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EFFICIENT ALGORITHMS TO MINIMIZE MAKESPAN OF THE UNRELATED
PARALLEL BATCH-PROCESSING MACHINES SCHEDULING PROBLEM WITH

UNEQUAL JOB READY TIMES

Yaser Zarook1,∗, Javad Rezaeian1, Iraj Mahdavi1 and Masoud Yaghini2

Abstract. This paper considers the minimization of makespan in the unrelated parallel batch pro-
cessing machines scheduling problem with considering non-identical job size and dynamic job ready
time. The considered unrelated machines have different capacity and different processing speed. Each
machine processes a number of the jobs as a batch at the same time so that the machine’s capacity is
not exceeded. The batch processing time and the batch ready time are equal to the largest processing
time and the largest ready time of jobs in the same batch, respectively. In this paper, a Mixed Integer
Linear Programming (MILP) model, two categories of the heuristic procedures (six heuristics) and a
meta-heuristic algorithm are proposed to solve the problem. A lower bound is also presented by re-
laxing of the original problem to evaluate the quality of the proposed algorithms. The computational
experiments show the performance of the proposed algorithms under the considered measures.
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1. Introduction & literature review

In the recent years, Batch-Processing (BP) operation has been a critical solution to eliminate of the production
bottlenecks in the most industries. The BP by preventing of the setup time repetition leads to the elimination
of the bottlenecks and the faster production [1]. There are two categories of BP: Serial batching (S-batching)
and parallel batching (P-batching). In S-batching, the processing time of a batch is equivalent to the sum of the
processing times of jobs within the same batch, and in P-batching; several jobs are processed in a batch on a
processor simultaneously, such that the processing time of the batch is equivalent to the largest processing time
of jobs within the same batch. P-batching problem has attracted many investigators in the most industries such
as test electronic parts to detect early failures in semiconductor manufacturing, the chemical, food and mineral
processing, metalworking industries and etc. [15,17,19,21,22]. This paper is placed in P-batching category, and
in the rest of paper, means of the batch is P-batching. The motivation of this study is stem from elimination of
the bottleneck in the cutting stations of the metal industries.
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By studying in the literature of batch processing, the various machine’s environments are observable such
as; Dauzère-Pérès and Mönch [7] studied a single batch processing machine with incompatible job families
to minimize the weighted number of tardy jobs objective, they proposed two different mixed integer linear
programming formulations and a random key genetic algorithm. Koh et al. [13] studied a single batch processing
machine with arbitrary job sizes and incompatible job families, they obtained optimal solution for the small
size problem by integer programming model and efficient solution for the large size problem in the reasonable
computational time by heuristic algorithms. Zarook et al. [28] suggested a new mathematical model to minimize
makespan on the single batch-processing machine scheduling problem with considering machine’s aging effect
and maintenance activities, they proposed two meta-heuristic algorithms (GA & ICA) to solve the real size
problem. Zhou et al. [30] presented a multi-objective model for a single batch processing machine scheduling
problem with dynamic job arrival times, due to computational complexity, they proposed a hybrid multi-
objective meta-heuristic algorithm to find the Pareto front. Another machine environment in the BP is identical
batch processing in the parallel machines that machines have similarity characters. Chang et al. [3] proposed
a simulated annealing algorithm to minimize makespan in identical parallel batch-processing machines setting
with arbitrary job size. Damodaran and Chang [4] presented the heuristic algorithms to minimize Makespan on
the identical parallel batch processing machines; they compared the performance of the proposed heuristics with
a simulated annealing approach. Kashan et al. [11] and Damodaran et al. [6] proposed the heuristics and meta-
heuristic algorithms to minimize makespan in the identical parallel batch processing machines with arbitrary
job sizes. Shengchao et al. [23] proposed distance matrix based heuristics to minimize makespan in the identical
parallel-batch processing machines with arbitrary job sizes and dynamic job release times. Muter [20] proposed
the exact algorithms to minimize Makespan on the single and identical-parallel batch processing machines. In
the real production systems, new machinery and old ones are often used together; newer machines usually have
the larger capacities and the shorter processing times rather than the older ones; this machinery environment is
called the unrelated parallel machines. José Elias et al. [9] studied the minimization of makespan in the unrelated
parallel batch processing machines with non-identical job sizes and unequal job ready times where the machines
have same capacity; they proposed several efficient heuristics and also a lower bound to evaluate the quality of
the proposed heuristics. Zhao-Hong et al. [29] studied the effective heuristics for minimizing makespan in the
parallel batch machines with the different machine’s capacity and the dynamic job release times while the speed
of the machines was considered identical. José Elias et al. [10] considered the unrelated parallel batch processing
machine scheduling problem with different speed and capacity of the machines and unequal job ready time.
They proposed an Iterated Greedy algorithm to minimize total flow time as the objective function. Table 1
shows a brief description of the previous studies:

According to Table 1, this study considers the unrelated parallel batch-processing machines with different
speed and capacity. Each job has arbitrary size and dynamic ready time. The proposed problem minimizes
the makespan, or, the completion time of the last batch therefore leads to the upper throughput level in
the bottleneck station and the upper productivity, finally. The motivation of this paper is stem from elimi-
nation of the bottleneck in the production lines such as the cutting stations in the metal industries; where
there are the several cutting machines with different speed and capacity (unrelated P-batching). The cutting
machines have the capability of cutting the batches of the sheets metal with different thicknesses (job size) at
the same time, that leads to eliminate production bottlenecks and higher productivity. This problem is shown
as Rm|p-batch, pjk, sj , rj , Bk|Cmax in the classical symbolic of the scheduling literature, where first section of
the symbolization shows machinery environment (Rm indicates m machines in the unrelated parallel environ-
ment). The second section of the symbolization explains conditions and constraints of the proposed scheduling
problem (pjk denotes the processing time of job j on the machine k, sj and rj denote size and ready time of
job j, respectively, Bk denotes the capacity of machine k, p-batch shows parallel batch processing machines).
In the third section of symbolization objective function of scheduling problem is shown (Cmax or makespan: the
completion time of the last batch).

