
RAIRO-Oper. Res. 55 (2021) 1787–1798 RAIRO Operations Research
https://doi.org/10.1051/ro/2021079 www.rairo-ro.org

MULTITASKING SCHEDULING PROBLEMS WITH A COMMON
DUE-WINDOW

Chen Xu1,∗, Yinfeng Xu1, Feifeng Zheng1 and Ming Liu2

Abstract. We study multitasking scheduling and due-window assignment problems in a single ma-
chine, which can be found in various application domains. In multitasking environment, unfinished job
always interrupts in-processing job. In common due window assignment, the aim is to find optimal due
window to minimise the value of the earliness and tardiness penalty. In this paper, we study two prob-
lems, where the objective of the first problem is minimise the earliness, tardiness, due-window starting
time, and due-window size costs, the objective of the second problem is minmax common due-date
with completion time penalty, then we obtain some analytical properties and provide polynomial time
solutions. Finally, the experimental results show that the proposed methods are effective.

Mathematics Subject Classification. 90B35.

Received June 8, 2020. Accepted May 9, 2021.

1. Introduction

Multitasking scheduling has attracted much attention in recently years. The multitasking phenomenon can
be frequently observed in our daily lives. One of the examples is human multitasking in which a continuing
schedule is interrupted by many routine activities such as sending e-mail or making end-of-day file backup in
the workplace today. A possible reason is why people multitask are interrupted by clients or colleagues, another
possible reason is due to a personality trait because working the same things for a long time is ineffective [15,16].

At the same time, commom due window assignment has remained an important topic in scheduling research.
In business, managers usually need to arrange a common due-window. In such a case, a batch of work piece are
ordered by the same customer, because of the different completion time of each work piece, the cost of batch
shipment is relatively high. In order to save transportation costs, it is usually uniform shipment after all the work
pieces are processed, so managers should make a common due date which is a predetermined time point. But
the customers may have some amount of inventory when customers order a batch of work piece. Furthermore,
there may be some force majeure factors during the long-distance transportation of goods, most customers can
tolerant the common due date. Moreover, Just-in-time scheduling can improve customer satisfaction, but the
cost is higher. So we relax the assumption of a common due date to a common due window.

Keywords. Multitasking scheduling, due-window, earliness-tardiness, minmax, assignment problem.

1 Donghua University, Shanghai, P.R. China.
2 Tongji University, Shanghai, P.R. China.
∗Corresponding author: 1123315955@qq.com

c© The authors. Published by EDP Sciences, ROADEF, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021079
https://www.rairo-ro.org
mailto:1123315955@qq.com
https://creativecommons.org/licenses/by/4.0

1788 C. XU ET AL.

To the best of our knowledge, We are the first to study the multitasking scheduling with common due-window.
Our contributions mainly include:

(1) We consider the multitasking scheduling with common due-window to minimize two objectives, and give
some analytical results.

(2) We propose two polynomial-time algorithms for the two problems.
(3) We do some numerical experiments to demonstrate the efficiency of the algorithm, and give some future

issues.

Owing to the practical significance of common due window scheduling in the multitasking environment, there
is a need to study the problem under consideration in this research. We organise the rest of the paper as follows:
In Section 2, we introduce some literature about multitasking and common due-window. In Section 3, we give
some definitions, then we introduce new multitasking model and give analytical results. In Section 4, We propose
a polynomial-time algorithm for the two problems, and give some numerical experiments to demonstrate the
efficiency of the algorithm. Finally, we conclude the paper and suggest topics for future research in Section 5.

2. Literature interview

Research on multitasking scheduling was in initiated by Hall et al. [3], who considered interruption and
switching factors, in which a job was interrupted by other unfinished jobs, then they developed some new solu-
tion algorithms to solve the classical scheduling model (i.e. the total completion time). Hall et al. [4] considered
two scheduling system, which are alternate period processing and shared processing. Zhu et al. [24] considered a
rate-modifying activity (RMA) into multitasking scheduling to minimize the maskspan, total completion time,
maximum lateness, and due-date assignment related cost. Zhu et al. [25] then extended their work to consider
multiple rate-modifying activities to minimise the other objectives about the total completion time, the total
waiting time, the total absolute differences in completion time and the total absolute differences in completion
time. Liu et al. [12] considered multitasking scheduling on a single machine with the common due-date assign-
ment to minimize the weighted earliness, tardiness, and due date assignment cost, and developed the DDA
algorithm to solve the problem. Ji et al. [7] studied parallel-machine scheduling with machine-dependent due-
window assignment to minimize the total cost that comprises the earliness, tardiness, and due-window related
costs. Xiong et al. [19] considered the multitasking scheduling problem on unrelated parallel machines to mini-
mize the total weighted completion time and propose an exact branch-and-price algorithm. Li et al. [8] addressed
several two-agent scheduling problems in the presence of multitasking, polynomial and pseudo-polynomial time
algorithms are proposed to solve the setting, involving various combinations of cost functions. Wang et al. [17]
considered a multitasking scheduling model with multiple agents and ascertained the computational complex-
ity status of each of the problems. Yang et al. [21] addressed a two-agent scheduling problem with due date
assignment under multitasking environment, they showed that the problem is NP-hard and devised a pseudo-
polynomial time dynamic programming algorithm. Wang et al. [18] investigated a multitasking scheduling and
due date assignment problem with position-dependent deterioration effect and efficiency promotion, then they
designed an efficient polynomial time algorithm for several scheduling criteria including the makespan, the total
completion time, and two due date-related criteria.

