
RAIRO-Oper. Res. 55 (2021) 1343–1370 RAIRO Operations Research
https://doi.org/10.1051/ro/2021064 www.rairo-ro.org

ON DUALITY THEORY FOR MULTIOBJECTIVE SEMI-INFINITE
FRACTIONAL OPTIMIZATION MODEL USING HIGHER ORDER CONVEXITY

Tamanna Yadav and S.K. Gupta∗

Abstract. In the article, a semi-infinite fractional optimization model having multiple objectives is
first formulated. Due to the presence of support functions in each numerator and denominator with
constraints, the model so constructed is also non-smooth. Further, three different types of dual models
viz Mond-Weir, Wolfe and Schaible are presented and then usual duality results are proved using higher-
order (K × Q) − (F , α, ρ, d)-type I convexity assumptions. To show the existence of such generalized
convex functions, a nontrivial example has also been exemplified. Moreover, numerical examples have
been illustrated at suitable places to justify various results presented in the paper. The formulation
and duality results discussed also generalize the well known results appeared in the literature.
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1. Introduction

A semi-infinite model (SIM) is an optimization problem having finite number of variables with the infinite
number of constraints. Initially, in 1962, SIM is named by Charnes et al. [6], in which a survey of SIM mainly
about a linear model and duality results with convex property have been done. In this direction, some important
theorems for the linear model have been generalized using the pairing of finite space of sequences and vector space
of finite dimension. Later, the application of SIM in Euclidean space has been shown by Charnes et al. [7] and
its implication in duality results for a n-dimensional convex minimization problem have been demonstrated.
For these convex problems, Karney [18] proposed duality results using its Lagrangian dual. Jeyakumar [14]
introduced new constraints qualifications for convex SIM and then developed a strong duality relation. SIM
is important for both its results and latent applications in different mathematical fields. It is not only used
in the practical problems in which constraints have time or space parameters but also in the areas related to
statistics, robotics, transportation problems, game theory and engineering. For more details about significance
of SIM, we refer to [11,12,20,23,28,36]. Ito et al. [13] have derived optimality conditions and duality results for
the convex SIM using Slater’s constraint qualification. After that, considering constraints over arbitrary cones,
Shapiro [27] has developed weak and strong duality relations for convex SIM. Next, Gupta and Srivastava [10]
have discussed KKT results for the nonsmooth multiobjective programming problem and then developed usual
duality relations. An algorithm based on parametric dual for the quadratic semi-infinite problem have been

Keywords. Semi-infinite programming, fractional optimization model, support function, higher-order, generalized convexity.

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247 667, India.
∗Corresponding author: skgiitr@gmail.com

c© The authors. Published by EDP Sciences, ROADEF, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021064
https://www.rairo-ro.org
mailto:skgiitr@gmail.com
https://creativecommons.org/licenses/by/4.0


1344 T. YADAV AND S.K. GUPTA

proposed and convergence of the method is shown in Liu et al. [21]. Further, Basu et al. [5] have discussed the
duality gap for SIM with the support dual.

Using generalized (η, ρ)-invexity, Zalmai and Zhang [37] have developed non-parametric duality relations for
semi-infinite discrete minimax fractional problem and further, second-order parameter free duality results are
established by Zalmai [36]. After that, Antczak and Zalmai [3] have established second-order relations for semi-
infinite minimax type fractional optimization using (Φ, ρ)− V -invexity assumptions. These invexity conditions
are later on extended to higher-order in Stancu-Minasian et al. [30]. Considering the same optimization model
[3], Verma and Zalmai [35] have studied a parameter free dual model and established duality results using
(φ, ρ, θ, m̃)-sonvexity. Later, the approximate duality relations for nonsmooth minimax fractional optimization
model using higher order B − (p, r) invexity have been discussed in Sonali et al. [29].

Mishra and Jaiswal [22] have discussed SIM involving equilibrium constraints and derived optimality condi-
tions with duality results using invexity property. For SIM, considering the concept of convexificators, Pandey
and Mishra [24, 25] have proposed necessary as well as sufficient optimality conditions. Further, they formu-
lated Mond-Weir and Wolfe type duals, and proved related theorems with the help of ∂∗-convexity\generalized
convexity. Slater’s constraints qualification is used for a quasiconvex SIM and then optimality theorems with
duality relations are established by Kanzi and Soleimani-damaneh [17]. A fractional semi-infinite problem with
(Hp, R)-invexity have been studied in Patel and Patel [26].

Recently, a robust approximation approach is applied in fractional semi-infinite programming and some
interesting results for optimality solution with approximation have been established in Zeng et al. [38]. After
that, mixed type dual models are formulated and approximate dual relations are discussed for nonlinear SIM
in Sun et al. [31, 32]. For a robust vector optimization problem, inspiring from the concept of Quasi ε-solution
for SIM in Jiao et al. [15], necessary and sufficient optimality relations between feasible solution and ε-solution
are developed in Antczak et al. [4]. Using convex decomposition, optimality conditions and extended duality
results are developed for generalized SIM by Aboussoror et al. [1]. In Tung [33, 34], subdifferential in terms of
tangential convexity is used for developing KKT and strong KKT optimality results for multiobjective SIM. In
terms of invexity and equilibrium constraints, sufficient optimality conditions and duality results for two dual
models have been derived in Joshi [16]. Recently, Emam [9] has studied a nonsmooth SIM involving E-convexity
and support functions, and further established duality results by constructing Mond-Weir type dual model.

Liang et al. [19] have introduced the concept of generalized (F , α, ρ, d) convexity and further for fractional
optimization model, they have derived optimality relations and usual duality theorems. Using the same type
of convexity, higher order dual models are formulated and optimality relations are derived for minimax type
problems in Ahmad et al. [2]. Motivated by the work in [2,19,34], in this paper, we have studied a new class of
semi-infinite fractional programming over arbitrary cones. The main outcomes of the paper are briefly explained
below:

– Problem formulation: A new class of semi-infinite fractional multiple objective problem over arbitrary cones
has been formulated. Due to the presence of support functions in each numerator and denominator of the
objective function and in each constraint, the problem becomes non-smooth. This not only generalizes all the
existing semi-infinite models but also gives infinitely many optimization problems since it involves arbitrary
cones.

– Assumptions: The concept of higher order (K × Q) − (F , α, ρ, d)-type I convexity is introduced whose
existence is further illustrated by citing a non-trivial example.

– Dual problems: Three dual models (Wolfe/Mond-Weir/Schaible) have been constructed and appropriate
duality relations have been established under the said assumption.

– Numerical illustrations: Various non-trivial examples have been exemplified at suitable places to justify the
results obtained in the article. Further, it has been shown by giving examples that without satisfying the
assumption of higher order (K ×Q)− (F , α, ρ, d)-type I convexity, the result obtained may not hold.

This paper is organized as : In Section 2, some notations and preliminary results are recalled. Also, the concept
of higher order (K × Q) − (F , α, ρ, d)-type I convexity is introduced and further, a non-trivial example has
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been demonstrated. In Sections 3–5, for a class of a non-smooth multiple objective semi-infinite fractional
programming problem, higher order Mond-Weir, Wolfe and Schaible type dual models are constructed, and
usual duality results are proved under aforesaid assumption. To validate and clarify the duality results, different
numerical examples are also shown at suitable places. In the last section, the conclusion with future scope is
given.

2. Preliminaries

Consider the following cone optimization model:

(MP) K −min ψ(x)
subject to − φ(x) ∈ Q,

x ∈ B

where B ⊂ Rn is open and ψ : B → Rk, φ : B → Rm are differentiable vector functions. The set K ⊆ Rk, Q ⊆
Rm are closed convex cones with non-empty interiors and K ∩ −K = {0}. Let B0 = {x ∈ B : −φ(x) ∈ Q}
denotes the feasible region of the problem (MP).

Definition 2.1 ([19]). A point x̃ ∈ B0 is said to be an efficient (weakly efficient) solution if there exists no
x ∈ B0 such that ψ(x̃)− ψ(x) ∈ K \ {0}(int K).

Definition 2.2 ([2]). A functional F : B × B × Rn → R is called sublinear in the third component, if for all
(x, u) ∈ B ×B,

(i) F(x, u; b1 + b2) ≤ F(x, u; b1) + F(x, u; b2), for all b1, b2 ∈ Rn,
(ii) F(x, u; γb) = γF(x, u; b), for all γ ∈ R+ and b ∈ Rn.

Definition 2.3. Let F : B×B×Rn → R be a sublinear functional in the third variable. Then the pair (ψ, φ)
is called (strictly) higher order (K ×Q)− (F , α, ρ, d)-type I convex at ũ ∈ Rn with respect to L : B×Rn → Rk

and S : B ×Rn → Rm, if for all x ∈ B, p, q ∈ Rn, there exist real valued function α(· , ·) : B ×B → R+ \ {0},
a function d =

(
d

(1)
i , d

(2)
j

)
: B × B → R × R and a real number ρ =

(
ρ

(1)
i , ρ

(2)
j

)
∈ R × R, i = 1, 2, . . . , k, j =

1, 2, . . . ,m, such that(
ψ1(x)− ψ1(ũ)− L1(ũ, p1) + pT

1∇p1L1(ũ, p1)−Fx,ũ [α(x, ũ) (∇xψ1(ũ) +∇p1L1(ũ, p1))]

− ρ(1)
1

(
d

(1)
1 (x, ũ)

)2

, . . . , ψk(x)− ψk(ũ)− Lk(ũ, pk) + pT
k∇pk

Lk(ũ, pk)

−Fx,ũ [α(x, ũ) (∇xψk(ũ) +∇pk
Lk(ũ, pk))]− ρ(1)

k

(
d

(1)
k (x, ũ)

)2
)
∈ K (K \ {0}) and(

− φ1(ũ)− S1(ũ, q1) + qT
1 ∇q1S1(ũ, q1)−Fx,ũ [α(x, ũ) (∇xφ1(ũ) +∇q1S1(ũ, q1))]

− ρ(2)
1

(
d

(2)
1 (x, ũ)

)2

, . . . ,−φm(ũ)− Sm(ũ, qm) + qT
m∇qmSm(ũ, qm)

−Fx,ũ [α(x, ũ) (∇xφm(ũ) +∇qm
Sm(ũ, qm))]− ρ(2)

m

(
d(2)

m (x, ũ)
)2
)
∈ Q (Q \ {0}).

Next, we will show a non-trivial example to illustrate the existence of such functions.
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Example 2.4. In problem (MP), let the functions ψ : R→ R2, φ : R→ R2, L : R×R→ R2, S : R×R→ R2

be given by:

ψ = (ψ1, ψ2) =
(
x2 + 1, x2 − 1

)
, φ = (φ1, φ2) =

(
x2 − 1, x4 − 1

)
,

L(u, p) = (L1(u, p1), L2(u, p2)) =
(
−2p1u

2, −p2(u+ 1)
)
,

S(u, q) = (S1(u, q1), S2(u, q2)) =
(
−q1u

2 +
5
2
, −4q2u

2

)
.

Let d(1)
1 (x, y) = d

(2)
1 (x, y) = x−y, d(1)

2 (x, y) = d
(2)
2 (x, y) = x+y and α(x, y) = x2 +1. Let Fx,u(b) = b(x2−u2),

K = {(x, y) ∈ R2 : x ≤ 0, y ≥ x} and Q = {(x, y) ∈ R2 : y ≥ 0, y ≥ x}. Now, −φ(x) ∈ Q implies x2 ≤ 1,
therefore −1 ≤ x ≤ 1. Hence, the feasible region of the problem (MP) is B0 = [−1, 1]. Next, for all x ∈ R,
p1, p2, q1, q2 ∈ R and for ρ(1)

1 = 1, ρ(1)
2 = −1, we have(

ψ1(x)− ψ1(u)− L1(u, p1) + pT
1∇p1L1(u, p1)−Fx,u [α(x, u) (∇xψ1(u) +∇p1L1(u, p1))]

− ρ(1)
1

(
d

(1)
1 (x, u)

)2

, ψ2(x)− ψ2(u)− L2(u, p2) + pT
2∇p2L2(u, p2)

−Fx,u [α(x, u) (∇xψ2(u) +∇p2L2(u, p2))]− ρ(1)
2

(
d

(1)
2 (x, u)

)2
)

=

{(
0, 3x2 + x4

)
∈ K at u = 0,

(2x− 2, 2x(x+ 1)) ∈ K \ {0} at u = 1

and also for all x ∈ R, ρ(2)
1 = 1, ρ(2)

2 = −1, we obtain(
− φ1(u)− S1(u, q1) + qT

1 ∇q1S1(u, q1)−Fx,u [α(x, u) (∇xφ1(u) +∇q1S1(u, q1))]

− ρ(2)
1

(
d

(2)
1 (x, u)

)2

, −φ2(u)− S2(u, q2) + qT
2 ∇q2S2(u, q2)

−Fx,u [α(x, u) (∇xφ2(u) +∇q2S2(u, q2))]− ρ(2)
2

(
d

(2)
2 (x, u)

)2
)

=


(
−x2 − 3

2
, 1 + x2

)
∈ Q at u = 0,(

−x4 − x2 + 2x− 5
2
, (1 + x)2

)
∈ Q \ {0} at u = 1.

