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OPTIMAL POLICIES FOR A DETERMINISTIC CONTINUOUS-TIME
INVENTORY MODEL WITH SEVERAL SUPPLIERS: A HYPER-GENERALIZED
(s,S) POLICY

LAKDERE BENKHEROUF!* AND BRIAN H. GILDING?

Abstract. A deterministic continuous-time continuous-state inventory model is studied. In the absence
of intervention, the level of stock evolves by a process governed by a differential equation. The inventory
level is monitored continuously, and can be adjusted upwards at any time. The decision maker can
order from several suppliers, each of which charges a different ordering and purchasing cost. The
problem of selecting the supplier and the size of the order to minimize the total inventory cost over
an infinite planning horizon is formulated as the solution of a quasi-variational inequality (QVI). It
is shown that the QVI has a unique solution. This corresponds to a generalized (s, S) policy under
amenable conditions, which have been characterized in an earlier work by the present authors. Under
the complementary conditions a new type of optimal control policy emerges. This leads to the concept
of a hyper-generalized (s, S) policy. The theory behind a policy of this type is exposed.
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1. INTRODUCTION

The present paper is concerned with a deterministic continuous-time continuous-state integrated-procurement
inventory model involving several suppliers. The level of stock is continuously monitored, and a policy that
identifies an appropriate supplier together with the quantity of stock that is to be supplied is sought. The goal
is to minimize the total cost of the inventory over an infinite planning horizon..

With a single supplier, the decision problem reduces to the search for an optimal (s,.S) policy as described
in [1,7,21,22,24]. The optimality of such a policy has been shown for more sophisticated models [4,9]. When
several suppliers are available, an (s,.S) policy need not be optimal, and the problem of identifying an optimal
policy turns out to be intricate. Indeed, under the assumption that each supplier maintains a fixed set-up cost
and fixed cost per item, it has been shown [5] that the following alternatives are mutually exclusive.

— There is an optimal (s,.S) policy involving only one predetermined supplier.
— There is an optimal generalized (s, S) policy involving more than one supplier.
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policy.
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— There is no optimal generalized (s, S) policy, let alone an optimal (s, S) policy.

The generalized (s,.S) policy entails N suppliers and stock levels s(n) < s(n—1) < -+ < 51) < S(1) < S2) <
-++ < S(ny) for some natural number N > 2. If the level of stock is greater than s(;y one does not replenish it. If
the level is between s(2y and s(1y one orders from supplier (1) up to the level S(yy. If the level is between s(3) and
5(2) one orders from supplier (2) up to the level S(,y. This pattern continues down to a level of stock between
sn) and s(y_py. If the level of stock is less than s(y) one orders from supplier (N) up to the level S(y). The
policy may deliberately exclude a selection of available suppliers. For instance, the optimal generalized policy
could involve just three of five available suppliers that are ranked 1 to 5 according to some rational criterion,
with supplier (1) being number 4 in the original pecking order, supplier (2) being number 3, supplier (3) being
number 1, and, suppliers 2 and 5 not included.

The above trichotomy has been established using quasi-variational techniques, and the precise conditions
leading to each alternative have been identified [5]. In reality, companies do not have control over various factors
affecting their inventory systems, such as demand, interest rate, and incidental inventory costs. Therefore, they
have limited influence on the satisfaction of the requirements for an optimal (s, .S) or generalized (s, S) policy.
The failure to satisfy these requirements leaves the decision maker with no perceivably adoptable policy. Needless
to say, no action is not an option in today’s competitive market environment where profit margins are tight. A
rescue plan has to be developed to address this situation.

The rescue plan begins by admitting the possibility that the optimal policy may be neither an (s, S) policy
nor a generalized (s, S) policy. In so doing, a new type of policy emerges. This will be called a hyper-generalized
(s,S) policy.

A hyper-generalized (s, S) policy involves, like a generalized (s,.S) policy, more than one supplier and stock
levels sy < s(n—1) < -+ < s1) < Sy < Sy < -+ < Sy However, in addition, it contains stock levels
sy S TN—1) < 8N—1) S T(N—2) < S(n—2) < o0 < s2) <y < sqpy- If the level of stock is greater than sy
one does not replenish. If the level is between r(;y and s(;) one orders from supplier (1) up to the level S(y.
If the level is between 75y and s(2) one orders from supplier (2) up to the level S(y). This is the case down to
a level between r(y_1) and s(y_1). As with a generalized (s,.5) policy, one orders from supplier (N) up to the
level S(ny when the level of stock is less than syy. The distinction is that if the level of stock is between s(3)
and r(q), or between s(3y and r(g), and so on, then one does not replenish it, in the same manner as when the
stock level is greater than s(y).

In layman’s terms, a hyper-generalized (s,S) policy opens an additional course of action for an inventory
manager. This applies when he or she is confronted with a level of shortage for which a generalized (s, S) policy
offers a choice between two unappealing alternatives. If the backlog were less, then there would be a clear
optimal course of action in placing an order with a supplier with a low set-up cost. However, at the encountered
shortage level, the supplier’s high cost per item makes placement of the order with that supplier unattractive.
On the other hand, if the backlog were greater, there would be a clear optimal course of action in placing an
order with a supplier with a low cost per item. However, at the encountered level, the supplier’s high set-up cost
makes placement of the order with that supplier unattractive. The best thing for the manager to do is to let the
backlog further accumulate until the amount that has to be ordered is so great that is it is indeed worthwhile
to replenish from the supplier with a low cost per item. Hereby, the high set-up cost is set off against the size
of the order. A hyper-generalized (s, S) policy accommodates this option.

A generalized (s, S) policy is recovered from a hyper-generalized (s, S) policy when r(x_1) = 5(x), T(N—2) =
S(N—1)s--->T(1) = S(2) in the notation employed.

The aim of the present paper is provide a technical foundation for a hyper-generalized (s,S) policy and
substantiate its functionality. It will be demonstrated that the concept leads to both the existence and uniqueness
of a viable optimal control policy.

The existence and uniqueness of a hyper-generalized (s,S) policy reducing to a conventional generalized
(s,5) policy, and possibly even to an (s,.5) policy, under amenable circumstances, indicates that the previously
presented intuitive motivation for the consideration of such a policy based upon opening a further course of
action for a manager is in fact one of necessity. There fails to be a conventional generalized (s, S) policy precisely
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because under the relevant conditions the optimal strategy is not to remove a shortage that would be removed
were the backlog less, but, instead, let the backlog further accrue until an appropriate order can be placed with
an alternative supplier.

The literature on generalized (s, S) policies is scant. The classical multi-period finite-horizon discrete-time
stochastic inventory model with piecewise-linear increasing concave ordering cost has been considered in [19,20].
At each discrete-time epoch, the decision maker is faced with the decision of either not ordering or ordering a
quantity to be decided upon. In the latter event, a choice between the available suppliers has to be made. An
(s,S) policy is optimal when each available supplier is considered in isolation. Under the standard hypothesis
that per period the immediate expected inventory cost expressed as a function of the current level of stock is
quasi-convex and coercive, and some additional technical requirements, a generalized (s, S) policy is optimal.
The additional technical requirements are met when the demand distribution for the item in question belongs to
the Pdlya or to the uniform family of distributions. A stochastic inventory model with two suppliers, one with
a high purchasing cost and no set-up cost, and the other with a low purchasing cost and a definite set-up cost
was studied in [12]. Optimality of a generalized (s, S) policy was deduced for both a finite and infinite planning
horizon. In the same spirit, for an arbitrary demand distribution, it has been shown that a generalized (s, S)
policy is optimal outside a bounded region of the state space [3].

The above short review of the literature supports the observation that in general a generalized (s, .S) policy
need not be optimal. It moreover reflects the dearth of research papers on the subject. This is perhaps due to
the technical complexities encountered in dealing with such a policy.

In the present paper, the optimality of a hyper-generalized (s, S) policy will be established based on techniques
from the study of quasi-variational inequalities (QVI). Such inequalities were introduced by Bensoussan and
Lions. For details, readers are referred to the monograph [8]. Supplementary illustrations of the power of QVI
techniques applied to a single-supplier inventory model may be found in [7,10].

The next section contains the formal statement of the inventory control problem to be studied, culminating
in its QVI formulation. A number of pertinent results from [5] are collected in Section 3. In particular, these
results summarize the theory for the model with a single supplier producing an optimal (s, S) policy, and the
theory for the model with several suppliers leading to the identification of a necessary and sufficient condition
for the optimality of a generalized (s, .S) policy. Section 4 is devoted to the proof of the optimality of a hyper-
generalized (s, S) policy and its computation. Examples illustrating various aspects are included throughout. A
conclusion and some general remarks are provided in Section 5.