For common due window assignment problems, Liman et al. [9] considered a single machine static and
deterministic scheduling problem, the objective is to find the optimal size and location the window and an
optimal sequence to minimise earliness, tardiness, window size and window location, they proposed an O(n log n)
algorithm to solve the problem. Gur mosheiov et al. [13] addressed a common due-window assignment problem
on parallel identical machines. Adam Janiak et al. [5] studied problems of scheduling n unit-time jobs on m
identical parallel machines to minimize a weighted sum or maximum of costs associated with job earliness, job
tardiness and due window location and size, establish properties of optimal solutions of these min-sum and
min-max problems and reduce them to min-sum or min-max assignment problems solvable in O(n5/m2) and
O(n4.5 log0.5 n/m2) time. Yin et al. [22] addressed a batch delivery single-machine scheduling problem in which

MULTITASKING SCHEDULING PROBLEMS WITH A COMMON DUE-WINDOW 1789

jobs have an assignable common due window and showed proposed problem can be optimally solved in O(n8)
time by a dynamic programming algorithm. Yin et al. [22] consider single-machine batch delivery scheduling with
an assignable common due date and controllable processing times and provided an O(n5) dynamic programming
algorithm to find the optimal job sequence. Enrique Gerstl et al. [2] studied both cases of a non-restrictive and a
restrictive due-window, for both settings they introduce algorithms requiring O(2mn3) time and O(3mn3) time,
respectively, where n is the number of jobs and m is the number of uniform machines. Recently, due window
assignment problems have been studied, among others, by Yang et al. [20], Ji et al. [6], Liu et al. [10], Liu et al.
[12], etc.

3. Problem statement

We assume that n jobs J = {J1, J2, . . . , Jn} are processed on a single machine, and the start time is zero,
each job Jj has a normal processing time pj , and the machine is working all the time. There is no idle time
between any two adjacent jobs. All jobs have common due window, the due-window starting time is d1, the
due-window finishing time is d2, D is equal to d2−d1, which is defined the window size. Jobs completed in
due-window incurs no penalties, other jobs incurs either earliness or tardiness penalties. If the job is early job,
then Ej = max{0, d1−Cj}, if the job is tardy job, then Tj = max{0, Cj−d2}. Only one job can be processed
at a certain time. This job is called the primary job, the interrupted and unfinished jobs are called the waiting
jobs of the primary job. Every waiting job must interrupt the primary job one time, which we called as the
interruption time. The interruption time caused by job i during the processing of j is given by function gi(pi),
where 0 ≤ gi(pi) < pi. The above studies all assume that the interruption function gk(p′k) is Dpk, where
0 < D < 1, in fact, the interrupted time of waiting jobs is uncertain. But for the convenience of calculation, it is
also considered as a function of the remaining time of waiting job in this paper. The time during finished time
of the former job and start time of the next job is referred to as the switching time, which function is defined
as f(|Sj |). We assume that the switching time during every two job is same, if the number of the waiting jobs
of primary job is k, the f(|Sj |) is equal to kδ. In other words, the remaining processing time of the waiting job
will decrease because a part of the processing time is completed in the interruptions of previous jobs. When
job j is the primary job, we denote Sj as all waiting jobs. Each job can be arranged as primary job a time,
the multitasking function is defined as f(|Sj |) +

∑
i∈Sj

gi(pi), which expresses the total amount of interruption
during the processing of job j.

As in Hall et al. [3], we define the remaining processing time pi of a waiting job i as a function hi(·) :=
{1, 2, . . . , n} → R. Specifically, with respect to interruption function gi(pi), the remaining processing time of
job i after it has interrupted l primary jobs is given by hi(l), where 1 ≤ l ≤ n. That is, hi(l) is the remaining
processing time of job i when it is considered at the lth position in a schedule.

hi(1) = pi;
hi(2) = hi(1)− gi(hi(1));
hi(3) = hi(2)− gi(hi(2));
. . .

hi(l) = hi(l − 1)− gi(hi(l − 1));
. . .

hi(n) = hi(n− 1)− gi(hi(n− 1));

Observation 1. Cmax is a constant in an optimal schedule.