Uzsoy [25] showed that minimization of the Makespan on a single BPM with non-identical job sizes and
identical release times to be NP-hard, therefore our problem is also NP-hard. On the other hand, Pinedo [21]
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Figure 1. Illustration of the problem.

shows the relaxation of the proposed problem (Rm| |Cmax) is strongly NP-hard, therefore, considered problem
is also NP-hard in strong sense. For this reason, an MILP model is only used to solve small size of the problem
exactly in this paper, since that to exactly solve real size of the NP-hard problem in the reasonable time is
impossible, so in the most of literature studies, researchers have used of the approximate methods to find a better
solution in a reasonable amount of time [5,10,16,18,22,27]. The proposed scheduling problem can be partitioned
in two sub-problems; i.e., grouping the jobs in the batches and scheduling of the batches on the machines, based
on this strategic, this paper considers two categories of the heuristics algorithms; in first category, batching of
the jobs is done by a Modified Full Batch Largest Process Time (FBLPT) role and then the allocation of the
batches on the machines takes place with considering various the machine’s scenarios; Earliest Idle time (EI),
Shortest Completion time (SC) and Shortest Processing time (SP). In second category, the allocation of the
jobs on the machines takes place with considering various machine’s scenarios: Earliest Idle time (EI), Shortest
Completion time (SC) and Shortest Processing time (SP) and then batching of the jobs on each machine is done
by Full Batch Largest Process Time-Shortest Release Time (FBLPT-SRT) role. Therefore, in this paper, six
efficient heuristics and an effective meta-heuristic algorithm are proposed to solve of the real size problems with
the little computational effort, which is valuable in some of the practical applications. A lower bound is provided
to evaluate the performance of the proposed algorithms. Figure 1 shows scheme of the proposed problem as
graphically.

The rest of the paper is organized as follows: Section 2 includes a problem definition and mathematical
modeling. The proposed heuristics and RKGA meta-heuristic are presented in Section 3. Design of experiments,
parameters setting and a lower bound are presented to evaluate the quality of the proposed algorithms as
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computational experiments in Section 4. Finally, Section 5 presents the conclusion and the suggestions for the
future researches.

2. Problem formulation

2.1. Problem description

This paper considers the unrelated parallel batch processing machines scheduling problem with the following
assumptions:

– There are N jobs with arbitrary job size, dynamic job arrival, and different processing time on the machines.
– There are M unrelated parallel machines that have different speed and capacity.
– Total job sizes within each batch should not be exceeded than allocated machine’s capacity.
– No job is allowed to split on the different batches.
– Each batch must be processed without interruption (Once a batch is being processed, the batch-processing

machine cannot be interrupted; no jobs can be removed from the machine until the processing of the batch
is completed).

– The machine is assumed to be available continuously and breakdown is not allowed.
– The machines cannot be idle when be existed at least one non-completed batch.
– The size of the jobs does not exceed of the largest machine capacity

Qmax = max
kεM
{Bk}, (sj ≤ Qmax,∀jεJ) .

– All of the parameters are non-negative integer number.

2.2. Mathematical description of the problem

This subsection provides a mathematical description of the problem, a set of N jobs J = {1, 2, 3, . . . , n}
must be processed on a set of M machines M = {1, 2, 3, . . . ,m}. The following indices, parameters and decision
variables are used in the mathematical model:

Indices

j Index for jobs (j = 1, 2, . . . , n).
i Index for batche (i = 1, 2, . . . , n).
k Index for machine (k = 1, 2, . . . ,m).

Parameters (non-negative integer number)

sj Size of job j.
rj Release date of job j.
pjk Processing time of job j on machine k.
Bk Capacity of machine k.

Decision variables

Independent decision variables (binary)

Xjik = 1, if job j is assigned to batch i on machine k; 0, otherwise.

Dependent decision variables (non-negative integer number)

Pik = processing time of batch i on machine k.
STik = start time of batch i on machine k.
Cik = completion time of batch i on machine k.
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2.3. The mathematical modeling

In this subsection, the objective function and the constraints are formulated as follows:

minZ = Cmax (2.1)
s.t.:
m∑
k=1

n∑
i=1

Xjik = 1 ∀j = 1, . . . , n (2.2)

Xj′i+1k ≤ Xjik ∀, j = 1, . . . , n, j′ 6= j, k = 1, . . . ,m (2.3)
n∑
j=1

Xjik ∗ sj ≤ Bk i = 1, . . . , n, ∀k = 1, . . . ,m (2.4)

Xjik ∗ rj ≤ STik ∀i, j = 1, . . . , n, ∀k = 1, . . . ,m (2.5)
Ci−1k ≤ STik ∀i = 2, . . . , n, ∀k = 1, . . . ,m (2.6)
Xjik ∗ pjk ≤ Pik ∀i, j = 1, . . . , n, ∀k = 1, . . . ,m (2.7)
STik + Pik ≤ Cik ∀i = 1, . . . , n, ∀k = 1, . . . ,m (2.8)
Cik ≤ Cmax ∀i = 1, . . . , n, ∀k = 1, . . . ,m (2.9)
Pik ≥ 0 (integer) , Cik ≥ 0 (integer) ,STik ≥ 0 (integer) ∀i = 1, . . . , n, ∀k = 1, . . . ,m (2.10)
Xjik = 0 or 1 ∀i, j = 1, . . . , n, ∀k = 1, . . . ,m. (2.11)