2. PROBLEM STATEMENT

Consider a stock of a single item. The level of stock at time ¢ is given by z(t), with a value > 0 denoting
the number of items held, and a value z < 0 indicating a shortage of —z items. In the absence of intervention,
changes in stock level are governed by the evolution equation

z(t) = —G(z(t)), (2.1)

where G is a positive continuous function defined on R. From the viewpoint of modelling, the latter accounts
for stock-dependent demand and deterioration [2,23].
Stock can be replenished by ordering from J suppliers, for some natural number J. Setting

J:={1,2,...,J},

ordering from supplier j € J entails a fixed cost k; and a cost c¢; per unit item. No one supplier is always
preferable to another, as
ki >ky>--->k;>0 (2.2)

and
< ey <<y, (2.3)
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The holding cost depends on the stock level, and is given by a continuous nonnegative function f defined
on R. This amalgamates the cost of storage, handling, obsolescence, depreciation, deterioration, insurance,
taxation, loss of revenue due to tied-up capital, and miscellaneous other transactions when there is stock in
hand. When there is a shortage, it incorporates the cost of lost sales, lost production, loss of good will, overtime,
extraordinary administration, and other penalties that might be incurred. The expression

Fz) = {—pz forx <0 (2.4)

qr forx >0

with constants p > 0 and ¢ > 0 is classical.
Variability of money-value in time is considered by the exponential discount of costs at a constant rate

a > 0. (2.5)
An admissible replenishment strategy consists of a sequence
Vn = {(tzagz;]z) 10 < t]_ < t2 < e <& tn}’,

where n denotes the number of interventions, ¢; the time of the ith control (order), and & > 0 the quantity
ordered at that time. There is nothing to be gained from spreading the order among two or more suppliers, and
ji € J labels the envisaged supplier. The problem of finding an optimal impulse control policy is to determine
a sequence

V = lim V,,

n—oo

that solves

o) ')
u(x(0)) = mvin{/ flx(t))e > dt + Z (kji + cjifz-) e i } (2.6)
0 i=1
This contrasts with the familiar Economic Order Quantity (EOQ) model, in which the discounting of future
costs is neglected, and the objective is to minimize the long-term average cost. In the long-term, the initial level
of stock is irrelevant. In the present problem, the objective is to minimize the total future cost over an infinite
time horizon, and specifically to ascertain the dependence of this cost upon the initial level of stock.
As far as the occurrence and nature of an optimal policy are concerned, the model with a stock-dependent
demand rate G presents no more difficulty to deal with than the model with a constant demand rate of unit
magnitude. If = satisfies (2.1) then

©dn
0 G(n)

satisfies the equation
z(t) = —1. (2.7)

Moreover, if u satisfies (2.6) then @(Z) = u(z) satisfies (2.6) with f replaced by f where f() = f(x). Conversely,
provided that

/0 GC;Z) — too asx — too, (2.8)
if 7 is governed by (2.7) and @ satisfies (2.6) with f replaced by f then the reverse transformation gives rise to
(2.1) and (2.6). Commonly used expressions for G satisfy (2.8). Consequently, with nominal loss of generality,
the problem of finding an optimal impulse control policy may be simplified by replacing (2.1) with (2.7).

Following [5], the optimal total future cost u(x) evolving according to equation (2.7) from a starting level of
stock o will satisfy the equation (Au)(z) = f(z), where

(Au)(z) = v/ (z) + au(z).
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On the other hand, the like cost u(x) associated with a level of stock = that has been obtained by placing an
order with supplier j will be such that u(z) = (M;u)(x), where

(Mju)(z) = k; + min{u(z + §) + ;€ : £ > 0}.
Hence, defining
(Mu)(z) = min{ (M;u)(z) : j € T},
the optimal impulse control policy is given by a solution of the QVI
Au< f
u< Mu (2.9)
(Au — f) (u— Mu) = 0.
3. PREVIOUS RESULTS
Currently the following is known about the solution of the QVT (2.9). We refer to [5] for the omitted proofs.
3.1. Single supplier
When there is a single supplier, there is an optimal inventory control policy based on the following premise.

Ansatz 3.1. The solution of (2.9) is a differentiable real function u such that « = Mu on (—oo, s], and, Au = f
and v < Mu in (s,00), for some number s.

The above ansatz suitably restricts the admissible structure of a solution of (2.9).
Proposition 3.2. Suppose that f is continuous on R. Then, under Ansatz 3.1, a solution of (2.9) with M = M,

18 gen by

y() for x>s,

() = {y(s) +cj(s—x) for z<s

where y is a solution of the differential equation

v +ay=f inR (3.1)
satisfying
y'(s) =y (S) = —¢; (3.2)
and
y(s) =y(9) + kj +¢; (S —s) (3.3)

for some number S > s.

A function y described by Proposition 3.2 exists and is unique when the auxiliary function f; defined by
fi(x) = f(z) + acjz  forz eR (3.4)
satisfies the next hypothesis. This hypothesis reflects the conducive attributes of (2.4).

Hypothesis 3.3. The function f; is a continuous function on R, strictly decreasing on (—oo,~;] and strictly
increasing on [v;, 00) for some v; € R, fj(z) — 0o as * — —oo, and

9] o7
/ e df; () > — / e df; ().
j

j —00
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The last-mentioned condition is automatically satisfied if f;(z) — oo as & — oo.
Lemma 3.4. Equation (3.1) has a solution satisfying (3.2) and (3.3) for S > s if and only if s = sj and S = S,
for a unique combination s; < v; < S;. Furthermore, this solution y; is unique,
y; < —c; on (s;,5;), and  y;>—c; on (—o0,s;) U (S;,00). (3.5)

Taking Lemma 3.4 together with Proposition 3.2 leads to the existence and uniqueness of a solution of the
QVI (2.9).
Proposition 3.5. Suppose that f; satisfies Hypothesis 3.3. Then (2.9) with M = M; has a unique solution
satisfying Ansatz 3.1.

The above delivers an (s,.S) policy in which the optimal strategy for an inventory manager is to order up to
level S when the inventory level is s or less, i.e. the level of shortage has reached —s or more, and to freely let
the inventory level decrease and a shortage accrue otherwise.

The optimal (s, .S) policy can be computed as follows.

Algorithm 3.6. Step 1. Find the unique solution of the simultaneous equations

S;
/ e df](n) =0 and fj(Sj) = fJ(S]) + kj with s5 <75 < Sj. (36)

j
Step 2. Set

Bj = {fi(sj) + ¢} /a. (3.7)
Step 3. Output u(z) = B; — ¢,z for x < s;, and

u(x) =e " {(Bj —cjs;) e +/ e f(n) dn} (3.8)
for x > s;. End.

When f assumes the classical form (2.4), the auxiliary function f; satisfies Hypothesis 3.3 if and only if
p > ac; > —q, in which case v; = 0. In this propitious situation, the right-hand equation in (3.6) can be solved
for S; explicitly, yielding
S =—A{ak; + (p— ac;) s;} / (¢ + ac;) . (3.9)
Consequently, S; can be eliminated from the left-hand equation in (3.6). The upshot is that s; can be found as
the unique solution in (—o0,0) of the transcendental equation

a(p—acj)sj+ (g+ ac;) In{[p+q— (p — ac;) e*¥] / (g + ac;) } + o’k; = 0. (3.10)

It may be of interest to note the connection with the longstanding EOQ model [11, 16]. By the Taylor
Theorem, (3.9) and (3.10) can be written as

Sj=-ps;/q+0(a) and o?{p(p+4q)si/(20) +k;} =0(®)  asa—0.
Dividing the latter equation by o? and passing to the limit in both yields

2(]]{]
p(p+q)

2pk;
and  S; =/ L.

S; = —
! q(p+q)

These values agree with those of the EOQ model.

Concrete illustrations, with data that will be encountered again in the coming sections, can be found below.
The numerical computations involved have been carried out using readily available propriety software. Any
similar package could have been employed.
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Example 3.7. Takep =¢=3,a=1,k; = 1,and ¢; = 2. Then, by (3.10), s; = —1.7672. By (3.9), S; ~ 0.1534.
By (3.4) and (3.7), B; = 3.767. Algorithm 3.6 yields u(z) = B; — 2z for x < s;, u(z) ~ —0.171e~* — 3z + 3 for
s; <z <0, and u(z) ~ 5.829e¢"* 4+ 3z — 3 for z > 0.

Example 3.8. Takep =¢ =3, =1, k; = 2,and ¢; = 1. Then, by (3.10), s; ~ —1.6831. By (3.9), S; ~ 0.3415.
By (3.4) and (3.7), B, ~ 4.366. Algorithm 3.6 yields u(z) = B; — z for x < s;, u(z) = —0.372¢~* — 3z + 3 for
s; < <0, and u(z) ~ 5.628e"* 4+ 3z — 3 for z > 0.

Example 3.9. Substitute k; = 4 in Example 3.8. Then s; ~ —2.7687, S; ~ 0.3843, B; ~ 6.537, u(z) = B; —z
for < s;, u(z) = —0.125e7% — 3z + 3 for s; < x <0, and u(z) = 5.875e~" + 3z — 3 for = > 0.

Example 3.10. Substitute k; = 6 in Example 3.8. Then s; ~ —3.7959, S; ~ 0.3979, B; ~ 8.592, u(z) = B —«
for z < s;, u(z) =& —0.045e¢ " — 3z + 3 for s; < x <0, and u(z) = 5.955¢~" + 3z — 3 for = > 0.

3.2. Several suppliers

When several suppliers are approachable, the QVI (2.9) need not have a solution satisfying Ansatz 3.1. Minor
relaxation of the accepted regularity provides an outcome.

Ansatz 3.11. The solution of (2.9) is a continuous real function u such that v = Mu on (—o0, s], and, u is
differentiable, Au = f, and u < Mu in (s, 00), for some number s.

Proposition 3.12. Suppose that f is continuous on R. Then, under Ansatz 3.11, a solution of (2.9) is given
by
v(z) for x <s;

y(x) for x> s;, (3.11)

where y is a solution of the differential equation (3.1) satisfying (3.2) and (3.3) for some j € J and S > s, and

v(z) = min{ (Myy)(s) +c (s —z): L€ T}. (3.12)

Furthermore, y < u on R, and
y(s) = (M]y) (s) < (ng) (s) for every L€ T\ {j}. (3.13)

Further characterization is attainable under the assumption that f; satisfies Hypothesis 3.3 for every j € J.
In the light of (2.3) and (2.5), this requires

M=V 2 2T (3.14)

Lemma 3.4 then applies, giving rise to a unique solution y; of (3.1) satisfying (3.2) and (3.3) for S > s if and
only if s = s; and S = Sj, for every j € J. The implication is that each supplier accommodates a unique
optimal (s,.S) policy in the absence of competitors. With this supposition, Proposition 3.12 states that any
solution of the QVI with the properties exposed is such that s = s; and y = y; for some j € J.