Proof. For any scheduling, the total completion time is divided into three parts. The first part is the working
time of the main job, the second part is the working time of the waiting job, and the third part is the switching
time between the waiting jobs. The main job is a interrupted job, its working time is low pi, but the rest of
pi is accomplished on front of itself. So the working time is always equal to pi. What’s more, the number of

1790 C. XU ET AL.

jobs switching is always same for any schedule, in this paper, we consider the switching function is a index 1
function of the number of jobs, so the switching time is equal. The completion time of the last job is equal to
the processing time and the switching time of all jobs, so it is same. �

4. Multitasking scheduling problem

We study two problems, the first objective is minimise
∑

(αEj + βTj + γd1 + δD), every early job has
(αEj +γd1 + δD) cost, every late job has (αTj +γd1 + δD) cost, in order to minimise

∑
(αEj +βTj +γd1 + δD)

cost, we hope to minimise the highest cost among all jobs, so another is to minimized max1≤j≤n {max{αEj +
γd1 + δD, βTj + γd1 + δD}}, which α is the unit penalty for earliness, β is the unit penalty for tardiness, γ is
the unit penalty for the due-window starting time, δ is the unit penalty for the window size.

4.1. Common due-window problem

A previous study on common due-window assignment problem is given by Gur Mosheiov, and Assaf Sarig.
They consider the problem 1 ‖

∑
(αEj+βTj+γd1+δD). We study the problem 1 | mt |

∑
(αEj+βTj+γd1+δD),

if the interruption function g(·) ≡ 0 and the switching function f(·) ≡ 0 for all jobs in multitasking environment,
which is reduced to 1 ‖

∑
(αEj + βTj + γd1 + δD). So we have some similar results in this case.

Lemma 4.1. For the problem 1 | mt |
∑

(αEj + βTj + γd1 + δD), if γ > δ, an optimal schedule exists in which
the due window starts at time zero.

Proof. Given any schedule σ and d1 ≥ 0, we shift d1, 4 units of time to the left, the value of the first term∑
αEj decreases αk4, where k denotes the numbers of early jobs, the value of the second term

∑
βTj keeps

the same with unchanged, the value of the third term
∑
γd1 decreases γn4, while the value of the fourth term∑

δD increases δn4. Then the change in the total cost is given by: 4Z = (δ − γ)n4 - αk4 ≤ 0. Therefore,
implying the optimal d1 = 0.

Given the optional d1 = 0, we observe that the problem 1 | mt |
∑

(αEj + βTj + γd1 + δD) reduces to the
problem the 1 | mt |

∑
(βTj + δd2). The problem 1 | mt |

∑
(βTj + δd2) is studied where δ > β, the SPT rule is

optimal for scheduling jobs and the optimal d2 = 0. �

Proposition 4.2. For the problem 1 | mt |
∑

(αEj +βTj + γd1 + δD), if β < δ < γ, an optimal schedule exists
in which the due-window is reduced to a common due-date that starts at time zero.

Proof. Since γ > δ, an optimal schedule exsits the d1 is equal to 0, then δ > β, the optimal d2 = 0. If β < δ < γ,
we conclude that the optimal d1 = d2 = 0. �

Proposition 4.3. For the problem 1 | mt |
∑

(αEj + βTj + γd1 + δD), if β < min{δ, γ}, an optimal schedule
exists in which the due-window is reduced to a common due-date that starts at time zero.

Proof. (i) β < γ < δ, suppose that the d1 > 0, we shift d2, 4 units of time to the left, the value of the first
term

∑
αEj is unchanged, the value of the second term

∑
βTj increases βk4, where k denotes the numbers

of tardy jobs, the value of the third term
∑
γd1 is unchanged, while the value of the fourth term

∑
δD

decreases δn4. Then the change in the total cost is given by:4Z = (βk−δn)4 < (βk−δk)4= (β−δ)k4 <
0. A further shift of d2 to coincide with d1 can reduce the cost. The problem 1 | mt |

∑
(αEj+βTj+γd1+δD)

reduces to the problem the 1 | mt |
∑

(αEj + βTj + δd1).
(ii) β < δ < γ, proposition 1 proposed that the optimal d1 = d2 = 0.

So if β < min{δ, γ}, an optimal schedule exists in which the due-window is reduced to a common due-date
that starts at time zero. �

Lemma 4.4. For the problem 1 | mt |
∑

(αEj + βTj + γd1 + δD), an optimal schedule exists in which the
due-window starting time and the due-window completion time coincide with the completion time of a job in a
schedule.

MULTITASKING SCHEDULING PROBLEMS WITH A COMMON DUE-WINDOW 1791

Proof. We suppose C[k] < d1 < C[k+1], C[h] < d2 < C[h+1], for some k, h ∈ [1, n], we first discuss the d1, the
following two cases are discussed:

(i) We denote 41 = C[k+1]−d1 increasing the d1 by 41, the value of the first term
∑
αEj increases by αk41,

the value of the second term
∑
βTj is unchanged, the value of the third term

∑
γd1 increases by γn41,

the value of the third term
∑
δD decreases by γn41, then the total increase of the objective function value

is [αk + (γ − δ)n]41.
(ii) We denote 42 = d1 − C[k] decreasing the d1 by 42,the value of the first term

∑
αEj decreases by αk42,

the value of the second term
∑
βTj is unchanged, the value of the third term

∑
γd1 decreases by γn42,

the value of the third term
∑
δD increases by γn42, then the total decrease of the objective function value

is [αk + (γ − δ)n]42.