Hence, the pair (ψ, φ) is higher order (K×Q)− (F , α, ρ, d)-type-I convex at u = 0 and (ψ, φ) is strictly higher
order (K ×Q)− (F , α, ρ, d)-type I convex at u = 1.

Definition 2.5 ([31]). Let f : Rn → R be a convex function. Then, the subdifferential of f at x̃ is defined as

∂f(x̃) = {ν̄ ∈ Rn : f(x)− f(x̃) ≥ 〈ν̄, x− x̃〉, for all x ∈ Rn}.

Definition 2.6 ([8]). The support function of a compact convex set A ⊆ Rn is defined as

Ω(x|A) = max
{
xT y : y ∈ A

}
.
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The subdifferential of support function Ω(x|A) at x̃ is given by

∂Ω(x̃|A) =
{
ν̄ ∈ Rn : Ω(x̃|A) = ν̄T x̃

}
.

Now, consider the semi-infinite multiobjective fractional programming problem as follows:

(SIFP) K −min
f(x)
g(x)

=

(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

, . . . ,
fk(x) + Ω(x|Ck)
gk(x)− Ω(x|Dk)

)
subject to − [hj(x, t) + Ω(x|Ej) + Ω(t|Mj)] ∈ Q, for all t ∈ T

where i ∈ Ĩ = {1, 2, . . . , k}, j ∈ J̃ = {1, 2, . . . ,m}, f : Rn → Rk, g : Rn → Rk, h : Rn → Rm are continuously
differentiable functions and for compact convex sets Ci, Di, Ej and Mj in Rn, respective support functions
are Ω(x|Ci), Ω(x|Di), Ω(x|Ej) and Ω(x|Mj) for i ∈ Ĩ , j ∈ J̃ . Also, assume that fi(·) + Ω((·)|Ci) ≥ 0 and
gi(·)− Ω((·)|Di) > 0 for all feasible x and T is an infinite index set.

Suppose S0 = {x ∈ Rn : −[hj(x, t) + Ω(x|Ej) + Ω(t|Mj)] ∈ Q, for all t ∈ T} represents the feasible region
of the problem (SIFP). Let K∗ and Q∗ be positive dual cones of K and Q, respectively.

Following the lines of Debnath and Gupta [8], we now state the following necessary Karush–Kuhn–Tucker
condition for (SIFP):

Theorem 2.7. Let x̃ ∈ B ⊆ Rn be a weakly efficient point of (SIFP) and a suitable constraint qualification be
fulfilled at x̃. Then, there exist (λ, µ) ∈ int K∗ × int Q∗, (λ, µ) 6= (0, 0) and t ∈ T such that

0 ∈ ∂

(
k∑

i=1

λi

(
fi(x̃) + Ω(x̃|Ci)
gi(x̃)− Ω(x̃|Di)

)
+

m∑
j=1

µj

(
h(x̃, t) + Ω(x̃|Ej) + Ω(t|Mj)

))
and

m∑
j=1

µj (h(x̃, t) + Ω(x̃|Ej) + Ω(t|Mj)) = 0.

3. Mond-Weir type dual

For (SIFP) model, consider the following Mond-Weir type higher order dual:

(MD) K −max

(
f1(u) + uT z1

g1(u)− uT v1
, . . . ,

fk(u) + uT zk

gk(u)− uT vk

)
subject to

k∑
i=1

λi

[
∇x

(
fi(u) + uT zi

gi(u)− uT vi

)
+∇pi

Li(u, pi)
]

+
m∑

j=1

µj

[
∇x

(
hj(u, τ) + uTw1

j + τTw2
j

)
+∇qj

Sj(u, qj)
]

= 0, (3.1)

m∑
j=1

µj

[
hj(u, τ) + uTw1

j + τTw2
j + Sj(u, qj)− qT

j ∇qjSj(u, qj)
]
≥ 0, (3.2)

k∑
i=1

λi[Li(u, pi)− pT
i ∇pi

Li(u, pi)] ≥ 0, (3.3)

zi ∈ Ci, vi ∈ Di, w
1
j ∈ Ej , w

2
j ∈Mj , i ∈ Ĩ , j ∈ J̃ , (λ, µ) ∈ int K∗ × int Q∗, (λ, µ) 6= (0, 0) and τ ∈ T.
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Theorem 3.1 (Weak duality). Assume that x and (u, v, w1, w2, λ, µ, z, p, q) be feasible for the problems
(SIFP) and (MD), respectively. Let a sublinear functional (in third variable) be F : B ×B × Rn → R. Let

(i)
((

f1(·) + (·)T z1

g1(·)− (·)T v1
, . . . ,

fk(·) + (·)T zk

gk(·)− (·)T vk

)
,
(
h1(·, τ) + (·)Tw1

1, . . . , hm(·, τ) + (·)Tw1
m

))
be higher order (K×

Q)− (F , α, ρ, d)-type I convex at u with respect to L and S,
(ii) K ⊇ Rk

+, Q ⊇ Rm
+ and

(iii)
k∑

i=1

λiρ
(1)
i

(
d

(1)
i (x, u)

)2

+
m∑

j=1

µj

{
ρ

(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j

}
≥ 0.

Then (
f1(u) + uT z1

g1(u)− uT v1
, . . . ,

fk(u) + uT zk

gk(u)− uT vk

)
−

(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

, . . . ,
fk(x) + Ω(x|Ck)
gk(x)− Ω(x|Dk)

)
/∈ K \ {0}. (3.4)

Proof. By hypothesis (i) and Definition 2.3 at u with respect to L : B × Rn → Rk and S : B × Rn → Rm, we
have(
f1(x) + xT z1

g1(x)− xT v1
− f1(u) + uT z1

g1(u)− uT v1
− L1(u, p1) + pT

1∇p1L1(u, p1)−Fx,u

[
α(x, u)

(
∇x

(
f1(u) + uT z1

g1(u)− uT v1

)

+∇p1L1(u, p1)

)]
− ρ(1)

1

(
d1

(1)(x, u)
)2

, . . . ,
fk(x) + xT zk

gk(x)− xT vk
− fk(u) + uT zk

gk(u)− uT vk
− Lk(u, pk)

+ pT
k∇pk

Lk(u, pk)−Fx,u

[
α(x, u)

(
∇x

(
fk(u) + uT zk

gk(u)− uT vk

)
+∇pk

Lk(u, pk)
)]
− ρk

(1)
(
dk

(1)(x, u)
)2
)
∈ K

(3.5)

and(
−
(
h1(u, τ) + uTw1

1

)
− S1(u, q1) + qT

1 ∇q1S1(u, q1)−Fx,u

[
α(x, u)

(
∇x(h1(u, τ) + uTw1

1)

+∇q1S1(u, q1)
)]
− ρ(2)

1 (d(2)
1 (x, u))2, . . . ,−

(
hm(u, τ) + uTw1

m

)
− Sm(u, qm) + qT

m∇qm
Sm(u, qm)

−Fx,u

[
α(x, u)

(
∇x(hm(u, τ) + uTw1

m) +∇qm
Sm(u, qm)

)]
− ρ(2)

m

(
d(2)

m (x, u)
)2
)
∈ Q. (3.6)

It follows from λ ∈ int K∗ and (3.5) that

k∑
i=1

λi

[
fi(x) + xT zi

gi(x)− xT vi
− fi(u) + uT zi

gi(u)− uT vi
− Li(u, pi) + pT

i ∇piLi(u, pi)

−Fx,u

[
α(x, u)

(
∇x

(
fi(u) + uT zi

gi(u)− uT vi

)
+∇pi

Li(u, pi)
)]
− ρ(1)

i

(
d

(1)
i (x, u)

)2
]
≥ 0.

Using the sublinearity property of F , λ ∈ int K∗ ⊆ int Rk
+ and dual constraint (3.3), we get

k∑
i=1

λi

[
fi(x) + xT zi

gi(x)− xT vi
− fi(u) + uT zi

gi(u)− uT vi

]

≥ Fx,u

[
α(x, u)

k∑
i=1

λi

{
∇x

(
fi(u) + uT zi

gi(u)− uT vi

)
+∇pi

Li(u, pi)
}]

+
k∑

i=1

λiρ
(1)
i

(
d

(1)
i (x, u)

)2

. (3.7)
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Now, from hypothesis (ii), µ ∈ int Q∗ ⊆ int Rm
+ , it follows from (3.6) that

m∑
j=1

µj

[
−
(
hj(u, τ) + uTw1

j

)
− Sj(u, qj) + qT

j ∇qj
Sj(u, qj)

−Fx,u

[
α(x, u)

(
∇x(hj(u, τ) + uTw1

j ) +∇qjSj(u, qj)
)]
− ρ(2)

j

(
d

(2)
j (x, u)

)2
]
≥ 0.

Using µ > 0, along with sublinearity of F , the above inequality gives
m∑

j=1

µj

[
−
(
hj(u, τ) + uTw1

j

)
− Sj(u, qj) + qT

j ∇qj
Sj(u, qj)

]

≥ Fx,u

α(x, u)
m∑

j=1

µj

{
∇x(hj(u, τ) + uTw1

j ) +∇qjSj(u, qj)
}+

m∑
j=1

µjρ
(2)
j

(
d

(2)
j (x, u)

)2

. (3.8)

Further, using inequality (3.2) in the addition of (3.7) and (3.8), we obtain

k∑
i=1

λi

[
fi(x) + xT zi

gi(x)− xT vi
− fi(u) + uT zi

gi(u)− uT vi

]

≥ Fx,u

[
α(x, u)

k∑
i=1

λi

{
∇x

(
fi(u) + uT zi

gi(u)− uT vi

)
+∇piLi(u, pi)

}]
+ Fx,u

[
α(x, u)

m∑
j=1

µj

{
∇x(hj(u, τ)

+ uTw1
j ) +∇qj

Sj(u, qj)
}]

+
k∑

i=1

λiρ
(1)
i

(
d

(1)
i (x, u)

)2

+
m∑

j=1

µj

{
ρ

(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j

}
.

It follows from assumption (iii), dual constraint (3.1), sublinearity of F and Fx,u(0) = 0 that

k∑
i=1

λi

[
fi(x) + xT zi

gi(x)− xT vi
− fi(u) + uT zi

gi(u)− uT vi

]
≥ 0. (3.9)

Now, on the contrary, suppose that (3.4) is not correct. Then, λ ∈ int K∗ implies

k∑
i=1

λi

[
fi(u) + uT zi

gi(u)− uT vi
− fi(x) + Ω(x|Ci)
gi(x)− Ω(x|Di)

]
> 0.

