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ISOLATED TOUGHNESS AND PATH-FACTOR UNIFORM GRAPHS

SIZHONG ZHoUbY, ZHIREN SUN? AND HONGXIA L1u3

Abstract. A Psj-factor of a graph G is a spanning subgraph of G whose components are paths of
order at least k. We say that a graph G is P>g-factor covered if for every edge e € E(G), G admits a
Ps-factor that contains e; and we say that a graph G is P>g-factor uniform if for every edge e € E(G),
the graph G — e is P>-factor covered. In other words, G is P>g-factor uniform if for every pair of edges
e1,e2 € E(G), G admits a P>p-factor that contains e; and avoids e;. In this article, we testify that
(i) a 3-edge-connected graph G is P>a-factor uniform if its isolated toughness I(G) > 1; (ii) a 3-edge-
connected graph G is Psg-factor uniform if its isolated toughness I(G) > 2. Furthermore, we explain
that these conditions on isolated toughness and edge-connectivity in our main results are best possible
in some sense.
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1. INTRODUCTION

The vulnerability and ruggedness of computer networks are hot topics in network security research and have
attracted the wide attention of scholars (see [1,3]). We simulate the network by a graph, vertices of the graph
stands for nodes of the network and edges of the graph acts for links between the nodes of the network. From the
perspective of graph theory, for a graph with the same number of vertices, the larger the size of the vertex-cut
or edge-cut is, the higher the density and strength of the graph is, and so the stronger the ability to resist
attacks in the corresponding network is (see [10,11]). Yang et al. [16] introduced isolated toughness, which
is defined in the behind, to measure the stability and vulnerability of networks. Isolated toughness describes
a vertex-cut with as few vertices as possible to get as many isolated vertices as possible. In terms of this
definition of isolated toughness, we naturally imagine star network denoted by Kj ,,. As long as the central site
is attacked, all other sites will be isolated and lose contact with each other. In data transmission networks,
the data transmission between two sites go through a path between two corresponding vertices. Hence, the
availability of data transmission in the network is equivalent to the existence of path factor of the corresponding
graph which is generated by the network. Research on the existence of path factors under specific network
structures can help scientists design and construct networks with high data transmission rates. We find that
there are strong essential connection between isolated toughness and the existence of path factors in graphs,
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and hence investigations on isolated toughness can yield theoretical guidance to meet data transmission and
network security requirements.

In this article, a graph is assumed to be undirected, finite and simple. We use G = (V(G), E(G)) to denote
a graph, where V(G) is its vertex set and E(G) is its edge set. For any = € V(G), we denote by dg(x) the
degree of x in G. Let X be a vertex subset of G. Denote by G[X] the subgraph of G induced by X, and
G—X =G[V(G)\ X]. Let E' be an edge subset of G. Denote by G — E’ the subgraph gained from G by deleting
E'. Especially, we write G —u = G — {u} for u € V(G) and G —e = G — {e} for e € E(G). A set X C V(G)
is called independent if no two vertices in X are adjacent to each other, i(G) denotes the number of isolated
vertices of G, and w(G) denotes the number of connected components of G. Denote by P, the path of order n
and by K, the complete graph of order n. Yang et al. [16] defined a graphic parameter, isolated toughness of a
graph G, denoted by I(G), i.e.,

I(G) :min{Xl X CV(G),i(G-X) > 2}
iI(G—X) - ’ -
if G is not a complete graph; otherwise, I(G) = +oo.

A Psj-factor of a graph G is a spanning subgraph of G' whose components are paths of order at least k. We
say that a graph G is P>j-factor covered if for every edge e € E(G), G admits a P>j-factor that contains e.