In the proposed mathematical model, objective function (2.1) is minimization of Makespan. Constraint set
(2.2) ensures that each job should be assigned to the one batch and be just processed on the one machine.
Constraint set (2.3) guaranties the sequence of the batches on each machine, it means that batch i + 1 on
machine k can be processed when batch i has been processed on machine k. Constraint set (2.4) ensures that
the total size of the jobs in batch i that is assigned to machine k does not exceed of the capacity of machine
k. Constraint sets (2.5) and (2.6) indicate relationship of the start time of batch i on the machine k with the
largest release time of the jobs in same batch and completion time of previous batch i − 1 on the machine k,
respectively. These constraints guarantee that each batch can be processed when it is ready and the previous
one on the machine has been processed. Constraint sets (2.7) and (2.8) calculate the processing time and the
completion time of batch i on the machine k, respectively. In the other word, process time of each batch is equal
to largest job processing time in same batch and completion time each batch is equal to the start time of the
batch in addition to the processing time of same batch. Constraint set (2.9) defines objective function of the
model (Makespan; which is equal to the largest batch completion time among all the batches). Constraint sets
(2.10) and (2.11) represent non-negative and binary decision variables.

The proposed mathematical model coded in commercial solver (Lingo 11), on an hp 4520 s laptop with 4 GB
of RAM and a 3 GHz processor running in windows 7. Since that the proposed problem is Np-Hard, the proposed
model can be solved small size instances optimality and it expends an exponential CPU time with ascending
problem size and unable to achievement optimal solution for large problem instances in the reasonable time.
Therefore, the proposed heuristics and meta-heuristic algorithm are described to approximately solve large-sized
problem instances in reasonable time as the following.

3. Approximate solution approaches

3.1. Heuristics

The proposed scheduling problem can be partitioned in two sub-problems; i.e., grouping the jobs in the
batches and scheduling the batches on the machines Based on this strategic this paper proposes two categories
of heuristic algorithms as following:
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Table 2. Data of numerical example.

Jobs 1 2 3 4 5 6 7 8 9 10

sj 4 2 2 1 2 3 4 2 3 3
rj 1 3 0 5 8 7 12 2 10 2
Pj1 3 2 1 5 8 9 2 6 7 3
Pj2 9 5 8 2 1 6 5 8 3 4
Pj3 5 8 2 2 6 4 3 2 1 1
Averagepj

5.6 5.0 3.6 3.0 5.0 6.3 3.3 5.3 3.6 2.6

Table 3. Structure of proposed heuristics.

Stage 1 Stage 2 Proposed Heuristics

Category 1 FBLPT-SRT (batching of
jobs)

EI, SC, SP (schedule batches
on the machines)

FBLPT-SRT|EI FBLPT-
SRT|SC FBLPT-SRT|SP

Category 2 JSRT-EI, JSRT-SC, JSRT-
SP (allocation of jobs on the
machines)

FBLPT-SRT (batching of
jobs on the machines)

JSRT-EI|FBLPT-SRT
JSRT-SC|FBLPT-SRT
JSRT-SP|FBLPT-SRT

First category includes two stages as follows:

Stage 1: grouping the jobs in the batches.
Stage 2: scheduling of the batches on the machines.

Second category considers two stages as follows:

Stage 1: allocating of the jobs to the machines.
Stage 2: batching of the jobs on each batch processing machine.

A numerical example is provided to better understanding of the proposed heuristics, consider 3 machines
with capacity; B1 = 6, B2 = 4 and B3 = 5 and 10 jobs with the parameters of Table 2.

Table 3 shows the structure of proposed heuristics which are described in more.

3.1.1. First category heuristics

Procedures of this category are described by provided numerical example as following:

Stage 1. Batching the jobs; since that each job has m processing times on the machines and also each machine
has different capacity, Full Batch Largest Processing Time (FBLPT) role cannot be used directly [29]. Thus,
we Modified FBLPT role as follows:
Step 1. Arrange the jobs in the decreasing order of

∑
k∈M Pjk/ |M |.

In the proposed numerical example job order be: J6, J1,J8,J2,J5,J3,J9,J7,J4,J10.
Step 2. Select the job at head of the above list and place it in a feasible batch with the smallest residual

capacity. If the job fits in no existing batches, place the job in a new batch. Repeat step 2 until all of
the jobs have been assigned to the batches. Note that the capacity of batches is equal to the smallest
machine’s capacity.
In the proposed numerical example the created batches be: {J6}, {J1}, {J8, J2}, {J5, J3}, {J9}, {J7},
{J4, J10}.

Step 3. Sort the created batches in the previous step according to the Shortest Ready Time (SRT) role
and call it Sort Batch list.
In the proposed numerical example Sort Batch list be: {J1}, {J8, J2}, {J4, J10}, {J6}, {J5, J3}, {J9},
{J7}.
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Stage 2. Schedule of Sort Batch list on the machines; three methods are considered to assignment the batches
on the machines as follows:
(A) Earliest Idle time (EI): select batch i at head of Sort Batch list and then allocate it to the earliest idle

machine. If more than one machine can be idle at the same time then it is allocated to the machine with
the shortest processing time. Repeat until all of the batches have been scheduled.

(B) Shortest Completion time (SC): select batch i at head of the Sort Batch list and then allocate it to
the machine that completes it in the shortest completion time. Repeat until all of the batches have been
scheduled.