The solutions y, for £ € J possess a greatest minimizer in the following sense.

Lemma 3.13. There is a j € J such that y;(x) < yi(z) for allz € R and £ € J with equality only if j > £.

Proof. Since any two functions y; and y, with j € J and ¢ € J solve (3.1), their difference is a solution of
3y’ + ay = 0 on R. Consequently, (yj — yg) () =Cj e " for all z € R, for some constant C; . It follows that if
y;(¢) < we(Q) for any ¢ € R, then y;(z) < y,(z) for all € R. Likewise, if j > ¢ and y;(¢) = y¢(¢) for any ¢ € R,
then y;(x) = ye(z) for all z € R. O

The concept of a greatest minimizer is relevant to the following.
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Lemma 3.14. There is a function u such that y; < u < Mu on (—o0,s;], and v =y; < Mu in (sj,00) only if
J is the greatest minimizer of yp with respect to £ € J. Moreover, if £ € {1,2,...,j — 1} is a lesser minimizer,
necessarily s¢ < s; < S5 < Sy.

Lemma 3.15. If j is the greatest minimizer of y, with respect to £ € J then Myy; is well defined on R for
every £ € J, y; < My, in (s;,00), and (3.13) holds. Furthermore,

y; < —cein (s5,S50), y; > —cg in (Sje,00), (3.15)

and
(Mgy;)(s;) = y;(Sje) + ke + e (Sje — s5)

for 1 <€ <j, for a sequence of numbers
Sj,]‘ = Sj < Sj,j_l < Sjyj_Q <0< Sjyl.
The aforegoing leads to the following uniqueness result.

Proposition 3.16. Suppose that f, satisfies Hypothesis 3.3 for every £ € J. Then (2.9) has at most one
solution satisfying Ansatz 3.11. To be specific, if u is such a solution, then u is given by (3.11) with y = y;,
where j is the greatest minimizer of y; with respect to £ € J,

v(z) = min{ve(z) : 1 < £ < j}, (3.16)

and
ve(x) = y;(Sje) + ke + ce (Sje — ) - (3.17)

Given that a solution of the QVT satisfying Ansatz 3.11 is of the form (3.11) with v prescribed by (3.16) and
(3.17), there is a natural number N and there are real numbers

01 =8;>02>"->0N (318)

demarcating intervals
11 :(0'270’1), 12:(0'3,0’2), ey IN:(—O0,0'N) (319)

with the property that v is affine in each and not in the union of any two. Necessarily,
v=wvjinl; and wv=wv;inlIn. (3.20)

The function u given by Proposition 3.16 is not differentiable at o, for 2 < m < N when N > 2. This means
that Au is not well defined at such z. The inequality Au < f in (2.9) has therefore to be interpreted with a
little tolerance. Denoting the right and left derivative of u by DTu and D~ u respectively, we shall take it to
mean DTu+ au < f and D™ u + au < f. This interpretation is equivalent to that employed in [5], which, in
comparison, has the drawback of involving the intervals (3.19).

With the above understanding, the existence and nonexistence of a solution of the QVI is provided by the
next result, in which

T =(f—D v—av)(onm) (3.21)

for 1 < m < N. Necessarily,
T, = 0. (3.22)

Proposition 3.17. Suppose that f,; satisfies Hypothesis 3.3 for every £ € J. Let j be the greatest minimizer of
ye with respect to £ € J. Then the function u given by (3.11) withy = y;, and (3.15)—(3.17) satisfies Ansatz 3.11.
Moreover, if j = 1, then u solves (2.9) and satisfies Ansatz 3.1. On the other hand, if j > 2, then N > 2, and
u solves (2.9) if and only if Ty, > 0 for every m € {2,3,...,N}.
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Propositions 3.16 and 3.17 reveal the following procedure for identifying whether the QVI (2.9) has a solution
corresponding to an (s,.S) policy, a solution corresponding to a generalized (s,.S) policy, or no such solution,
and, moreover, computing the pertinent solution should it exist.

Algorithm 3.18. Step 1. For every j € J, find the unique solution of the simultaneous equations (3.6).
Step 2. Pick a convenient ¢ € R, and compute

¢
T4204+f(§)—e_0‘4/ e dfe(n) forleJ.

Step 3. Define j as the largest number in J with the property that T; < T, for every £ € J, and thereafter B;
by (3.7).

Step 4. If j = 1, then the QVI has a solution satisfying Ansatz 3.1 given by Step 3 of Algorithm 3.6. End.
Otherwise, continue to Step 5.

Step 5. For £ =1,2,...,j — 1, determine S;, > S; from the equation

Sng
/s e df(n) = (¢; — ce) e, (3.23)

J

and thereafter set
By = ke +{fe(Sje) +ce} /e (3.24)

Step 6. Let 01 = s;, k(1) = j, and m = 2.

(a) Define K ={1,2...,k(m—1) —1}.

(b) For every ¢ € K, compute py = (By(m— By) / (cx (m71 ) — Ce).

(¢) Define o, = max{pg ¢ € K} and k(m ) mln{ eER:pr=om}.

(d) Let T}, f,{(m) (Um) + Cr(m) — aBK(m).

(e) If T,,, <0, then (2.9) has no solution satisfying Ansatz 3.11. End. Otherwise, continue to Step 6(f).

(f) If k(m) =1, set N = m and proceed to Step 7. Otherwise, increase m by 1 and return to Step 6(a).
Step 7. The QVI (2.9) has a solution satisfying Anstaz 3.11 given by u(z) = By — iz for ¢ < on, u(z) =

Bio(m) — Co(m)x for o1 < <0pand 1 <m < N — 1, and (3.8) for x > 0,. End.

Algorithm 3.18 is a refinement of Corollary 4.20 of [5]. In the aforementioned corollary the only candidate
considered for the test value in Step 2 is ( = 0. Step 3 yields the greatest minimizer of y, with respect to £ € J
because Ty = y¢(¢)/a for every ¢ € J. The number By defined for £ = j in Step 3 and for £ =1,2,...,j—11in
Step 5 is contrived so that (3.17) can be succinctly expressed as v¢(x) = By — cox for £ € {1,2,...,5}. Step 6
extracts the partition (3.18) with the property that v defined by (3.16) is affine in each of the intervals (3.19)
and not in the union of any two of them. The function x : M = {1,2,...,N} — {1,2,...,5} introduced with
this step is a device for recording that ¢ € {1,2,..., 4} for which v = vy in I, for every m € M.

When Algorithm 3.18 fulfils Step 7, the output is a generalized (s, S) policy as described in Section 1, in which
the number N of suppliers equals N, and, s(,,) = 04, and S() = 5 x(m) for m = 1,2,..., N. Caution needs
to be exercised in not confusing the labelling of the suppliers (m) with their ordering in J using the criteria
(2.2) and (2.3). Supplier (m) is supplier ¢ where £ = k(m) in the original line-up. In particular, supplier (1)
is supplier j. Possibly j < J, in which case suppliers j + 1 to J are excluded from the optimal policy. Also,
possibly N < j, in which case another selection of suppliers 2 to j — 1 is excluded. Both of these possibilities
are documented features of a generalized (s, .S) policy [21], and corroborated by Example 4.25 in [5]. In general,
the most that can be said with certainty is that suppliers (1) to (N) are to be found in the reverse order in the
ranking (2.2) and (2.3), and that supplier (N) is supplier 1 in this ranking.

The pivotal supplier j in Propositions 3.16 and 3.17 and Algorithm 3.18 is the greatest minimizer of y, with
respect to ¢ € J. This means that j is the supplier with the (s, S) policy that has the least cost when there is
stock in hand and no orders are made, or, should there be more than one such supplier, that supplier among
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these that has the greatest value of s. Once j is known, so too is the optimal policy for inventory levels x > s;,
where s; is the value of s in the (s, .S) policy of supplier j. Therewith, the inventory level S; , to which a possible
order from supplier ¢ is necessarily made is determinable for every £ € {1,2,...,j}. These levels are unique and
strictly decreasing with respect to £. This is a consequence of the ordering of the values ¢, and the monotonicity
properties of the auxiliary holding-cost functions f; embodied in Hypothesis 3.3. Each function v, gives the
cost of placing an order with supplier ¢ to bring the inventory level from x up to S;,. Thus, in defining v as
the minimum of v, one is identifying the least cost of replenishing from the inventory level z with respect to
every supplier ¢ € {1,2,..., 5}, and, the supplier (or suppliers for the cut-off levels o, for m = 2,3,..., N) that
delivers this least cost. It may turn out that certain suppliers do not to deliver the least cost for any inventory
level z < s;. Such suppliers play no subsequent role in the optimal policy. The remaining suppliers, x(m) for
m=1,2,..., N, are so ordered by m that their set-up cost increases and their cost per item decreases as one
proceeds through the sequence. Thus, within the regime of placing an order from a position of shortage, the
optimal policy entails ordering from a supplier with a high set-up cost and low cost per item in preference to
another with a lower set-up cost and higher cost per item if and only if the backlog is greater. This additionally
explains why suppliers j + 1, j + 2, ..., J are excluded from the generalized (s, S) policy.

In the classical case that f is given by (2.4) with p > ac; > ac; > —q, one can streamline the calculations
of Step 1 of Algorithm 3.18 by using (3.9) and (3.10). In Step 2 it is easy to take ¢ = 0, leading to

YTe={p—(p—ac)e*}/a forleJ. (3.25)
Moreover, one can explicitly solve (3.23) to deduce
Sje = 8; +In{(q + ac;) / (g + acy) } /o (3.26)

The following concrete examples based on the above considerations confirm that the QVI (2.9) may indeed
have a solution corresponding to an (s,.S) policy, a solution corresponding to a generalized (s,.S) policy, or no
such solution.