Notice that in both case, the objective function can express that G4,4 ∈ [C[k] − d1, C[k+1] − d1], G =
[αk + (γ − δ)n], is a constant, if G > 0,4 = C[k] − d1, it means d1 = C[k], if G < 0,4 = C[k+1] − d1, it means
d1 = C[k+1], while G = 0, d1 = C[k] or C[k+1].

The proof about d2 is similar to above about d1.
Therefore, an optimal schedule exists such that both d1 and d2 coincide with job completion times. �

Lemma 4.5. For the problem 1 | mt |
∑

(αEj +βTj +γd1 +δD), an optimal schedule exists in which d1 = C[k],
d2 = C[h], where k = dn(δ − γ)/αe and h = dn(β − δ)/βe.

Proof. By the proof of Lemma 4.4, we define a function f(k) = [αk + (γ − δ)n]42, where k ∈ {1, 2, . . . , n}, the
function f(·) is increasing in k because α > 0, moreover, f(1) = [α + (γ − δ)n]∆2 < 0, since γ < δ, (γ − δ)n
is significantly less than α. To find an optimal d1, it suffices to find a k ∈ {1, 2, . . . , n} such that f(k) ≤ 0 and
f(k + 1) > 0. If f(k) ≤ 0 then k ≤ n(δ − γ)/α+ 1, as k is an integer, so k = dn(δ − γ)/αe.

The proof about d2 is similar to above about d1.
Given a sequence σ = [J[1], J[2], . . . , J[n]] and d1 = C[k], d2 = C[h], where k = dn(δ−γ)/αe, h = dn(β− δ)/βe,

the first k jobs are completed early or on time, while the last (n − h) jobs are delayed. So we can reformulate
the objective functions as follows.

Z = α

n∑
j=1

Ej + β

n∑
j=1

Tj + γnd1 + δnD

= α

k∑
j=1

(d1 − C[j]) + β

n∑
j=h+1

(C[j] − d2) + γn

k∑
j=1

PA[j] + δn

h∑
j=k

PA[j]

= α

k∑
j=1

(j − 1)PA[j] + β

n∑
j=h+1

(n− j + 1)PA[j] + γn

k∑
j=1

PA[j] + δn

h∑
j=k

PA[j]

=
n∑
j=1

ϕjP
A
[j]

=
n∑
j=1

ϕj [(1−D)j−1P[j] + ω(n− j) +D(1−D)j−1
n∑

l=j+1

P[l]]

=
n∑
j=1

ϕj [(1−D)j−1P[j]] +
n∑
j=1

ϕjD(1−D)j−1
n∑

l=j+1

P[l] +
n∑
j=1

ϕjω(n− j)

=
n∑
j=1

ϕj [(1−D)j−1P[j]] +
n∑
j=1

j−1∑
l=1

D(1−D)l−1ϕlP[j] +
n∑
j=1

ϕjω(n− j)

1792 C. XU ET AL.

=
n∑
j=1

[ϕj(1−D)j−1 +
j−1∑
l=1

D(1−D)l−1ϕl]P[j] +
n∑
j=1

ϕjω(n− j)

=
n∑
j=1

ψjP[j] +
n∑
j=1

φj

where ψj = [ϕj(1−D)j−1 +
∑j−1
l=1 D(1−D)l−1ϕl],φj = ϕjω(n− j)

ϕj =


α(j − 1) + γn, j = 1, . . . , k;
δn, j = k + 1, . . . , h
β(n− j + 1), j = h+ 1, . . . , n.

Hence, the problem can be formulated as following assignment problem:

min
n∑

j= 1

n∑
r= 1

Bjrxjr

n∑
r= 1

xjr = 1, j= 1, 2, . . . , n,

n∑
j= 1

xjr = 1, r= 1, 2, . . . , n,

xjr = 0 or 1, j, r= 1, 2, . . . , n,

where Bjr = [ϕr(1−D)r−1 +
∑r−1
l=1 D(1−D)l−1ϕl]pj .

Based on the above analysis, we propose the following optimization algorithm to solve the 1 | mt |
∑

(αEj +
βTj + γd1 + δD) problem. �

Algorithm 1.

