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FUZZY MULTIPLE OBJECTIVE FRACTIONAL OPTIMIZATION IN ROUGH
APPROXIMATION AND ITS APTNESS TO THE FIXED-CHARGE

TRANSPORTATION PROBLEM

Sudipta Midya1, Sankar Kumar Roy1,∗ and Gerhard Wilhelm Weber2

Abstract. This article presents a multiple objective fractional fixed-charge transportation problem
(MFFTP) in a rough decision-making framework. A transformation procedure is modified to convert
non-linear multi-objective transportation problem to its linear version. The parameters of the designed
model are considered to be fuzzy. We employ separate kinds of fuzzy scale, i.e., possibility, credibility
and necessity measures, to deal with the fuzzy parameters. Using the fuzzy chance-constrained rough
approximation (FCRA) technique, we extract the more preferable optimal solution from our suggested
MFFTP. The initial result is compared with that of the robust ranking (RR) technique. We also use
the theory of rough sets for expanding as well as dividing the feasible domain of the MFFTP to
accommodate more information by considering two approximations. Employing these approximations,
we introduce two variants, namely, the lower approximation (LA) and the upper approximation (UA), of
the suggested MFFTP. Finally, by using these models, we provide the optimal solutions for our proposed
problem. We also associate our MFFTP with a real-world example to showcase its applicability as well
as performance. Our core concept of this article is that it tackles an MFFTP using two separate kinds
of uncertainty and expands its feasible domain for optimal solutions. Optimal solutions of the designed
model (obtained from FCRA technique) belong to two separate regions, namely, “surely region” and
“possible region”. The optimal solution which belongs to the “surely region” is better (as these are
minimum values) than the one in the “possible region” and other cases. An interpretation of our
approach along with offers about the intended future research work are provided at last.
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1. Introduction

Fractional programming is a special type of non-linear platform in which the quotients of functions are
either maximized or minimized. The study of fractional programming started long before with Charnes and
Cooper [6] being the first. Fractional programming for the single-objective optimization problem was investigated
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extensively and applied to real-life problems, for example, economical planning in corporate sector, transporta-
tion scheduling, university planning, and health care and hospital management, etc. In these areas, fractional
programming is frequently encountered through the decision to optimize ratios such as profit/invest, damaged
rate of goods/time, placement/student, nurse/patient and others.

In the traditional transportation problem (TP), single product is manufactured at different plants (supply
points) and transported to a number of different warehouses (demand points). The objective is to satisfy the
demand of the goods moved from each supply center to every demand center in which the cost of transportation
takes minimum value. Besides the shipping cost, in many real-life applications, a TP is usually connected to a
fixed penalty which is incurred at each origin. That fixed penalty may be due to setup expenses, permit charge,
toll fee and others. This problem is called the fixed-charge transportation problem (FCTP).

Since the TP is a special case within the class of linear programming problems, it is expressed as a linear
fractional programming problem (FPP) which has a network designed containing of definite numbers of vertices
and curves. This kind of TP is called a fractional transportation problem (FTP). A linear FTP seeks to optimize
an objective function of fractional form, with linear functions appearing in its numerator and denominator,
subject to a set of linear constraints.

Fractional fixed-charge transportation problem (FFTP) is the enhanced structure of FTP which is formulated
by including a fixed-charge into the transportation system. Generally, many real-world situations also arise for
which a single-objective optimization setup is not adequate. Based on this fact multiple objective functions are
considered into the FFTP and it is further modified to multiple objective fractional fixed-charge TP. Therefore,
multiple objective case of the proposed model puts it ahead of its single-objective counterpart. In the formulated
multiple objective fractional fixed-charge transportation problem (MFFTP), multiple objective functions are of
conflicting type and of ratio form. So, sometimes our problem is called non-linear multiple objective FCTP.
Generally, this type of FCTP is hard to solve. Due to this reason, we use suitable transformation and modify it
to convert the model into its linear form.

In real-life delivery system, uncertainty exists almost every cases. To tackle such types of uncertainty in
practical situations, researchers have adopted it in various ways such as stochastic, interval, fuzzy, rough, etc.
environments. Fuzzy set was launched by Zadeh [55] as a powerful mathematical aid for representing inexactness,
inconsistency and imprecise data in real-world situations whereas rough set theory, on the another way, was
originated by Pawlak [36]. It is generally demonstrated to be a strong mathematical equipment to represent
vagueness in the optimization problems.

To tackle uncertain parameters in a TP, one can consider stochastic framework. But, stochastic distribution
is required either a priori predictable periodicity or posteriori frequency distribution. However, many situations
appear in practical transportation system where we have no information about predictable periodicity/frequency
distribution of the parameters. In contrast, in fuzzy set theory, that information is not needed such type of
predictable periodicity/frequency distribution. Moreover, fuzzy set theory is expressed everything by degree of
membership function. Due to these reasons, the parameters of the formulated model are taken as fuzzy number
instead of using a stochastic environment.

As in fuzzy set the inexact information is described by membership function so it is easy to present uncertainty
in real-life distribution system by fuzzy numbers. Behind this reason in our suggested model the variables are
regarded as triangular fuzzy numbers, so the MFFTP is again defined as fuzzy MFFTP. We also incorporate
rough set theory to divide the feasible region of the fuzzy MFFTP. Basically, rough set approximation is
produced the two correspondence models (i.e., linear lower approximation (LA) and upper approximation (UA)
of the MFFTP) which are connected with the possibility and necessity of chance constraints. These two models
provide two sets of optimal solutions in the sense of “surely” and “possible” situations respectively in the
practical delivery system. Moreover, the chance operator is used to reduce it into a deterministic form.

From publications view, it is noticed that until now no one did consider a fuzzy MFFTP through rough
approximation which motivated us to design an MFFTP model. Main attention of our efforts to design this
article is depicted as below.
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• MFFTP model is developed by introducing two kinds of uncertainty, (i.e., one is fuzziness and another is
roughness);

• A modification is done to convert MFFTP to MFCTP (i.e., linearization process);
• Transform the fuzzy non-linear multiple objective fixed-charge transportation problem (MFCTP) into the

fuzzy linear MFCTP;
• RR and fuzzy chance-constrained rough approximation (FCRA) techniques are employed to formulate an

equivalent crisp version of the fuzzy MFFTP;
• The feasible region of the proposed MFFTP is extended by formulating two approximation models, namely,

the linear LA and UA of the MFFTP (i.e., LLA-MFCTP and LUA-MFCTP), using rough set approximation,
that creates the police-making process more acceptable;

• Comparison among the optimal solutions extracted from RR, FCRA techniques and the existing approach.

Remainder of the article is structured as follows. In Section 1.1, a literature survey is discussed. Ground behind
this study is described in Section 1.2. In Section 2, fundamental concept of rough set, fuzzy number and related
definitions, theorems and lemma are depicted. In Section 3, the fuzzy MFFTP and the linear fuzzy MFCTP are
introduced. Section 4 proposes a deterministic version of the fuzzy MFFTP. Deficiency of the existing methods
are noticed in Section 5. The solution procedure of our proposed MFFTP model and bi-objective FFTP are
presented in Section 6. An application example to the fuzzy MFFTP is given in Section 7.1, and we discuss
the results of all equivalent crisp versions of the proposed MFFTP in Section 7.2. Managerial benefits of the
proposed study are presented in Section 8. Finally, we conclude and give some forward-looking remarks in
Section 9.

1.1. Literature survey

The FPP with fixed-charge was initiated by Almogy and Levin [1] whereas FCTP was originated by Hirsch
and Dantzig [18]. After their work, a good number of research papers has been published on FPP/FTP. A few
of them are described as below.

Schaible [42] presented fractional programming and its duality. Chakraborty and Gupta [7] solved multiple
objective linear FPP by fuzzy mathematical platform. Mishra [32] described bi-level FPP and solved it by
weighting approach. Toksari [46] presented Taylor series method for fuzzy multiple objective linear FPP. Mishra
et al. [33] used fuzzy multiple FPP for land and agricultural production planning. Jiao and Liu [19] introduced
a new linearization technique for minmax linear FPP. Anukokila et al. [2] solved fuzzy multi-objective fractional
transportation problem. Mahmoodirad et al. [25] designed a linear fractional TP under uncertain environment.
In recent years, many researchers have studied on FPP/FTP by considering the parameters of FTP as either a
crisp or an interval or a fuzzy value, such as Chang [8], Bhati and Singh [5], Das et al. [9], Ebrahimnejad et al.
[11], Sivri et al. [43] and Arya et al. [3].