Finally, since xT zi ≤ Ω(x|Ci), xT vi ≤ Ω(x|Di) and λi > 0, for all i, therefore

k∑
i=1

λi

[
fi(u) + uT zi

gi(u)− uT vi
− fi(x) + xT zi

gi(x)− xT vi

]
> 0

which contradicts the inequality (3.9). This completes the proof. �

Theorem 3.2 (Strong duality). Let x̌ ∈ B be a weakly efficient solution of (SIFP) and the suitable constraint
qualification holds at x̌. Then, for Li(x̌, 0) = 0, Sj(x̌, 0) = 0, ∇p̌i

Li(x̌, 0) = 0 and ∇q̌j
Sj(x̌, 0) = 0, i ∈

Ĩ , j ∈ J̃ , there exist λ̌ = (λ̌1, . . . , λ̌k) ∈ int K∗, µ̌ = (µ̌1, . . . , µ̌m) ∈ int Q∗, with (λ̌, µ̌) 6= (0, 0) such that
(x̌, v̌, w̌1, w̌2, λ̌, µ̌, ž, p̌ = 0, q̌ = 0) is a feasible point of (MD) and the objective function values of (SIFP)
and (MD) are equal. Moreover, if all the assumptions of Theorem 3.1 are satisfied for every feasible point x̌ of
(SIFP) and (ǔ, v̌, w̌1, w̌2, λ̌, µ̌, ž, p̌, q̌) of (MD), then (x̌, v̌, w̌1, w̌2, λ̌, µ̌, ž, p̌ = 0, q̌ = 0) is an efficient
solution of (MD).
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Proof. For the weakly efficient solution x̌ ∈ S0 of (SIFP), from Theorem 2.7, there exist λ̌ ∈ int K∗, µ̌ ∈
int Q∗, (λ̌, µ̌) 6= (0, 0) and ť ∈ T such that

0 ∈ ∂

(
k∑

i=1

λ̌i

(
fi(x̌) + Ω(x̌|Ci)
gi(x̌)− Ω(x̌|Di)

)
+

m∑
j=1

µ̌j

(
hj(x̌, ť) + Ω(x̌|Ej) + Ω(ť|Mj)

))
and

m∑
j=1

µ̌j

(
h(x̌, ť) + Ω(x̌|Ej) + Ω(ť|Mj)

)
= 0

which implies

0 ∈

(
k∑

i=1

λ̌i∂

(
fi(x̌) + Ω(x̌|Ci)
gi(x̌)− Ω(x̌|Di)

)
+

m∑
j=1

µ̌j∂
(
hj(x̌, ť) + Ω(x̌|Ej) + Ω(ť|Mj)

))
.

For ži ∈ ∂Ω(x̌|Ci), v̌i ∈ ∂Ω(x̌|Di), w̌1
j ∈ ∂Ω(x̌|Ej) and w̌2

j ∈ ∂Ω(ť|Mj), we have

Ω(x̌|Ci) = x̌T ži Ω(x̌|Di) = x̌T v̌i, Ω(x̌|Ej) = x̌T w̌1
j and Ω(ť|Mj) = ťT w̌2

j .

It further follows that

k∑
i=1

λ̌i∇
(
fi(x̌) + x̌T ži

gi(x̌)− x̌T v̌i

)
+

m∑
j=1

µ̌j∇
(
hj(x̌, ť) + x̌T w̌1

j + ťT w̌2
j

)
= 0 and

m∑
j=1

µ̌j

(
h(x̌, ť) + x̌T w̌1

j + ťT w̌2
j

)
= 0.

The above equations with Li(ǔ, 0) = 0, Si(x̌, 0) = 0, ∇p̌i
Li(x̌, 0) = 0, ∇q̌j

Sj(x̌, 0) = 0 imply that
(x̌, v̌, w̌1, w̌2, λ̌, µ̌, ž, p̌ = 0, q̌ = 0) is feasible for (MD) and respective values of objective functions
are equal.

Now, suppose that (x̌, v̌, w̌1, w̌2, λ̌, µ̌, ž, p̌ = 0, q̌ = 0) is not an efficient solution of (MD), then there
exists a feasible point (u, v, w1, w2, λ, µ, p, q) of (MD) such that(

f1(u) + uT z1

g1(u)− uT v1
, . . . ,

fk(u) + uT zk

gk(u)− uT vk

)
−

(
f1(x̌) + x̌T ž1

g1(x̌)− x̌T v̌1
, . . . ,

fk(x̌) + x̌T žk

gk(x̌)− x̌T v̌k

)
∈ K \ {0}.

This further gives(
f1(u) + uT z1

g1(u)− uT v1
, . . . ,

fk(u) + uT zk

gk(u)− uT vk

)
−

(
f1(x̌) + Ω(x̌|C1)
g1(x̌)− Ω(x̌|D1)

, . . . ,
fk(x̌) + Ω(x̌|Ck)
gk(x̌)− Ω(x̌|Dk)

)
∈ K \ {0}

which contradicts Theorem 3.1. Hence proved. �

Theorem 3.3 (Strict converse duality). Let x̃ and (ũ, ṽ, w̃1, w̃2, λ̃, µ̃, z̃, p̃, q̃) be feasible solutions of the
problems (SIFP) and (MD), respectively. Let a sublinear functional (in third variable) be F : B ×B × Rn → R
such that

(i)
(
f1(ũ) + ũT z̃1

g1(ũ)− ũT ṽ1
−

m∑
j=1

µ̃j{hj(ũ, τ̃) + ũT w̃1
j + τ̃T w̃2

j + Sj(ũ, q̃j) − q̃T
j ∇q̃j

Sj(ũ, q̃j)},. . . ,
fk(ũ) + ũT z̃k

gk(ũ)− ũT ṽk
−

m∑
j=1

µ̃j{hj(ũ, τ̃) + ũT w̃1
j + τ̃T w̃2

j +Sj(ũ, q̃j)− q̃T
j ∇q̃j

Sj(ũ, q̃j)}
)
−
(
f1(x̃) + x̃T z̃1

g1(x̃)− x̃T ṽ1
, . . . ,

fk(x̃) + x̃T z̃k

gk(x̃)− x̃T ṽk

)
∈ K,
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(ii)

((
f1(·) + (·)T z1

g1(·)− (·)T v1
, . . . ,

fk(·) + (·)T zk

gk(·)− (·)T vk

)
,
(
h1(·, τ) + (·)Tw1

1, . . . , hm(·, τ) + (·)Tw1
m

))
be strictly higher

order (K ×Q)− (F , α, ρ, d)-type I convex at ũ with respect to L and S,
(iii) K ⊇ Rk

+, Q ⊇ Rm
+ and

(iv)
k∑

i=1

λ̃iρ
(1)
i

(
d

(1)
i (x̃, ũ)

)2

+
m∑

j=1

µ̃j{ρ(2)
j

(
d

(2)
j (x̃, ũ)

)2

− τ̃T w̃2
j} ≥ 0.

Then x̃ = ũ.

Proof. Let x̃ and (ũ, ṽ, w̃1, w̃2, λ̃, µ̃, z̃, p̃, q̃) be feasible solutions of the problems (SIFP) and (MD),
respectively. On the contrary, suppose that x̃ 6= ũ. Then, by λ̃ ∈ int K∗ ⊆ int Rk

+, and µ̃ ∈ int Q∗ ⊆ int Rm
+ ,

hypothesis (ii) and Definition 2.3, we obtain

k∑
i=1

λ̃i

[
fi(x̃) + x̃T z̃i

gi(x̃)− x̃T ṽi
− fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi
− Li(ũ, p̃i) + p̃T

i ∇p̃iLi(ũ, p̃i)

−Fx̃,ũ

[
α(x̃, ũ)

{
∇x̃

(
fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi

)
+∇p̃i

Li(ũ, p̃i)
}]
− ρ(1)

i

(
d

(1)
i (x̃, ũ)

)2
]
> 0. (3.10)

m∑
j=1

µ̃j

[
−
(
hj(ũ, τ̃) + ũT w̃1

j

)
− Sj(ũ, q̃j) + q̃T

j ∇q̃j
Sj(ũ, q̃j)

−Fx̃,ũ

[
α(x̃, ũ)

{
∇x̃

(
hj(ũ, τ̃) + ũT w̃1

j

)
+∇q̃j

Sj(ũ, q̃j)
}]
− ρ(2)

j

(
d

(2)
j (x̃, ũ)

)2
]
> 0. (3.11)

Further, using the sublinearity of F and inequality (3.3) in (3.10), we get

k∑
i=1

λ̃i

[
fi(x̃) + x̃T z̃i

gi(x̃)− x̃T ṽi
− fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi

]

> Fx̃,ũ

[
α(x̃, ũ)

k∑
i=1

λ̃i

{
∇x̃

(
fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi

)
+∇p̃i

Li(ũ, p̃i)
}]

+
k∑

i=1

λ̃iρ
(1)
i

(
d

(1)
i (x̃, ũ)

)2

. (3.12)

It follows from (3.2), (3.11), (3.12) and sublinearity of F that

k∑
i=1

λ̃i

[
fi(x̃) + x̃T z̃i

gi(x̃)− x̃T ṽi
− fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi

]

> Fx̃,ũ

[
α(x̃, ũ)

(
k∑

i=1

λ̃i

{
∇x̃

(
fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi

)
+∇p̃iLi(ũ, p̃i)

}
+

m∑
j=1

µ̃j

{
∇x̃

(
hj(ũ, τ̃) + ũT w̃1

j

)
+∇q̃j

Sj(ũ, q̃j)
})]

+
k∑

i=1

λ̃iρ
(1)
i

(
d

(1)
i (x̃, ũ)

)2

+
m∑

j=1

µ̃j

{
ρ

(2)
j

(
d

(2)
j (x̃, ũ)

)2

− τ̃T w̃2
j

}
.

Further, using (3.1) and hypothesis (iv), we obtain

k∑
i=1

λ̃i

[
fi(x̃) + x̃T z̃i

gi(x̃)− x̃T ṽi
− fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi

]
> 0. (3.13)
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Now, using dual constraint (3.2) and λi ∈ int K∗ in hypothesis (i), we get

k∑
i=1

λ̃i

[
fi(x̃) + x̃T z̃i

gi(x̃)− x̃T ṽi
− fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi

]
≤ 0.

This contradicts the inequality (3.13). Hence the result. �

Example 3.4. Let in the problem (SIFP), f : R→ R2, g : R→ R2 and h : R× [−1, 0]→ R2 be given as:

f(x) = (f1(x), f2(x)) = (x2 + 2, x2(x2 + 1)),
g(x) = (g1(x), g2(x)) = (x4 + 4, (x2 + 1)2) and

h(x, t) = (h1(x, t), h2(x, t)) = (x3t− 2, x2t).

Let the cones be K = {(x, y) ∈ R2 : x ≥ 0, y ≥ −17x} and Q = {(x, y) ∈ R2 : y ≥ 0, 2y ≥ −x}. Also,
suppose

L(u, p) = (L1(u, p1), L2(u, p2)) = (p1u, −p2u),
S(u, q) = (S1(u, q1), S2(u, q2)) = (q1u

2, q2(u− 1)) and

d
(1)
1 (x, y) = d

(2)
1 (x, y) = 1− xy, d(1)

2 (x, y) = d
(2)
2 (x, y) = y2 + 1.

Let the sublinear functional be Fx,u(b) = bxu and α(x, y) = 1 + x2y2. Let

C1 = {0}, C2 = [0, 1] = D1 = E2 = M2, and D2 = [−1, 0] = E1 = M1.

Thus, their support functions will be

Ω(x|C1) = {0}, Ω(x|D2) = Ω(x|E1) =
|x| − x

2
, Ω(t|M1) =

|t| − t
2

,

Ω(x|C2) = Ω(x|D1) = Ω(x|E2) =
x+ |x|

2
and Ω(t|M2) =

|t|+ t

2
·

The feasible region S0 =

{
x ∈ R :

(
2− xt− (|x| − x)

2
− (|t| − t)

2
, −x2t− (x+ |x|)

2
− (|t|+ t)

2

)
∈ Q,

for all t ∈ [−1, 0]

}
.

Clearly, 0, −1 ∈ S0. Also, β =
(
u, v, w1, w2, λ, µ, z, p, q

)
=
(

0, (0, 0) , (0, 1) ,
(
− 1, 1

)
,
(1

8
, 2
)
, (1, 1),

(0, 0) , (1, 0) , (0, 1)
)

is feasible for (MD).