Example 3.19. Let f be given by (2.4) withp=¢=3,a=1,J =2, k1 = ¢y =2, and ky = ¢; = 1. Examples
3.7 and 3.8 provide s; ~ —1.6831, 57 &~ 0.3415, so &~ —1.7672, and Sy ~ 0.1534. Formula (3.25) subsequently
gives T1 ~ 2.628 and Y5 &~ 2.829. Therefore T1 < Yo, and, following Algorithm 3.18, j = 1. Thus, the QVT has
a unique solution satisfying Ansatz 3.1. This corresponds to the (s,.S) policy reported in Example 3.8.

Example 3.20. Substitute k; = 6 in Example 3.19. Example 3.10 gives s; ~ —3.7959, whereupon (3.25) yields
T1 =~ 2.955. The values of s5, Sz, and Y5 remain the same as in Example 3.19. Now, however, To < Tj.
Therefore, following Algorithm 3.18, j = 2. By (3.7) By ~ 3.767, by (3.26) S21 ~ 0.3766, and, by (3.4)
and (3.24) By =~ 8.506. Running through Step 6 of Algorithm 3.18 subsequently delivers o; = sq, k(1) = 2,
09 = (Ba—By)/(ca—c1) = —4.7391, k(2) = 1, and Ty = f1(02) + ¢1 — aBy &~ 1.972. Thus, the QVI has a
unique solution satisfying Ansatz 3.11, which does not satisfy Ansatz 3.1. It is given by u(x) = By —x for & < o9,
u(x) = By — 2z for 09 < x < 01, u(x) & —0.171e * — 3z 4+ 3 for 01 < 2 <0, and u(x) ~ 5.829e* + 3z — 3 for
z > 0 (in accord with Example 3.7). This corresponds to a generalized (s,.S) policy with two suppliers. In the
notation used to describe such a policy in Section 1, supplier (1) is supplier 2 in the ordering (2.2) and (2.3),
supplier (2) is supplier 1, s(o) = 02, 5(1) = 01, S(1) = S2, and S(g) = Sa,1.

Example 3.21. Substitute k; = 4 in Example 3.19. Example 3.9 gives s; &~ —2.7687, whereupon (3.25) yields
T, =~ 2.875, while the values of s, Sy, and Yo are the same as in Example 3.19. As in Example 3.20, To < T4,
and therefore j = 2. Furthermore, since ¢;, ¢y and ko are the same as in Example 3.20, so too are By and
Sa2.1. However, with the different value of k;, (3.4) and (3.24) give By ~ 6.506. Now running through Step 6
of Algorithm 3.18 supplies 01 = s2, k(1) = 2, 09 = (B2 — B1)/(ca—c1) = —2.7391, k(2) = 1, and T =
fi(o2) + ¢ — aBy &~ —0.028. Tt follows that the QVI has no solution satisfying Ansatz 3.11, and therefore no
optimal control in the form of a generalized (s, S) policy let alone an (s, .S) policy.

In the next section it will be shown that admission of a hyper-generalized (s, S) policy resolves the unsatis-
factory outcome of Example 3.21.
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4. THE HYPER-GENERALIZED (s,.S) POLICY

Ansatz 3.1 epitomizes an (s,.5) policy and Ansatz 3.11 a generalized (s, S) policy. The fact, stated in Propo-
sition 3.17 and corroborated by Example 3.21, that there are situations in which the QVI (2.9) does not admit
a solution satisfying either ansatz raises a number of questions. Does this mean that the QVT is unsolvable? Are
the ansétze really not a good premise? If so, what could sensibly take their place? Will a more general premise
deliver a unique solution? In short, is there an optimal control policy, that has features acceptable for practical
applications, and that applies in those situations where Proposition 3.17 fails to deliver a solution of the QVI?
We shall answer these questions in this section by extending the concept of a generalized (s, .S) policy.

4.1. Ansatz

We entertain an optimal inventory control policy v with an interval (s,00) for some number s, in which no
replenishment is necessary and thus v < Mu and Au = f, as in the cases of an (s, S) policy and a generalized
(s,5) policy, and a complementary interval (—oo, s] comprising stopping intervals in which « = Mu interspersed
with a limited number of bounded subintervals in which replenishment does not take place. Such subintervals
are excluded in a conventional generalized (s,.S) policy [21].

Ansatz 4.1. The solution of (2.9) is a continuous real function u such that « = Mu on (—o0, s] \ S, where S
is the union of a finite number of bounded open subintervals of (—o0, s), and, u is differentiable, Au = f, and
u < Mu in SU (s,00), for some number s.

The previous Ansatz 3.11 may be viewed as the confinement of the new ansatz to the case that the number of
subintervals comprising S is zero.
If u satisfies Ansatz 4.1 and not Ansatz 3.11, there is a natural number L with real numbers

a1<b1§a2<b2§~~~§aL<bL§aL+1:s, (41)
such that
u < Mu inS:(ahbl)U(ag,bg)U-~-U(aL,bL), (42)
and
u=Mu in (—o0,a1]U[by,as]U---U[br,ar+1]- (4.3)

Using Ansatz 4.1, we shall realize the following counterpart to Proposition 3.12.

Theorem 4.2. Suppose that f is continuous on R. Then, under Ansatz 4.1, a solution u of (2.9) is such that
u=1y in[s,00), y <u<vin (—000,s), and u < v in S, where y and v are as in Proposition 3.12.

The proof of Theorem 4.2 proceeds along the lines of that of Theorem 4.2 in [5] through a sequence of lemmas.
The first four are independent of admission of the set S in the ansatz, and taken directly from [5], where their
proof may be found. Throughout this subsection, u will be assumed to be a given solution of (2.9) satisfying
Ansatz 4.1. For £ € J and = € R, we define

ug(x) = u(x) + cox. (4.4)

Lemma 4.3. If u(z) = (Myu)(z) then u; has a least absolute minimum on [z,00) at an X > x such that
up(x) = up(X) + ke and up(2) < ug(x) for all z < X.

Lemma 4.4. Suppose that w = Mu in the proper interval [b,a]. Then u is concave on [b,al.

Lemma 4.5. Suppose that u = Mu on [n,z] for some n < x. Let £ be the smallest number in J such that
u(z) = (Meu)(z). Then ug is constant and u = Myu on [w, ] for some w € [n, z).
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Lemma 4.6. Suppose that w = Mu on [z,n] for some n > xz. Let £ be the largest number in J such that
u(x) = (Myu)(z). Then ug is constant and uw = Myu on [z, z] for some z € (z,n).

Lemma 4.7. Suppose that u(a) = (Mu)(a) and u < Mu in (a,b) for some a < b. Then u is the restriction to
[a,b] of a solution of (3.1), and is continuously differentiable in (w,b) for some w < a.

Proof. Because u satisfies Au = f in (a,b), it is a solution of (3.1) there. Furthermore, as f is continuous on
R, this solution can be extended to one, y say, on R. The continuity of u and y on R gives u = y on [a,b]. To
proceed, we distinguish between the cases u < Mu and v = Mu in (n,a) for some n < a. In the first case,
Au = f in (n,a). As solutions of the initial-value problem for equation (3.1) are unique, this necessitates u =y
n (n,b). Hence, u is continuously differentiable in (7, b). For the alternative case, let £ be the smallest number in
J for which u(a) = (Myu)(a). Then Lemma 4.5 tells us that uy is constant on [w, a] for some w € [, a). Hence,
Y (z) + ay(z) = f(z) > (Au)(z) = v/ () + au(z) = au(z) — ¢ for x € (w,a). Passage to the limit 2 — a gives
y'(a) > —cg. On the other hand, by Lemma 4.3, there is an X > a such that a is a maximum of u, in [a, X].
This implies that y/(a) = (D u)(a) = (D% u)(a) — ¢ < —c;. Hence, combining the two inequalities comparing
y'(a) to —cg, we obtain y'(a) = —c¢y, from which it follows that u is continuously differentiable in (w, b). O

Lemma 4.8. Further to Lemma 4.7, u(a) = (Myu)(a) for a unique £ € 7, and u/(a) = —cy.

Proof. Let £ € J be such that u(a) = (Myu)(a). By Lemma 4.3, there is an X > a such that @ is a maximum of
ug in (—oo, X|. By Lemma 4.7, u is differentiable at a. Consequently, the Fermat Theorem says that uj(a) = 0.
In other words, u/(a) = —c¢. This conclusion cannot be true for more than one ¢ € J. O

Proof of Theorem 4.2. By Lemma 4.7, equation (3.1) has a solution y such that w = y on [s, 00). By Lemma 4.8,
(3.13) holds for some j € J for which y'(s) = —c¢;. By Lemma 4.3, u; has a minimum in [s, 00) at S > s satisfying
u;(s) = u;(S) + kj. Inasmuch u; is differentiable at S, the Fermat Theorem tells us that u/;(S) = 0. Hence,
(3.2) and (3.3) hold. The argument used to prove Lemma 4.9 of [5] yields y < w in (—o0, s]. It subsequently
remains to show that v < v in (=00, s), and u < v in S, where v is defined by (3.12). To this end, let z < s.
Then (Myu)(z) = k¢ — cox + min{ue(n) : n > 2} < ky — ¢z + minfue(n) : n > s} = (Mu)(s) + ¢, (s — x) for
every ¢ € J. Hence,

< (Mu)(z) = min{(Mu)(z) : £ € T} < v(x). (4.5)
Moreover, the first 1nequahty in 5) is strict for x € S. In view of the arbitrariness of z, this delivers the
desired result. O

Comparing Theorem 4.2 to Proposition 3.12, the price that has been paid for the enlargement of Ansatz 3.11
to Ansatz 4.1 is weakening of the conclusion v = v in (—00, s), to, u < v in (—o0, s)\ S. The next lemma — which
we introduce because we shall employ it further on, and not just to make the present point — indicates that
ignorance of the concavity of u on (—o0, s] is the heart of the matter. In the event that u satisfies Ansatz 3.11,
this ignorance is removed by Lemma 4.4.