Akiyama et al. [2] put forward a criterion for a graph having a Pso-factor. Wang [13] characterized a bipartite
graph with a P>g-factor. Kaneko [7] posed a characterization for a graph with a P>g-factor. Kano et al. [8] raised
a new proof of Kaneko’s result. Zhou [19,20], Zhou et al. [24] and Gao et al. [6] gave some sufficient conditions
for graphs to have P>3-factors with given properties. Kano et al. [9] showed two results for graphs to admit
path and cycle factors. Zhang and Zhou [17] derived two necessary and sufficient conditions for graphs being
Pso-factor covered and Ps>s-factor covered. Zhou [18] showed two binding number conditions for graphs to
be Pso-factor covered and Pss-factor covered. Zhou and Sun [22] obtained two sufficient conditions on the
existence of P>o-factor and Pss-factor uniform graphs. Gao and Wang [4] and Gao et al. [5] established some
relationships between isolated toughness and graph factors. Zhou et al. [28] showed two existence theorems for
graphs to admit component factors. Zhou et al. [27], Sun and Zhou [12] and Wang and Zhang [15] investigated
the existence of edge-disjoint factors in graphs and gained some results for graphs to possess edge-disjoint
factors. Other results on graph factors can be found in [14,21,23, 25,26, 29)].

A graph G is called a P>p-factor uniform graph if for every edge e € E(G), the graph G — e is P>y-factor
covered. In other words, G is P>-factor uniform if for every pair of edges e, e2 € E(G), G admits a Psj-factor
that contains e; and avoids es. In this article, we gain two isolated toughness conditions for the existence of
P o-factor uniform graphs and P>js-factor uniform graphs, which are given in Sections 2 and 3. The proofs of
our main results depend on the following two lemmas.

Lemma 1.1 ([17]). A connected graph G is P>o-factor covered if and only if
H(G — X) < 2X| — e1(X)
for arbitrary X C V(Q), where e1(X) is defined as

2, if X is not an independent set;

1, if X is a nonempty independent set, and G — X contains
a nontrivial component;

0, otherwise.

A graph W is factor-critical if W — x contains a perfect matching ({P2}-factor) for all x € V(W). A graph
D is called a sun if D = K1, D = Ky or D is the corona of a factor-critical graph W with order at least 3, that
is, D is obtained from W by adding a new vertex z = z(y) together with a new edge yz for every y € V(W). A
sun of order n with n > 6 is called a big sun. Denote the number of sun components of G by sun(G).
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Lemma 1.2 ([17]). A connected graph G is P>3-factor covered if and only if
sun(G — X) < 2|X| — e2(X)
for arbitrary subset X of V(G), where eo(X) is defined as

2, if X is not an independent set;

1, if X is a nonempty independent set, and G — X contains
a non-sun component;

0, otherwise.

2. ISOLATED TOUGHNESS AND PZQ-FACTOR UNIFORM GRAPHS
Theorem 2.1. Let G be a 3-edge-connected graph. If I(G) > 1, then G is a P>a-factor uniform graph.

Proof. For every e = uv € E(G), we write G’ = G — e. Since G is 3-edge-connected, G’ is connected. It suffices
to justify that G’ is a Pso-factor covered graph. Suppose, to the contrary, that G’ is not Pss-factor covered.
Then it follows from Lemma 1.1 that

(G —X)>2|X|—e1(X)+ 1. (2.1)

for some subset X of V(G').

If X =0, then by (2.1) and &1(X) = 0, we derive that i(G’) > 1, contradicting that G’ is connected. If
|X| =1, then from (2.1) and &1 (X) < 1, we get that i(G' — X) > 2|X| = 2. Let @ be the isolated vertex set of
G’ — X. For u € Q, we admit dg/—x (u) =0 and dg(u) < dg (u) +1 < dg_x(u)+|X|+1=de_x(u)+2=2,
which implies that G is at most 2-edge-connected. This contradicts that G is 3-edge-connected. If | X | = 2, then
we derive that

WG —X) > 2X| —er(X)+1>2[X|-1=3 (2.2)
by (2.1) and 1 (X) < 2. Note that (G’ — X) <i(G — X) + 2. Thus, using (2.2) we obtain
i(G—-X)>i(G'-—X)-2>1.