Validation of Theorem 3.1:

First we will show that all the hypothesis of Theorem 3.1 are satisfied.
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At u = 0, for v = (0, 0), z = (0, 0), ρ(1)
1 = −2 and ρ

(1)
2 =

1
8
, we get(

f1(x) + xT z1

g1(x)− xT v1
− f1(u) + uT z1

g1(u)− uT v1
− L1(u, p1) + pT

1∇p1L1(u, p1)−Fx,u

[
α(x, u)

(
∇x

(
f1(u) + uT z1

g1(u)− uT v1

)

+∇p1L1(u, p1)

)]
− ρ(1)

1

(
d

(1)
1 (x, u)

)2

,
f2(x) + xT z2

g2(x)− xT v2
− f2(u) + uT z2

g2(u)− uT v2
− L2(u, p2)

+ pT
2∇p2L2(u, p2)−Fx,u

[
α(x, u)

(
∇x

(
f2(u) + uT z2

g2(u)− uT v2

)
+∇p2L2(u, p2)

)]
− ρ(1)

2

(
d

(1)
2 (x, u)

)2
)

=

(
x2 + 2
x4 + 4

+
3
2
,

x2

x2 + 1
− 1

8

)
∈ K \ {0}, for all x ∈ R.

Further, for w1
1 ∈ E1, w

1
2 ∈ E2, w

2
1 ∈M1, w

2
2 ∈M2, ρ

(2)
1 = 1, ρ(2)

2 = −1 and for all τ ∈ [−1, 0], we obtain(
− (h1(u, τ) + uTw1

1)− S1(u, q1) + qT
1 ∇q1S1(u, q1)−Fx,u

[
α(x, u)

(
∇x(h1(u, τ) + uTw1

1)

+∇q1S1(u, q1)
)]
− ρ(2)

1

(
d

(2)
1 (x, u)

)2

, −(h2(u, τ) + uTw1
2)− S2(u, p2) + qT

2 ∇q2S2(u, q2)

−Fx,u

[
α(x, u)

(
∇x(h2(u, τ) + uTw1

2) +∇q2S2(u, q2)
)]
− ρ(2)

2

(
d

(2)
2 (x, u)

)2
)

=
(

1, 1
)
∈ Q \ {0}.

Hence, the hypothesis (i) of Theorem 3.1 is satisfied. Moreover, R2
+ ⊂ K, R2

+ ⊂ Q and

2∑
i=1

λiρ
(1)
i

(
d

(1)
i (x, u)

)2

+
2∑

j=1

µj

{
ρ

(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j

}
= 0.

Thus, hypotheses (ii) and (iii) of Theorem 3.1 also hold. Now, for β, the expression(
f1(u) + uT z1

g1(u)− uT v1
,
f2(u) + uT z2

g2(u)− uT v2

)
−

(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

,
f2(x) + Ω(x|C2)
g2(x)− Ω(x|D2)

)

=

(0, 0) /∈ K/{0} for x = 0,(
− 1

10
, −2

3

)
/∈ K/{0} for x = −1.

Hence, the Theorem 3.1 is verified at x = 0, −1 ∈ S0 and the point β feasible for (MD).

Validation of Theorem 3.3:

For the points β and x = 0, it has been shown above that the assumptions (ii), (iii) and (iv) of Theorem 3.3
hold true. Also, the value of the expression(

f1(u) + uT z1

g1(u)− uT v1
−

2∑
j=1

µj{hj(u, τ) + uTw1
j + τTw2

j + Sj(u, qj)− qT
j ∇qj

Sj(u, qj)}, f2(u) + uT z2

g2(u)− uT v2

−
2∑

j=1

µj{hj(u, τ) + uTw1
j + τTw2

j + Sj(u, qj)− qT
j ∇qj

Sj(u, qj)}
)
−
(
f1(x) + xT z1

g1(x)− xT v1
,
f2(x) + xT z2

g2(x)− xT v2

)
= (0, 0) ∈ K.

Thus, the assumption (i) of Theorem 3.3 also holds. Hence verified. ut
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Next, by demonstrating the following example, we will show that if the assumption of higher order K ×Q−
(F, α, ρ, d) – type I convexity does not hold, then the result of Theorem 3.1 may not hold:

Example 3.5. Let in the problem (SIFP), f : R→ R2, g : R→ R2, and h : R× [2, 4]→ R2 be given as:

f(x) = (f1(x), f2(x)) = (x2 + 4, x4(x4 − 1)),
g(x) = (g1(x), g2(x)) = (2x2 + 1, (x4 + 1)2) and

h(x, t) = (h1(x, t), h2(x, t)) = (−x3t+ 2, −x2t2).

Let the cones be K = {(x, y) ∈ R2 : x ≥ 0, y ≥ −2x} and Q = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}. Also, suppose

L(u, p) = (L1(u, p1), L2(u, p2)) = (−p1u, p2u),

S(u, q) = (S1(u, q1), S2(u, q2)) =
(
q1u, q2u+ 4

)
and

d
(1)
1 (x, y) = d

(2)
1 (x, y) = y(x+ 1), d(1)

2 (x, y) = d
(2)
2 (x, y) = x2y2.

Let the sublinear functional be Fx,u(b) = b2xu and α(x, y) = 2 + x2y2. Consider

C1 = {0}, C2 = [−1, 0] = E1 = M2 and D1 = D2 = [0, 1] = E2 = M1.

Thus, their support functions will be

Ω(x|C1) = {0}, Ω(x|C2) = Ω(x|E1) =
|x| − x

2
, Ω(t|M1) =

|t|+ t

2
,

Ω(x|D1) = Ω(x|D2) = Ω(x|E2) =
x+ |x|

2
and Ω(t|M2) =

|t| − t
2
·

One can easily verify that x = 1 is feasible for (SIFP) and β1 =
(
u, v, w1, w2, λ, µ, z, p, q

)
=(

0, (0, 0) , (−1, 1) ,
(1

2
, −1

)
,
(

2, 1
)
, (1, 1), (0, 0) , (2, 0) , (0, 2)

)
is feasible for (MD). At β1, for

any ρ(1)
1 , ρ

(1)
2 , ρ

(2)
1 , ρ

(2)
2 ∈ R, since R2

+ ⊂ K, R2
+ ⊂ Q and

2∑
i=1

λiρ
(1)
i

(
d

(1)
i (x, u)

)2

+
2∑

j=1

µj

{
ρ

(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j

}
=
τ

2
≥ 0.

Thus, hypotheses (ii) and (iii) of Theorem 3.1 are satisfied but

f1(x) + xT z1

g1(x)− xT v1
− f1(u) + uT z1

g1(u)− uT v1
− L1(u, p1) + pT

1∇p1L1(u, p1)−Fx,u

[
α(x, u)

(
∇x

(
f1(u) + uT z1

g1(u)− uT v1

)

+∇p1L1(u, p1)

)]
− ρ(1)

1

(
d

(1)
1 (x, u)

)2

=
x2 + 4
2x2 + 1

− 4 < 0 at x = 1.

That is, (K × Q) − (F , α, ρ, d)-type I convexity of

((
f1(·) + (·)T z1

g1(·)− (·)T v1
,
f2(·) + (·)T z2

g2(·)− (·)T v2

)
, (h1(· , τ) +

(·)Tw1
1, h2(· , τ) + (·)Tw1

2)

)
is not satisfied. Also,

(
f1(u) + uT z1

g1(u)− uT v1
,
f2(u) + uT z2

g2(u)− uT v2

)
−

(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

,
f2(x) + Ω(x|C2)
g2(x)− Ω(x|D2)

)
=
(3

2
, 0
)
∈ K at x = 1.

Hence, the result of Theorem 3.1 does not hold. ut
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4. Wolfe type dual

Consider the following Wolfe type higher order dual model for (SIFP):

(WD) K −max

[
f1(u) + uT z1

g1(u)− uT v1
+ L1(u, p1)− pT

1∇p1L1(u, p1), . . . ,
fk(u) + uT zk

gk(u)− uT vk
+ Lk(u, pk)

− pT
k∇pk

Lk(u, pk)

]
subject to

k∑
i=1

λi

[
∇x

(
fi(u) + uT zi

gi(u)− uT vi

)
+∇pi

Li(u, pi)

]
+

m∑
j=1

µj

[
∇x(hj(u, τ) + uTw1

j + τTw2
j )

+∇qj
Sj(u, qj)

]
= 0, (4.1)

m∑
j=1

µj

[
hj(u, τ) + uTw1

j + τTw2
j + Sj(u, qj)− qT

j ∇qjSj(u, qj)
]
≥ 0, (4.2)

zi ∈ Ci, vi ∈ Di, w
1
j ∈ Ej , w

2
j ∈Mj , i ∈ Ĩ , j ∈ J̃ , τ ∈ T and (λ, µ) ∈ int K∗ × int Q∗, (λ, µ) 6= (0, 0).

Theorem 4.1 (Weak duality). Let x and (u, v, w1, w2, λ, µ, z, p, q) be feasible for the problems (SIFP) and
(WD), respectively. Let a sublinear functional (in third variable) be F : B ×B × Rn → R. Also, assume that

(i)

((
f1(·) + (·)T z1

g1(·)− (·)T v1
, . . . ,

fk(·) + (·)T zk

gk(·)− (·)T vk

)
,
(
h1(·, τ) + (·)Tw1

1, . . . , hm(·, τ) + (·)Tw1
m

))
is higher order (K ×

Q)− (F , α, ρ, d)-type I convex at u with respect to L and S,
(ii) K ⊇ Rk

+, Q ⊇ Rm
+ and

(iii)
k∑

i=1

λiρ
(1)
i

(
d

(1)
i (x, u)

)2

+
m∑

j=1

µj{ρ(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j} ≥ 0.

Then (
f1(u) + uT z1

g1(u)− uT v1
+ L1(u, p1)− pT

1∇p1L1(u, p1), . . . ,
fk(u) + uT zk

gk(u)− uT vk
+ Lk(u, pk)− pT

k∇pk
Lk(u, pk)

)

−

(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

, . . . ,
fk(x) + Ω(x|Ck)
gk(x)− Ω(x|Dk)

)
/∈ K \ {0}. (4.3)

Proof. It follows from hypotheses (i) and (ii) and sublinearity of functional F that

k∑
i=1

λi

[
fi(x) + xT zi

gi(x)− xT vi
− fi(u) + uT zi

gi(u)− uT vi
− Li(u, pi) + pT

i ∇pi
Li(u, pi)

]

≥ Fx,u

[
α(x, u)

k∑
i=1

λi

{
∇x

(fi(u) + uT zi

gi(u)− uT vi

)
+∇pi

Li(u, pi)
}]

+
k∑

i=1

λiρ
(1)
i

(
d

(1)
i (x, u)

)2

. (4.4)

m∑
j=1

µj

[
(−(hj(u, τ) + uTw1

j )− Sj(u, qj) + qT
j ∇qj

Sj(u, qj)
]
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≥ Fx,u

α(x, u)
m∑

j=1

µj

{
∇x(hj(u, τ) + uTw1

j ) +∇qj
Sj(u, qj)

}+
m∑

j=1

µjρ
(2)
j

(
d

(2)
j (x, u)

)2

. (4.5)

Using (4.2) in (4.5) and then adding with (4.4), we get

k∑
i=1

λi

[
fi(x) + xT zi

gi(x)− xT vi
− fi(u) + uT zi

gi(u)− uT vi
− Li(u, pi) + pT

i ∇pi
Li(u, pi)

]

≥ Fx,u

[
α(x, u)

k∑
i=1

λi

{
∇x

(fi(u) + uT zi

gi(u)− uT vi

)
+∇piLi(u, pi)

}]
+ Fx,u

[
α(x, u)

m∑
j=1

µj

{
∇x(hj(u, τ)

+ uTw1
j ) +∇qj

Sj(u, qj)
}]

+
k∑

i=1

λiρ
(1)
i

(
d

(1)
i (x, u)

)2

+
m∑

j=1

µj

{
ρ

(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j

}
.

It follows from the hypothesis (iii) and sublinearity of F that

k∑
i=1

λi

[
fi(x) + xT zi

gi(x)− xT vi
− fi(u) + uT zi

gi(u)− uT vi
− Li(u, pi) + pT

i ∇pi
Li(u, pi)

]

≥ Fx,u

[
α(x, u)

{ k∑
i=1

λi

{
∇x

(fi(u) + uT zi

gi(u)− uT vi

)
+∇pi

Li(u, pi)
}

+
m∑

j=1

µj

{
∇x(hj(u, τ) + uTw1

j ) +∇qj
Sj(u, qj)

}}]
.