Lemma 4.9. If u is concave on (—oo, s| then uw = v in (—o0,s]\ S.

Proof. Fix x € (—00,s]\S. Let £ be the largest number in 7 such that u(z) = (Myu)(x). Because u is concave on
(=00, 8], 80 t0o is uy. By Lemmas 4.6 and 4.8, (D*uz) (z) = 0. Hence, wuy is non-increasing on [z, s]. This implies
that u(z) = (M) (z) = ke —cez+min{ug(n) : 9 > 2} = ke —coz+min{ug(n) : n > s} = (Meu)(s)+ci (s —x) >
v(x). Consequently, recalling (4.5), u(z) = v(z). O

Although just as superfluous to the proof of Theorem 4.2 as Lemma 4.9, we further record the next lemma
for future use.

Lemma 4.10. Suppose that u < Mu in (a,b) and u(b ( ) for some a < b. Then u has a right derivative
D% and a left derivative D™u at b. Furthermore, ( u)(b) = —cp+ < —cp- < (D u) (b), where £ and £~
respectively the largest and smallest £ € J for which u(b) = (Myu)(b).
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Proof. If w < Mu in (b,n) for some 1 > b, then the conclusions are provided by Lemmas 4.7 and 4.8. On
the other hand, if v = Mwu in such an interval, Lemma 4.6 implies that (D+u) (b) exists and equals —cp+.
Furthermore, by Lemma 4.7, u is the restriction to [a,b] of a solution y of (3.1). However, Lemma 4.3 tells us
that b is a maximum of u,- in (—oo, b]. Consequently, (D~ u)(b) = y'(b) = (D" ug-)(b) — ¢~ > —cy-. We obtain
—¢p- > —cp+ from (2.3). O

4.2. Uniqueness

To proceed, we revive the supposition that each of the auxiliary functions f; defined by (3.4) satisfies Hypoth-
esis 3.3. Hereupon, Theorem 4.2 tells us that a solution u of the QVI fulfilling Ansatz 4.1 is such that s = s;
and w =y, on [s;,00) for some j € J. Furthermore,

yj <u<v in (—o0,s;), (4.6)

where v is defined by (3.12). By Lemma 3.14, there is only one j € J for which these properties and v < Mu
on R can hold, namely the greatest minimizer of y, with respect to £ € J.

By (3.12), v is piecewise linear and concave on R. Furthermore, (3.12) and (3.13) imply that DYv = D~v =
—c¢; in (w, sj) for some w < s;. Consequently, £ € {j+1,7+2,...,J} plays no role in the definition of v(z) for
x < s;. It follows that with no loss of generality we may suppose that v is defined by (3.15)—(3.17). Subsequently,
there is a partition (3.18) with the property that v is affine in each of the intervals (3.19) and not in the union
of any two of them. Furthermore, (3.20) holds.

The function v possesses additional characteristics that are relevant. We make these the content of the next
four lemmas, in which

M={1,2...,N}.

Lemma 4.11. Let m € M and Ty, be as in (3.21). Then the following alternatives are mutually exclusive.

(a) Tr, >0, and Av < f in I,
(b) T <0, m>2, Av < f in L, N (—00,Mm), Av = f at Ny, and Av > f in (9, om) for some Ny, € Ipy,.
() T;n<0,2<m<N-=1, and Av > [ in Ip,.

Proof. Let £ € {1,2,...,j} be such that v = v in I,,,. Then
(f — Avg)(x) = f(x) + ce — avg(x) = fo(x) — fe(om) + T

for all x € R. By Hypothesis 3.3, f; is strictly decreasing on (—oo, ], and, f¢(z) — oo as * — —oo. By
(3.14) and (3.18), 0, < 55 < v; < ¢ Thus, f — Avy is continuous and strictly decreasing on (—o0, 0y,], and
(f — Avg)(z) — oo as @ — —oo. It follows that if T}, > 0 then Avy < f in (—00,0y,). On the other hand, if
T, < 0, then there is an n,, < o, such that Av, < f in (=00, ), Ave = f at Ny, and Avy > fin (N, om).
This case can be further divided into the subcases 1, € I, and n,, ¢ I,,,. In view of (3.19) and (3.22), the three
alternatives in the statement of the lemma follow. O

Lemma 4.12. A solution y of equation (3.1) is strictly concave on the interval (—oo,b] if b < s; andy'(b) > —¢;
Proof. As y solves (3.1),
) =yt = [ ey dy

for all < z. Multiplying by «, eliminating ay using (3.1), and, then integrating by parts, yields

 (z) = Gy (z) - / =) a7 ().
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Hence

V@ =y @)+ )+ e} {0 -1} - Cetmn ag ). (4.7)

x

Since f; is strictly decreasing on (—oo,~;] by Hypothesis 3.3, b < s; < 75, and y/(b) > —¢;, substitution of
z =bin (4.7) gives y'(x) > —c¢; for all x < b. Whence, applying (4.7) with arbitrary < z < b in the knowledge
that y'(z) > —¢;, we deduce that y'(z) > y'(z) for such  and z. This confirms the strictly concavity of y on
(=00, b]. O

Lemma 4.13. Suppose that Av = f at n,, € I, for some m € M. Let'Y,, be the solution of (3.1) satisfying

Ym(nm) = U(’?m)- (4‘8)

Then
Yr/n (Tlm) = ”'(Tlm)- (49)

Furthermore, given that v(nm) > y;(Nm), there exists a (m € (0, sj] such that
Yoo <0 in (m, Cn)s Y =0 at (m, (4.10)

Y, is strictly concave on [0, Gnl, and
Y, (Cm) = (D7 0) (Gm)- (4.11)

Proof. By Lemma 4.11, necessarily 7,, < 0 and m > 2. Hence, j > 2 and v'(n,,) = —¢; > —¢; for some
¢ €{1,2,...,5 — 1}. Inasmuch Y, solves (3.1), Y., (nm) = (f — @¥y) (7). Thus, by the opening supposition
of the lemma, Y, () = (Av — ¥y, ) (m). Whence, by (4.8), Y., () = (Av — aw) (1,). In other words, (4.9)
holds. Consequently, by the continuous differentiability of Y,, there is a b € (7, o] such that Y, (b) > —c;.
Lemma 4.12 then tells us that Y,, is strictly concave on (—oo, b]. As v is affine in I,,,, and, (4.8) and (4.9) hold, this
implies that Y;,, < v in (1, b]. On the other hand, given that v(nm) > y;(1m), (4.8) implies Y., (0m) > v (0m).
Moreover, because Y, —y; is a solution of 4’ + ay = 0 on R, there holds (Y, —y;)(z) = (Yo —y;) () eltm =)
for all z € R. Thus, Y;,, > y; on R. Recalling that v(s;) = y;(s;), it follows from the continuity of Y, v, and y;
that there has to be a (» € (b, s;] such that (4.10) holds. This necessitates (4.11). Hence, Y, (¢n) > —c¢;. So,
by Lemma 4.12, Y, is strictly concave on [ny,, (xn]. Since v is affine on [y, 0.,] and (4.8) and (4.9) hold, this
excludes (,,, < 0. O

Lemma 4.14. Further to Lemma 4.13,

Yy (Gm) = (DT0) (Gm) (4.12)
with equality if and only if v is differentiable and Av = f at p,.
Proof. The concavity of v and (4.11) imply (4.12). Moreover, they imply strictness if (,,, = oy for some A €
M\ {1}. On the other hand, if (,, = s; or {,, € I for some A\ € M, then v is differentiable at ¢,,. In this event,
by (4.10) and (4.12), Av = DYv + av <Y, + aY,, = f at (, with equality if and only if (4.12) holds with
equality. ([l

Let us now again pick up the main thread, supposing that u is a solution of the QVT (2.9) satisfying Ansatz 4.1.

Lemma 4.15. The function u is concave on (—oo, s;].
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Proof. As Lemma 4.4 covers the result when u satisfies Ansatz 3.11, let us assume that u does not. In this
circumstance, (4.1)—(4.3) apply for some L > 1. By Lemma 4.4, u is concave on (—o0, a1], and, on [b,, a,41] for
every v € {1,2,...,L}. By Lemma 4.7, u is differentiable at a, for every v € {1,2,...,L + 1}. On the other
hand, by Lemma 4.10,

(D~u)(by) = (DFu)(by) (4.13)

for every v € {1,2,...,L}. Armed with this information, we prove that u is concave on (—oo, s;] with the aid
of induction. The seed is the observation that ar41 = s;. Supposing that u is concave on [a, 1, s;] for some
v € {1,2,...,L}, the concavity of u on [b,,a,+1] and the existence of u'(a,+1) imply that w is concave on
[by, s;]. Hence, (DT u)(b,) > u'(s;) = —c;. Via (4.13), this leads to (D~ u)(b,) > —c;. However, by Lemma 4.7,
u is the restriction to [ay, b,] of a solution y of (3.1) with y/(b,) = (D~u)(by). So, /'(b,) > —c;. Consequently,
Lemma 4.12 says that y is concave on (—o0,b,]. Thus, u is concave on [a,, b,]. Whereupon, the concavity of u
on [ay,b,], (4.13), and the concavity of u on [b,,s;] imply that u is concave on [a,, s;]. This argument can be
repeated until we arrive at the conclusion that w is concave on [a1, s;]. Hereupon, the concavity of u on (—o0, a1]
and the existence of u/(a;) imply that u is concave on (—oo, s;]. O

Together Theorem 4.2, Lemma 4.9 and Lemma 4.15 provide a crucial characterization of the subset of (—oo, s]
where u = Mu, and its complement. To be precise, they tell us that

u=wvin (—o0o0,s]\S and wu<wvinS. (4.14)
We use this precision to fully identify S. This identification entails four more lemmas.