In the last few decades, many researchers have shown significant interest in uncertain environment to tackle
uncertainty in FTP and FCTP. Furthermore, many studies have been focused on multi-objective transportation
problem. For example, Midya and Roy ([28], [29]) solved single-sink FCTP under stochastic environment, and
analyzed FCTP under interval and rough interval environment. Upmanyu and Saxena [47] presented an impre-
cise fractional objective functions and solved a multiple objective problem with fixed-charge. Maity and Roy
[26] solved a multiple objective TP by considering multi-choice demand and cost function is of non-linear type.
Xie and Jia [51] solved the FCTP by using a genetic algorithm. Roy et al. [37] presented a conic scalarization
technique to solve multiple objective TP under multi-choice ground. Sagratella et al. [41] designed a noncoop-
erative FCTP by introducing a game-theoretic extension. Tao and Xu [45] developed rough programming to
tackle multiple objective solid TP, whereby they discovered that the feasible domain was not fixed but more
workable due to impreciseness of parameters. Vasant et al. [49] introduced advance optimization techniques and
applications in economics and engineering. Roy and Midya [39] designed an intuitionistic fuzzy multiple objec-
tive fixed-charge solid TP with product blending. Anukokila et al. [2] solved fuzzy multi-objective fractional
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Table 1. List of notable related publications of FTP.

Authors Characteristic Extra Framework Type of No. of
of problem function Optimization goals

Arya et al. [3] FPP – Fuzzy Maximization Multiple
Bhati and Singh [5] FPP – Crisp Maximization Multi
Chakraborty and Gupta [7] FPP – Crisp Maximization Multi
Chang [8] FPP – Fuzzy Maximization Multi
Das et al. [9] FPP – Fuzzy Maximization Single
Ebrahimnejad et al. [11] FPP – Fuzzy Maximization Single
Jiao and Liu [19] FPP – Crisp Maximization Single
Mahmoodirad et al. [25] FTP – Uncertain Minimization Single
Mishra [32] FPP – Crisp Maximization Single
Mishra et al. [33] FPP – Fuzzy Maximization Multi
Sivri et al. [43] FTP – Crisp Minimization Single
Toksari [46] FPP – Fuzzy Maximization Multi
Upmanyu and Saxena [47] FPP Fixed-charge Fuzzy Minimization Multi
Suggested model FTP Fixed cost Fuzzy and rough Minimization Multiple

transportation problem. Ghosh et al. [12] formulated a multi-objective fixed-charge solid TP under intuitionistic
fuzzy environment.

To tackle uncertain parameters in practical distribution systems, researchers have studied in different ways. A
few of them are as follows. Paksoy et al. [34] investigated an application of fuzzy optimization to a supply chain
network design. Goli and Malmir [16] presented a covering tour approach for disaster relief locating and routing
with fuzzy demand. Goli et al. [17] designed a fuzzy integrated cell formation and production scheduling by
considering human factors and automated guided vehicles. Tirkolaee et al. [48] used a Pareto-based algorithms
to solve a multi-objective optimization for the reliable pollution-routing problem with cross-dock selection.
Goli et al. [14] solved a fuzzy mathematical model under multi-objective ground for a financially constrained
closed-loop supply chain. Ghosh and Roy [13] solved a multi-objective product blending FCTP with truck load
constraints through transfer station under a fuzzy-rough framework.

In reality some situations arise where two types of uncertainty occur simultaneously. Based on this fact
researchers have studied two-fold uncertainty environment. For instance, Roy et al. ([38], [40]) designed an
MFCTP under random rough environment and multiple objective solid TP with fixed-charge in fuzzy rough
environment. Xu and Zhao [53] studied a multiple objective decision making problem with fuzzy rough variables
and solved the inventory problems. Moreover, Midya & Roy [30] solved an MFCTP using rough programming.
Midya et al. [31] designed a multi-stage multi-objective fixed-charge solid TP under intuitionistic fuzzy frame-
work through a green supply chain. Veeramani and Sumathi [50] solved a fuzzy linear fractional programming
problem. Maity et al. [27] solved a dual-hesitant fuzzy TP under restrictions by introducing a technique. Kaur
et al. [20] formulated a restricted flow capacitated two-stage time minimization transportation problem. Goli
et al. [15] presented a hybrid artificial intelligence and robust optimization for a multi-objective product port-
folio problem. Paul et al. [35] studied effect of price-sensitive demand and default risk on optimal credit period
and cycle time for a deteriorating inventory model. A prompt list of some recent articles related to FTP is
displayed in Table 1.

1.2. Motivation for this study

Fuzzy set and rough set theories are two separate kinds of mathematical aids to tackle ambiguous and vague
information in reality. Fuzzy set theory presents the inexact information by membership function which belongs
to [0,1] whereas rough set theory measures vague information by the approximation of two ordinary sets namely,
LA and UP sets. The LA set captures the data in surely belonging sense and the UP set codes the data in possible
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belonging sense. In the proposed MFFTP model, the parameters are taken as fuzzy numbers of triangular type
to describe the imprecise parameter in a membership grade and rough set theory is used to expand the feasible
domain of optimal solution by LA and UA concepts.

In real-world situations, several factors are defined to the objective functions and constraints to formulate an
MFFTP model. Usually, the variables in the objective functions and constraints are inexact or vague in nature
due to fluctuations in economic and financial variables, insufficient information about input data, weather
condition and other inconsiderable factors. For these cases, the values of the parameters are taken based on
decision makers (DMs) or experts opinions which are generally not an exact number but it is an interval value
or a linguistic term. These indeterministic parameters of an MFFTP can be expressed by fuzzy numbers. In
this stand point, the parameters, i.e., variable and fixed transportation costs, amount of profit, damaged rate
of goods, time of transportation, size of sources, and demands are treated as triangular fuzzy numbers.

It is more preferable for an organization/company if the feasible space of an optimal strategy (i.e., an optimal
solution) can be expanded due to highly market competition in global economy. The fundamental concept of a
rough set is characterized by a pair of exact ideas such as interval, set etc. which is referred to as LA and UA
of the set. To extend as well as the partition in the feasible region of a fuzzy MFFTP, rough approximation
(i.e., LA and UA) technique is adopted to improve our optimization algorithm which makes decision-making
process more flexible. Thus, proposed MFFTP has a realistic background to handle the uncertain information
in real-life systems.

Some practical circumstances appear where ratio optimization is required in police-making systems. For
instance, when the grape (one kind of fruit) is transported, the damaged rate of grapes is happened with
respect to time. The goals of an organization’s DM are to minimize: total cost concerning to total investment,
damaged rate of commodities with respect to time and others. In this standpoint, fractional goal functions are
adopted in FCTP. So, behind considering ratio optimization in our suggested model has a practical setting.
Thus, by accommodating the fuzzy and rough set theories and ratio programming, we are able to reflect in
the constructed MFFTP as many attributes of the practical problem as possible, which is indeed the central
motivation of this paper.

2. Preparatories

Herein, we discuss the primary concept of rough set and fuzzy set. Moreover, helpful definitions, theorems
and lemma related to fuzzy and rough variables are presented.

2.1. Rough set and its approximation

Consider a set of elements U which is called the “universe”. The deficiency of knowledge about the objects
of U is represented by an indiscernibility relation, R ⊆ U × U. Because of simplicity, an equivalence relation R
is considered. Assuming Y is a subset of U . Our intension is to identify the set Y to relate to R. The primary
concepts of rough sets are described below:

Definition 2.1. Set Y is said to be precise (i.e., crisp) to relate to R, if the border area of Y is empty. Set Y
is said to be imprecise (i.e., rough) to relate to R, if the frontier area of Y is nonempty.

R(y) is indicated an equivalence class of R which is defined by any of its elements y. Our insufficiency knowledge
about universe in surely sense is expressed by an indiscernibility relation. Equivalence classes of indiscernibility
relation, said to be granules of knowledge, are generated by R and they represent a basic part of knowledge.

Definition 2.2. [52] Lower approximation of Y to relate to R is symbolically represented by R(Y ) and is
characterized as below:

R(Y ) :=
⋃
y∈U
{R(y) : R(y) ⊆ Y }.
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Upper approximation of Y to relate to R is indicated by R(Y ) and is described as stated below:

R(Y ) :=
⋃
y∈U
{R(y) : R(y) ∩ Y 6= φ}.

Boundary region of Y to relate to R is symbolized by BNR(Y ) and is depicted as below:

BNR(Y ) := R(Y )−R(Y ).

2.2. Fuzzy numbers

Definition 2.3. (Fuzzy Number) [57]. Let Ã be a fuzzy set described on R (real numbers set), is called to be
a fuzzy number if its membership function µÃ : R→ [0, 1] satisfies the following criteria:

• µÃ is a convex, i.e., µÃ{λx1 + (1− λ)x2} ≥ min{µÃ(x1), µÃ(x2)} for all x1, x2 ∈ R, 0 ≤ λ ≤ 1;
• µÃ is a normal, i.e., there is an x ∈ R such a way µÃ(x) = 1;
• µÃ is a piecewise continuous.

