93 215 64.96 57.45 73.80 3600

FL-GLSPCC 8.4 0 – – – – – –

CLSD 20 1 227 501 121 824 24.59 13.46 41.65 3474
CLSDw 20 4 238 665 123 844 23.00 9.65 42.71 3043
FL-CLSDw 19.2 3.2 274 485 124 335 30.63 13.84 46.80 3075

CLSDSCF 20 3.8 155 197 122 288 12.19 5.62 32.27 3114
CLSDw

SCF 20 7.4 141 779 122 789 9.47 3.70 16.76 2475

FL-CLSDw
SCF 20 8 138 015 124 714 6.79 1.35 15.72 2261
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4.2.2. Sequencing strategy analysis

Through the results presented on Table 5, we can easily see that the models using the MP strategy (GLSP,
GLSPCC, and FL-GLSPCC) can-not overcome the performance of the other models (CLSD, CLSDw, FL-CLSDw,
CLSDSCF CLSDw

SCF, and FL-CLSDw
SCF) for all classes of instances with respect to all the benchmarks being

considered (feasible solutions, dual bounds, GAPs and running times). Moreover, the models using the SCF
strategy provided in general better results than the models using the MTZ strategy. More specifically, the SCF
models were able to deliver better feasible solutions, GAPs and running times. The SCF models were also
able to find optimal solutions for a larger number of instances. With respect to the dual bounds, we observed
that the impact of the adopted sequence strategy depends on other modeling aspects. For example, the MTZ
models that use explicit the binary production variables (CLSDw and FL-CLSDw) provided better dual bounds
than the CLSDSCF and CLSDw

SCF models. However, they were not able to provide better dual bounds than the
FL-CLSDw

SCF model. In general, considering the GAPs and running times obtained, we can conclude that SCF
was the best strategy to model the sequencing decisions for the LSP-PLSR.

4.2.3. Facility location reformulation analysis

Analyzing the performance of the GLSPCC and FL-GLSPCC models, Table 5 shows that the FL-GLSPCC

model presented better results than the GLSPCC model only for classes 1 and 2. For classes 3, 4 and 5, the
FL-GLSPCC model was not able to provide feasible solutions for most instances, while GLSPCC provided feasible
solutions for all instances.

Among the models using the MTZ strategy, the impact of the FL reformulation can be evaluated comparing
the performance of the CLSDw and FL-CLSDw models. These models presented very similar feasible solutions
for classes 1 and 2, but the CLSDw model presented significantly better feasible solutions for classes 3 and 4.
The OF value obtained by the FL-CLSDw model for class 5 was smaller than the value obtained by the CLSDw

model. However, this fact occurred because FL-CLSDw was not able to find feasible solutions for two difficult
instances from class 5. On the other hand, FL-CLSDw was able to provide slightly better dual bounds for all
classes. In general, we can conclude that CLSDw performed better than the FL-CLSDw model.

Finally, in order to evaluate the FL reformulation of the models using the SCF strategy, we have compared
the performance of the CLSDw

SCF and FL-CLSDw
SCF models. We can easily see that FL-CLSDw

SCF provided
better results than CLSDw

SCF for all classes (although these models provided the same values for OF, DB,
and GAPs for the instances in class 1, FL-CLSDw

SCF presented a smaller RT for this class). Therefore, the FL
reformulation was able to significantly improve the computational performance of the models using the SCF
sequencing strategy, while for the models using the MP and MTZ strategies, the FL reformulation was not a
good strategy.

4.3. Performance analysis of the models

Comparing the proposed models with respect to their ability to find high quality feasible solutions, Figure 2
shows the performance profile as proposed in [7]. For each instance α and model β, let zβα be the OF value
obtained by model β for instance α, and let τα = min

β
{zβα} be the minimum OF value obtained by instance α.

We denote the quotient between zβα and τα by Γβα, i.e., Γβα is the relative deviation of the OF value obtained by
model β from the best OF value obtained for instance α. In Figure 2, the x-axis presents the relative deviations
(θ) and the y-axis presents the percentage of instances for which Γβα ≤ θ. For example, when θ = 1 on the x-axis,
the y-axis presents the percentage of instances for which each model provided the best OF value.

According to the curves presented on Figure 2, we can see that the FL-CLSDw
SCF model obtained the smallest

OF value for 88 instances and obtained the smallest maximum deviation (about 1.13) from the best OF value.
The CLSDw

SCF model provided the smallest OF value for 45 instances and CLSDSCF for 41 instances. The
maximum deviation from the best solution for these models was 1.26 and 4.49, respectively. Therefore, the
FL-CLSDw

SCF model performs significantly better than the others.
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Figure 2. Performance of the proposed models.

We can also see that the CLSDw model provided smallest OF values for 40 instances, FL-CLSDw for 39
instances and CLSD for 25 instances. Moreover, we observe that the FL-CLSDw model was not able to find
good feasible solutions for instances from classes 3, 4, and 5, presenting (in general) higher maximum deviations
than the CLSD and CLSDw models. Therefore, the facility location reformulation was not able to improve the
performance of the MTZ based models for large sized instances (classes 3, 4, and 5).

The models using the MP sequence strategy were not able to find the best OF value for any instance.
Moreover, these models presented very similar computational performances. Among these models, GLSPCC

stands out due to its ability to find feasible solutions for all instances.