Step 1. Compute d1 and d2 at the competition time of the kth job and hth job,
where k = dn(δ − γ)/αe, h = dn(β − δ)/βe

Step 2. For i from 1 to n do
Step 2.1. hi(1) = pi.
Step 2.2. For l from 1 to n− 1 do

hi(l + 1) := hi(l)− gi(hi(l))
Step 3. Compute all Bjr for j, r = 1, . . . , n
Step 4. Solve the assignment to determine the local optimal and the total cost
Step 5. Schedule the jobs with multitasking in order of σ

Property 4.6. For the problem 1 | mt |
∑

(αEj + βTj + γd1 + δD), an optimal schedule σ can be obtained in
O(n3) time.

Proof. Step 1 of algorithm 1 can be solved with constant time. Step 2 of algorithm 1, as the processing step
by the remaining processing times of all jobs after they have interrupted j primary jobs, for j = 1, . . . , n, are
computed, required O(n2) times, step 4 of algorithm 1 can be obtained in O(n2) times. The classic assignment
problem can be solved with O(n3) Papadimitriou and Steiglitz [14] and Brucker [1]. Thus the above theorem
holds. �

MULTITASKING SCHEDULING PROBLEMS WITH A COMMON DUE-WINDOW 1793

Table 1. Job-position processing times hi(l).

Jobs Position
1 2 3 4 5 6 7 8

1 15 13.50 12.15 10.94 5.47 4.92 4.43 3.99
2 9 8.10 7.29 6.56 5.90 5.31 4.78 4.30
3 26 23.40 21.06 18.95 17.06 15.35 13.81 12.44
4 104 93.60 84.24 75.82 68.23 61.41 55.27 49.74
5 10 9 8.1 7.29 5.90 5.31 4.78 4.30
6 2 1.8 1.62 1.46 1.31 1.18 1.06 0.96
7 25 22.5 20.25 18.23 16.40 14.76 13.29 11.96
8 82 73.8 66.42 59.78 53.80 48.42 43.58 39.22

Table 2. Job-position processing times Bjr.

Jobs Position
1 2 3 4 5 6 7 8

1 1800 1644 1500 1357 589 457 353 270
2 1080 987 900 813 636 494 381 291
3 3120 2850 2599 2350 1838 1427 1100 843
4 12480 11400 10397 9402 7350 5709 4404 3369
5 1200 1096 1000 904 636 494 381 291
6 240 219 200 181 141 110 84 65
7 3000 2741 2499 2261 1767 1372 1059 810
8 9840 8989 8198 7413 5796 4502 3472 2656

Example 4.7. There are n = 8 jobs, the normal processing time are p1 = 15, p2 = 9, p3 = 26, p4 = 104, p5 =
10, p6 = 2, p7 = 25, p8 = 82,ω = 0.1 and D = 0.1. The cost parameters are: α = 2, β = 25, γ = 15, δ = 15.6.

Then, we compute:

k = d8× (15.6− 15)/2e = 3, h = d8× (25− 15.6)/25e = 4
α(j − 1) + γn= (120, 122, 124).
δn= (124.8)
β(n− j + 1) = (100, 75, 50, 25)
ϕr = (120, 122, 124, 124.8, 100, 75, 50, 25)
ψr = (120, 121.8, 123.42, 124, 107.73, 92.97, 79.68, 67.73).

We solve the 8× 8 job-position processing times problem given in Table 1, the results are shown in Table 2.
As specified above, the job sequence is (6,2,5,7,1,3,8,4), the completion of the first four jobs are

(C1, C2, C3, C4) = (29.8, 64.79, 98.87, 141.16). The optimal d1 = 98.87, d2 = 141.16, the due-window is of size
42.29, three jobs are early, one job is scheduled inside the window, and four jobs are tardy. The total cost is
Z = 13664.12.

1794 C. XU ET AL.

4.2. Minmax common due-window problem

In this section, the aim is to find the optimal sequence and the start time and size of the due-window that
minimize the maximum cost. To do this, P2 is formulated as a linear programming (LP) problem.

minZ
Z ≥ αEj + γd1 + δD, j= 1, 2, . . . , n,
Z ≥ βTj + γd1 + δD, j= 1, 2, . . . , n,
d1, D, Z ≥ 0, j= 1, 2, . . . , n,

Property 4.8. There are four different cases with specific cost functions:

Case 1. β < γ, δ ≥ β, the due window is reduced to a due date at time zero, implying that all jobs are tardy.

d1 = d2 = 0, Z = βCmax

Case 2. β ≥ γ, δ > γ and δ < β α+γ
α+β , the due window is again reduced to a due date in the interval (0, Cmax),

implying that there are early and tardy jobs.

d1 = d2 =
αCmin + βCmax

α+ β
, Z =

α(γ − β)Cmin + β(α+ γ)Cmax

α+ β

Case 3. β ≥ γ, δ > γ and δ ≥ β α+γ
α+β , the start time of the due window coincides with the completion time of

the first job and all jobs are on time.

d1 = Cmin, d2 = Cmax, Z = γCmin + δ(Cmax − Cmin)

Case 4. (β ≥ γ and δ ≤ γ) or (β < γ and δ < β), the due window achieves its maximal size and all jobs are
on time.

d1 = 0, d2 = Cmax, Z = δCmax

So we can reformulate the objective functions as follows.