Definition 2.4. (Triangular Fuzzy Number) [57]. A triangular fuzzy number is a fuzzy number which is
described with three points as Ã = (a1, a2, a3), where a1, a2, a3 ∈ R. This triplet is performed a member-
ship function which is symbolized as µÃ(x). It satisfies the following conditions:

• µÃ(x) is an increasing function in a1 to a2;
• µÃ(x) is a decreasing function in a2 to a3;
• a1 < a2 < a3.

So, the membership function is depicted as follows:

µÃ(x) =


0, if x < a1,
x−a1
a2−a1

, if a1 ≤ x ≤ a2,
a3−x
a3−a2

, if a2 ≤ x ≤ a3,
0, if x > a3.

2.2.1. Arithmetic operation between fuzzy numbers

Assuming two triangular fuzzy numbers are Ã = (a1, a2, a3) and B̃ = (b1, b2, b3). Addition and subtraction
of the triangular fuzzy numbers are presented as follows:

Ã+ B̃ = (a1 + b1, a2 + b2, a3 + b3),
Ã− B̃ = (a1 − b3, a2 − b2, a3 − b1).

Definition 2.5. (α-cut) [57]. The α-level set (α-cut) of a fuzzy number Ã is a crisp set is denoted by [Ã]α

and it is represented as follows:
[Ã]α = {x : µÃ(x) ≥ α ∀ α ∈ (0, 1)}.

Let M̃ be a fuzzy number, then [M̃ ]γ is denoted as a closed interval of R for all γ ∈ (0, 1). Here, we treat an
another form of [M̃ ]γ by

[M̃ ]γ = [m1(γ),m2(γ)] ⊆ R,

where lower and upper limits of M̃ are m1(γ) and m2(γ).

Remark 2.6. The γ-cut of a triangular fuzzy number Ã = (a, α, β) (where α and β are the left and right
spreads of Ã), is an interval denoted by [Ã]γ , and it is represented as follows:

[Ã]γ = [a− (1− γ)α, a+ (1− γ)β] (γ ∈ [0, 1]).
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Definition 2.7. [10]. Assuming ϕ is a function defined on R (real numbers set) to [0, 1]. Then, ϕ is called the
reference function of a triangular fuzzy variable, if ϕ satisfies the criteria stated as below:

• ϕ(x) = ϕ(−x) ∀ x ∈ R;
• ϕ(0) = 1;
• ϕ is decreasing on [0,∞).

Definition 2.8. [10]. Let ã1, ã2, . . . , ãm be fuzzy variables, and f : Rn → R be a function which is continuous.
Then, possibility of the fuzzy event specified by f(ã1, ã2, . . . , ãm) ≤ 0 is defined by

Pos{f(ã1, ã2, . . . , ãm) ≤ 0} = sup
x1,x2...,xm

[
min

1≤i≤m
µãi(xi) : f(x̃1, x̃2, . . . , x̃m) ≤ 0

]
.

Definition 2.9. [10]. Let (Θ,P (Θ),Pos) be a possibility space, and A indicate a set in P (Θ). Then, necessity
measure of A is presented by Nec of A and is defined as follows:

Nec{A} = 1− Pos{Ac},
where Ac is the complement of A.
Thus, Pos{A}+ Nec{Ac} = 1 for an arbitrary A ∈ P (Θ).

Definition 2.10. [24]. Let (Θ,P (Θ),Pos) be a possibility space, and A represent a set in P (Θ). Then,
credibility measure of A is presented as below:

Cr{A} =
1
2

[
Pos{A}+ Nec{A}

]
.

Thus, Cr{A}+ Cr{Ac} = 1 for an arbitrary A ∈ P (Θ).

Lemma 2.11. [10]. Let ζ1 and ζ2 be two fuzzy variables. Then, we have
Pos{ζ1 ≥ ζ2} = sup

{
min

(
µζ1(a), µζ2(b)

)
: a, b ∈ R, a ≥ b

}
and

Pos{ζ1 > ζ2} = sup
{
min

(
µζ1(a), µζ2(b)

)
: a, b ∈ R, a > b

}
.

Now it becomes more of a definition, if the decision maker prefers a pessimistic decision in order to avoid risk,
for those case the possibility measure is replaced by necessity measure:
Nec{ζ1 ≥ ζ2} = inf

{
max

(
(1− µζ1(a)), µζ2(b)

)
: a, b ∈ R, a ≥ b

}
and

Nec{ζ1 > ζ2} = inf
{
max

(
(1− µζ1(a)), µζ2(b)

)
: a, b ∈ R, a > b

}
.

Proof. Please refer to [10]. �

Theorem 2.12. [22]. Let (Θ,P (Θ), Pos) be a possibility space, and A be a set in P (Θ). Then, Pos{A} ≥
Cr{A} ≥ Nec{A}.

Proof. First we prove that Pos{A} ≥ Nec{A}. If Pos{A} = 1, then it is evident that Pos{A} ≥ Nec{A}. Besides,
we have Pos{Ac} = 1, which implies that Nec{A} = 1 − Pos{Ac} = 0. Thus, Pos{A} ≥ Nec{A} holds. Again,
it is noticed from Definition 2.10 that the credibility scale takes the middle value of possibility and necessity
scales. Hence, Pos{A} ≥ Cr{A} ≥ Nec{A}. �

3. The mathematical model

Here, we start by describing the basic model and introducing various extensions to formulate our suggested
MFFTP. Finally, we develop a fuzzy MFFTP model and convert it to fuzzy linear MFCTP model. Throughout
the section, m, n and t denote the number of origins (i.e., source points), destinations (i.e., demand points)
and the number of objective functions, respectively. Some essential definitions and properties related to rough
sets and fuzzy numbers that are used in this text are provided in Section 2.
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3.1. The MFCTP

The FCTP is the extended version of an ancient TP. FCTP is associated with two types of cost, namely, a
variable shipping cost (i.e., a direct cost) and a fixed-charge, for moving the product from ith supply center
to jth demand center in such a way that the total transportation cost is minimal. In a real-world problem,
usually multiple goals are more acceptable than single goal. To adopt these goals, multiple objective functions
are considered concurrently in the FCTP. For instance, multiple objective functions i.e., total (shipping and
fixed) cost, time of transportation, damaged rate of goods, etc. are minimized. Due to this reason, generally,
an MFCTP, involves multiple, conflicting, and incommensurable objective functions subject to a common set
of constraints. Hence, the mathematical models of MFCTP (i.e., Model 1) are stated as below.

Model 1

minimize (zK : K = 1, 2, . . . , t)

or
[ m∑
i=1

n∑
j=1

[
z1
(
xij , η(xij)

)]
m∑
i=1

n∑
j=1

[
zK(xij) : z = 2, 3, . . . , t

]]

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m),

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n),

xij ≥ 0, ∀ i, j,

with zK being the Kth objective function (K = 1, 2, . . . , t), xij is the quantity of product moved from source i
to destination j, η(xij) the binary variable taking a unit value if source i is used and 0 otherwise, and ai and
bj are the capacity of supply center i and demand center j, respectively. The first objective function z1 is called
the “cost objective function” and defined as follows:

z1
(
xij , η(xij)

)
=
(
cijxij + fijη(xij)

)
,

where

η(xij) =
{

0 if xij = 0,
1 if xij > 0.

Here, we denote by cij and fij the variable unit cost of transportation and fixed-charge to move the product
from supply center i to demand center j, respectively. Feasibility criterion of Model 1 is stated as:

m∑
i=1

ai ≥
n∑
j=1

bj .

The first constraints of Model 1 require that the total quantity of item moved from the ith supply center does
not exceed its capacity ai, whereas the second constraints require the total quantity of product moved from all
the sources fulfills the order of product at jth demand center.

3.2. Multi-objective fractional programming problem

In a multiple objective FPP (MFPP), all the objective functions are of rational forms, and again, the
objective functions are optimized against a set of common constraints. The strength of fractional programming,



FUZZY MULTI-OBJECTIVE FRACTIONAL PROGRAMMING IN ROUGH APPROXIMATION 1723

in general, and the MFPP, in particular, is that the value to be optimized is the ratio of different objectives
(e.g., minimizing costs and maximizing investment) which together describe the efficiency of the system. The
general model of MFPP (i.e., Model 2) is given as follows:

Model 2

minimize (ZK(x) : K = 1, 2, . . . , t)

or
(
fK(x)
gK(x)

: K = 1, 2, . . . , t
)
,

or
(
f1(x)
g1(x)

,
f2(x)
g2(x)

, . . . ,
ft(x)
gt(x)

)

subject to υl1(x)

≤=
≥

 0 (l1 = 1, 2, . . . , Q),

x ≥ 0,

where x is the decision parameter, and ZK(x) and υl1(x) (K = 1, 2, . . . , t; l1 = 1, 2, . . . , Q) are real-valued
functions representing the fractional objective functions in crisp nature and the constraints, respectively. The
numerator and denominator functions fK(x) andgK(x)(K = 1, 2, . . . , t) are functions of real-valued also. The
above problem gives feasible solutions only if gK(x) > 0 (K = 1, 2, . . . , t).