Hence, G — X has at least one isolated vertex, say for w, which implies that w is only adjacent to some vertices
in X. Note that |X| = 2. Therefore, G is at most 2-edge-connected. This contradicts that G is 3-edge-connected.
In what follows, we consider that |X| > 3. In light of (2.1) and £1(X) < 2, we deduce

(G —X)>2[X|—er(X)+1>2[X|-1>6—1=5,
Combining this with (G’ — X) <i(G — X) + 2, we derive
i(G—X)>i(G'-X)—2>5-2=3. (2.3)
From (2.1), (2.3), €1(X) < 2 and the definition of I(G), we derive that
RY X < RY X1

I1(G) < < . 2.4
( )_i(G—X)_i(G’—X)—Q_2|X\—51(X)—1_2|X\—3 (24)
Let f(|X]) = % Then d];(l‘;(‘l) = Q\é‘l)—(?:;)lfl = —(2|X‘373)2 < 0, which implies that f(]X]|) attains its
maximum value at | X| = 3. Therefore, we derive by (2.4)
RY 3
I1(G) < < =1
(@ =ox—3S§=3 "

which contradicts that I(G) > 1. Theorem 2.1 is determined. O
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edge to include
e

edge to exclude

[(G) = i((‘i‘S) =1

G is 3-edge-connected.
FIGURE 1. G = K3V ((3K1) U K»).

edge to exclude

\

edge to include
G is 2-edge-connected,

S
1(G) = i(G‘Js) =351

FIGURE 2. G = K3 V (K; U K»).

Remark 2.2. The condition that the isolated toughness I(G) > 1 in Theorem 2.1 cannot be weakened to
I(G) > 1. In order to explain this, let G = K3 V ((3K1) U K3) (see Fig. 1), where V means “join”. Trivially,
I(G) =1 and G is 3-edge-connected. Write G’ = G — e for e € E(K3). Let X = V(K3), and so 1(X) = 2.
Thus, we obtain

(G —X)=5>4=6-2=2|X|—¢e1(X).

By applying Lemma 1.1, G’ is not P>a-factor covered, and so, G is not a Ps-factor uniform graph.

Remark 2.3. The condition that G is 3-edge-connected in Theorem 2.1 cannot be replaced by G being 2-edge-
connected. Let G = K,V (K1 UH) (see Fig. 2), where H = K. Clearly, G is 2-edge-connected and I(G) = 3 > 1.
Set G' =G —e for e € E(H). Let X = V(K>), and so €1(X) = 2. Hence, we derive

(G —X)=3>2=4-2=2[X|—e(X).

From Lemma 1.1, G’ is not P>s-factor covered, and so, G is not a P>o-factor uniform graph.

3. ISOLATED TOUGHNESS AND P-3-FACTOR UNIFORM GRAPHS

Theorem 3.1. Let G be a 3-edge-connected graph. Then G is a P>s-factor uniform graph if its isolated tough-
ness I(G) > 2.
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Proof. For any e = uwv € E(G), we write G’ = G —e. In order to testify Theorem 3.1, we need only to determine
that G’ is a P>3-factor covered graph. Suppose, to the contrary, that G’ is not a P>3-factor covered graph. Then
by Lemma 1.2 we have that

sun(G' — X) > 2|X| —e2(X) + 1 (3.1)

for some subset X of V/(G').
In what follows, the proof splits into two cases according to the value of | X]|.

Case 1. |X| =0.
Apparently, e5(X) = 0. In terms of (3.1), we derive

sun(G’) > 1. (3.2)

Note that G is 3-edge-connected and G’ = G — e. Hence, G’ is connected and sun(G’) < w(G’) = 1.
Combining this with (3.2), we deduce
sun(G') = w(G’) = 1.

Since G is 3-edge-connected, we get that |[V(G)| = |V(G’)| > 4. Combining this with the definitions of sun
and big sun, G’ is a big sun. Then |V (G’)| > 6. Let H be a factor-critical subgraph of G’. Thus, we get that
V !
i(G'—V(H))=|V(H)| = |(27G)‘ > 3. (3.3)
Subcase 1.1. u € V(H) or v € V(H).
Note that e = uwv € E(G) and G' = G —e. Then i(G —V(H)) = i(G' —V(H)). Using (3.3), we have that
i(G—V(H))=|V(H)| > 3. Thus, we deduce that
\V(H)| \V(H

vl _
1= Se=vim) ~ v ~ "

contradicting that I(G) > 2.