Z =
n∑
j=1

WjP
A
[j]

=
n∑
j=1

Wj [(1−D)j−1P[j] + ω(n− j) +D(1−D)j−1
n∑

l=j+1

P[l]]

=
n∑
j=1

Wj [(1−D)j−1P[j]] +
n∑
j=1

WjD(1−D)j−1
n∑

l=j+1

P[l] +
n∑
j=1

Wjω(n− j)

=
n∑
j=1

Wj [(1−D)j−1P[j]] +
n∑
j=1

j−1∑
l=1

D(1−D)l−1WlP[j] +
n∑
j=1

Wjω(n− j)

=
n∑
j=1

[Wj(1−D)j−1 +
j−1∑
l=1

D(1−D)l−1Wl]P[j] +
n∑
j=1

Wjω(n− j)

=
n∑
j=1

ψjP[j] +
n∑
j=1

φj

MULTITASKING SCHEDULING PROBLEMS WITH A COMMON DUE-WINDOW 1795

where ψj = [Wj(1−D)j−1 +
∑j−1
l=1 D(1−D)l−1Wl],φj = Wjω(n− j)

Wj =



β β < γ, δ ≥ β{
γ j = 1
β(α+γ)
α+β j = 2, . . . , n

β ≥ γ, δ > γ and δ ≥ β α+γ
α+β{

γ j = 1
δ j = 2, . . . , n

β ≥ γ, δ > γ and δ < β α+γ
α+β

δ (β ≥ γ and δ ≤ γ) or (β < γ and δ < β).

Hence, the problem can be formulated as following assignment problem:

min
n∑
j=1

n∑
r=1

Cjrxjr

n∑
r=1

xjr = 1, j = 1, 2, . . . , n,

n∑
j=1

xjr = 1, r = 1, 2, . . . , n,

xjr = 0or1j, r = 1, 2, . . . , n,

where Cjr = [ϕr(1−D)r−1 +
∑r−1
l=1 D(1−D)l−1ϕl]pj .

The due date are given by d1 =
∑n
j=1W

d1
j PA[j], d2 =

∑n
j=1W

d2
j PA[j]. Where

W d1
j =



0 β < γ, δ ≥ β{
1 j = 1
β

α+β j = 2, . . . , n

β ≥ γ, δ > γ and δ ≥ β α+γ
α+β{

1 j = 1
0 j = 2, . . . , n

β ≥ γ, δ > γ and δ < β α+γ
α+β

0 (β ≥ γ and δ ≤ γ) or (β < γ and δ < β)

W d2
j =



0 β < γ, δ ≥ β{
1 j = 1
β

α+β j = 2, . . . , n

β ≥ γ, δ > γ and δ ≥ β α+γ
α+β{

1 j = 1
1 j = 2, . . . , n

β ≥ γ, δ > γ and δ < β α+γ
α+β

1 (β ≥ γ and δ ≤ γ) or (β < γ and δ < β).

Based on the above analysis, we propose the following optimization algorithm to solve the 1 | mt |
max{max{αEj + γd1 + δD, βTj + γd1 + δD}} problem.

1796 C. XU ET AL.

Table 3. Case 1: Job-position processing times Cjr for α = 1, β = 9, γ = 16, δ = 19.

Jobs Position
1 2 3 4 5 6 7 8

1 135.00 121.50 109.35 98.46 49.23 44.28 39.87 35.91
2 81.00 72.90 65.61 59.04 53.10 47.79 43.02 38.70
3 234.00 210.60 189.54 170.55 153.54 138.15 124.29 111.96
4 936.00 842.40 758.16 682.38 614.07 552.69 497.43 447.66
5 90.00 81.00 72.90 65.61 53.10 47.79 43.02 38.70
6 18.00 16.20 14.58 13.14 11.79 10.62 9.54 8.64
7 225.00 202.50 182.25 164.07 147.60 132.84 119.61 107.64
8 738.00 664.20 597.78 538.02 484.20 435.78 392.22 352.98

Algorithm 2.

Step 1. Compute d1 and d2 at the competition time of the kth job and hth job,
where k = dn(δ − γ)/αe, h = dn(β − δ)/βe

Step 2. For i from 1 to n do
Step 2.1. hi(1) = pi.
Step 2.2. For l from 1 to n− 1 do

hi(l + 1) := hi(l)− gi(hi(l))
Step 3. Compute all Cjr by for j, r = 1, . . . , n
Step 4. Solve the assignment to determine the local optimal

and the total cost
Step 5. Schedule the jobs with multitasking in order of σ

Property 4.9. For the problem 1 | mt | max{max{αEj + γd1 + δD, βTj + γd1 + δD}}, an optimal schedule σ
can be obtained in O(n3) time.