3.3. Linearization process for MFPP

In this subsection, we describe the linearization process of MFPP which is based on Charnes and
Cooper [6] transformation technique. Let us consider the transformation s = 1/gK (K = 1, 2, . . . , t) and
zij = sxij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n), where s > 0 to transform MFPP (i.e., Model 2) into its linear
version as given below:

Model 2A

minimize (s fK(zij/s) : K = 1, 2, . . . , t)
subject to s gK(zij/s) = 1 (K = 1, 2, . . . , t),

υl1(x)

≤=
≥

 0 (l1 = 1, 2, . . . , Q),

x ≥ 0.

Remark 3.1. If the optimization problem (i.e., Model 2) is of minimization type and structure is the same
type of transportation problem (TP) then the equality constraints s gK(zij/s) = 1 (K = 1, 2, . . . , t) of Model
2A can be replaced by the inequality constraints s gK(zij/s) ≥ 1 (K = 1, 2, . . . , t).

For the illustration of Remark 3.1, two examples are provided in below subsequently.
Example 3.2.

minimize Z1 =
36z11 + 31z12 + 12z13 + 6z21 + 27z22 + 38z23
14z11 + 25z12 + 13z13 + 8z21 + 15z22 + 26z23

subject to z11 + z12 + z13 ≤ 62,
z21 + z22 + z23 ≤ 75,
z11 + z21 ≥ 42,
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Table 2. Optimal solutions of two examples.

Type of constraint/ Optimal values of Z1 Optimal values of Z1

constraints for Example 3.2 and Z2 for Example 3.3
Using equality constraint/ 1.09 0.48, 0.31
constraints
Using inequality constraint/ 1.09 0.47, 0.31
constraints (“ ≥ ”)

z12 + z22 ≥ 28,
z13 + z23 ≥ 58,
zij ≥ 0 ∀ i, j.

Example 3.3.

minimize Z1 =
4z11 + 7z12 + 7z13 + 9z21 + 11z22 + 8z23

9z11 + 15x12 + 13z13 + 18z21 + 19z22 + 17z23
,

minimize Z2 =
2z11 + 4z12 + 3z13 + 5z21 + 8z22 + 7z23

13z11 + 15x12 + 18z13 + 15z21 + 18z22 + 19z23

subject to z11 + z12 + z13 ≤ 26,
z21 + z22 + z23 ≤ 24,
z11 + z21 ≥ 15,
z12 + z22 ≥ 16,
z13 + z23 ≥ 12,
zij ≥ 0 ∀i, j.

To find the optimal solution from the above two examples, it is needed to convert the non-linear equations
into their linear form. So, the transformation yij = szij (i = 1, 2; j = 1, 2, 3), where s > 0 (introduced by
Charnes and Cooper [6]) is used to transform the non-linear equations into their linear form. Thereafter, the
examples are solved by Lingo optimizer. It is also mentioned that the authors of [6] had provided a theorem on
the optimality of fractional model. The solutions are displayed in Table 2.

It is observed from Table 2 that the objective functions values are either equal or better values if we replace
“equality constraints” by “inequality constraints (≥)” for minimization problem. Thus, in the minimization
problem, the obtained objective value of using “inequality constraints” should be equal to or less than that of
using “equality constraints” due to the boundary feasible domain. Therefore, our observation, it is more accept-
able to replace “equality constraints” by “inequality constraints (≥)” for solving a multi-objective minimization
problem of TP types.

3.4. The fuzzy-MFFTP

Herein, we design the mathematical model of fuzzy MFFTP. The first objective function (i.e., the ratio
of total cost/investment), other objective functions and capacity of supply center, and demand center are
presented as fuzzy numbers. The mathematical model of the fuzzy MFFTP (i.e., Model 3) is formulated as
stated subsequently.
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Model 3

minimize (Z̃K : K = 1, 2, . . . , t)

or
(
z̃K(x)
g̃K(x)

: K = 1, 2, . . . , t
)
,

or
[∑m

i=1

∑n
j=1

[
z̃1
(
xij , η(xij)

)]∑m
i=1

∑n
j=1

[
g̃1(xij)

] ,∑m
i=1

∑n
j=1

[
z̃K(xij)

]∑m
i=1

∑n
j=1

[
g̃K(xij)

] : K = 2, 3, . . . , t
]

subject to
n∑
j=1

xij ≤ ãi (i = 1, 2, . . . ,m),

m∑
i=1

xij ≥ b̃j (j = 1, 2, . . . , n),

xij ≥ 0 (i = 1, 2, . . . ,m ; j = 1, 2, . . . , n),

η(xij) =
{

0 if xij = 0,
1 if xij > 0.

Here, z̃K and g̃K being the Kth fuzzy objective functions in the numerator and denominator respectively, and
ãi and b̃j the fuzzy capacity of source i and fuzzy demand by destination j, again, respectively. As the objective
functions (Z̃K) in fuzzy nature are of fractional forms, so we minimize the objective functions in the numerator,
i.e., z̃1(xij , yij), z̃2(xij), . . . , z̃t(xij), and the objective functions in denominator are converted to the inequality
constraints, i.e., g̃1(xij) ≥ 1, g̃2(xij) ≥ 1, . . . , g̃t(xij) ≥ 1. Feasibility criterion of Model 3 is stated as below.

m∑
i=1

ãi &
n∑
j=1

b̃j ,

where by “ & ” we mean the fuzzy inequality.

3.5. The fuzzy linear MFCTP

This subsection describes the transformation of fuzzy MFFTP (i.e., Model 3) to fuzzy linear MFCTP (i.e.,
Model 4). Based on Remark 3.1 and using the transformation zij = sxij [6] (i = 1, 2, . . . ,m ; j = 1, 2, . . . , n),
where s > 0, Model 3 is converted in such a way that the values of Z̃K (K = 1, 2, . . . , t), are minimized. The
equivalent fuzzy linear model of fuzzy MFFTP is designed in the following way.

Model 4

minimize (s z̃K(zij/s) : K = 1, 2, . . . , t)

or
[ m∑
i=1

n∑
j=1

s
[
z̃1
(
zij/s, η(zij/s)

)]
,

m∑
i=1

n∑
j=1

s
[
z̃K(zij/s) : K = 2, 3, . . . , t

]]

subject to
1
s

n∑
j=1

zij ≤ ãi (i = 1, 2, . . . ,m),
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1
s

m∑
i=1

zij ≥ b̃j (j = 1, 2, . . . , n),

s

[ m∑
i=1

n∑
j=1

g̃1(zij/s)
]
≥ 1,

s

[ m∑
i=1

n∑
j=1

g̃2(zij/s)
]
≥ 1,

...

s

[ m∑
i=1

n∑
j=1

g̃t(zij/s)
]
≥ 1,

s > 0, zij ≥ 0, ∀ i, j,

η(zij/s) =
{

0 if zij = 0,
1 if zij > 0.

Remark 3.4. An exact number “a” can be equivalently presented a fuzzy number (a, a, a), so we can claim
that a linear FPP with crisp parameters is a special case of linear FPP with parameters are triangular fuzzy
number in nature.

Many events arise in the practical situations in which the coefficients in a linear FPP are not exact when they
are modeled mathematically. So, it is more acceptable to treat the coefficients as the triangular fuzzy numbers
instead of crisp numbers. In this regard and based on Remark 3.4, it is said that Model 4 is an extended and
special version of the classical linear FPP.

4. The fuzzy MFCTP in deterministic form

Model 4 is a theoretical model than a realistic one because

1. it is not possible to minimize an imprecise quantity, like fuzzy cost z̃1 and other fuzzy objective functions
z̃2, z̃3, . . . , z̃t, and

2. constraints of Model 4 are not a crisp feasible set.

So, it is required to transform the fuzzy MFCTP into an identical deterministic model. In order to convert
Model 4 into deterministic form, we adopt two techniques and discuss later subsection, namely,

• Robust Ranking, and
• Fuzzy Chance-Constrained Rough Approximation.

4.1. Robust ranking technique

RR technique was originated by Yager [54], it follows the compensation, linearity and additive properties.
Robust ranking, R for a triangular fuzzy number c̃ is defined as below.

R(c̃) =
∫ 1

0

[cL(γ) + cR(γ)
2

]
dγ,

where
[
cL(γ), cR(γ)

]
represents the γ-level cut of c̃.

Robust ranking technique for fuzzy objective function gives the crisp value which represents the average value
of the fuzzy objective function. To convert fuzzy MFCTP (i.e., Model 4) into its similar crisp form, we leverage
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on the robust ranking technique and formulate our new model (i.e., Model 5) is as below.