Further, applying inequality (4.1) and using Fx,u(0) = 0, we get

k∑
i=1

λi

[
fi(x) + xT zi

gi(x)− xT vi
− fi(u) + uT zi

gi(u)− uT vi
− Li(u, pi) + pT

i ∇pi
Li(u, pi)

]
≥ 0. (4.6)

Now, if possible, suppose that(
f1(u) + uT z1

g1(u)− uT v1
+ L1(u, p1)− pT

1∇p1L1(u, p1), . . . ,
fk(u) + uT zk

gk(u)− uT vk
+ Lk(u, pk)

− pT
k∇pk

Lk(u, pk)

)
−

(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

, . . . ,
fk(x) + Ω(x|Ck)
gk(x)− Ω(x|Dk)

)
∈ K \ {0}.

From λ ∈ int K∗, we get

k∑
i=1

λi

[
fi(u) + uT zi

gi(u)− uT vi
+ Li(u, pi)− pT

i ∇piLi(u, pi)−
fi(x) + Ω(x|Ci)
gi(x)− Ω(x|Di)

]
> 0. (4.7)

Since xT zi ≤ Ω(x|Ci), xT vi ≤ Ω(x|Di) and λ ∈ int K∗ ⊆ intRk
+, therefore

k∑
i=1

λi

(
fi(x) + Ω(x|Ci)
gi(x)− Ω(x|Di)

)
≥

k∑
i=1

λi

(
fi(x) + xT zi

gi(x)− xT vi

)
· (4.8)
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Finally, using (4.8) in (4.7), we obtain

k∑
i=1

λi

[
fi(u) + uT zi

gi(u)− uT vi
+ Li(u, pi)− pT

i ∇piLi(u, pi)−
fi(x) + xT zi

gi(x)− xT vi

]
> 0

which contradicts (4.6). This proves the theorem. �

Theorem 4.2 (Strong duality). Let x̌ ∈ B be a weakly efficient solution of (SIFP) and the suitable constraint
qualification be satisfied at x̌. Then, there exist λ̌ = (λ̌1, . . . , λ̌k) ∈ int K∗, µ̌ = (µ̌1, . . . , µ̌m) ∈ int Q∗ and
(λ̌, µ̌) 6= (0, 0) such that (x̌, v̌, w̌1, w̌2, λ̌, µ̌, ž, p̌ = 0, q̌ = 0) is a feasible solution of (WD) and respective
objective function values are same, provided Li(x̌, 0) = 0, Si(x̌, 0) = 0, ∇p̌iLi(x̌, 0) = 0 and ∇q̌jSj(x̌, 0) =
0, i ∈ Ĩ , j ∈ J̃ . Moreover, if all assumptions of Theorem 4.1 are satisfied for every feasible point x̌ of (SIFP)
and (ǔ, v̌, w̌1, w̌2, λ̌, µ̌, ž, p̌, q̌) of (WD), then (x̌, v̌, w̌1, w̌2, λ̌, µ̌, ž, p̌ = 0, q̌ = 0) is an efficient solution
of (WD).

Proof. From the subdifferentiability of support functions, for ži ∈ ∂Ω(x̌|Ci), v̌i ∈ ∂Ω(x̌|Di), w̌1
j ∈ ∂Ω(x̌|Ej)

and w̌2
j ∈ ∂Ω(x̌|Mj), we get

Ω(x̌|Ci) = x̌T ži Ω(x̌|Di) = x̌T v̌i, Ω(x̌|Ej) = x̌T w̌1
j and Ω(ť|Mj) = ťT w̌2

j . (4.9)

It further follows from Theorem 2.7 that

k∑
i=1

λ̌i∇
(
fi(x̌) + x̌T ži

gi(x̌)− x̌T v̌i

)
+

m∑
j=1

µ̌j∇
(
hj(x̌, ť) + x̌T w̌1

j + ťT w̌2
j

)
= 0 and

m∑
j=1

µ̌j

(
h(x̌, ť) + x̌T w̌1

j + ťT w̌2
j

)
= 0

where (λ̌, µ̌) ∈ int K∗ × int Q∗, (λ̌, µ̌) 6= (0, 0). Clearly Li(x̌, 0) = 0, Si(x̌, 0) = 0, ∇p̌i
Li(x̌, 0) =

0, ∇q̌j
Sj(x̌, 0) = 0, imply that (x̌, v̌, w̌1, w̌2, λ̌, µ̌, ž, p̌ = 0, q̌ = 0) is feasible for (WD) and respec-

tive values of objective functions of (SIFP) and (WD) are equal.
Now, on contrary, suppose that (x̌, v̌, w̌1, w̌2, λ̌, µ̌, ž, p̌ = 0, q̌ = 0) is not a weak efficient solution of

(WD), then there exists a feasible point
(
u, v, w1, w2, λ, z, µ, p, q

)
of (WD) such that[

f1(u) + uT z1

g1(u)− uT v1
+ L1(u, p1)− pT

1∇p1L1(u, p1), . . . ,
fk(u) + uT zk

gk(u)− uT vk
+ Lk(u, pk)− pT

k∇pk
Lk(u, pk)

]

−

[
f1(x̌) + x̌T ž1

g1(x̌)− x̌T v̌1
+ L1(x̌, p̌1)− p̌T

1∇p̌1L1(x̌, p̌1), . . . ,
fk(x̌) + x̌T žk

gk(x̌)− x̌T v̌k
+ Lk(x̌, p̌k)

− p̌T
k∇p̌k

Lk(x̌, p̌k)

]
∈ K \ {0}.

Further, using p̌ = 0 and (4.9), we get[
f1(u) + uT z1

g1(u)− uT v1
+ L1(u, p1)− pT

1∇p1L1(u, p1), . . . ,
fk(u) + uT zk

gk(u)− uT vk
+ Lk(u, pk)− pT

k∇pk
Lk(u, pk)

]

−
[
f1(x̌) + Ω(x̌T |ž1)
g1(x̌)− Ω(x̌T |v̌1)

, . . . ,
fk(x̌) + Ω(x̌T |žk)
gk(x̌)− Ω(x̌T |v̌k)

]
∈ K \ {0}.

This contradicts the result of the Theorem 4.1. Hence proved. �
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Theorem 4.3 (Strict converse duality). Let x̃ and (ũ, ṽ, w̃1, w̃2, λ̃, µ̃, z̃, p̃, q̃) be feasible for the problems
(SIFP) and (WD), respectively. Let a sublinear functional (in third variable) be F : B ×B ×Rn → R such that

(i)
(
f1(ũ) + ũT z̃1

g1(ũ)− ũT ṽ1
+ L1(ũ, p̃1) − p̃T

1∇p̃1L1(ũ, p̃1) −
m∑

j=1

µ̃j{hj(ũ, τ̃) + ũT w̃1
j + τ̃T w̃2

j + Sj(ũ, q̃j) −

q̃T
j ∇q̃jSj(ũ, q̃j)},. . . ,

fk(ũ) + ũT z̃k

gk(ũ)− ũT ṽk
+ Lk(ũ, p̃k) − p̃T

k∇p̃k
Lk(ũ, p̃k) −

m∑
j=1

µ̃j{hj(ũ, τ̃) + ũT w̃1
j + τ̃T w̃2

j +

Sj(ũ, q̃j)− q̃T
j ∇q̃jSj(ũ, q̃j)}

)
−
(
f1(x̃) + x̃T z̃1

g1(x̃)− x̃T ṽ1
, . . . ,

fk(x̃) + x̃T z̃k

gk(x̃)− x̃T ṽk

)
∈ K,

(ii)

((
f1(·) + (·)T z1

g1(·)− (·)T v1
, . . . ,

fk(·) + (·)T zk

gk(·)− (·)T vk

)
,
(
h1(·, τ) + (·)Tw1

1, . . . , hm(·, τ) + (·)Tw1
m

))
be strictly higher

order (K ×Q)− (F , α, ρ, d)-type I convex at ũ with respect to L and S,
(iii) K ⊇ Rk

+, Q ⊇ Rm
+ and

(iv)
k∑

i=1

λ̃iρ
(1)
i

(
d

(1)
i (x̃, ũ)

)2

+
m∑

j=1

µ̃j{ρ(2)
j

(
d

(2)
j (x̃, ũ)

)2

− τ̃T w̃2
j} ≥ 0.

Then x̃ = ũ.

Proof. Let x̃ and (ũ, ṽ, w̃1, w̃2, λ̃, µ̃, z̃, p̃, q̃) be feasible solutions of the problems (SIFP) and (WD),
respectively. Let x̃ 6= ũ. Then, by the Definition 2.3 and supposition (ii), we have

k∑
i=1

λ̃i

[
fi(x̃) + x̃T z̃i

gi(x̃)− x̃T ṽi
− fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi
− Li(ũ, p̃i) + p̃T

i ∇p̃i
Li(ũ, p̃i)

]

> Fx̃,ũ

[
α(x̃, ũ)

k∑
i=1

λ̃i

{
∇x̃

(fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi

)
+∇p̃i

Li(ũ, p̃i)
}]

+
k∑

i=1

λ̃iρ
(1)
i

(
d

(1)
i (x̃, ũ)

)2

. (4.10)

m∑
j=1

µ̃j

[
−(hj(ũ, τ̃) + ũT w̃1

j )− Sj(ũ, q̃j) + q̃T
j ∇q̃j

Sj(ũ, q̃j)
]

> Fx̃,ũ

α(x̃, ũ)
m∑

j=1

µ̃j

{
∇x̃(hj(ũ, τ̃) + ũT w̃1

j ) +∇q̃jSj(ũ, q̃j)
}+

m∑
j=1

µ̃jρ
(2)
j

(
d

(2)
j (x̃, ũ)

)2

(4.11)

where λ̃ ∈ int K∗ ⊆ int Rk
+ and µ̃ ∈ int Q∗ ⊆ int Rm

+ . Adding (4.10) and (4.11) and using supposition (iv), we
get

k∑
i=1

λ̃i

[
fi(x̃) + x̃T z̃i

gi(x̃)− x̃T ṽi
− fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi
− Li(ũ, p̃i) + p̃T

i ∇p̃i
Li(ũ, p̃i)

]

+
m∑

j=1

µ̃j

[
−(hj(ũ, τ̃) + ũT w̃1

j + τ̃T w̃2
j )− Sj(ũ, q̃j) + q̃T

j ∇q̃j
Sj(ũ, q̃j)

]
> Fx̃,ũ

[
α(x̃, ũ)

{ k∑
i=1

λ̃i

{
∇x̃

(fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi

)
+∇p̃i

Li(ũ, p̃i)
}

+
m∑

j=1

µ̃j

{
∇x̃(hj(ũ, τ̃) + ũT w̃1

j ) +∇q̃j
Sj(ũ, q̃j)

}}]
.
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It further follows from (4.1) and (4.2), sublineairty of F and Fx,u(0) = 0 that

k∑
i=1

λ̃i

[
fi(x̃) + x̃T z̃i

gi(x̃)− x̃T ṽi
− fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi
− Li(ũ, p̃i) + p̃T

i ∇p̃i
Li(ũ, p̃i)

]
> 0. (4.12)

But hypothesis (i), dual constraint (4.2) and λ̃ > 0 yield

k∑
i=1

λ̃i

[
fi(x̃) + x̃T z̃i

gi(x̃)− x̃T ṽi
− fi(ũ) + ũT z̃i

gi(ũ)− ũT ṽi
− Li(ũ, p̃i) + p̃T

i ∇p̃iLi(ũ, p̃i)
]
≤ 0.

This contradicts the inequality (4.12). Hence proved. �

Example 4.4. Let in the problem (SIFP), f : R→ R2, g : R→ R2, and h : R× [−0.5, 0]→ R2 be given as:

f(x) = (f1(x), f2(x)) =
(
4(x4 − 1)2, 3x2

)
,

g(x) = (g1(x), g2(x)) = (x4 + 2, x2 + 2) and
h(x, t) = (h1(x, t), h2(x, t)) = (x+ 2t, x− t− 1).