(C) Shortest Processing time (SP): select batch i at head of the Sort Batch list and then allocate it to the
machine k which has the shortest processing time. It means, K = arg min{P ik|k ∈M}. If K can be shown
more than one machine then it is allocated to the machine with the less completion time. Repeat until
all of the batches have been scheduled.
Note : At the end of this subsection, the batches on each machine must be merged together so that the
size of each batch is not exceeded of the machine’s capacity.

Three heuristics are extracted in this subsection, which are named FBLPT-SRT|EI, FBLPT-SRT|SC, and
FBLPT-SRT|SP, respectively. Results of proposed heuristics on the numerical example are shown in Figure 2.

Stage 1. Grouping jobs into batches.

FBLPT-SRT B1 B2 B3 B4 B5 B6 B7

JOB {1} {8, 2} {4, 10} {6} {5, 3} {9} {7}
Batch ready time 1 3 5 7 8 10 12
P i1 3 6 7 9 8 7 2
P i2 9 8 3 6 8 3 5
P i3 5 8 2 4 6 1 3

Stage 2. Allocate batches to machines.

3.1.2. Second category heuristics

Procedures of this category are described by provided numerical example as following:

Stage 1. Allocating of the jobs to the machines as following:
Step 1. Arrange the jobs in Shortest Ready Times role and named JSRT list.

In the proposed numerical example JSRT list is equal to: J3, J1, J8, J10, J2, J4, J6, J5, J9, J7.
Step 2. Three methods are presented to assign to JSRT list to the machines as follows:

(A) Earliest Idle Time role: allocate job j at head of JSRT list to the earliest idle machine. If more than
one machine can be idle at the same time then job j is allocated to the machine with the shortest
processing time. Repeat until all of JSRT list have been assigned to the machines. In the proposed
numerical example allocation of the jobs on the machines be: M1 = [J3, J1, J2, J7], M2 = [J10, J5, J9]
and M3 = [J8, J4, J6].

(B) Shortest Completion Time role: allocate job j at head of JSRT list to the machine that completes it
in the shortest completion time. Repeat until all of JSRT list have been assigned to the machines. In
the proposed numerical example allocation of the jobs on the machines be: M1 = [J3, J1, J10, J6, J7],
M2 = [J4, J5] and M3 = [J8, J2, J9].

(C) Shortest processing time role: allocate job j at head of JSRT list to the machine that processes
it with the shortest processing time. If job j has identical processing time on the more than one
machine then it is allocated to the machine with the shortest completion time. Repeat until all of
JSRT list have been assigned to the machines. In the proposed numerical example allocation of the
jobs on the machines be: M1 = [J3, J1, J2, J7], M2 = [J4, J5] and M3 = [J8, J10, J6, J9].
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Figure 2. Results of first category heuristics on the Numerical example. (a) FBLPT-SRT|EI.
(b) FBLPT-SRT|SC. (c) FBLPT-SRT|SP.

Stage 2. Batching the jobs on each machine; the assigned jobs to the machine k must be batched according
to Full Batch Largest Processing Time (FBLPT) role, such that size of the batches on the machine k don’t
exceed of machine’s capacity (Bk). Let Lk be a list of the created batches on machine k. The batches of Lk
must be ordered according to the Shortest Ready Time (SRT) role. Finally, three heuristics are extracted in
this subsection, which are named JSRT-EI|FBLPT-SRT, JSRT-SC|FBLPT-SRT and JSRT-SP|FBLPT-SRT,
respectively. Results of proposed heuristics on the numerical example are shown in Figure 3.
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Stage 1. Allocate jobs to machines.

Machines M1 M2 M3

JSRT-EI 3, 1, 2, 7 10, 5, 9 8, 4, 6
JSRT-SC 3, 1, 10, 6, 7 4, 5 8, 2, 9
JSRT-SP 3, 1, 2, 7 4, 5 8, 10, 6, 9

Stage 2. Grouping jobs into batches on each machine by FBLPT-SRT.

3.2. RKGA meta-heuristic

Genetic Algorithm (GA) has been presented by Holland [8] at the first time which has been used to solve
combinational optimization problems. RKGA is a special type of GA which is introduced by Bean [2] for
the first time and it has been used in the literature [12, 14, 26]. This paper proposes RKGA to solve of the
Rm|p-batch, pjk, sj , rj , Bk|Cmax problem in the real size instance. The proposed RKGA is described in more
detail as following.

3.2.1. Encoding & Decoding

In this subsection, random key representation scheme proposed by Bean [2] is developed to generate initial
population as much as the population size. The main advantage of the considered representation is covering
of the entire solution space, i.e., there is a unique string associated with the every feasible solution for the
problem. The proposed chromosome included a matrix m × n where all of the elements are 0 or 1, so that in
each column, number 1 is only repeated at the once, after allocation of the jobs on the machines, a FBLPT-SRT
role is used for batching of the jobs and scheduling of the batches on the machines. Figure 4 shows an encoding
and decoding chromosome on the provided numerical example.

In Figure 4, random key chromosome allocates the jobs to the machines as: M1 = [J1, J2, J3, J6, J7], M2 =
[J4, J5] and M3 = [J8, J9, J10]. The assigned jobs to the machine k must be batched according to Full Batch
Largest Processing Time (FBLPT) role, such that the size of the batches on the machine k don’t exceed of the
machine’s capacity (Bk) and then the created batches on the machine k must be arranged according to the
Shortest Ready Time (SRT) role which in the numerical example, the sequence of the batch on the machines is
equal to: M1 = {J1, J2}, {J6}, {J3, J7}, M2 = {J4, J5}, and M3 = {J10}, {J8, J9}.

3.2.2. Evaluation & selection strategies

The fitness evaluation function assigns a value to each member of the population which is reflecting their
relative superiority. In the proposed algorithm, the evaluation of the solutions is based on objective function
value (Makespan), in the other word; a solution with the lower Makespan is preferable, therefore, 1/Cmax

(the
inversed Makespan) is as the proposed fitness function. The proposed selection strategy is based on the roulette
wheel proposed by Holland [8].