Model 5

minimize (R
(
s z̃K(zij/s)

)
: K = 1, 2, . . . , t)

or
[ m∑
i=1

n∑
j=1

s
[
R(z̃1)

(
zij/s, η(zij/s)

)]
,

m∑
i=1

n∑
j=1

s
[
R(z̃K)(zij/s) : K = 2, 3, . . . , t

]]

subject to
1
s

n∑
j=1

zij ≤ R(ãi) (i = 1, 2, . . . ,m),

1
s

m∑
i=1

zij ≥ R(b̃j) (j = 1, 2, . . . , n),

s

[ m∑
i=1

n∑
j=1

R(g̃1)(zij/s)
]
≥ 1,

s

[ m∑
i=1

n∑
j=1

R(g̃2)(zij/s)
]
≥ 1,

...

s

[ m∑
i=1

n∑
j=1

R(g̃t)(zij/s)
]
≥ 1,

s > 0, zij ≥ 0, ∀ i, j,

η(zij/s) =
{

0 if zij = 0,
1 if zij > 0.

Again, this model will be feasible, if and only if
m∑
i=1

R(ãi) ≥
n∑
j=1

R(b̃j).

Definition 4.1. A feasible solution y∗ = (y∗ij : i = 1, 2, . . . ,m; j = 1, 2, . . . , n) of Model 5 is called a
non-dominated (Pareto-optimal) solution if there does not exist another feasible solution y = (yij : i =
1, 2, . . . ,m; j = 1, 2, . . . , n) such that

R[z̃K(y)] ≤ R[z̃K(y∗)] ∀ K, and
R[z̃K(y)] < R[z̃K(y∗)] for at least one K = 1, 2, . . . , t.

4.2. Fuzzy chance-constrained programming

Fuzzy chance-constrained programming (FCP) [23] is used to tackle fuzzy parameters involving in the
objective functions as well as in the constraints. To deal with our fuzzy-MFCTP (Model 4), first we formulate
an FCP version of Model 4. After that, using different fuzzy scales (i.e., Pos, Nec and Cr), is hence, we convert
the deterministic model of Model 4. Therefore, a fuzzy chance-constrained version of Model 4 (i.e., Model 6) is
formulated as:
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Model 6

minimize
(¯̃zK : K = 1, 2, . . . , t

)
subject to Ch

{
s z̃K(zij/s) ≤ ¯̃zK

}
≥ δK ,

Ch
{

1
s

n∑
j=1

zij − ãi ≤ 0
}
≥ θmi

(i = 1, 2, . . . ,m),

Ch
{

1
s

m∑
i=1

zij − b̃j ≥ 0
}
≥ θnj

(j = 1, 2, . . . , n),

Ch
{
s
[ m∑
i=1

n∑
j=1

g̃1(zij/s)
]
− 1 = 0

}
≥ θt1 ,

Ch
{
s
[ m∑
i=1

n∑
j=1

g̃2(zij/s)
]
− 1 = 0

}
≥ θt2 ,

...

Ch
{
s
[ m∑
i=1

n∑
j=1

g̃t(zij/s)
]
− 1 = 0

}
≥ θtt ,

s > 0, zij ≥ 0, ∀ i, j,

η(zij/s) =
{

0 if zij = 0,
1 if zij > 0.

Here, Ch symbolizes fuzzy scale, i.e., Pos, Nec and Cr, and δK (K = 1, 2, . . . , t) and θr
(r = 1, 2, . . . ,m, n, t; m 6= n 6= t) are the predetermined confidence levels for the objective functions and the
constraints respectively. So, (θmi , θnj , θtK ) ∈ θr. As the problem is of minimization type, we minimize the
objective functions ¯̃z1, ¯̃z2, . . . , ¯̃zt, satisfying the chance-constrained levels.

Remark 4.2. To formulate fuzzy chance-constrained rough model of Model 6, we assume feasible region
D = {x : x ∈ X, Ch{s z̃K(zij/s) ≤ ¯̃zK} ≥ δK (K = 1, 2, . . . , t) and Ch{qr(zij/s) ≥ 0} ≥ θr (r =
1, 2, . . . ,m, n, t; m 6= n 6= t)}, where qr represents the set of constraints. ¯̃zK is the smallest possible value
of z̃K . Two sets L and U are constructed and defined in the following manner.

L =
{
x : x ∈ X, Nec{s z̃K(zij/s) ≤ ¯̃zK} ≥ δK (K = 1, 2, . . . , t) and

Nec{qr(zij/s) ≥ 0} ≥ θr
}
,

U =
{
x : x ∈ X, Pos{s z̃K(zij/s) ≤ ¯̃zK} ≥ δK (K = 1, 2, . . . , t) and

Pos{qr(zij/s) ≥ 0} ≥ θr
}
,

where r = 1, 2, . . . ,m, n, t; m 6= n 6= t.

Theorem 4.3. For the feasible region D; we have the relation, L ⊆ D ⊆ U , where L and U are already defined
as above.

Proof. For any (z0/s) ∈ X, if x0 ∈ L, i.e.,
Nec{s z̃K(z0/s) ≤ ¯̃zK} ≥ δK (K = 1, 2, . . . , t) and Nec{qr(z0/s) ≥ or ≤ 0} ≥ θr (r = 1, 2, . . . ,m, n, t; m 6=
n 6= t). From Theorem 2.12 it can be written as Cr{s z̃K(z0/s) ≤ ¯̃zK} ≥ Nec{s z̃K(z0/s) ≤ ¯̃zK} ≥ δK (K =
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1, 2, . . . , t) and Cr{qr(z0/s) ≥ or ≤ 0} ≥ Nec{qr(z0/s) ≥ or ≤ 0} ≥ θr, (r = 1, 2, . . . ,m, n, t; m 6= n 6= t), i.e.,
(z0/s) ∈ D. Thus, L ⊆ D. In the same way, it concludes that D ⊆ U.
Hence, the assertion of the theorem follows. �

Let us consider L = D and U = D; using D and D to approximate D. It is obvious that D ⊆ D ⊆ D. Then,
Model 6 can be converted into Model 7 and Model 8.

4.3. The fuzzy chance-constrained rough MFCTP

Here, we extend the feasible region of Model 6 using rough approximation technique. Therefore, we transform
Model 6 into two models: the LAM of our fuzzy chance-constrained rough MFCTP, namely, LA-MFCTP, (i.e.,
Model 7) is presented as:

Model 7

minimize
(¯̃zK : K = 1, 2, . . . , t

)
subject to Nec

{
s z̃K(zij/s) ≤ ¯̃zK

}
≥ δK ,

Nec
{

1
s

n∑
j=1

zij − ãi ≤ 0
}
≥ θmi

(i = 1, 2, . . . ,m),

Nec
{

1
s

m∑
i=1

zij − b̃j ≥ 0
}
≥ θnj

(j = 1, 2, . . . , n),

Nec
{
s
[ m∑
i=1

n∑
j=1

g̃1(zij/s)
]
− 1 ≥ 0

}
≥ θt1 ,

Nec
{
s
[ m∑
i=1

n∑
j=1

g̃2(zij/s)
]
− 1 ≥ 0

}
≥ θt2 ,

...

Nec
{
s
[ m∑
i=1

n∑
j=1

g̃t(zij/s)
]
− 1 ≥ 0

}
≥ θtt ,

s > 0, zij ≥ 0, ∀ i, j,

η(zij/s) =
{

0 if zij = 0,
1 if zij > 0,

and the UAM of our fuzzy chance-constrained rough MFCTP, namely, UA-MFCTP, (i.e., Model 8) is
formulated as follows:

Model 8

minimize
(¯̃zK : K = 1, 2, . . . , t

)
subject to Pos

{
s z̃K(zij/s) ≤ ¯̃zK

}
≥ δK ,

Pos
{

1
s

n∑
j=1

zij − ãi ≤ 0
}
≥ θmi

(i = 1, 2, . . . ,m),
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Pos
{

1
s

m∑
i=1

zij − b̃j ≥ 0
}
≥ θnj

(j = 1, 2, . . . , n),

Pos
{
s
[ m∑
i=1

n∑
j=1

g̃1(zij/s)
]
− 1 ≥ 0

}
≥ θt1 ,

Pos
{
s
[ m∑
i=1

n∑
j=1

g̃2(zij/s)
]
− 1 ≥ 0

}
≥ θt2 ,

...

Pos
{
s
[ m∑
i=1

n∑
j=1

g̃t(zij/s)
]
− 1 ≥ 0

}
≥ θtt ,

s > 0, zij ≥ 0, ∀ i, j,

η(zij/s) =
{

0 if zij = 0,
1 if zij > 0.