Let the cones be K = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} and Q = {(x, y) ∈ R2 : y ≥ 0, 3y ≥ −x}.
Also, suppose

L(u, p) = (L1(u, p1), L2(u, p2)) = (−p1u
2, −2p2(u+ 1)− 1),

S(u, q) = (S1(u, q1), S2(u, q2)) = (−5q1u+ 2, q2u− 4) ,

d
(1)
1 (x, y) = d

(1)
2 (x, y) = (1− y)(x2 − y2) and

d
(2)
1 (x, y) = x(y − 1), d(2)

2 (x, y) = (1− y2).

Let the sublinear functional be Fx,u(b) = −b(x2 − u2)2 and α(x, y) = 1. Let C1 = {0}, C2 = [−2, 0],
D2 = E1 = [−1, 0], and D1 = E2 = M1 = M2 = [0, 1] then the support functions be given by

Ω(x|C1) = {0}, Ω(x|C2) = |x| − x, Ω(x|D2) = Ω(x|E1) =
|x| − x

2
,

Ω(x|D1) = Ω(x|E2) =
|x|+ x

2
and Ω(t|M1) = Ω(t|M2) =

|t|+ t

2
·

Now, the feasible region for (SIFP) is

S0 =
{
x ∈ R :

(
−x− 2t− (|x| − x)

2
+ t, −x+ t+ 1− (x+ |x|)

2

)
∈ Q, for all t ∈ [−0.5, 0]

}
.

Clearly, 0, −1 ∈ S0. Also, one can easily verify that for the dual model (WD), β2 =(
u, v, w1, w2, λ, µ, z, p, q

)
=
(
− 1, (0, 0) , (−1, 1) , (0, 0) ,

(
6,

3
4

)
, (1, 2) , (0, 0) , (2, 0) , (0, 2)

)
and

β3 =
(
u, v, w1, w2, λ, µ, z, p, q

)
=
(

0, (0, 0) , (−1, 0) , (0, 0) ,
(

1, 2
)
, (1, 2) , (0, 0) , (1, 1) , (0, 1)

)
are feasible solutions.

Validation of Theorem 4.1:

At u = −1, for z = (0, 0), v = (0, 0) and ρ
(1)
1 =

1
8
, ρ

(1)
2 = −1

2
, we obtain
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(
f1(x) + xT z1

g1(x)− xT v1
− f1(u) + uT z1

g1(u)− uT v1
− L1(u, p1) + pT

1∇p1L1(u, p1)−Fx,u

[
α(x, u)

(
∇x

(
f1(u) + uT z1

g1(u)− uT v1

)

+∇p1L1(u, p1)
)]
− ρ(1)

1

(
d

(1)
1 (x, u)

)2

,
f2(x) + xT z2

g2(x)− xT v2
− f2(u) + uT z2

g2(u)− uT v2
− L2(u, p2)

+ pT
2∇p2L2(u, p2)−Fx,u

[
α(x, u)

(
∇x

(
f2(u) + uT z2

g2(u)− uT v2

)
+∇p2L2(u, p2)

)]
− ρ(1)

2

(
d

(1)
2 (x, u)

)2
)

=

(
(x2 − 1)2(5x4 + 16x2 + 2)

2(x4 + 2)
,

3x2

x2 + 2
+

2
3

(x2 − 1)2

)
∈ K \ {0}, for all x ∈ R.

Also, for all x ∈ R, w1
1 ∈ E1, w

1
2 ∈ E2, w

2
1 ∈M1, w

2
2 ∈M2, τ ∈ T and ρ

(2)
1 = 0, ρ(2)

2 = 1, we get(
− (h1(u, τ) + uTw1

1)− S1(u, q1) + qT
1 ∇q1S1(u, q1)−Fx,u

[
α(x, u)

(
∇x(h1(u, τ) + uTw1

1)

+∇q1S1(u, q1)
)]
− ρ(2)

1

(
d

(2)
1 (x, u)

)2

, −(h2(u, τ) + uTw1
2)− S2(u, p2) + qT

2 ∇q2S2(u, q2)

−Fx,u

[
α(x, u)

(
∇x(h2(u, τ) + uTw1

2) +∇q2S2(u, q2)
)]
− ρ(2)

2

(
d

(2)
2 (x, u)

)2
)

=
(
− 1 + w1

1 − 2τ + (6 + w1
1)(x2 − 1)2, 2 + τ + w1

2(1 + (x2 − 1)2)
)
∈ Q \ {0}.

Hence, the hypothesis (i) of Theorem 4.1 hold.

Also, R2
+ = K, R2

+ ⊂ Q and
2∑

i=1

λiρ
(1)
i

(
d

(1)
i (x, u)

)2

+
2∑

j=1

µj{ρ(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j} =

3
2

(x2 − 1)2 ≥ 0.

Thus, all the hypotheses of Theorem 4.1 are satisfied. Now for the feasible point (of (WD)) β2, we get(
f1(u) + uT z1

g1(u)− uT v1
− L1(u, p1) + pT

1∇p1L1(u, p1),
f2(u) + uT z2

g2(u)− uT v2
− L2(u, p2) + pT

2∇p2L2(u, p2)

)

−

(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

,
f2(x) + Ω(x|C2)
g2(x)− Ω(x|D2)

)
=


(

0, −1
2

)
/∈ K/{0} at x = −1,

(−2, 1) /∈ K/{0} at x = 0.

This validates the result of Theorem 4.1 for x = 0,−1 ∈ S0 and β2 feasible for (WD).
Validation of Theorem 4.3:
For the points β2 and x = −1, it has been proved above that the assumptions (ii), (iii) and (iv) of Theorem 4.3
are satisfied. Further,(
f1(u) + uT z1

g1(u)− uT v1
+ L1(u, p1)− pT

1∇p1L1(u, p1)−
2∑

j=1

µj{hj(u, τ) + uTw1
j + τTw2

j + Sj(u, qj)− qT
j ∇qj

Sj(u, qj)},

f2(u) + uT z2

g2(u)− uT v2
+ L2(u, p2)− pT

2∇p2L2(u, p2)−
2∑

j=1

µj{hj(u, τ) + uTw1
j + τTw2

j + Sj(u, qj)− qT
j ∇qjSj(u, qj)}

)

−
(
f1(x) + x̃T z1

g1(x)− xT v1
,
f2(x) + xT z2

g2(x)− xT v2

)
= (0, −1) /∈ K.

Hence, the assumption (i) also holds at x = u = −1. This completes the validation of Theorem 4.3.
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Without the assumption (i) of Theorem 4.1:

For any ρ(1)
1 , ρ

(1)
2 ρ

(2)
1 , ρ

(2)
2 ∈ R, at β3, for (WD),

2∑
i=1

λiρ
(1)
i

(
d

(1)
i (x, u)

)2

+
2∑

j=1

µj

{
ρ

(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j

}
= 0

and R2
+ = K, R2

+ ⊂ Q. Therefore, assumption (ii) and (iii) of Theorem 4.1 are satisfied but at x = 0,

−
(
h1(u, τ) + uTw1

1

)
− S1(u, q1) + qT

1 ∇q1S1(u, q1)−Fx,u

[
α(x, u)

(
∇x(h1(u, τ) + uTw1

1)

+∇q1S1(u, q1)
)]
− ρ(2)

1

(
d

(2)
1 (x, u)

)2

= −7− 2τ < 0, for all τ ∈ [−0.5, 0].

Hence, the pair

((
f1(·) + (·)T z1

g1(·)− (·)T v1
,
f2(·) + (·)T z2

g2(·)− (·)T v2

)
,
(
h1(· , τ) + (·)Tw1

1, h2(· , τ) + (·)Tw1
2

))
is not (K×Q)−

(F , α, ρ, d)-type I convex. On the other hand, at x = 0 and β3,(
f1(u) + uT z1

g1(u)− uT v1
− L1(u, p1) + pT

1∇p1L1(u, p1),
f2(u) + uT z2

g2(u)− uT v2
− L2(u, p2) + pT

2∇p2L2(u, p2)
)

−

(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

,
f2(x) + Ω(x|C2)
g2(x)− Ω(x|D2)

)
=
(

0, 1
)
∈ K \ {0}.

This shows the significance of assumption (i) in Theorem 4.1, without which the result may not satisfy. ut

5. Schaible type dual

For the (SIFP) model, consider the following Schaible type higher order dual:

(SD) K −max (η1, η2, . . ., ηk)
subject to

k∑
i=1

λi∇x

(
fi(u) + uT zi − ηi(gi(u)− uT vi)

)
+

m∑
j=1

µj∇x

(
hj(u, τ) + uTw1

j + τTw2
j

)

+
k∑

i=1

λi∇pi
[Gi(u, pi)− ηiLi(u, pi)] +

m∑
j=1

µj∇qj
Sj(u, qj) = 0, (5.1)

k∑
i=1

λi

{
fi(u) + uT zi − ηi(gi(u)− uT vi) +Gi(u, pi)− ηiLi(u, pi)

− pT
i ∇pi (Gi(u, pi)− ηiLi(u, pi))

}
≥ 0, (5.2)

m∑
j=1

µj

{
hj(u, τ) + uTw1

j + τTw2
j + Sj(u, qj)− qT

j ∇qjSj(u, qj)
}
≥ 0, (5.3)

zi ∈ Ci, vi ∈ Di, wj ∈ Ej , η ∈ Rk
+, i ∈ Ĩ , j ∈ J̃ , (λ, µ) ∈ int K∗ × int Q∗, (λ, µ) 6= (0, 0) and τ ∈ T.

Throughout this section, we have used ρ
(1)
i =

(
ρ

(1)
fi
, ρ

(1)
gi

)
∈ R× R and d

(1)
i =

(
d

(1)
fi
, d

(1)
gi

)
∈ R× R.
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Theorem 5.1 (Weak duality). Let for every feasible solution x of (SIFP) and (u, v, w1, w2, λ, µ, z, η, p, q)
of (SD), F : B ×B × Rn → R be a sublinear functional (in third variable) and
(i)
(
(f1(·) + (·)T z1, . . . , fk(·) + (·)T zk), (h1(·, τ) + (·)Tw1

1, . . . , hm(·, τ) + (·)Tw1
m)
)

be higher order (K ×Q) −
(F , α, ρ, d)-type I convex with respect to G and S,

(ii)
(
(−η1(g1(·)− (·)T v1), . . . ,−ηk(gk(·)− (·)T vk), (h1(·, τ) + (·)Tw1

1, . . . , hm(·, τ) + (·)Tw1
m)
)

be higher order
(K ×Q)− (F , α, ρ, d)-type I convex with respect to −ηL and S,

(iii)
k∑

i=1

λi

{
ρ

(1)
fi

(
d

(1)
fi

(x, u)
)2

+ ρ(1)
gi

(
d(1)

gi
(x, u)

)2
}

+
m∑

j=1

µj

{
ρ

(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j

}
≥ 0 and

(iv) K ⊇ Rk
+, Q ⊇ Rm

+ .
Then [

(η1, . . . , ηk)−
(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

, . . . ,
fk(x) + Ω(x|Ck)
gk(x)− Ω(x|Dk)

)]
/∈ K \ {0}. (5.4)

Proof. Let if possible (5.4) be not true. Then by hypothesis (iv), λ ∈ int K∗ ⊆ int Rk
+, we have

k∑
i=1

λi

[
ηi −

fi(x) + Ω(x|Ci)
gi(x)− Ω(x|Di)

]
> 0. (5.5)

Since xT zi ≤ Ω(x|Ci) and xT vi ≤ Ω(x|Di), we obtain

fi(x) + Ω(x|Ci)
gi(x)− Ω(x|Di)

− fi(x) + xT zi

gi(x)− xT vi
≥ 0.