3.2.3. Proposed operators for reproduction

Since of the proposed RKGA is a population-based approach, at first a random population is generated
much as population size. Afterward, to reproduction from one generation to the next one is done with an elitist
strategy, the mutation and the crossover operators which the mechanisms of the operators are shown in Figures 5
and 6.

3.2.4. Termination criterion

A population based algorithm repeats iterations until to reach a termination condition such as max-time,
max-generations, and/or the generations without improvement. In this paper, RKGA is stopped, if the maximum
number of generations (max gen) and/or the pre-determined iteration without improvement in the best solution
(max no improve) to be happened. Figure 7 shows structure of the proposed RKGA. The more details of the
proposed RKGA are provided by a Pseudo-code in the appendix section.
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Figure 3. Results of second category heuristics on the Numerical example.
(a) JSRT-EI|FBLPT-SRT. (b) JSRT-SC|FBLPT-SRT. (c) JSRT-SP|FBLPT-SRT.
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4. Computational experiments

4.1. Data generation & parameters setting

Random test problem instances with number of the jobs equal to N = 10, 20, 50, 100, and 200 and the number
of the machines equal to, M = 2, 3, 4, and 5 are considered to evaluate the efficiency of the proposed algorithms.
The parameters of machine’s capacity, job processing, job ready time, and job size are generated with discrete
uniform distributions in intervals [4, 10], [1, 50], [0, 50], and [1,maxk {Bk}], respectively. The parameters of the
considered problem instances and their levels are shown in Table 4 which 20 test problem instances are extracted
from it. The problem instances are symbolized as NjMk for example, N1M2 i.e., the problem instance with
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Table 4. Parameters and their levels.

Parameters Levels

Number of jobs N1 = 10, N2 = 20, N3 = 50, N4 = 100, N5 = 200
Number of machines M1 = 2, M2 = 3, M3 = 4, M4 = 5
Machine’s capacity BK ∼ ∪ [4, 10]
Processing time PjK ∼ ∪ [1, 50]
Ready time Rj ∼ ∪ [0, 50]
Size of jobs Sj ∼ ∪ [1, maxk {Bk}]

Table 5. Factors of RKGA and their levels.

Factors Levels Outputs of Taguchi (best level)

Max gen 100–150–200-250–300 150
Max no improve 5–10–15–20 10
Population size 150–200–250–300 250
Crossover rate 0.1–0.15–0.2–0.25 0.15
Mutate rate 0.02–0.04–0.05–0.07 0.02

N = 10 and M = 3 is considered. There are several effective factors on the performance of the proposed RKGA
such as: Max generation, Max no improvement, Population size, Crossover rate, and Mutate rate. In this study,
Taguchi experimental design is applied to analyze affect of the parameters of RKGA [24], the appropriate
orthogonal array will be L17

(
44, 51

)
for the considered factor’s levels of Table 5 which the readers can be refer

to Zarook et al. [28] in more details of parameters setting. All of the possible combinations of the factors were
executed on the random test problems for the run five times. Finally, the results of parameters setting are tuned
in the last column of Table 5.

4.2. Lower bound

In this subsection, a Lower Bound (LB) is presented for the problem so that the comparison of between the
proposed algorithms can be possible. Since of the proposed problem is strongly NP-hard, it is computationally
infeasible to obtain optimal solutions for large-scale instances, this is another reason why a lower bound is
needed. The proposed algorithms are compared with the MILP model in the small size instances and with
the proposed lower bound in the large size instances, respectively. The proposed LB is achieved by relaxing of
Rm|batch, pjk, sj , rj , Bk|Cmax (original problem) to Pm|batch, prmp, rj , sj , pj , B′|Cmax problem, it means that
the unrelated parallel machine is relaxed to the identical parallel machine with pj = mink∈M {pjk} and machine’s
capacity equal to B′ = maxk∈M {Bk} which the proposed LB is provided on the relaxed problem as following:

(1) Let J be the set of all jobs and J1 be the subset of J so that satisfies equation (4.1). Let each job from J1

is assigned to a separate batch.

J1 =
{
j ∈ J |B′ − sj < min

i∈J
{si}

}
. (4.1)

(2) Let J2 = {J\J1}, convert each job j ∈ J2 to sj unit size jobs with processing time pj and ready time rj .
Arrange the created jobs in descending order of their processing times and then assign them into the batches
with maximum capacity B′, in the other words, the minimum number of batches is equal to

⌈
1
B′

∑
j∈J2

sj

⌉
.

(3) Let B be set of all the created batches from two previous steps and Pb be the processing time of batch b ∈ B.
Arrange B in descending order of their processing times such as P1 ≥ P2 ≥ . . . ≥ P|B|. Therefore, a lower
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bound on the relaxation problem is calculated as equation (4.2).

CLB
max = max

{
max
j∈J
{rj + pj},

⌈∑
b∈B Pb

|M |

⌉
+ min

j∈J
{rj}, P|B|−1 + P|B| + min

j∈J
{rj}

}
. (4.2)

For example consider the provided numerical example in Section 3 which B′ = 6, |M | = 3 and Pj =
{3, 2, 1, 2, 1, 4, 2, 2, 1, 1}.

Step 1. J1 = {∅}.
Step 2. J2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Step 3. Let |B| =

⌈
1
B′

∑
j∈J2

sj

⌉
=
⌈

26
6 = 5

⌉
, so that five created batches are formed as following:

{6, 1}, {1, 2, 4, 7}, {7, 8, 3}, {5, 9, 10}, {10}

CLB
max = max

{
14,
⌈

11
3

⌉
+ 0, 1 + 1 + 0

}
= 14.