Definition 4.4. A feasible solution at θr-necessity level, z∗ij , of Model 7 is called a δK-efficient solution if
there does not exist another feasible solution at θr-necessity level zij such that Nec{s z̃K(zij/s)} ≥ δK with
z̃K(zij) ≤ ¯̃zK(z∗ij) for all K and z̃K(zij) < ¯̃zK(z∗ij) for at least one K ∈ {1, 2, . . . , t}.

Definition 4.5. A feasible solution at θr-possibility level, z∗ij , of Model 8 is called a δK-efficient solution if
there does not exist another feasible solution at θr-possibility level zij such that Pos{s z̃K(zij/s)} ≥ δK with
z̃K(zij) ≤ ¯̃zK(z∗ij) for all K and z̃K(zij) < ¯̃zK(z∗ij) for at least one K ∈ {1, 2, . . . , t}.

Theorem 4.6. Let c̃ij be a triangular fuzzy number with membership function µc̃ij (x), shown in Figure 1; it is
defined as:

µc̃ij (x) =


x−(cij−αc

ij)

αc
ij

, if (cij − αcij) ≤ x ≤ cij ,
(cij+β

c
ij)−x

βc
ij

, if cij ≤ x ≤ (cij + βcij),
0, otherwise,

where cij is a real number; αcij and βcij are the left and right spreads of c̃ij (i = 1, 2, . . . ,m;
j = 1, 2, . . . , n). If the reference function of c̃ij is (1− w), w ∈ (0, 1), then,
Pos{c̃ijx ≤ ¯̃zK} ≥ δK is equivalent to ¯̃zK ≥ cijx+ (1− δK)βcijx (K = 1, 2, . . . , t).

Proof. As c̃ij is a triangular fuzzy number and its membership function is µc̃ij
. By extension principle of Zadeh

[56], the membership function of fuzzy number µc̃ij
(x) is considered as:

µc̃ij
(x(u)) =


u−(cijx−αc

ijx)

αc
ijx

, if (cijx− αcijx) ≤ u ≤ cijx,
(cijx+β

c
ijx)−u

βc
ijx

, if cijx ≤ u ≤ (cijx+ βcijx),
0, otherwise,

for i = 1, 2, . . . ,m; j = 1, 2, . . . , n. For simplicity, we denote the triangular fuzzy number c̃ij = (cij , αcij , β
c
ij);

then according to Lemma 2.11, we can write

Pos{c̃ijx ≤ ¯̃zK} ≥ δK ⇔ ¯̃zK ≥ cijx+ (1− δK)βcijx (K = 1, 2, . . . , t).

Hence, the assertion of our theorem results. �
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Figure 1. Pictorial representation of a triangular fuzzy number.

Theorem 4.7. Let p̃ij and h̃r be the triangular fuzzy numbers with membership functions are depicted in the
following way, respectively:

µp̃ij (x) =


x−(pij−αp

ij)

αp
ij

, if (pij − αpij) ≤ x ≤ pij ,
(pij+β

p
ij)−x

βp
ij

, if pij ≤ x ≤ (pij + βpij),
0, otherwise,

and

µh̃r
(x) =


x−(hr−αh

r )
αh

r
, if (hr − αhr ) ≤ x ≤ hr,

(hr+βh
r )−x

βh
r

, if hr ≤ x ≤ (hr + βhr ),
0, otherwise,

where pij and hr are real numbers; αpij and βpij are the left and right spreads of p̃ij, αhr and βhr are the left
and right spreads of h̃r (i = 1, 2, . . . ,m; j = 1, 2, . . . , n; r = 1, 2, . . . ,m, n, t; m 6= n 6= t). If the reference
function of p̃ij and h̃r is (1 − w) for some w ∈ (0, 1) and we suppose that pij and hr are independent. Then,
Pos{p̃ijx ≥ h̃r} ≥ θr is equivalent to hr + (1− θr)βhr ≤ pijx+ (1− θr)βpijx, r = 1, 2, . . . ,m, n, t; m 6= n 6= t.

Proof. As p̃ij is a triangular fuzzy number and its membership function is µp̃ij . From extension principle of
Zadeh [56], the membership function of fuzzy number µp̃ij

(x) is specified as:

µp̃ij (x(u)) =


u−(pijx−αp

ijx)

αp
ijx

, if (pijx− αpijx) ≤ u ≤ pijx,
(pijx+β

p
ijx)−u

βp
ijx

, if pijx ≤ u ≤ (pijx+ βpijx),
0, otherwise,

for i = 1, 2, . . . ,m; j = 1, 2, . . . , n; and h̃r (r = 1, 2, . . . ,m, n, t; m 6= n 6= t) is also a triangular fuzzy
number with membership function µh̃r

. Without any loss of generality, we represent triangular fuzzy number
p̃ij = (pij , α

p
ij , β

p
ij) and h̃r = (hr, αhr , β

h
r ). Then, using Lemma 2.11, we obtain

Pos{p̃ijx ≥ h̃r} ≥ θr ⇔ hr − θrαhr ≤ pijx+ (1− θr)βpijx (r = 1, 2, . . . ,m, n, t; m 6= n 6= t).
Hence, the proof of our theorem follows. �

Theorem 4.8. Considering that the fuzzy numbers are same as those in Theorem 4.6. Then, Nec{c̃ijx ≤ ¯̃zK} ≥
δK is equivalent to ¯̃zK ≥ cijx− δKαcijx (K = 1, 2, . . . , t).
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Proof. Refer to the proof of Theorem 4.6. �

Theorem 4.9. Assuming that the fuzzy numbers are same as those in Theorem 4.7. Then, Nec{p̃ijx ≥ h̃r} ≥ θr
is equivalent to

hr + (1− θr)βhr ≤ pijx+ (1− θr)βpijx (r = 1, 2, . . . ,m, n, t; m 6= n 6= t).

Proof. Refer to the proof of Theorem 4.7 �

4.4. Deterministic rough version of the fuzzy-MFCTP

Based on Nec and Pos measures and using Theorems 4.6, 4.7, 4.8 and 4.9, the equivalent deterministic
models of Models 7 and 8 are stated as linear LAM of fuzzy chance-constrained rough MFCTP, namely,
LLA-MFCTP (i.e., Model 9) is described as:

Model 9

minimize
(¯̃zK : K = 1, 2, . . . , t

)
subject to ¯̃z1 ≥

[ m∑
i=1

n∑
j=1

s
(
cij(zij/s)− δ1α1

ij(zij/s)
)

+
(
fij(zij/s)η(zij/s)

−δ1αfij(zij/s)
)]
,

¯̃z2 ≥
[ m∑
i=1

n∑
j=1

s
(
z2(zij/s)− δ2α2

ij(zij/s)
)]
,

...

z̄t ≥
[ m∑
i=1

n∑
j=1

s
(
zt(zij/s)− δtαtij(zij/s)

)]
1
s

n∑
j=1

zij ≤
(
ai − θmi

αai
)
,

1
s

m∑
i=1

zij ≥
(
bj − θnj

αbj
)
,

s
[ m∑
i=1

n∑
j=1

[
g1(zij/s) + (1− θt1)β1

ij(zij/s)
]
≥ 1,

s
[ m∑
i=1

n∑
j=1

[
g2(zij/s) + (1− θt2)β2

ij(zij/s)
]
≥ 1,

...

s
[ m∑
i=1

n∑
j=1

[
gt(zij/s) + (1− θtt)βtij(zij/s)

]
≥ 1,

s > 0, zij ≥ 0, ∀ i, j,

η(zij/s) =
{

0 if zij = 0,
1 if zij > 0,
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and linear UAM of fuzzy chance-constrained rough MFCTP, namely, LUA-MFCTP (i.e., Model 10) is presented
in the following way.

Model 10

minimize (¯̃zK : K = 1, 2, . . . , t)

subject to ¯̃z1 ≤
[ m∑
i=1

n∑
j=1

s
(
cij(zij/s) + (1− δ1)β1

ij(zij/s)
)

+
(
fij(zij/s)η(zij/s)

+(1− δ1)βfij(zij/s)
)]
,

¯̃z2 ≤
[ m∑
i=1

n∑
j=1

s
(
z2(zij/s) + (1− δ2)β2

ij(zij/s)
)]
,

...

¯̃zt ≤
[ m∑
i=1

n∑
j=1

s
(
zt(zij/s) + (1− δt)βtij(zij/s)

)]
,

1
s

n∑
j=1

zij ≤
(
ai + (1− θmi

)βai
)
,

1
s

m∑
i=1

zij ≥
(
bj + (1− θnj )βbj

)
,

s
[ m∑
i=1

n∑
j=1

[
g1(zij/s)− (1− θt1)α1

ij(zij/s)
]
≥ 1,

s
[ m∑
i=1

n∑
j=1

[
g2(zij/s)− (1− θt2)α2

ij(zij/s)
]
≥ 1,

...

s
[ m∑
i=1

n∑
j=1

[
gt(zij/s)− (1− θtt)αtij(zij/s)

]
≥ 1,

s > 0, zij ≥ 0, ∀ i, j,

η(zij/s) =
{

0 if zij = 0,
1 if zij > 0.