Subcase 1.2. v € V(G')\V(H) and v € V(G')\ V(H).
Since G’ is a big sun, there exists w € V(H) such that vw € F(G). Thus, we derive that i(G — ((V(H) \
{w}H) U{v})) = |V(G)| - |V(H)| =2|V(H)| — |V(H)| = |V(H)| > 3. Hence, we deduce that

1(G) < (VIH) \{wh Vel _ VU] _

— G = (VH) \{w} U{v})  [V(H)

it contradicts with I(G) > 2.
Case 2. |X]| > 1.

Claim 3.2. sun(G’ — X) > max{2,2|X| — 1}.
Proof. 1f | X| = 1, then it follows from (3.1) and e2(X) < 1 that

sun(G/ — X) > 2/ X| — e2(X) + 1 > 2|X| = 2.
If | X| > 2, then by (3.1) and e3(X) < 2 we have that

sun(G' — X) > 2| X| —e2(X)+1>2|X| - 1.

Thus, we derive that
sun(G' — X) > max{2,2|X]| — 1}

for | X| > 1. This finishes the proof of Claim 3.2. O
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Assume that G’ — X has a isolated vertices, b Ky’s and ¢ big sun components D1, Da,---, D., where
|[V(D;)| > 6 fori=1,2,---,c. Applying Claim 3.2, we deduce

sun(G' — X)=a+b+c>max{2,2|X| -1} > 2. (3.4)

Let W; be the factor-critical subgraph of D; for 1 < ¢ < ¢, and setting M; = V(W;) and M = U;::l M;.
In terms of the definition of big sun, i(D; — M;) = |M;| = W(%)l We select one vertex from every Ko

component of G’ — X, and denote the set of such vertices by N.
Subcase 2.1. u € V(aK7) or v € V(aKy).

Without loss of generality, we may assume that u € V(aK7).
Subcase 2.1.1. v € V(aK;).

Claim 3.3. |X|>2.

Proof. Let |X| = 1. Since u and v are two isolated vertices of G’ — X, we have ux ¢ E(G) and
ve ¢ E(G) for any z € V(G) \ (X U {u,v}). Thus, we derive dg(v) < |X|+ 1 = 2, which implies
that G is at most 2-edge-connected, which contradicts that G is 3-edge-connected. Claim 3.3 is
justified. O

Note that a > 2 by u € V(aK;) and v € V(aK7). Since G’ — X has a isolated vertices, b Ky’s and ¢
big sun components Dy, Do, -+, D., G — X has (a — 2) isolated vertices, (b+ 1) K5’s and ¢ big sun
components Dy, Do, -+, D.. Thus, we get

V(D;
¥2a+b+3c—12a+b+c—l.

z‘(G—(XUMUNU{u})):(a—2)+(b+1)+zc:
- (3.5)
Using (3.4) and Claim 3.3, we obtain
sun(G' — X)=a+b+c>2|X|-1>3. (3.6)
Tt follows from (3.5) and (3.6) that

i(G—(XUMUNU{u})):a+b—1+i@2a+b+c—122. (3.7)

i=1

In view of (3.7), the definition of I(G) and I(G) > 2, we deduce

X+ 5 W@l oy
X UMUNU{u}| X[+ M+ N 41 KL T b
2<1O) =y xuMonN ) ¢ = : )
! “ a+b—1+;‘v(2ﬂ a+b—1+;7|v(2D")|

which implies

~ V(D)

X|>2a+b — —3. 3.8

1X| > 2a+ +; 5 (3.8)
By applying (3.6), (3.8), a > 2, ¢ > 0 and |V(D;)| > 6, we acquire

b 1 . D;
%Z|X\>2a+b+zw7322a+b+30—32a+b+c—1,
i=1
that is,
a+b+c<3,

contradicting (3.6).
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Subcase 2.1.2. v € V(bK>).
There exists w € V(bK3) with vw € E(G). In view of the definition of N, we know that one vertex
in {v,w} belongs to N. Let Y C V(bK3). Set Y = Nifve N,and Y = (N \ {w})U{v}ifv ¢ N.
Then, it follows that

i(G—(XUMUY)) +b+z|v >a+b+c>2

by (3.4). Combining this with the definition of I(G) and I(G) > 2, we derive

X|+by S VD)
IXUMUY]| XIbr 2,

(G- (XUMUY))