In this numerical example, the value of LB, second category of heuristics and mathematical model are equal
to C∗max = 14.

4.3. Comparison of the proposed algorithms

In this section, all of the extracted problem instances of Table 4, are solved by the proposed approaches
(mathematical model, LB, heuristics and RKGA meta-heuristic). The proposed mathematical model is pro-
grammed in Lingo11 (commercial solver) and the proposed heuristics, the proposed lower bound, and RKGA
meta-heuristic have been coded with C++ language (in Matlab7 software) on an HP 4520 s laptop with 4 GB
of RAM and a 3 GHz processor running on Windows 7. The results of the solutions (Makespan) are reported
at Table 6. The results of Table 6 show MILP model solves problem instances 1–6 as optimality and MILP is
unable to solve problem instances 7 until 14 as optimality, therefore, the best of obtained solution in 1800 s is
considered as local optimal solution. Also MILP obtains any solution for large instance 15 until 20 in 1800 s
whereas the proposed heuristics, LB and meta-heuristic reach to the solution in reasonable computational time
for these problem instances, approximately.

One of the measures to evaluate of the proposed algorithms is Relative Percentage Deviation (RPD) measure
which is calculated according to the equation (4.3).

RPDA
i =

CAmaxi − C
LB
maxi

CLB
maxi

· (4.3)

In this equation, RPDA
i is RPD measure of algorithm A on the problem instance i and CAmaxi , C

LB
maxi are equal

to Cmax of algorithm A and the proposed LB on the problem instance i, respectively. In the other word, RPDA
i

value shows Gap between algorithm A and LB which the smaller value of RPDA
i shows a better algorithm A.

Table 7 reports RPD measure of the proposed algorithms on the all of the problem instances.
In equation (4.4), XRPD

A is the mean and SRPD
A is the standard deviation of the RPD of the proposed algorithm

A which are calculated on the RPD values of the Table 7, t is the t-distribution in the uncertainty level (α) is
equal to 5% and n = 20 is degrees of freedom (t0.025,19 = 1.48). Table 8 is calculation report of Minitab software
according to equation (4.4) and Figure 8 shows interval plot of RPD measure according to Table 8 and also the
GAP between of the proposed algorithms is observable in this figure.(

LRPD
A , URPD

A

)
=
(
X̄RPD
A − LSDRPD

A , XRPD
A + LSDRPD

A

)
=

(
X̄RPD
A −

(
tα

2 ,n−1 · SRPD
A

√
2
n

)
, X̄RPD

A +

(
tα

2 ,n−1 · SRPD
A

√
2
n

))
· (4.4)
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Table 6. Makespan value of experiments.

Run code First category heuristics Second category heuristics Meta-

heuristic

RKGA

MILP

(Lingo)

LB

FBLPT-

SRT|EI

FBLPT-

SRT|SC

FBLPT-

SRT|SP

JSRT-

EI|FBLPT-

SRT

JSRT-

SC|FBLPT-

SRT

JSRT-

SP|FBLPT-

SRT

N1M1 50.4 40.6 59.3 51.6 40.6 56.9 45.8 40.6∗ 36.9

N1M2 48.9 38.6 62.5 50.4 39.8 60.7 50.2 35.9∗ 31.2

N1M3 41.9 35.9 59.6 49.7 35.4 55.9 43.9 30.9∗ 25.3

N1M4 36.9 31.1 50.1 45.6 32.3 50.6 45.7 23.6∗ 19.8

N2M1 185.9 170.5 191.3 180.4 167.6 185.8 170.1 165.0∗ 153.6

N2M2 180.6 165.5 185.2 179.8 166.6 184.5 172.4 161.3∗ 148.9

N2M3 168.8 160.1 174.6 167.7 159.8 170.2 155.5 151.2a 141.4

N2M4 158.8 149.9 169.7 156.6 144.4 166.8 164.8 130.8a 130.8

N3M1 290.0 285.2 291.3 292.3 288.8 294.5 308.3 271.1a 260.4

N3M2 281.7 276.8 288.5 274.2 266.6 281.7 300.5 260.5a 256.7

N3M3 272.3 252.1 280.9 271.6 248.7 277.9 275.9 245.3a 245.0

N3M4 270.0 249.8 278.4 269.6 245.5 271.5 267.7 241.0a 232.5

N4M1 515.5 501.4 532.8 510.7 495.5 515.4 550.4 492.0a 465.8

N4M2 509.6 496.8 526.7 506.7 490.1 511.8 536.7 484.4a 460.1

N4M3 503.9 487.6 519.8 498.2 478.4 505.5 509.9 – 452.7

N4M4 496.6 470.7 509.1 489.5 461.8 495.2 489.3 – 443.8

N5M1 1238.7 1006.8 1368.8 1201.5 991.9 1329.4 1480.1 – 872.9

N5M2 1195.4 968.9 1306.9 1115.6 913.7 1250.2 1350.0 – 864.6

N5M3 1108.8 935.5 1263.3 1090.5 901.0 1100.8 1307.8 – 852.9

N5M4 1070.9 905.7 1150.8 1000.6 884.6 1085.1 1279.6 – 842.1

Notes. ∗Optimal (exact) solution in 1800′′. (a)Local optimum solution (best solution in 1800′′). −Commercial solver
unable to achieve any solution in time 1800′′ (s).

According to Figure 8, the priority of proposed algorithms in aspect of minimum objective value (or mean RPD)
and maximum stability (or minimum deviation RPD) as follows: JSRT-SC|FBLPT-SRT � FBLPT-SRT|SC �
FBLPT-SRT|EI � JSRT-EI|FBLPT-SRT � RKGA � JSRT-SP|FBLPT-SRT � FBLPT-SRT|SP.