Lemma 4.16. Let © < s; be such that u(x) = v(z). Then
(D w)(@) = (D™v) (@) > (D*2) (x) = (D" ) (a)
Proof. Since u < v in (=00, s;] and u(z) = v(z),
(D~ u)(x) > (D v)(z) and (D%v)(z) > (DT u)(x). (4.15)

By the concavity of v,
(D7 v)(z) = (D*v) (). (4.16)

If now w = v in (x, z) for some z € (z, s;], we have equality on the right-hand side of (4.15). On the other hand,
if u < v in (z,2) for some z € (z,s;], Lemma 4.7 tells us that (D~ u)(z) = (D"u)(z). So we have equality
throughout (4.15) and (4.16). O

Lemma 4.17. Suppose that u(a) = v(a) and u < v in (a,b) for some a < b < s;. Then a = n,, for some
m € M for which alternative (b) of Lemma 4.11 applies, and, uw = Yy, in [a,(n], where (y and Yy, are as in
Lemma 4.13.

Proof. If a = oy, for some m > 2, then u(a) = (Myu)(a) for at least two ¢ € {1,2,...,j}. This contradicts
Lemma 4.8. Hence, a € I, for some m € M, which implies that v is differentiable at a. By Lemma 4.7, u is
continuously differentiable at a, and the restriction to [a, b] of a solution y of (3.1) with y(a) = v(a). Lemma 4.16
subsequently implies 3/(a) = v’(a). Because y is a solution of (3.1), there holds Ay = f on R. So, Av = Ay = f
at a. Consequently, alternative (b) of Lemma 4.11 must apply, and necessarily a = 7,,. Whence, by (4.6) and
Lemma 4.13, y = Y,,. Whereupon, we conclude that v =Y, in [, (m]- O

Lemma 4.18. Suppose that u(z) = v(z) for some x € I, and m € M. If T,, > 0 then u = v in [z,0m]. On
the other hand, if T,, <0 then alternative (b) of Lemma 4.11 applies, x < N, w = v in [T, Ny], and u =Y, in
(N, Cm)], where ( and Yy, are as in Lemma 4.13.
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Proof. Let Q = {2z € [x,0.,) : u(z) = v(z)}. By Lemma 4.16 and the affinity of v in I,,, DYu = v’ in Q.
However, inasmuch u is a solution of (2.9), DT u + au < f everywhere. So, Av < f in Q. By Lemma 4.11 this
is possible only if either T,, > 0, or, T,,, < 0, Av = f at 0, € I, and Q C [z,7,,]. On the other hand, by
Lemma 4.17, there is an a € Q and a b € (a, s;] such that u(a) = v(a) and v < v in (a,b) only if T}, < 0 and
a = M. Thus, if T,,, > 0 then  is an interval with right endpoint o,,,, whereas if T;, < 0 then it is an interval
with right endpoint 7,,. In the former case, the continuity of v and v yields « = v in Q. In the latter case,
u =Yy in (Nm, Cm], by Lemma 4.17. O

Lemma 4.19. Lemma 4.18 extends to x = mq1 for m € M\ {N}.

Proof. Lemma 4.17 tells us that if u(opmy1) = v(oms1) for m € M\ {N}, then v = v in [oy41, 2] for some
z € I,;,. Subsequent application of Lemma 4.18 with z in the place of x gives the result. ]

We are now in a position to establish the uniqueness of a solution u of the QVI (2.9) fulfilling Ansatz 4.1.
By the opening remarks of this subsection, necessarily s = s; and v = y; in [s;,c0), where j is the greatest
minimizer of y, with respect to ¢ € J. Defining v by (3.16) and (3.17), the partition (3.18) such that v is affine
in each of the intervals (3.19) and not in the union of any two of them, and T,, by (3.21) for m € M; (4.14)
specifies that © < v in (—oo, s) with equality if and only if u = Mu. By Ansatz 4.1, u(z) = (Mu) (z) for large
enough —z. Consequently, Lemmas 4.18 and 4.19 imply that v = v in (—oo, s;| if T), > 0 for every m € M. If
not, u = v in (—00,a1], u = Y,1)y < v in (a1, b1), and u(by) = v(b1); where a1 = 1,1y < o1y < b1 = (u(1) < 55
and p(1) is the largest m € M for which T, < 0. Subsequently, if T;,, > 0 for every m € M with o, > by,
these lemmas imply that u = v in [by, s;]. If not, they imply that v = v in [b1, as], u = Y,2) < v in (ag, by),
and u(by) = v(b2), where by < az = nu2) < o) < b2 = (u2) < 55 and p(2) is the largest m € M for which
om > by and T, < 0. Proceeding in this fashion, we find a combination (4.1) such that u = v in (—o0,s;] \ S,
where S is as in (4.2), and u = Y,y in (a,,b,) for 1 < v < L. The property (3.22) ensures that the inductive
process terminates neatly. For completeness, one may take L = 0 and S = () when u = v on (—o0, s;].

The essence of the preceding paragraph is the following.

Theorem 4.20. Suppose that f; satisfies Hypothesis 3.3 for every ¢ € J. Then (2.9) has at most one solution
u satisfying Ansatz 4.1.

Corollary 4.21. Except in a finite subset, u is continuously differentiable on R. This subset comprises those
b, for which b, < a,41 and those o, with m > 2 for which u(o,,) = v(om). The derivative of u has a jump
discontinuity at such places.

Proof. By Lemma 4.14, DTu = D~u at b, for 1 < v < L if and only if v is differentiable and Av = f at b,,.
However, by Lemmas 4.11 and 4.18, this is so if and only if a,+; = b,. Lemma 4.16 yields DTu < D~ u at
those oy, < s; for which u(oy,) = v(o,,). Conversely, u is continuously differentiable in (w, 0o) for some w < s;
by Theorem 4.2 and Lemma 4.7, in (w,b,) for some w < a, for every 1 < v < L by Lemma 4.7, and, in any
open subinterval of I,;, in which © = v for m € M by the piecewise linearity of v. Since places where u is not
continuously differentiable are such that DTu # D~u and isolated, standard calculus leads to the deduction
that DT is the limit of u’ from the right, and D~ wu is the limit of «’ from the left at each such place. O

Corollary 4.22. There holds Au < f in (1 Ul U---UIn)\S.
Proof. This follows from Lemmas 4.11, 4.18, and 4.19. O

4.3. Existence

Thanks to the content of the paragraph running up to Theorem 4.20, we know precisely how to construct a
solution of the QVI (2.9) assuming that such exists. To prove existence, it subsequently suffices to attend to
two issues. The first is to ascertain that the construction can be carried out without a priori assuming that the
resulting function is a solution. The second is to show that the constructed function verily solves the QVI.
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With regard to the first issue, Lemma 3.15 holds irrespective of any other considerations. Hence, v is definable
via (3.16) and (3.17). As this leads to piecewise linearity and concavity on R, the partition (3.18) with the
property that v is affine in each of the intervals (3.19) and not in the union of any two of them, the set M, and
the number (3.21) for every m € M follow. Thus there is no obstacle to equating u = v where warranted. The
difficulty is in nailing the sequence (4.1). We muster two lemmas to accomplish this.

Lemma 4.23. Suppose that x < s; is such that o, > x and T, <0 for some m € M. Denote the largest such
m by p. Then alternative (b) of Lemma 4.11 applies to p, and x < n,, in the following circumstances.

(i) The function v is differentiable and Av < f at x.
(ii) There is a solution y of equation (3.1) such that y < v in (w,x) for some w < z, y(x) = v(z), and
y'(z) 2 (D7v) ().

Proof. In case (ii), if v is differentiable at z, then Av < Ay = f at z, leading to case (i). On the other hand, if
v is not differentiable at @, then z = o for some A € M\ {1}, with A < g and T\ = (f — D"v — av)(0s) >
(f =y — ay)(z) = 0. Hence, A < p, and (f — DTv — av)(ox) > 0. Therefore, there is a z € Iy_; for which
(f — Av) (z) > 0 and p is the largest m € M with o, > z and T,,, < 0. So case (i) applies to z. Consequently, it
suffices to prove the lemma in case (i). Suppose therefore that (i) is the case, and, to the contrary of the statement
of the lemma, that alternative (c) of Lemma 4.11 applies to . Then « < 0,41, and, (f - D% —av) (out1) <0.
Hence, T, 41 = (f — D"v — aw)(0u41) < 0, which contradicts the definition of y. Thus alternative (b) of
Lemma 4.11 must apply. The details of that alternative imply x < n,,. (I

Lemma 4.24. There holds v > y; in (—o0, s;].

Proof. Let © < s; and £ € M be such that v(z) = ve(z). Then, by (3.17),
v(x) = y;(2) + ke +co (2 — ), (4.17)

where z = S; . By (3.5), the function n — ye(n) + c¢n is strictly increasing on (—oo, s¢], strictly decreasing on
[s¢, Se], and strictly increasing on [Sy, 00). Therefore,

{ye(w) + oz} — {ye(2) + coz} < {ye(se) + cose} — {ye(Se) + coSe} = ky. (4.18)

Using (4.18) to eliminate k; from (4.17) gives v(x) > y;(z) + ye(x) — ye(2z). Hence,

o) = 15 (0) 2 15(2) — 02) — s (@) +eto) = | () — ) () dn.

Inasmuch y; and y, are both solutions of (3.1), the above is equivalent

z

o(@) —y;(2) > a / (e — ;) () .