A visual summary of models evolution is shown in Figure 2.

5. Deficiencies of existing methods

• Arya et al. [3] suggested a technique for solving fuzzy multiple objective FPP. From Table 6, it is observed
that our proposed FCRA (Model 9: LLA-MFCTP) technique gives better optimal solutions than Arya
et al.’s approach. Furthermore, we incorporate rough set approximation to extend as well partition the
feasible region which is more acceptable to solve real-world optimization problem.

• Stanojević and Stanojević [44] found some mistakes of Chakraborty and Gupta’s [7] approach to transform
multi-objective FPP to its equivalent linear form and they pointed out the weakness of Chakraborty and
Gupta’s approach. However, our modified transformation procedure is free from such type of weakness.
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Figure 2. A visual summary of models evolution.

• Bhati and Singh [5] developed a branch and bound approach to derive solution of a multi-objective FPP. In
their method, there exist several steps such as transforming maximization problem to minimization problem,
converting multi-objective problem into single objective problem, calculating lower and upper bounds of
the each objective function and others which lead more computational burden than our suggested FCRA
technique to extract optimal solution from multi-objective FPP. Moreover, by adopting FCRA technique in
the proposed MFFTP, we compute LA and UA optimal solutions of our formulated MFFTP which is more
realistic than a single optimal solution of a practical optimization problem.

• Mahmoodirad et al. [25] formulated a linear fractional transportation problem under uncertain environment.
They considered imprecise parameters in a transportation system as uncertain variable. But, uncertain
variable is taken when historical information about data does not exist. So, a specified case arises which not
happen every day transporting system. From this view, in the designed model the parameters are treated as
triangular fuzzy number and rough approximation technique is imposed to extend optimal solution space.
Furthermore, our designed model is formulated under multiple objective ground and an additional cost is
taken as fixed-charge. Thus, our proposed model and FCRA technique are more reliable to tackle uncertainty
in practical transportation problem than uncertain variable.

• Upmanyu and Saxena [47] extended a solution algorithm for solving multiple objective fractional fixed-charge
problem. They solved the fractional problem without converting linear form. So, if the number of objective
functions and variables in the objective functions are increased, then complexity arises in the computational
process (i.e., to find optimal solution) whereas in our solution procedure has not been arisen any such types
of complexity.

6. The solution procedure

To solve the deterministic models of the MFCTP (i.e., Models 5, 9 and 10), fuzzy programming method is
applied which, based on [57], comprises the following steps:

Step 1: The MFCTP is solved by taking single objective function at a time and ignoring another. This process
is repeated K times for K many different objective functions (K = 1, 2, . . . , t).

Step 2: The results of Step 1 are used to derive the similar value for each objective function and construct a
pay-off matrix of format K × K. Then, from the pay-off matrix, we find the lower bound LK and
upper bound UK for the Kth objective function zK (K = 1, 2, . . . , t), where LK are aspiration levels
of achievement for the Kth objective, UK is the highest acceptable level of achievement for the Kth
objective and dK = [UK − LK ] is degradation allowance for the Kth objective function.



FUZZY MULTI-OBJECTIVE FRACTIONAL PROGRAMMING IN ROUGH APPROXIMATION 1735

Step 3: The best (LK) and worst (UK) for each objective function are calculated from Step 2. A primary fuzzy
model are stated: find zij (i = 1, 2, . . . , m; j = 1, 2, . . . , n), so as to satisfy zK ≤ LK (K = 1, 2, . . . , t)
with the specified constraints and non-negative conditions. For the MFCTP, a membership function
µzK

(zK) corresponding to Kth objective function is presented as below.

µzK
(zK) =


1, if zK ≤ LK ,
1− ( zK−LK

UK−LK ), if LK < zK < UK (K = 1, 2, . . . , t),
0, if zK ≥ UK .

Step 4: Convert the fuzzy MFCTP, obtained in Step 3, into the following equivalent crisp model:

maximize λ

subject to λ ≤ UK − zK
UK − LK

(K = 1, 2, . . . , t),

with the same constraints of Model 5 or 9 or 10 and λ ≥ 0,

where λ = min{µzK
(zK) : K = 1, 2, . . . , t}.

The above problem can be written in a more simplified form as:

maximize λ

subject to zK + λ(UK − LK) ≤ UK (K = 1, 2, . . . , t), (6.1)
λ ≥ 0,

with the same constraints of Model 5 or 9 or 10.

Theorem 6.1. If y∗ = (y∗ij : i = 1, 2, . . . ,m; j = 1, 2, . . . , n) is defined as a non-dominated solution of
Equation (6.1), then y∗ is a non-dominated solution of Model 5, i.e., there does not exist another feasible
solution y = (yij : i = 1, 2, . . . ,m; j = 1, 2, . . . , n) such that

R[z̃K(y)] ≤ R[z̃K(y∗)] ∀ K, and (6.2)
R[z̃K(y)] < R[z̃K(y∗)] for at least one K = 1, 2, . . . , t. (6.3)

Proof. This theorem is proved by contradiction. Assuming y∗ is a non-dominated solution of Model 5, i.e., there
is a feasible solution y such that the inequalities (6.2) and (6.3) are satisfied.

As µK(y) strictly decreases relative to the similar objective value R
[
z̃K(y)

]
in [0, 1], we have µK(y) ≥

µK(y∗) ∀ K, and µK(y) > µK(y∗) for at least one K = 1, 2, . . . , t.
Hence, it observes from strict monotonicity of the weight root-power mean operator [21] and using product

min operator [57]; we that write µK(y) > µK(y∗). Thus, a contradiction arises to the fact that y∗ is a non-
dominated solution of Equation (6.1). Hence, the theorem is proved. �

Remark 6.2. Theorem 6.1 also holds for Models 9 and 10 also.

6.1. Solution procedure for Model 5

(1) Find the robust rank of each triangular fuzzy number which is described in Section 4.1. Obtain the crisp
values for all fuzzy parameters of Model 5.

(2) Solve this crisp MFCTP (Model 5) by using fuzzy programming which is described in Section 6.
(3) Derive the optimal solution of each objective function (using, e.g., the LINGO, as in our case).
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6.2. Solution procedure for Models 9 and 10

(1) Set the confidence levels (choice of decision maker) of δK (K = 1, 2, . . . , t) for objective functions and
confidence levels of θmi

(i = 1, 2, . . . ,m), θnj
(j = 1, 2, . . . , n) and θtK (K = 1, 2, . . . , t) for constraints.

Obtain the simplest form of Models 9 and 10 (note that, for convenience, we consider three types of
confidence levels θmi

, θnj
, θtK for constraints which belong to θr).

(2) Solve the crisp MFCTPs (Models 9 and 10) by using fuzzy programming described in Section 6.
(3) Obtain the optimal solution of each objective function (using, e.g., LINGO, as in our case).

6.3. Application of proposed MFFTP

To display the effectiveness of our designed fuzzy MFFTP (Model 3), we consider a real-life fuzzy bi-objective
version of the MFFTP (i.e., a fuzzy BFFTP). When we set K = 1, 2, in Model 3, then our fuzzy MFFTP is
reduced to a fuzzy BFFTP. The parameters of the fuzzy BFFTP (variable transportation cost, fixed-charge,
investment amount, damaged rate, transportation time, supply, demand) are taken as fuzzy in nature. The
objective functions Z̃1 and Z̃2 are described in the following manner:

Z̃1 : minimize the ratio of {total transporting cost/investment};
Z̃2 : minimize the ratio of {damaged rate of goods/time}.

The fuzzy BFFTP can, therefore, is depicted as:

z̃1
(
xij , η(xij)

)
=

m∑
i=1

n∑
j=1

(
c̃ijxij + f̃ijη(xij)

)
,

z̃2(xij) =
m∑
i=1

n∑
j=1

d̃ijxij ,

g̃1(xij) =
m∑
i=1

n∑
j=1

p̃ijxij ,

g̃2(xij) = t̃ijη(xij)

η(xij) =
{

0 if xij = 0,
1 if xij > 0,

xij ≥ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

with the same constraints of Models 5 or 9 or 10, for K = 1, 2.

Here c̃ij , f̃ij and p̃ij are the fuzzy versions of the variable and fixed transportation costs, and total
investment whereas d̃ij and t̃ij denote the fuzzy deterioration rate and fuzzy transportation time independent
of amount transported) to transport a unit commodity from source i to destination j, respectively.

Remark 6.3. In the proposed model, the supplier/manufacturer of the company is the DM who pursues to
optimize the model. It is also mentioned that supplier/manufacturer of the company will gain maximum benefit
from the designed model.