2<I(G) < -

and so,

IV( i)

1X| > 2a +b+z > 2a+b+ 3¢ (3.9)

by |V (D;)| > 6. Note that a > 1 and ¢ > 0. In view of (3.4) and (3.9), we get that
[ X|>2a+b+3c>a+b+c+1>(2]X|-1)+1=2]X|,

this contradicts that | X| > 1.

Subcase 2.1.3. v € V(D UDyU---UD,).
Without loss of generality, let v € V(D;). Then there exists w € V(D;) such that vw € F(G) and
there is one vertex with degree 1 in {v,w}, in D;. Thus, we derive

i(G — (XU(M\{w})U{U}UN))—a-i-b-i-Z|( )|>a+b+c>2 (3.10)
i=1

by (3.4), ¢ > 0 and |V (D;)| > 6. In terms of (3.10) and I(G) > 2, we get

XUM\{whU{o}UN| X[+ [M[+|N] X[+ 55, ! 2>‘+b

2O S G R OO D UG UND) ~ s bg s, MOI ~ gy WO
and so,

2a+b+i@—|X|<O. (3.11)

It follows from (3.4), (3.11), ¢ > 1, ¢ > 0, |V(D;)| > 6 and |X| > 1 that

“\|V(D;
0>2a+b+z|(72)|—|X\2a+b+c—|X\+122|X|—1—\X|+1:|X|21,
=1

this is a contradiction.
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Subcase 2.1.4. v € V(G) \ (V(aK1) UV (bK2)UV (D1 UDy U---UD,)).
In this subcase, we easily deduce that

i(G—(XUMuzvu{v}))za+b+i|v(27Di)|za+b+czz (3.12)

i=1

according to (3.4), ¢ > 0 and |V (D;)| > 6.
From (3.12) and I(G) > 2, we acquire that

X V(D) b+1
IXUMUNU {0}| <|X|+\M|+|N\+17| [+ T b

(G- (XUMUNU{o) = gy 5 VDl a+b+ 3 WD
i=1 i=1

2<1(G) <

)

2

and so,

V(D)
2

X[ >2a+b+) —1. (3.13)
1=1

In light of (3.4), (3.13), a > 1, ¢ > 0 and |V (D;)| > 6, we have that
~ [V(Dy)]
bre>2X|—1>2(20 b+ N 1) -1
a+b+c>2|X| > a+ +i:1 5

=4da+2b+ Y _|V(D;)| -3

=1
>4a+2b4+6¢c—3>2(a+b+c)—1
>a+b+c+1,

this is a contradiction.
Subcase 2.2. u ¢ V(aK;) and v ¢ V(aK7).

X+t 35 L0
Claim 3.4. [(G) < ——=—— .
wtbr 3 V(D)
Proof. We discuss the following three cases.
Subcase 2.2.1. u € V(bK3) or v € V(bK3).
Without loss of generality, let u € V(bK3). Then there exists w € V(bK2) such that uw € E(bK3).
Let Y C V(bK3). Setting Y = N ifu € N, and Y = (N \ {w}) U {u} if w ¢ N. Thus, we obtain

>a+b+c>2

i(G—(XUMuY)):a+b+zc:|V(27Di)\

in terms of (3.4), ¢ > 0 and |V (D;)| > 6. Combining this with the definition of I(G), we get that

|X|+b+z\V(Di)\
1(G) < XumMuy| X[+ M+Y] =

CHE-(XUMUY)) Ly s VR a+b+iw<2pi>|'

i=1 i=1




ISOLATED TOUGHNESS AND PATH-FACTOR UNIFORM GRAPHS 1287

Subcase 2.2.2. u € V(D1 UDyU---UD;)orve V(D UDsU---UD,).
Without loss of generality, let u € V(D;). Then there exists w € V(D;) such that uw € F(G) and
there is one vertex with degree 1 in {u,w}, in D;. Hence, we get