Proof. Step 1 of algorithm 2 can be solved with constant time. Step 2 of algorithm 2, as the processing step
by the remaining processing times of all jobs after they have interrupted j primary jobs, for j = 1, . . . , n, are
computed, required O(n2) times, step 3 of algorithm 2 can be obtained in O(n2) times. The classic assignment
problem can be solved with O(n3) times. Thus the above theorem holds. �

Example 4.10. There are n = 8 jobs, the normal processing time are p1 = 14, p2 = 35, p3 = 28, p4 = 38, p5 =
26, p6 = 49, p7 = 43, and p8 = 40.

We solve the 8 × 8 job-position processing times problem given in Table 1 with four different combinations
of the cost parameters, depicting one of the four sub-cases discussed in Property 4.8. The results are shown in
Tables 3–7.

5. Conclusion

We study the method of common due-window assignment and multitasking scheduling problem. We have
proposed two polynomial algorithms to solve the single-machine common due window problem to minimise
a cost function based on earliness, tardiness, window size, and due-window starting times, we illustrate the
algorithm with a numerical example. We then show that the solutions can be extended to the problem with
minmax common due-window assignment.

Future research directions on multitasking issues may include deterioration and positional effects, job rejec-
tion, parallel machine.

MULTITASKING SCHEDULING PROBLEMS WITH A COMMON DUE-WINDOW 1797

Table 4. Case 2: Job-position processing times Cjr for α = 4, β = 15, γ = 9, δ = 14.

Jobs Position
1 2 3 4 5 6 7 8

1 135.00 136.76 123.08 110.82 55.41 49.84 44.88 40.42
2 81.00 82.05 73.85 66.45 59.77 53.79 48.42 43.56
3 234.00 237.04 213.34 191.96 172.82 155.50 139.90 126.02
4 936.00 948.17 853.35 768.06 691.17 622.08 559.88 503.87
5 90.00 91.17 82.05 73.85 59.77 53.79 48.42 43.56
6 18.00 18.23 16.41 14.79 13.27 11.95 10.74 9.72
7 225.00 227.93 205.13 184.67 166.13 149.52 134.63 121.15
8 738.00 747.59 672.83 605.57 544.99 490.49 441.47 397.30

Table 5. Case 3: Job-position processing times Cjr for α = 6, β = 19, γ = 14, δ = 15.

Jobs Position
1 2 3 4 5 6 7 8

1 210 201.2 181 163 81.5 73.3 66.0 59.5
2 126 120.7 108.6 97.7 87.9 79.1 71.2 64.1
3 364 348.7 313.8 282.4 254.2 228.7 205.8 185.4
4 1456 1394.6 1255.2 1129.7 1016.6 915.0 823.5 741.1
5 140 134.1 120.7 108.6 87.9 79.1 71.2 64.1
6 28 26.8 24.1 21.8 19.5 17.6 15.8 14.3
7 350 335.2 301.7 271.6 244.4 219.9 198.0 178.2
8 1148 1099.6 989.7 890.7 801.6 721.5 649.3 584.4

Table 6. Case 4: Job-position processing times Cjr for α = 20, β = 5, γ = 15, δ = 3.

Jobs Position
1 2 3 4 5 6 7 8

1 45 40.50 36.45 32.82 16.41 14.76 13.29 11.97
2 27.00 24.30 21.87 19.68 17.70 15.93 14.34 12.90
3 78.00 70.20 63.18 56.85 51.18 46.05 41.43 37.32
4 312.00 280.80 252.72 227.46 204.69 184.23 165.81 149.22
5 30.00 27.00 24.30 21.87 17.70 15.93 14.34 12.90
6 6.00 5.40 4.86 4.38 3.93 3.54 3.18 2.88
7 75.00 67.50 60.75 54.69 49.20 44.28 39.87 35.88
8 246.00 221.40 199.26 179.34 161.40 145.26 130.74 117.66

Table 7. Optimal sequence, due-window and cost function for different cases.

Case (α, β, γ, δ) Optimal sequence Cmin Cmax d1 d2 Z

1 (1,9,16,19) (J6, J2, J5, J7, J1, J3, J8, J4) 29.8 275.8 0 0 1355.4
2 (4,15,9,14) (J2, J6, J5, J7, J1, J3, J8, J4) 36.1 275.8 225.34 225.34 2241.6
3 (6,19,14,15) (J6, J2, J5, J7, J1, J3, J8, J4) 29.8 275.8 29.8 275.8 1522.2
4 (20,5,15,3) (J6, J2, J5, J7, J1, J3, J8, J4) 29.8 275.8 0 275.8 451.8

1798 C. XU ET AL.

Acknowledgements. This paper has benefited from financial support from the National Science Foundation of China
(71771048, 71832001) and the Fundamental Research Funds for the Central Universities.

References

[1] P. Brucker, Scheduling Algorithms. Berlin, Springer (2007).