Since that, another measure to compare the proposed algorithms is CPU time; Figure 9 shows the behavior
of the proposed algorithms based on CPU time measure on the large size problem instances (problems 11–20)
According to this measure, RKGA has the shortest CPU time and the priority of the proposed algorithms in
terms of minimum CPU time on the large size instance problems as follows: RKGA � FBLPT-SRT|SP � JSRT-
SP|FBLPT-SRT � JSRT-EI|FBLPT-SRT � FBLPT-SRT|EI � FBLPT-SRT|SC � JSRT-SC|FBLPT-SRT.

5. Conclusions and future research

In this paper, the minimization of Makespan in the unrelated parallel batch processing machine environment
studied with considering non-identical job sizes and dynamic job ready times which the unrelated parallel batch-
processing machines have different capacity and speed. At first, a MILP model is presented for this problem.
Since of the problem is NP-hard, 6 heuristics and a meta-heuristic algorithm are proposed to solve the problem
in the real size instances. Heuristics classified in two categories; category1 allocate the jobs into the batches and
then the batches are scheduled on the machines. On the contrary, category2 allocate the jobs on the machines
and then each machine is considered as a single batch processing machine scheduling problem. Finally, a lower
bound is proposed to evaluate the quality of the proposed algorithms.

The computational results showed the priority of the proposed algorithms in aspect of minimum objective
value (or mean RPD) and maximum stability (or minimum deviation RPD) as follows: JSRT-SC|FBLPT-
SRT � FBLPT-SRT|SC � FBLPT-SRT|EI � JSRT-EI|FBLPT-SRT � RKGA � JSRT-SP|FBLPT-SRT �
FBLPT-SRT|SP and the priority of the proposed algorithms in terms of minimum CPU time on the large size
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Figure 8. Interval Plot of proposed algorithms on the all instance problem.

Figure 9. CPU time of proposed algorithms.
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Table 7. RPD measure of the proposed algorithms.

Run code Heuristics 1 Heuristics 2 Meta-
heuristic
RKGA

FBLPT-
SRT|EI

FBLPT-
SRT|SC

FBLPT-
SRT|SP

JSRT-
EI|FBLPT-
SRT

JSRT-
SC|FBLPT-
SRT

JSRT-
SP|FBLPT-
SRT

N1M1 0.365 0.100 0.607 0.398 0.100 0.542 0.241
N1M2 0.567 0.237 1.003 0.615 0.275 0.945 0.608
N1M3 0.656 0.418 1.355 0.964 0.399 1.209 0.735
N1M4 0.863 0.570 1.530 1.303 0.631 1.555 1.308
N2M1 0.210 0.110 0.245 0.174 0.091 0.209 0.107
N2M2 0.212 0.111 0.243 0.207 0.118 0.239 0.157
N2M3 0.193 0.132 0.234 0.185 0.130 0.203 0.099
N2M4 0.214 0.146 0.297 0.197 0.103 0.275 0.259
N3M1 0.113 0.095 0.118 0.122 0.109 0.130 0.183
N3M2 0.097 0.078 0.123 0.068 0.038 0.097 0.170
N3M3 0.111 0.028 0.146 0.108 0.015 0.134 0.126
N3M4 0.161 0.074 0.197 0.159 0.055 0.167 0.151
N4M1 0.106 0.076 0.143 0.096 0.063 0.106 0.181
N4M2 0.107 0.079 0.144 0.101 0.065 0.112 0.166
N4M3 0.113 0.077 0.148 0.100 0.056 0.116 0.126
N4M4 0.118 0.060 0.147 0.102 0.040 0.115 0.102
N5M1 0.419 0.153 0.568 0.376 0.136 0.522 0.695
N5M2 0.382 0.120 0.511 0.290 0.056 0.445 0.561
N5M3 0.300 0.096 0.481 0.278 0.056 0.290 0.533
N5M4 0.271 0.075 0.366 0.188 0.050 0.288 0.519

Table 8. LSD implementation for RPD measure.

Algorithm Mean (X̄) Standard deviation (S) LSD Lower limit Upper limit

FBLPT-SRT|EI 0.27890 0.210379 0.09846 0.18044 0.37736
FBLPT-SRT|SC 0.14175 0.130315 0.06098 0.08077 0.20273
FBLPT-SRT|SP 0.43030 0.412515 0.19306 0.23723 0.62336
JSRT-EI|FBLPT-SRT 0.30155 0.318353 0.14899 0.15255 0.45054
JSRT-SC|FBLPT-SRT 0.12930 0.147809 0.06917 0.06012 0.19847
JSRT-SP|FBLPT-SRT 0.38495 0.402660 0.18845 0.19491 0.57341
RKGA 0.35135 0.313027 0.14651 0.20481 0.49781

instance problems as follows: RKGA � FBLPT-SRT|SP � JSRT-SP|FBLPT-SRT � JSRT-EI|FBLPT-SRT �
FBLPT-SRT|EI � FBLPT-SRT|SC � JSRT-SC|FBLPT-SRT.

Several areas exist for future research, such as; considering other objective functions, multiobjective opti-
mization and fuzzy parameters for this problem. Extension of the proposed model to the case of scheduling
other shop systems, e.g., flow shop, job shop machines, is worthwhile.
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Appendix A. Pseudo code of proposed algorithms

Algorithm FBLPT-SRT|EI.
Stage 1:
1: Arrange the jobs in decreasing order of

∑
k∈M Pjk/ |M |.