4.4. Sensitivity analysis

In this section, we study the impact of varying the values of the parameters that define the proportion of
production lines that can simultaneously operate in each period. Two aspects are considered: (i) the computa-
tional difficulty to solve the problem, and (ii) the structure of the solutions obtained. Since the FL-CLSDw

SCF

model was identified as the most promising formulation for the LSP-PLSR (Sects. 4.2 and 4.3), only this model
is considered in this sensitivity analysis. This analysis was carried out using the 500 instances from the second
data set proposed in Section 4.1 obtained by setting ϕrk = ϕ,∀k, with ϕ equals to 1; 0.9; 0.8; 0.7; and 0.6. The
results are shown in Table 6 where the first 6 columns show the results for the instances in Classes 1, 3 and 5
and the last 6 show the results for the ones in Classes 2 and 4 and the average values (Mean).

From the results presented in Table 6 we can easily see that, for all classes, the traditional LSP (ϕ = 1)
is much easier to solve than the LSP-PLSR (ϕ < 1). Moreover, the running times and/or GAPs obtained
significantly increased when the value of the parameter ϕ decreased, indicating that the problem becomes more
challenging from the computational perspective as the number of production lines that can simultaneously
operate in each period reduces. We also observed that the OF values significantly increased when ϕ decreased.
In order to identify the changes in the structure of the solutions, in Figures 3 and 4 we detailed the OF values
presenting: the inventory holding (IC), the backlogging (BC), the setup (SC) costs, and the cost of organizing
the production lines (OC).

For classes 1, 2 and 3 (Fig. 3), we can see that when the value of the parameter ϕ increased, the inventory
and backlogging costs significantly decreased, while the setup costs increased. For classes 4 and 5 (Fig. 4), the
same fact was observed, however, in these cases the costs to organize the lines also significantly increased. Note
that as the value of the parameter ϕ increases, more production lines can operate, and so, more setups occur
for each item during the planning horizon, backlogging is avoided and the size of the production lots is reduced.
As a result, the setup and/or organizing costs increase and the inventory and backlogging costs decrease.
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Table 6. Sensitivity analysis with respect to the parameter ϕ.

Class ϕ OF DB AG RT Class OF DB AG RT

1 1 16 244 16 244 0.00 7 2 25 129 25 128 0.01 26
0.9 30 219 30 219 0.00 21 40 730 40 727 0.01 94
0.8 39 510 39 510 0.00 44 51 980 51 946 0.06 408
0.7 56 036 56 036 0.00 74 64 613 64 607 0.01 756
0.6 63 491 63 485 0.01 98 78 754 77 017 1.11 1161

3 1 39 902 39 899 0.01 99 4 141 923 141 770 0.11 2733
0.9 60 629 60 623 0.01 1239 151 974 151 616 0.24 3397
0.8 74 191 73 726 0.60 2829 159 565 158 465 0.69 3511
0.7 93 683 90 833 2.95 3540 172 430 166 966 3.17 3600
0.6 129 088 112 974 11.30 3564 209 493 184 771 11.23 3600

5 1 180 552 179 915 0.34 3431 Mean 80 750 80 591 0.09 1259
0.9 191 295 190 204 0.56 3534 94 969 94 678 0.16 1657
0.8 197 954 195 221 1.35 3628 104 640 103 774 0.54 2084
0.7 213 627 206 606 3.25 3600 120 078 117 010 1.88 2314
0.6 266 207 219 855 16.04 3600 149 407 131 621 7.94 2405

Figure 3. Inventory costs (IC), backlogging costs (BC) and setup costs (SC) obtained for some
values of the parameter ϕ for classes 1, 2 and 3.

Figure 4. Inventory costs (IC), backlogging costs (BC), setup costs (SC), and costs to organize
the lines (OC) obtained for some values of the parameter ϕ for classes 3 and 4.
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5. Concluding remarks

In this paper, we studied a lot sizing and scheduling problem in which several production lines share the
same scarce production resources. Due to the scarcity of resources, only a subset of the production lines can
simultaneously operate in each period. We have combined techniques from the literature in order to propose
nine mathematical optimization models to represent the problem. Moreover, we have presented a computational
study carried out using a data set from the literature in order to identify the most promising formulations for
the problem. Our computational study showed that an efficient model can be obtained from the CLSD model
(introduced in [15]) by making explicit the binary production variables (as suggested in [23] for the single
machine LSP), using the single commodity flow constraints to eliminate any sub-sequences (introduced in [11]
and tested for the single machine LSP in [13]), and using the facility location reformulation [8], model FL-
CLSDw

SCF. Moreover, we have presented a sensitivity analysis with respect to the parameter that controls the
proportion of lines that can operate in each period, concluding that the problem becomes more difficulty to be
solved when few production lines are available in each period.

There are a number of directions for potential future research. First of all, we note that heuristic procedures
should be investigated with the aim of finding high quality solutions for large sized instances with more than
10 periods and 100 products. The computational performance of the FL-CLSDw

SCF encourages the proposition
of MIP based heuristics. Moreover, we highlight that the nature of the problem with three main components:
knapsack (resources capacity constraints), lot sizing, and scheduling; encourages the investigation of Lagrangian
relaxation based approaches with the aim of obtaining subproblems in which these components could be sepa-
rated.
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