[2] E. Gerstl and G. Mosheiov, Due-window assignment with identical jobs on parallel uniform machines. Eur. J. Oper. Res. 229
(2013) 41–47.

[3] N.G. Hall, J.Y.T. Leung and C.L. Li, The effects of multitasking on operations scheduling. Prod. Oper. Manag. 24 (2015)
1248–1265.

[4] N.G. Hall, J.Y.T. Leung and C.L. Li, Multitasking via alternate and shared processing: algorithms and complexity. Discret.
Appl. Math. 208 (2016) 41–58.

[5] A. Janiak, W. Janiak, M.Y. Kovalyov, E. Kozan and E. Pesch, Parallel machine scheduling and common due window assignment
with job independent earliness and tardiness costs. Inf. Sci. 224 (2013) 109–117.

[6] M. Ji, X. Zhang, X.Y. Tang, T.C.E. Cheng, G.Y. Wei and Y.Y. Tan, Group scheduling with group-dependent multiple due
windows assignment. Int. J. Pro. Res. 54 (2016) 1244–1256.

[7] M. Ji, L.J. Liao, W.Y. Zhang, T.C.E. Cheng and Y.Y. Tan, Multitasking Scheduling with General Aging Effect. Multiple
Rate-Modifying Activities and Past-sequence-dependent Delivery Times. Working Paper (2018).

[8] S. Li, R. Chen, and J. Tian, Multitasking Scheduling Problems with Two Competitive Agents. Eng. Optimiz. 52 (2019)
1940–1956.

[9] S.D. Liman, S.S. Panwalkar and S. Thongmee, Common due window size and location determination in a single machine
scheduling problem. J. Oper. Res. Soc. 93 (1998) 68–74.

[10] L. Liu, J.J. Wang and X.Y. Wang, Single machine due-window assignment scheduling with resource-dependent processing
times to minimise total resource consumption cost. Int. J. Prod. Res. 54 (2016) 1–10.

[11] M. Liu, S.J. Wang, F.F. Zheng and C.B. Chu, Algorithms for the joint multitasking scheduling and common due date assignment
problem. Int. J. Prod. Res. 55 (2017) 6052–6066.

[12] L. Liu, J.J. Wang, F. Liu and M. Liu, Single machine due window assignment and resource allocation scheduling problems
with learning and general positional effects. J. Manuf. Syst. 43 (2017) 1–14.

[13] G. Mosheiov and D. Oron, Due-window assignment with unit processing-time jobs. Nav. Res. Logist. 51 (2004) 1005–1017.

[14] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs, NJ, Prentice
Hall (1982).

[15] A. Spink, Multitasking information behavior and information task switching: an exploratory study. J. Doc. 60 (2004) 336–345.

[16] A. Spink, H.C. Ozmutlu and S. Ozmutlu, Multitasking information seeking and searching processes. J. Am. Soc. Inform. Sci.
Tech. 53 (2014) 639–652.

[17] D. Wang, Y. Yu, Y. Yin, and T. C. E. Cheng, Multi-agent scheduling problems under multitasking. Int. J. Prod. Res., 59
(2020) 1–31.

[18] Y. Wang, J. Wang, and Y. Yin, Due date assignment and multitasking scheduling with deterioration effect and efficiency
promotion. Comput. Ind. Eng., 146 (2020) 106569.

[19] X. Xiong, P. Zhou, Y. Yin, T.C.E. Cheng and D. Li, An exact branch-and-price algorithm for multitasking scheduling on
unrelated parallel machines. Nav. Res. Logist. 66 (2019) 502–516.

[20] D.L. Yang, C.J. Lai and S.J. Yang, Scheduling problems with multiple due windows assignment and controllable processing
times on a single machine. Int. J. Prod. Econ., 150 (2014) 96–103.

[21] Y. Yang, G. Yin, C. Wang, and Y. Yin, Due date assignment and two-agent scheduling under multitasking environment. J.
Comb. Optim., 2 (2020).

[22] Y. Yin, T.C.E. Cheng, C.J. Hsu and C.C. Wu, single-machine batch delivery scheduling with an assignable common due
window. Omega 41 (2013) 216–225.

[23] Y. Yin, T.C.E. Cheng, S.R. Cheng and C.C. Wu, Single-machine batch delivery scheduling with an assignable common due
date and controllable processing times. Comp. Ind. Eng. 65 (2013) 652–662.

[24] Z. Zhu, F. Zheng, C. Chu, Multitasking scheduling problems with a rate-modifying activity. Int. J. Prod. Res. (2016) 1–17.

[25] Z.G. Zhu, M. Liu, C.B. Chu and J.L. Li, Multitasking scheduling with multiple rate-modifying activities. Int. Trans. Oper.
Res. (2017) 1–21.

	Introduction
	Literature interview
	Problem statement
	Multitasking scheduling problem
	Common due-window problem
	Minmax common due-window problem

	Conclusion
	References