i(G— (X UM\ {w})U{u} UN)) +b+Z|V >a+b+c>2 (3.14)

in light of (3.4), ¢ > 0 and |V (D;)| > 6. Thus, we acquire

C
X[ +b+ \V(él')\
i=1

HG) < XM\ whUfu}uN X]+ M| +N|
O (XU D U UN) ) 2 W00l g, s
i=1 i=1

Subcase 2.2.3. u,v € V(G) \ (V(aK1) UV (bK2) UV (D1 UDyU---UD,)).
C
In this subcase, we have i(G— (XUMUN)) =i(G'—(XUMUN)) =a+b+ ; W(Qﬂ. Combining
this with (3.4), ¢ > 0 and |V(D;)| > 6, we admit

V(D
i(G— (X UMUN)) +b+z‘ >a+b+c>2 (3.15)

It follows from (3.15) that
X|+b+ 3 WLl
[ XUMUN| | X|+|M|+|N| X1 Z; 2
O < e =xomuny) ~ :
a+b+zw a+b+Z\V(QDi)\

=1 i=1

Claim 3.4 is determined.

]
Using I(G) > 2 and Claim 3.4, we derive
IX|+b+ \V(2Di)\
2<1(G) < —
that is,
~ |V(D;
\X|>2a+b+z| (2 Iy (3.16)

It follows from (3.4), (3.16), a > 0, ¢ > 0, |V(D;)| > 6 and |X| > 1 that

|X| > 2a +b+zw> +b+e>2/X|—1>|X],

=1

it is a contradiction. Theorem 3.1 is demonstrated.



1288 S. ZHOU ET AL.

edge to include

édge to exclude
I(G) = 5 =2,

G is 3-edge-connectd.
FIGURE 3. G = K5 V (2K3).

edge to exclude

edge to include

G is 2-edge-connected,

— sl _>
1(G) = g =3 >2

FIGURE 4. G = K1 V (Ko U Ky).

Remark 3.5. The condition that isolated toughness I(G) > 2 in Theorem 3.1 cannot be weakened to I(G) > 2.
In order to see this, let G = K3 V H (see Fig. 3), where H = 2K5. Then I(G) = 2 and G is 3-edge-connected.
Put G =G —eforeec E(H). Let X = V(K3), and so e2(X) = 2. Thus, we derive

sun(G' — X)=3>2=4-2=2|X]| - e(X).
By Lemma 1.2, G’ is not P>s-factor covered, and so, G is not a P>g-factor uniform graph.
Remark 3.6. The condition that G is 3-edge-connected in Theorem 3.1 cannot be replaced by G being 2-

edge-connected. In order to show this, let G = K; V (K3 U K4) (see Fig. 4). Then G is 2-edge-connected and
I(G) = 2 > 2. Setting G’ = G — e for e € E(K,). Let X = V(K}), and so £2(X) = 1. Therefore, we have that

sun(G' = X)=2>1=2-1=2[X| - 2(X).

By Lemma 1.2, G’ is not P>s-factor covered, and so, G is not a P>g-factor uniform graph.

4. CONCLUSION

In this paper, we reveal the relationship between isolated toughness of the network and the existence of path
factors in the network, and derive two results for the existence of path factors in networks which are summarized
as follows:

— A 3-edge-connected graph G is a Pso-factor uniform graph if its isolated toughness I(G) > 1.
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— A 3-edge-connected graph G is a P>3-factor uniform graph if its isolated toughness I(G) > 2.

Furthermore, we explain that the conditions in our main results are sharp. Path factors in graphs or networks
have attracted a great deal of attention due to their applications in network design, statistical mechanics,
information transmission in networks, and so on. Therefore, there is theoretical and practical significance in
investigating the problem of path factors in graphs or networks.

Further, we present the following open problems at the end of our paper.

Problem 1. What is the relationship between isolated toughness of the network and the existence of other
types of path factors in the network?

Problem 2. What is the relationship between other parameters of the network and the existence of path factors
in the network?
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