It follows from λi > 0, for all i, that
k∑

i=1

λi

(
fi(x) + Ω(x|Ci)
gi(x)− Ω(x|Di)

− fi(x) + xT zi

gi(x)− xT vi

)
≥ 0. (5.6)

Further, adding (5.5) and (5.6), we get
k∑

i=1

λi

[
ηi(gi(x)− xT vi)− (fi(x) + xT zi)

]
> 0. (5.7)

Now, for λ ∈ int K∗ and µ ∈ int Q∗, hypotheses (i) and (ii) imply
k∑

i=1

λi

[
fi(x) + xT zi − (fi(u) + uT zi)−Gi(u, pi) + pT

i ∇pi
Gi(u, pi)

−Fx,u

(
α(x, u)(∇x(fi(u) + uT zi) +∇piGi(u, pi))

)
− ρ(1)

fi

(
d

(1)
fi

(x, u)
)2
]
≥ 0. (5.8)

k∑
i=1

λi

[
ηi(−(gi(x)− xT vi) + (gi(u)− uT vi)) + ηiLi(u, pi)− ηip

T
i ∇piLi(u, pi)

−Fx,u

(
− ηiα(x, u)

(
∇x(gi(u)− uT vi) +∇pi

Li(u, pi)
) )
− ρ(1)

gi

(
d(1)

gi
(x, u)

)2
]
≥ 0. (5.9)

m∑
j=1

µj

[
− (hj(u) + uTw1

j )− Sj(u, qj) + qT
j ∇qjSj(u, qj)

−Fx,u

(
α(x, u)

(
∇x(hj(u) + uTw1

j ) +∇qj
Sj(u, qj)

) )
−

m∑
j=1

µjρ
(2)
j

(
d

(2)
j (x, u)

)2
]
≥ 0. (5.10)
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From λi > 0, for all i and sublinearity of F , the inequalities (5.8) and (5.9) yield

k∑
i=1

λi

{
fi(x) + xT zi − (fi(u) + uT zi)−Gi(u, pi) + pT

i ∇piGi(u, pi)

− ηi(gi(x)− xT vi) + ηi(gi(u)− uT vi) + ηiLi(u, pi)− ηip
T
i ∇piLi(u, pi)

}
≥

k∑
i=1

λiFx,u

(
α(x, u)

(
∇x(fi(u) + uT zi) +∇pi

Gi(u, pi)− ηi(∇x(gi(u)− uT vi)

+∇pi
Li(u, pi))

))
+

k∑
i=1

λi

{
ρ

(1)
fi

(
d

(1)
fi

(x, u)
)2

+ ρ(1)
gi

(
d(1)

gi
(x, u)

)2
}
.

Further using (5.2), we get

k∑
i=1

λi

{
fi(x) + xT zi − ηi(gi(x)− xT vi)

}
≥

k∑
i=1

λiFx,u

(
α(x, u)

(
∇x(fi(u) + uT zi) +∇pi

Gi(u, pi)− ηi(∇x(gi(u)− uT vi)

+∇pi
Li(u, pi))

))
+

k∑
i=1

λi

{
ρ

(1)
fi

(
d

(1)
fi

(x, u)
)2

+ ρ(1)
gi

(
d(1)

gi
(x, u)

)2
}
. (5.11)

The inequality (5.10) together with sublinearity of F yield
m∑

j=1

µj

{
−(hj(u) + uTw1

j )− Sj(u, qj) + qT
j ∇qj

Sj(u, qj)
}

≥ Fx,u

(
α(x, u)

m∑
j=1

µj

(
∇x(hj(u) + uTw1

j ) +∇qj
Sj(u, qj)

) )
+

m∑
j=1

µjρ
(2)
j

(
d

(2)
j (x, u)

)2

. (5.12)

It follows from (5.11) and (5.12) and hypothesis (iii) that

k∑
i=1

λi

{
fi(x) + xT zi + ηi(−(gi(x)− xT vi))

}
+

m∑
j=1

µj

{
−(hj(u) + uTw1

j + τTw2
j )− Sj(u, qj) + qT

j ∇qjSj(u, qj)
}

≥ Fx,u

[
α(x, u)

(
k∑

i=1

λi

{ (
∇x(fi(u) + uT zi) +∇pi

Gi(u, pi)
)
− ηi(∇x(gi(u)− uT vi)

+∇pi
Li(u, pi))

}
+

m∑
j=1

µj

(
∇x(hj(u) + uTw1

j ) +∇qj
Sj(u, qj)

))]
.

Finally, using (5.1) and (5.3), we get

k∑
i=1

λi

[
ηi(gi(x)− xT vi)− (fi(x) + xT zi)

]
≤ 0. (5.13)

This contradicts the inequality (5.7). Hence the result. �
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Theorem 5.2 (Strong duality). Let x̌ be a weakly efficient solution of (SIFP) and the suitable constraint
qualification be satisfied at x̌. Then for Li(x̌, 0) = Gi(x̌, 0) = Sj(x̌, 0) = 0, ∇p̌i

Li(x̌, 0) = ∇q̌j
Sj(x̌, 0) =

∇p̌iGi(x̌, 0) = 0, i = 1, 2, . . . , k, j = 1, 2, . . . ,m, there exist (0, 0) 6= (λ̌, µ̌) ∈ int K∗ × int Q∗, η̌ ∈ Rk
+, ži ∈

Ci, v̌i ∈ Di, w̌
1
j ∈ Ej , w̌

2
j ∈ Mj , i ∈ Ĩ , j ∈ J̃ such that (x̌, v̌, w̌1, w̌2, λ̌, µ̌, ž, η̌, p̌ = 0, q̌ = 0) is feasible

point for (SD) and the objective function values are same for both problems. Moreover, if for every feasible point
x̌ and (ǔ, v̌, w̌1, w̌2, λ̌, µ̌, ž, η̌, p̌, q̌) of (SIFP) and (SD) respectively, all assumptions of Theorem 5.1 are
satisfied then (x̌, v̌, w̌1, w̌2, λ̌, µ̌, ž, η̌, p̌ = 0, q̌ = 0) is an efficient solution of (SD).

Proof. It follows on the lines of Theorem 4.2. �

Theorem 5.3 (Strict converse duality). Let x̌ be feasible for (SIFP) and (ǔ, v̌, w̌1, w̌2, λ̌, µ̌, ž, η̌, p̌, q̌) be
feasible for (SD). Let a sublinear functional (in third variable) be F : B ×B × Rn → R such that

(i) (η̌1, . . . , η̌k)−
(
f1(x̌) + x̌T ž1

g1(x̌)− x̌T v̌1
, . . . ,

fk(x̌) + x̌T žk

gk(x̌)− x̌T v̌k

)
∈ K,

(ii)
(
(f1(·) + (·)T ž1, . . . , fk(·) + (·)T žk), (h1(·, τ̌) + (·)T w̌1

1, . . . , hm(·, τ̌) + (·)T w̌1
m)
)

be strictly higher order
(K ×Q)− (F , α, ρ, d)-type I convex with respect to G and S,

(iii)
(
(−η̌1(g1(·)− (·)T v̌1)), . . . , (−η̌k(gk(·)− (·)T v̌k)), (h1(·, τ̌) + (·)T w̌1

1, . . . , hm(·, τ̌) + (·)T w̌1
m)
)

be strictly
higher order (K ×Q)− (F , α, ρ, d)-type I convex with respect to −η̌L and S,

(iv)
k∑

i=1

λ̌i

{
ρ

(1)
fi

(
d

(1)
fi

(x̌, ǔ)
)2

+ ρ(1)
gi

(
d(1)

gi
(x̌, ǔ)

)2
}

+
m∑

j=1

µ̌j

{
ρ

(2)
j

(
d

(2)
j (x̌, ǔ)

)2

− τ̌T w̌1
j

}
≥ 0 and K ⊇

Rk
+, Q ⊇ Rm

+ .

Then x̌ = ǔ.

Proof. We will show the proof by contradiction. Let x̌ 6= ǔ. Then, by hypotheses (ii) and (iii), we have

k∑
i=1

λ̌i

[
fi(x̌) + x̌T ži − (fi(ǔ) + ǔT ži)−Gi(ǔ, p̌i) + p̌T

i ∇p̌iGi(ǔ, p̌i)

−Fx̌,ǔ

(
α(x̌, ǔ)(∇x̌(fi(ǔ) + ǔT ži) +∇p̌i

Gi(ǔ, p̌i))
)
− ρ(i)

fi

(
d

(i)
fi

(x̌, ǔ)
)2
]
> 0. (5.14)

k∑
i=1

λ̌i

[
η̌i(−(gi(x̌)− x̌T v̌i) + gi(ǔ)− ǔT v̌i) + η̌iLi(ǔ, p̌i)− η̌ip̌

T
i ∇p̌i

Li(ǔ, p̌i)

−Fx̌,ǔ

(
α(x̌, ǔ)

(
−η̌i(∇x̌(gi(ǔ)− ǔT v̌i) +∇p̌i

Li(ǔ, p̌i))
) )
− ρ(i)

gi

(
d(i)

gi
(x̌, ǔ)

)2
]
> 0. (5.15)

m∑
j=1

µ̌j

[
− (hj(ǔ) + ǔT w̌1

j )− Sj(ǔ, q̌j) + q̌T
j ∇q̌j

Sj(ǔ, q̌j)

− Fx̌,ǔ

(
α(x̌, ǔ)

(
∇x̌(hj(ǔ) + ǔT w̌1

j ) +∇q̌j
Sj(ǔ, q̌j)

) )
− ρ(2)

j

(
d

(2)
j (x̌, ǔ)

)2
]
> 0 (5.16)

where λ̌ ∈ int K∗ and µ̌ ∈ int Q∗. From (5.14), (5.15), hypothesis (iv) and sublinearity of F , we obtain

k∑
i=1

λ̌i

{
fi(x̌) + x̌T ži − (fi(ǔ) + ǔT ži)−Gi(ǔ, p̌i) + p̌T

i ∇p̌i
Gi(ǔ, p̌i)

+ η̌i(−(gi(x̌)− x̌T v̌i)) + η̌i(gi(ǔ)− ǔT v̌i) + η̌iLi(ǔ, p̌i)− η̌ip̌i
T∇p̌i

Li(ǔ, p̌i)
}
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> Fx̌,ǔ

(
α(x̌, ǔ)

k∑
i=1

λ̌i

{(
∇x̌(fi(ǔ) + ǔT ži) +∇p̌i

Gi(ǔ, p̌i)− η̌i(∇x̌(gi(ǔ)− ǔT v̌i)

+∇p̌iLi(ǔ, p̌i))
)})

+
k∑

i=1

λ̌i

{
ρ

(1)
fi

(
d

(1)
fi

(x̌, ǔ)
)2

+ ρ(1)
gi

(
d(1)

gi
(x̌, ǔ)

)2
}
.

Now, using (5.2) in the above inequality, we get

k∑
i=1

λ̌i

{
fi(x̌) + x̌T ži + η̌i(−(gi(x̌)− x̌T v̌i))

}
> Fx̌,ǔ

(
α

k∑
i=1

λ̌i

{
(x̌, ǔ)

(
∇x̌(fi(ǔ) + ǔT ži) +∇p̌i

Gi(ǔ, p̌i)− η̌i(∇x̌(gi(ǔ)− ǔT v̌i)

+∇p̌iLi(ǔ, p̌i))
)})

+
k∑

i=1

λ̌i

{
ρ

(1)
fi

(
d

(1)
fi

(x̌, ǔ)
)2

+ ρ(1)
gi

(
d(1)

gi
(x̌, ǔ)

)2
}
. (5.17)

Since µ̌ ∈ int Q∗ ⊆ int Rm
+ , and F is sublinear, the inequality (5.16) further yields

m∑
j=1

µ̌j

{
−(hj(ǔ) + ǔT w̌1

j )− Sj(ǔ, q̌j) + q̌T
j ∇q̌j

Sj(ǔ, q̌j)
}

> Fx̌,ǔ

(
α(x̌, ǔ)

m∑
j=1

µ̌j

(
∇x̌(hj(ǔ) + ǔT w̌1

j ) +∇q̌j
Sj(ǔ, q̌j)

))
+

m∑
j=1

µ̌jρ
(2)
j

(
d

(2)
j (x̌, ǔ)

)2

. (5.18)

Applying (5.3) in (5.18) and then adding with (5.17), we obtain

k∑
i=1

λ̌i

{
fi(x̌) + x̌T ži + η̌i(−(gi(x̌)− x̌T v̌i))

}
> Fx̌,ǔ

(
α(x̌, ǔ)

k∑
i=1

λ̌i

(
∇x̌(fi(ǔ) + ǔT ži) +∇p̌iGi(ǔ, p̌i)− η̌i(∇x̌(gi(ǔ)− ǔT v̌i)

+∇p̌i
Li(ǔ, p̌i)

))
+ Fx̌,ǔ

(
α(x̌, ǔ)

m∑
j=1

µ̌j

(
∇x̌(hj(ǔ) + ǔT w̌1

j ) +∇q̌j
Sj(ǔ, q̌j)

))

+
k∑

i=1

λ̌i

{
ρ

(1)
fi

(
d

(1)
fi

(x̌, ǔ)
)2

+ ρ(1)
gi

(
d(1)

gi
(x̌, ǔ)

)2
}

+
m∑

j=1

µ̌j

{
ρ

(2)
j

(
d

(2)
j (x̌, ǔ)

)2

− τ̌T w̌1
j

}
. (5.19)

Further, using hypothesis (iv), dual constraint (5.1) and Fx,u(0) = 0, we have

k∑
i=1

λ̌i

[
η̌i(gi(x̌)− x̌T v̌i)− (fi(x̌) + x̌T ži)

]
< 0. (5.20)

But from hypothesis (i) and λ̌ ∈ int K∗, we have

k∑
i=1

λ̌i[fi(x̌) + x̌T ži − η̌i(gi(x̌)− x̌T v̌i)] ≤ 0,

which contradicts (5.20). Hence the result. �
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Example 5.4. Let in the problem (SIFP), f : R→ R2, g : R→ R2, and h : R× [−2, −1]→ R2 be given as:

f(x) = (f1(x), f2(x)) = (ex−1, x2 + 12),
g(x) = (g1(x), g2(x)) = (x2 + 1, 13(2 + x2)) and

h(x, t) = (h1(x, t), h2(x, t)) = (x+ 3t, x+ t− 1).