7. Application example: a practical transportation problem

7.1. Description of the problem

A reputed Apple supplier company in India collects a large amount (around 7.58 lac metric tons) of apples
throughout the year from Srinagar in Jammu and Kashmir, Shimla in Himachal Pradesh, Dehradun in Uttarak-
hand. To produce apple products for production company and to fulfill daily demand of markets that amounts
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of collecting apples are supplied to four demand points namely, Kolkata in West Bengal, Mumbai in Maharash-
tra, Gandhinagar in Gujarat, Hyderabad in Telangana. The supplier company transports apples from collection
centers to demand points by large tracks/medium tracks through highways. For these cases, supplier company
would recompense a definite amount of toll charge to Indian Highway Authority (i.e., fixed-charge is considered
in transporting system). The DM desires to minimize (i) the total transporting cost concerning to total invest-
ment, and (ii) the damaged rate of goods with respect to transportation time (from origins to destinations). The
transportation cost and investment in US$, fixed-charge in US$ for an unlock path, damaged rate in kilogram
(1 damaged unit = 5 kilograms), transportation time in hour are considered. The DM is also interested to find
the amount of apples in ton to be transported from the ith collecting center to the jth demand point so as to
satisfy the total requirement. The data are shown in Tables 3–5 to describe the whole problem in fuzzy sense.

7.2. Discussion of model results

This subsection discusses the optimal solutions of the identical crisp Models 5, 9 and 10 for K = 1, 2, which
are also the optimal solutions of Model 4 and as well as Model 3 for K = 1, 2.

(i) Using the data from Tables 3–5 in the formulated Model 5 for K = 1, 2; utilizing the methodology presented
in Section 6.1, we obtain the results which are shown in Table 6.

(ii) Using the data from Tables 3–5 in the prescribed Models 9 and 10 for K = 1, 2, and utilizing the method-
ology presented in Section 6.2. To solve these models, we set confidence levels of δ1 = δ2 = 0.85 and
confidence levels of θm1 = θm2 = θm3 = 0.90, θn1 = θn2 = θn3 = 0.90 and θt1 = θt2 = 0.90 (choice of the
DM, one can choice different values for confidence levels). So, we obtain the simplest form of Models 9 and
10 and the obtained results which are shown in Table 6.

We can infer from Table 6 that the optimal solutions to the proposed MFFTP (i.e., Model 3) for K = 1, 2 is
(0.45, 0.20), which is more effective than (0.52, 0.29) and (0.54, 0.49) as these are minimum value. Moreover,
our suggested FCRA technique (in the case of LLA-MFCTP model) gives better optimal solution than existing
method (i.e., Arya et al. [3] approach). We also observe that the optimal solution of proposed MFFTP derived
from using FCRA is better than the optimal solution given by the RR technique, which is graphically shown in
Figure 3. Here, we expand the feasible domain (for an optimal solution) of the proposed MFFTP which lies on
LA, i.e., (0.45, 0.20); and on the UA, i.e., (0.52, 0.29). But a better optimal solution has occurred when the
case of LLA-MFCTP (i.e., Model 9) for K = 1, 2 is considered.

The primary object of the DM of a supplier company is to supply the product timely in which the transporta-
tion cost and damaged rate of goods are minimized with respect to the investment and delivery time respectively.
Here, the objective functions (Z1 and Z2) in ratio form are minimized. To overcome the special situations in a
transportation system, feasible solution space is extended and partitioned by using FCRA technique. In normal
case the value of the objective functions are taken form Model 9 (i.e., from 0.45, 0.20) and for special case the
value of the the objective function are chosen from Model 10 (i.e., from 0.52, 0.29). Thus, this model provides
an important concept to tackle uncertainty in practical ratio optimization problem.

8. Managerial insights

This section presents some managerial benefits of the suggested research study. This paper addresses the
central decision for ratio optimization in a transportation system. The values of the objective functions are
obtained from the designed model in ratio forms which are more acceptable for managerial decision.

Generally, the parameters connected to a practical distribution process are inexact in nature. Herein, trian-
gular fuzzy numbers are utilized to tackle impreciseness of the parameters. Rough set approximation technique
is adopted to extend and partition (in the sense of “surely” and “possible” cases) the region of optimal solu-
tion. These are the key strategies for a company’s DM to tackle uncertainty in the real-world delivery system.
“Surely” and “possible” solutions extracted from LA and UA models, respectively deal with the normal and
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Table 3. Triangular fuzzy values of shipping cost (c̃ij) and fixed-charge (f̃ij).

Destination-1 Destination-2 Destination-3 Supply
Origin-1 (3, 4, 5), (6, 7, 8), (5, 7, 9), (24, 26, 28)

(6, 7, 8) (8, 9, 10) (9, 10, 11)
Origin-2 (8, 9, 10), (10, 11, 12), (6, 8, 10), (30, 32, 34)

(10, 11, 12) (12, 13, 14) (11, 12, 13)
Origin-3 (6, 10, 14), (11, 12, 13), (10, 12, 14), (32, 34, 36)

(9, 12, 15) (13, 14, 15) (13, 15, 17)
Demand (18, 20, 22) (25, 26, 27) (31, 32, 33)

Table 4. Triangular fuzzy values of investment amount (p̃ij).

Destination-1 Destination-2 Destination-3 Supply
Origin-1 (8, 9, 10) (14, 15, 16) (12, 13, 14) (24, 26, 28)
Origin-2 (16, 18, 20) (18, 19, 20) (15, 17, 19) (30, 32, 34)
Origin-3 (20, 21, 22) (20, 22, 24) (17, 18, 19) (32, 34, 36
Demand (18, 20, 22) (25, 26, 27) (31, 32, 33)

Table 5. Triangular fuzzy values of damaged rate (d̃ij) and time of transportation (t̃ij).

Destination-1 Destination-2 Destination-3 Supply
Origin-1 (1, 2, 3), (3, 4, 5), (2, 3, 4), (24, 26, 28)

(12, 13, 14) (14, 15, 16) (17, 18, 19)
Origin-2 (4, 5, 6), (7, 8, 9), (6, 7, 8), (30, 32, 34)

(13, 15, 17) (16, 18, 20) (17, 19, 21)
Origin-3 (5, 7, 9) (2, 4, 6), (5, 6, 7), (32, 34, 36)

(19, 20, 21) (20, 21, 22) (18, 20, 22)
Demand (18, 20, 22) (25, 26, 27) (31, 32, 33)

Table 6. Pareto-optimal solutions of the proposed MFFTP for K = 1, 2.

Technique (Applied to) Optimal values of the Z1, Z2 Values of λ and s
Arya et al. [3] approach 0.63, 0.23 s = 0.0006
RR (Model 5) 0.54, 0.49 0.75, 0.0007
FCRA (Model 9: LLA-MFCTP) 0.45, 0.20 0.70, 0.0008
FCRA (Model 10: LUA-MFCTP) 0.52, 0.29 0.61, 0.0007

special cases of the practical transportation system which is an important blueprint for a policy-making problem.
It is suitable for a DM to choose preferable optimal solution in a ratio optimization problem.

9. Conclusion and outlook

In this paper, for the first time, the multiple objective fractional TP with additional cost function (i.e.,
MFFTP) has been designed by adopting two distinct forms of uncertainty and its domain of optimal solutions
is expanded. This paper has been simultaneously optimized with two fractional objective functions of conflicting
nature which are: total transportation cost/investment and damaged rate of product/time. Due to the presence
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Figure 3. Calculated values of Z1 and Z2 by techniques (represented by bars).

of inexactness of the data in the practical fractional FCTP, this article has been designed under two types of
uncertain framework such as fuzzy and rough. Rough approximation technique has been used to tackle different
situations like, “surely” and “possible” situations arise in real-world transportation system which make the
policy-making system more flexible. Thus, it provides a better strategy for managerial decision and it is a
cost-saving model.

The suggested fuzzy MFFTP has been converted into an identical crisp form by introducing two techniques,
namely, RR and FCRA. FCRA has been used to divide the crisp form of the fuzzy MFCTP into two distinct
forms, i.e., LLA-MFCTP and LUA-MFCTP. From the LAM and UAM of the MFCTP, it has been displayed
that the feasible domain of the MFCTP (also, that of MFFTP) can be expanded as well as divided to provide
more preferable optimal solutions. To show the effectiveness of our proposed MFFTP, we have compared the
solutions between the solutions extracted from the RR and FCRA techniques, and also the existing method [3].
One of the limitations of the FCRA technique is that conversion procedure from fuzzy model to similar crisp
model is slightly lengthy. Moreover, the proposed model is formulated under a single-stage system.

As an outlook, the proposed models can be extended to a multi-stage system [31] and various types of
the transportation, fractional optimization as well as portfolio problems [15]. Besides, researchers can further
analyze the multiple objectives fractional solid FCTP under intuitionistic fuzzy [12] or rough environments [30].
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