2: for j = 1 to n of above list do
3: Assign the job j to the feasible batch with the smallest residual capacity. Note that batches capacity is
equal to the smallest machine capacity.
4: If there is not a batch or the job j fits in no existing batches, place the job in a new batch.
5: end for
6: Sort the batches of, in non-decreasing order of their ready times (batch ready times) and call it Sort Batch
list.
Stage 2:
7: for i = 1 to |Sort Batch list | do
8: Allocate batch i to the machine with the earliest idle time.
9: If more than one machine can be idle at the same time then it is allocated to the machine with the shortest
processing time.
10: end for
11: At the end of this subsection, the batches on the each machine must be merged together so that the
machine capacity is not exceeded.

Algorithm FBLPT-SRT|SC.
Stage 1:
1: Arrange the jobs in decreasing order of

∑
k∈M Pjk/ |M |.

2: for j = 1 to n of above list do
3: Assign the job j to the feasible batch with the smallest residual capacity. Note that batches capacity is
equal to the smallest machine capacity.
4: If there is not a batch or the job j fits in no existing batches, place the job in a new batch.
5: end for
6: Sort the batches of, in non-decreasing order of their ready times (batch ready times) and call it Sort Batch
list.
Stage 2:
7: for i = 1 to |Sort Batch list | do
8: Allocate batch i to the machine that completes it in the shortest completion time.
9: end for
10: At the end of this subsection, the batches on the each machine must be merged together so that the
machine capacity is not exceeded.
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Algorithm FBLPT-SRT|SP.
Stage 1:
1: Arrange the jobs in decreasing order of

∑
k∈M Pjk/ |M |.

2: for j = 1 to n of above list do
3: Assign the job j to the feasible batch with the smallest residual capacity. Note that batches capacity is
equal to the smallest machine capacity.
4: If there is not a batch or the job j fits in no existing batches, place the job in a new batch.
5: end for
6: Sort the batches of, in non-decreasing order of their ready times (batch ready times) and call it Sort Batch
list.
Stage 2:
7: for i = 1 to |Sort Batch list | do
8: Allocate batch i to the machine k which has the shortest processing time. That means, K = arg min{P ik|k ∈
M}.
9: If K can be shown more than one machine then it is allocated to the machine with less completion time.
10: end for
11: At the end of this subsection, the batches on the each machine must be merged together so that the
machine capacity is not exceeded.

Algorithm JSRT-EI|FBLPT-SRT.
Stage 1:
1: Arrange the Jobs in Shortest Ready Times role and named JSRT list.
2: for j = 1 to n of JSRT LIST do
3: Assign job j to the machine that would have the earliest idle time.
4. If more than one machine can be idle at the same time then job j is allocated to the machine with the
shortest processing time.
5: end for
6: A subset of jobs Mk for each machine k is determined.
Phase 2:
7: for each machine k do
8: Group the jobs of set Mk into batches by applying the FBLPT role such that size of the batches on the
machine k don’t exceed of capacity of machine k (Bk).
9: If the job fits in no existing batches on machine k, place the job in a new batch.
10: end for
11: Let Lk be a list of the created batches on machine k. The batches of Lk must be ordered according to
the Shortest Ready Time (SRT) role.

Algorithm JSRT-SC|FBLPT-SRT.
Stage 1:
1: Arrange the Jobs in Shortest Ready Times role and named JSRT list.
2: for j = 1 to n of JSRT LIST do
3: Assign job j to the machine that to the machine that completes it in the shortest completion time.
4: end for
5: A subset of jobs Mk for each machine k is determined.
Phase 2:
6: for each machine k do
7: Group the jobs of set Mk into batches by applying the FBLPT role such that size of the batches on the
machine k don’t exceed of capacity of machine k (Bk).
8: If the job fits in no existing batches on machine k, place the job in a new batch.
9: end for
10: Let Lk be a list of the created batches on machine k. The batches of Lk must be ordered according to
the Shortest Ready Time (SRT) role.
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Algorithm JSRT-SP|FBLPT-SRT
Stage 1:
1: Arrange the Jobs in Shortest Ready Times role and named JSRT list.
2: for j = 1 to n of JSRT LIST do
3: Assign job j to the machine that processes it with the shortest processing time.
4. If job j has identical processing time on the more than one machine then it is allocated to the machine
with the shortest completion time.
5: end for
6: A subset of jobs Mk for each machine k is determined.
Phase 2:
7: for each machine k do
8: Group the jobs of set Mk into batches by applying the FBLPT role such that size of the batches on the
machine k don’t exceed of capacity of machine k (Bk).
9: If the job fits in no existing batches on machine k, place the job in a new batch.
10: end for
11: Let Lk be a list of the created batches on machine k. The batches of Lk must be ordered according to
the Shortest Ready Time (SRT) role.

Algorithm RKGA.
1: Initialize parameters Max gen, Max no improve, Population size, Crossover rate and Mutate rate;
2: Create an initial population of chromosomes and evaluate the fitness value of each chromosome;
3: Set G = 0;
4: While stopping conditions are not satisfied do
5: Update G = G+ 1;
6: Migrate 10% of best chromosomes in the current population to the next population;
7: for k = 1, . . . , 80% * Population size do
8: Select two parents from the current population;
9: Apply crossover to the two parents and generate two offspring;
10: Apply mutation to each offspring with probability;
11: Evaluate the fitness of each offspring;
12: Put the better offspring in the next population;
13: end for
14: end while
15: Report the best fitness found so far;
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[9] C.A. José Elias and Y.-T.L. Joseph, Scheduling unrelated parallel batch processing machines with non-identical job sizes and
unequal ready times. Comput. Oper. Res. 78 (2017) 117–128.



1522 Y. ZAROOK ET AL.
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