Let

K = {(x, y) ∈ R2 : x ≥ 0, y ≥ −2x},
Q = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0},

G(u, p) = (G1(u, p1), G2(u, p2)) = (p1 − u4, −(p2u
2 + 5)),

L(u, p) = (L1(u, p1), L2(u, p2)) = (p1u
2 + 5, e−p2u),

S(u, q) = (S1(u, q1), S2(u, q2)) =
(
q1(u+ 1)2 + 2, q2(u− 1) + 3

)
.

Further, let α(x, y) = (2− y)2 and Fx,u(b) = −bx2u. Consider

C1 = [0, 2] = M2, C2 = D2 = E2 = [−1, 1] and D1 = E1 = M1 = [−2, 0].

Then, their support functions will be

Ω(x|C1) = x+ |x|, Ω(x|C2) = Ω(x|D2) = Ω(x|E2) = |x|, Ω(t|M1) = |t| − t,
Ω(x|D1) = Ω(x|E1) = |x| − x and Ω(t|M2) = t+ |t|.

The feasible set of the given problem:

S0 =
{
x ∈ R :

(
− 2t− |x| − |t|, 1− x− |x| − 2t− |t|

)
∈ Q, for all t ∈ [−2, −1]

}
= [−1, 1].

Also the point β4 =
(
u, v, w1, w2, λ, µ, z, η, p, q

)
=
(

1, (0, 0), (−1, 1), (−2, 0), (1, 1),
(1

2
,

1
2

)
,

(0, 0), (1, 0), (1, 2), (1, 2)
)

satisfies the dual constraints (5.1)–(5.3) and hence feasible for (SD).

Validation of Theorem 5.1:

For u = 1, taking z1 = z2 = 0, ρ(1)
f1

= ρ
(1)
f2

= 1 and d
(1)
f1

(x, y) = xy, d
(1)
f2

(x, y) = y + 1, we obtain(
f1(x) + xT z1 − (f1(u) + uT z1)−G1(u, p1) + pT

1∇p1G1(u, p1)−Fx,u

(
α(x, u)(∇x(f1(u) + uT z1))

+∇p1(G1(u, p1))
)
− ρ(1)

f1

(
d

(1)
f1

(x, u)
)2

, f2(x) + xT z2 − (f2(u) + uT z2)−G2(u, p2) + pT
2∇p2G2(u, p2)

−Fx,u

(
α(x, u)(∇x(f2(u) + uT z2) +∇p2(G2(u, p2))

)
− ρ(1)

f2

(
d

(1)
f2

(x, u)
)2
)

=
(
ex−1 + x2, 2x2

)
∈ K \ {0}, for all x ∈ R.

Also, for η1 = 1, η2 = 0, v1 = v2 = 0, ρ(1)
g1 = 1, ρ(1)

g2 = 0 and d
(1)
g1 (x, y) = x(y − 1), d(1)

g2 (x, y) = x+ y, we get(
η1(−(g1(x)− xT v1) + g1(u)− uT v1) + η1L1(u, p1)− η1p

T
1∇p1L1(u, p1)−Fx,u

(
− η1α(x, u)

(
∇(g1(u)

− uT v1) +∇p1L1(u, p1)
))
− ρ(1)

g1

(
d(1)

g1
(x, u)

)2

, η2(−(g2(x)− xT v2) + g2(u)− uT v2) + η2L2(u, p2)

− η2p
T
2∇p2L2(u, p2)−Fx,u

(
−η2α(x, u)(∇(g2(u)− uT v2) +∇p2L2(u, p2))− ρ(1)

g2

(
d(1)

g2
(x, u)

)2
))

=
(
2x2 + 6, 0

)
∈ K \ {0}, for all x ∈ R
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and for ρ(2)
1 = 0, ρ(2)

2 = −1, d(2)
1 (x, y) = xy, d

(2)
2 (x, y) = y + 1, we have(

− (h1(u, τ) + uTw1
1)− S1(u, q1) + qT

1 ∇q1S1(u, q1)−Fx,u

(
α(x, u)

(
∇x(h1(u, τ) + uTw1

1) +∇q1S1(u, q1)
) )

− ρ(2)
1

(
d

(2)
1 (x, u)

)2

, −(h2(u, τ) + uTw1
2)− S2(u, q2) + qT

2 ∇q2S2(u, q2)

−Fx,u

(
α(x, u)

(
∇x(h2(u, τ) + uTw1

2) +∇q2S2(u, q2)
))
− ρ(2)

2

(
d

(2)
2 (x, u)

)2
)

=
(
−3(1 + τ)− w1

1 + x2(5 + w1
1), −τ + 1− w1

2 + x2(1 + w1
2)
)
∈ Q \ {0},

for all τ ∈ [−2, −1], w1
1 ∈ E1, w

1
2 ∈ E2 and x ∈ R. Hence, hypotheses (i) and (ii) of Theorem 5.1 are satisfied.

Moreover, R2
+ ⊂ K, R2

+ = Q and

2∑
i=1

λi

{
ρ

(1)
fi

(
d

(1)
fi

(x, u)
)2

+ ρ(1)
gi

(
d(1)

gi
(x, u)

)2
}

+
2∑

j=1

µj

{
ρ

(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j

}
= x2 + 2 + τ ≥ 0.

Thus, suppositions (iii) and (iv) of Theorem 5.1 are also true. Now for point β4, we get

(η1, η2)−
(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

,
f2(x) + Ω(x|C2)
g2(x)− Ω(x|D2)

)

=


(

1− e−1, − 6
13

)
/∈ K \ {0} at x = 0,(

− 1
2
, − 7

19

)
/∈ K \ {0} at x = 1.

Hence, the Theorem 5.1 has been verified for x = 0, 1 ∈ S0 and β4 feasible for (SD).

Validation of Theorem 5.3:

For β4 and x = 1, the assumptions (ii), (iii) and (iv) hold true (shown above). Moreover,(
η1 −

f1(x) + xT z1

g1(x)− xT v1
, η2 −

f2(x) + xT z2

g2(x)− xT z2

)
=
(1

2
, −1

3

)
/∈ K \ {0}

which implies that the assumption (i) of Theorem 5.3 also holds. This validates Theorem 5.3. ut

Next, in the following example, we will discuss the case if the assumption of higher order (K × Q) −
(F , α, ρ, d)-type I convexity fails, then the result of Theorem 5.1 may not hold.

Example 5.5. Let in the problem (SIFP), f : R→ R2, g : R→ R2, and h : R× [0, 2]→ R2 be given as:

f(x) = (f1(x), f2(x)) = (sin2 x, ex),
g(x) = (g1(x), g2(x)) = ((x+ 1)2, ex + 1) and

h(x, t) = (h1(x, t), h2(x, t)) = (2x− 3t, x+ t2).

Let the cones be K = Q = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} and

G(u, p) = (G1(u, p1), G2(u, p2)) = (p1u
2, −p2 + 4u),

L(u, p) = (L1(u, p1), L2(u, p2)) = (p1u
2, −p2 cosu),

S(u, q) = (S1(u, q1), S2(u, q2)) = (q1 + u+ 5, q2u),

d
(1)
f1

(x, y) = d(1)
g1

(x, y) = d
(2)
2 (x, y) = x(2y − π), and

d
(1)
f2

(x, y) = d(1)
g2

(x, y) = d
(2)
1 (x, y) = cos y.
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Further, let α(x, y) = x2(4 + y2) and Fx,u(b) = −b(x+ u). Consider

C1 = [0, 2] = M2, C2 = D2 = E2 = [−1, 1] and D1 = E1 = M1 = [−2, 0].

Then, Ω(x|C1) = x+ |x|, Ω(x|C2) = Ω(x|D2) = Ω(x|E2) = |x|, Ω(t|M1) = |t| − t,

Ω(x|D1) = Ω(x|E1) = |x| − x and Ω(t|M2) = |t|+ t.

Then, the feasible region of the primal problem (SIFP) is S0 = {0} and β5 =
(
u, v, w1, w2, λ, µ, z, η, p, q

)
=
(π

2
, (1, 1), (−2, 1), (0, 0), (1, 6),

(
3, 2

)
, (0, −1), (1, 1), (0, 2), (1, 0)

)
is feasible for dual problem

(SD). For any ρ(1)
f1
, ρ

(1)
f2
, ρ

(1)
g1 , ρ

(1)
g2 , ρ

(2)
1 , ρ

(2)
2 ∈ R, at β5,

2∑
i=1

λi

{
ρ

(1)
fi

(
d

(1)
fi

(x, u)
)2

+ ρ(1)
gi

(
d(1)

gi
(x, u)

)2
}

+
2∑

j=1

µj

{
ρ

(2)
j

(
d

(2)
j (x, u)

)2

− τTw2
j

}
= 0.

Moreover, K = Q = R2
+. Hence, the assumptions (iii) and (iv) of Theorem 5.1 are satisfied but

f1(x) + xT z1 −
(
f1(u) + uT z1

)
−G1(u, p1) + pT

1∇p1G1(u, p1)−Fx,u

(
α(x, u)

(
∇x(f1(u) + uT z1)

)
+∇p1 (G1(u, p1))

)
− ρ(1)

f1

(
d

(1)
f1

(x, u)
)2

= sin2 x+
π2

4

(
4 +

π2

4

)(
x+

π

2

)
x2 − 1 < 0, for x = 0.

Therefore, assumption (i) of Theorem 5.1 does not hold. Moreover,

(η1, η2)−
(
f1(x) + Ω(x|C1)
g1(x)− Ω(x|D1)

,
f2(x) + Ω(x|C2)
g2(x)− Ω(x|D2)

)
=
(

1,
1
2

)
∈ K/{0} at x = 0.

Hence, without having the condition of higher order (K×Q)−(F , α, ρ, d)-type I convexity on functions, the result
of Theorem 5.1 may not hold. ut

6. Conclusion

To the best of our knowledge, the class of conic non-smooth semi-infinite multiobjective fractional program-
ming problem has not been studied so far. In this article, semi-infinite model with multiple fractional type
objective function is formulated. Further, introducing the idea of higher order (K×Q)− (F , α, ρ, d)-type I con-
vex function, the duality relations for Mond-Weir, Wolfe and Schaible type dual models have been developed.
Validation of various results obtained have also been shown by demonstrating non trivial examples. Further, it
has been shown by giving examples that considering the assumptions of higher order (K×Q)− (F , α, ρ, d)-type
I convexity is significant since without this, the duality results obtained may not hold. Exploring optimality
relations and duality theorems for (SIFP) over space of symmetric matrices by using E-convexity in objective
functions be an enthralling future work in this direction.
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