Because y; is the greatest minimizer of y, with respect to £ € J, the last integral is nonnegative. In view of the
arbitrariness of x, this provides the proof. O

By Lemma 4.11 parts (a) and (b), f > Av in (—oo,z) for < oy if —z is sufficiently large. Hence, if T,, < 0
for some m € M, Lemma 4.23 implies that alternative (b) of Lemma 4.11 applies to u(1). Thus a1 = 7,
is well defined. Supposing that a, = 7, exists for some v > 1, Lemmas 4.13 and 4.24 yield the existence
of b, = Cuw) € (ay,s;] and of the solution Y,y of equation (3.1) satisfying the conclusions of Lemma 4.13.
Subsequently, either T, > 0 for every m € M with o, > p, or, Lemma 4.23 yields the existence of u(v + 1)
for which a,4; can be defined. Thus the construction leading up to Theorem 4.20 can be carried out without
knowing that this leads to a solution of the QVI (2.9).
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Let u denote the function obtained from the construction set out in the paragraph preceding Theorem 4.20.
By this construction, u is continuous on R, satisfies the conclusions of Corollary 4.21, and is such that Au = f in
(sj,00) and those subintervals of (—o0, s;) where u < v, while Au < f where u is differentiable. By Lemma 3.15,
Myu is well defined on R for every ¢ € J, u < Mu in (s;,00), and u = Mu at s;. To confirm that u is a solution
of the QVI (2.9) it therefore remains to prove that v < Mu in (—o0, s;). Moreover, to confirm that u satisfies
Ansatz 4.1 it remains to prove that u = Mu on those subintervals of (—oo, s;) where u = v, and v < Mu in
those subintervals where v < v. The next lemma accomplishes these tasks simultaneously.

Lemma 4.25. There holds v < Mu in (—oo, s;) with equality if and only if u = v.

Proof. We first note that by (3.16), (3.20) and Lemma 4.13, u is concave on (—o0, s;]. Hence, reintroducing the
notation (4.4), uy is likewise concave for every ¢ € J. It follows that for every < s; and £ € J,

(Myu)(z) = ke — coz 4+ min{ug(n) : n > z}
= k¢ — cox +min{ue(n) :n > sj or n =z}
= min{(Mey;)(s;) + co (85 — ) ke +u(z)}.

By Lemma 3.15, (Myy;)(s;) + ce(sj —x) = wve(z) if £ < j. On the other hand, by (2.3) and (3.13) as a
consequence of Lemma 3.15, (Mgy;)(s;) + ce (s; — ) > (Mjy;)(s;) + ¢; (s; — ) if £ > j. Hence,

(Mu)(z) = min{min{v(z) : 1 < ¢ < j}, min{k, + u(z),l € T}}
= min{v(x), ks + u(z)}.

If u(z) = v(x) this gives (Mu)(z) = u(z); whereas if u(z) < v(z) it gives (Mu)(x) > u(x). O
We have thus arrived at our crowning result.

Theorem 4.26. Suppose that f; satisfies Hypothesis 3.3 for every £ € J. Then (2.9) has a unique solution
satisfying Ansatz 4.1.

Theorem 4.26 leads to an optimal control policy that extends the concept of a generalized (s, S) policy. It
involves N suppliers and numbers

SN) < S(N—1) <+ <85y < S(l) < S(g) < < S(N)

and
SNy < rver) S sno1) S < s2) Sy < S1)-

The strategy of an inventory manager with inventory level x is as follows. If & > s(;) then do not intervene.
If rqy < 2 < (1), then order to the level S(;) from supplier (1). If s5y < x < r(1) do not intervene. If
T2y < x < 5(2), then order to the level S5y from supplier (2), if 53y < = < r(2) do not intervene, and, so
on. So that if 7y_1) < = < su-1), the manager should order from supplier (N — 1) to the level Sx_1),
and, if s(v) < ¥ < r(y_1) then the manager should not intervene. If z < s(x), then order to the level S
from supplier (N). For the isolated borderline inventory levels not mentioned in this explanation, there is some
ambiguity about whether to order from one supplier or another, or whether to order or not to intervene. Should
T(m) < S(m) < T'(m—1) for some m € {2,3,...,N — 1}, then there is no ambiguity for z = s(,,,), and an order to
level S(,,) from supplier (m) is called for. Otherwise, the manager can pursue any of the options presented by
the ambiguity.

Note that suppliers (1) and (N) in the above explanation of a hyper-generalized (s, .S) policy are respectively
suppliers 7 and 1 in the mathematical notation used in this section prior to said explanation. The mathematical
notation used in developing the theory pertains to the J available suppliers in J ranked by criteria (2.2) and
(2.3). Suppliers (1), (2), ..., (N) constitute a strictly decreasing subsequence within this ranking. As with a
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conventional generalized (s,.S) policy, there may be suppliers that are not party to the final policy. Possibly,
j < J. Possibly, N < j, where N is the number of suppliers playing a role in the piecewise-linear characterization
of the function v. Finally, possibly, N < N. Each of these possibilities denotes a reason why a supplier might
be excluded.

The pivotal supplier in a hyper-generalized (s, .S) policy is supplier j for which the (s, S) policy has the least
cost when there is stock in hand, or, if there is more than one such supplier, that one of these suppliers for
which the (s,.S) policy has the greatest value of s. When j < J, suppliers j + 1, j+ 2, ..., J are automatically
excluded from the final policy. In other words, every supplier with a greater cost per item than the pivotal
supplier is dismissed. This constitutes the first reason for excluding a supplier. In the subsequent determination
of the number N, one is counting the numbers of intervals in which the function v is affine. As such, for all
inventory levels x from which a replenishment can take place, one is identifying which of the j remaining
suppliers potentially leads to the least cost. When N < j, there is one or more suppliers for each of which
another supplier (dependent on x) with a lesser or equal cost can be found for all such x. This is the second
reason for excluding a supplier. Finally, among those N suppliers still remaining, there may be one or more
for which, over the entire range of inventory levels x for which replenishing from that supplier entails the least
cost, the cost of not replenishing and letting the shortage further accumulate is even less. Thus, one ends with
N < N. This provides the third and final reason for not including a supplier. An example illustrating every one
of these three reasons is presented in the next subsection.

A hyper-generalized (s, S) policy involving N suppliers is a conventional generalized (s,.S) policy if and only
if $(m+1) = T(m) for every m € {1,2,...,N —1}. It is an (s, S) policy if and only if N = 1.

4.4. Computation
The optimal control policy expounded by Theorem 4.26 can be computed as follows.

Algorithm 4.27. Steps 1 to 6. Follow Steps 1 to 6 of Algorithm 3.18 omitting Step 6(e).

Step 7. Define £ ={2,3,... ,N}. If T,,, > 0 for every m € L, then u satisfies Ansatz 3.11, and one may proceed
to Step 9 with L = 0. If T,;, < 0 for some m € L, then u does not satisfy Ansatz 3.11, and one should
continue to Step 8.

Step 8. Take v = 1.

(a) Define p(v) = max{m € L : T,, < 0} and subsequently ¢ = x(u(v)).
(b) Determine a, < 0,y from the equation

felay) = aBy — . (4.19)
(¢) Set
o) = eo {(Bz — eyt + [ engiy) dn} . (4.20)

ay
(d) Working through the sequence p(v) — 1, u(v) — 2, ..., 1 in that order, let A\ be first such number
encountered for which the equation

Yu(T) = Br(n) — Ce()T (4.21)

has a solution in (ox41,0x].

(e) Let b, be the least solution of (4.21) in (ox41,0x]-

(f) If A =1, set L = v and proceed to Step 9. Otherwise, continue to Step 8(g).

(g) Redefine £ ={2,3,...,A\}. I T,,, > 0 for every m € L, set L = v and proceed to Step 9. Otherwise,
increase v by 1 and return to Step 8(a).

Step 9. Output u(z) =y, (x) for a, < x < b, and 1 < v < L. For all other x < 01, u(x) = By — c1z if z < oy,

and u(z) = By(m) — Cm)® if o1 <o <opand 1 <m < N — 1. For x > oy, u(x) is given by (3.8).
End.
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Step 8 of Algorithm 4.27 reproduces the proof of the uniqueness of u in Subsection 4.3, with L and u(v) for
v € {1,2,...,L} defined in exactly the same manner. In terms of the notation employed in said subsection,
Ay = Mm, Yo = Ym, and b, = (,, where m = p(v). In this context, a, is the unique number in I,, at which
Av = f. By the proof of Lemma 4.11, this is also the unique number in (—oco,,,) at which Av, = f where
¢ = k(m). Explication of this criterion leads to (4.19). Formula (4.20) delivers the explicit solution of (3.1)
satisfying y(a,) = v(a,) = ve(a,). Subsequently, b, is the unique number in (a,, s;] such that y, < v on (a,,b,)
and y, (b,) = v(b,). This is equivalent to requiring b, to be the least solution of y, (z) = v, () (), i.e. (4.21), in

(0xt1,0x], where A is the largest number in {1,2,..., u(r) — 1} for which such a solution exists.
Should (4.21) have three solutions, z; < 23 < z3 say, for some A € {1,2..., N}, then there would be an
s € [21,22) and an S € (29, 23] with y, (s) =y, (S) = —cx(r). However, by Lemma 3.4 of [5], this necessitates

s < Vw(x) <S. S0, 23 > Yi(x) =75 > s;. It follows that (4.21) actually has either no solution, a unique solution,
or precisely two solutions in (—oo, s;]. Hence, the same applies in (041, 0,]. Consequently, ‘least’ in Step 8(e)
of Algorithm 4.27 really means ‘unique or lesser’.

When f takes the classical form (2.4) with p > ac; > ac; > —q, one can simplify the calculations within
Steps 1 to 6 as outlined in Subsection 3.2. Furthermore, where applicable, one can explicitly solve (4.19), to
obtain

a, = (¢ —aBy) [ (p — acy) . (4.22)
With the above in mind, let us take the opportunity to complete Example 3.21.

Example 4.28. Suppose that f is given by (2.4) withp=¢ =3, a=1,J =2, k; =4, ks = c¢; = 1, and
co = 2. According to Example 3.21, Steps 1 to 5 of Algorithm 3.18 yield j = 2, so & —1.7672, Sy =~ 0.1534,
S9.1 =~ 0.3766, B1 ~ 6.506, and By ~ 3.767. Repeating Step 6 with Step 6(e) omitted gives o1 = s2, k(1) = 2,
o9 & —2.7391, k(2) = 1, Ty &~ —0.028, and N = 2. Step 7 of Algorithm 4.27 subsequently confirms that the QVI
indeed has no solution satisfying Ansatz 3.11. Running through Step 8, one finds a1 ~ —2.7532 from (4.22) with
=1,y1(z) = =0.127e"* — 3z + 3 for < 0 from (4.20) with ¢ = 1, that the equation y;(x) = Bs — cox has
a unique solution in (o2, 01] given by by &~ —2.7389, and L = 1. Thus the QVT has a unique solution satisfying
Ansatz 4.1, which does not satisfy Ansatz 3.11. It is u(z) = By — z for & < a1, u(z) = y1(z) for a; < z < by,
u(z) = By — 2z for by < x < oy, u(z) = —0.171e™* — 3z 4+ 3 for 0y <2 <0, and u(x) ~ 5.829e™* 4+ 3z — 3 for
2 > 0 (in accord with Example 3.7). This corresponds to a hyper-generalized (s, S) policy with two suppliers.
In the notation used to introduce such a policy in Section 1, supplier (1) is supplier 2 in the ordering (2.2) and
(2.3), supplier (2) is supplier 1, s(2) = a1, 71y = b1, 51y = 01, S1) = S2, and Sz = Sz1. The optimal control
policy is not to intervene when the inventory level x > o1, to order from supplier 2 up to the inventory level S,
when b; < 2 < 01, not to intervene when a; < < by, and to order up to the level Sy ; from supplier 1 when
z < a1;. When x = by, one may either order up to the level S; from supplier 2, or not intervene.

It is informative to examine hyper-generalized (s,S) policies further to Example 4.28. The emphasis in
Example 4.28 has been on elucidating the mathematical theory leading to the existence and uniqueness of a
hyper-generalized (s,.S) policy, and the method of calculating such a policy. The coming example focusses on
the manner in which suppliers’ costs influence the character of a hyper-generalized (s, S) policy. Recall that a
hyper-generalized (s, S) policy could include every available supplier. The first reason for excluding a supplier is
that the supplier has a greater cost per item than the pivotal supplier, the pivotal supplier being the supplier for
which the (s,.5) policy has the least cost when there is stock in hand, or, if there is more than one such supplier,
that one of these suppliers whose (s,.S) policy has the greatest value of s. The second reason for excluding a
supplier is that, for all inventory levels from which an order might be placed, there is is another supplier with
which placement of an order leads to a lesser or equal cost. The third and final reason for excluding a supplier
s that, for the range of inventory levels from which it costs least to order from this supplier, it costs even
less not to replenish. With reference to the structure of a hyper-generalized (s,.S) policy outlined in Section 1
and expanded upon after Theorem 4.26, recall that such a policy is a generalized (s,S) policy if and only if
S(m+1) = T(m) for every m € {1,2,...,N — 1}, and, an (s, S) policy if and only if N = 1.
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TABLE 1. Features of hyper-generalized (s, S) policies presented in Example 4.29.

Suppliers excluded

Problem Set-up costs N Supplier for reason stated S(m+1) < T(m)?
k1 k2 ks ka 1 2 3 @ 1st 2nd 3rd m=1 m=2 m=3

1 24 15 7 1 4 4 3 2 1 - - - Yes Yes Yes

2 24 15 7 04 4 4 3 2 1 - - Yes Yes No

3 24 15 7 20 3 3 2 1 - 4 - - Yes Yes -

4 24 15 50 1 2 3 1 - 4 2 - No - -

5 24 15 6.0 1 2 3 1 - - 4 2 - Yes - -

6 24 15 6.2 1 3 4 3 1 - - 2 - Yes Yes -

7 24 15 6.5 1 4 4 3 2 1 - - - Yes No Yes

8 24 15 75 1 3 4 2 1 - - - 3 Yes Yes -

9 24 15 80 1 3 4 2 1 - - 3 - Yes Yes -
10 24 13.0 7 1 2 2 1 - - 3,4 - - No - -
11 24 132 7 1 3 4 2 1 - - 3 - Yes No -
12 24 140 7 1 3 4 2 1 - - - 3 Yes No -
13 24 145 7 1 4 4 3 2 1 - - - Yes Yes No
14 24 153 7 1 3 4 3 1 - - - 2 Yes Yes -
15 24 16.0 7 1 3 4 3 1 - - 2 - Yes Yes -
16 21.0 15 7 1 1 1 - - - 2,3, 4 - - - - -
17 22.0 15 7 1 2 4 1 - - - 2 3 Yes - -
18 232 15 7 1 3 4 3 1 - 2 - Yes Yes -
19 235 15 7 1 3 4 3 1 - - - 2 Yes Yes -
20 25.0 15 7 1 4 4 3 2 1 - - - Yes Yes No

Example 4.29. Suppose that f takes the classical form (2.4) with p = ¢ = 9, the discount rate a = 1, and
there are four suppliers available with a respective cost per item of ¢ = 2, ¢ = 4, ¢c3 = 6, and ¢4 = 8. So the
auxiliary function f, satisfies Hypothesis 3.3 with 7, = 0 for every £ € J = {1,2,3,4}. For twenty different
combinations of the set-up costs {ky : £ € J}, features of the hyper-generalized (s, .S) policy are summarized in
Table 1. Problem 1 constitutes the benchmark. The hyper-generalized (s, .S) policy for this problem involves all
four suppliers and is such that sy < 73y < 83y < r2) < S2) < (1) < 5(1) < 0 < 81y < Sy < S(z) < S(ay-
Therefore, given four suppliers, it possesses the maximal number of intervals of inventory levels for which the
optimal strategy is not to intervene. In the other problems, a value of k, for ¢/ € 7 has been changed. The table
presents the number N of suppliers included in the resulting hyper-generalized (s,.S) policy, the original index
of these suppliers, the reason for the exclusion of suppliers, and whether s(;,41) < r(m) form € {1,2,... ,N—1}.

Example 4.29 shows that given a set J of J suppliers with costs satisfying (2.2) and (2.3), decreasing the set-
up cost kg of supplier £ increases the likelihood of the inclusion of that supplier in the optimal hyper-generalized
(s,9) policy. Conversely, increasing ky decreases the likelihood of this inclusion. Arguably, this behaviour could
have been predicted, just as decreasing the cost ¢, per item of supplier £ will increase the likelihood of supplier £
being included in the optimal policy, and increasing ¢, will decrease this likelihood. However, the examples
also show that altering the costs of a single supplier can have a knock-on effect with regard to the inclusion or
exclusion of other suppliers. Apart from when there are only two suppliers, this effect appears to be difficult to
gauge. Likewise it seems difficult to predict when a hyper-generalized (s,.S) policy will be a generalized (s, S)
policy. There is evidently an intricate interplay between the cost parameters of the different suppliers.
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5. Di1scussioN/CONCLUSIONS

A discounted deterministic continuous-time continuous-state inventory model with several suppliers has been
studied. Past attempts at determining an optimal inventory policy had demonstrated that, within the (s, S)
paradigm, such a policy exists in certain cases and not in others. The distinguishing characteristic had moreover
been determined. In the present work, the elusive case, with no known existence, has been fully resolved.
This resolution introduces a new class of inventory policy, which has been termed a hyper-generalized (s, S)
policy. This policy allows the possibility of, when a propitious market moment has passed, waiting, if required,
until more favorable market conditions occur. This provides companies in today’s competitive market where
profit margins are becoming tighter with greater flexibility. It moreover captures a real practice in inventory
management that was missing from (s,.S) and generalized (s, S) policies.

Stochastic inventory control is arguably more realistic than its deterministic counterpart. Nevertheless, the
elusive case resolved in the current deterministic setting is also observed in classical stochastic inventory models
[3,21]. The concept of a hyper-generalized (s, S) policy could be the answer to the hiatuses in the understanding
of such models.

It is of further interest to investigate whether the analysis presented extends to models with more sophisticated
demand processes, such as the jump processes in [6], the diffusion processes in [13], and both in [18]. The adopted
approach could serve as a road map and a kick start for researchers wishing to pursue more elaborate models.

Finally, we note that the exhibited hyper-generalized (s, S) policy delivers an optimal management strategy
for every level within the complete conceivable range of levels of stock. In a dynamic situation this involves
either placing a specific order with one of a select group of suppliers or waiting for a certain time before placing
such an order. Adoption of this tactic would eventually lead to the situation in which one cyclically orders
from the stock level s5(1) to the stock level Sy from the key supplier (1). In other words, the dynamics evolve
into those of the (s,.S) policy for the single supplier (1). There is convincing mathematical evidence that in
the limit that the discount factor a goes to 0, the key supplier (1) would be that prescribed by the optimal
policy minimizing the long-term average cost per unit time for the same set of suppliers. Furthermore, the
corresponding values of s and S would agree in the limit. The perfunctory explanation is that the cost accrued
before the dynamic situation has evolved into a cyclic pattern is finite and therefore negligible in the long-term.
For a formal presentation of the long-term cost criterion, we refer to [14,15]; and for a formal presentation of
the QVI for the problem with no discount, to [17].
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