
RAIRO-Oper. Res. 55 (2021) 1441–1457 RAIRO Operations Research
https://doi.org/10.1051/ro/2021057 www.rairo-ro.org

REACTIVE GRASP FOR THE PRIZE-COLLECTING COVERING TOUR
PROBLEM

Glaubos Cĺımaco1,∗, Isabel Rosseti2, Rogério da Silva3 and Marcos Guerine4

Abstract. This paper presents a Greedy Randomized Adaptive Search Procedure (GRASP) for the
Prize-Collecting Covering Tour Problem (PCCTP), which is the problem of finding a route for traveling
teams that provide services to communities geographically distant from large urban locations. We
devised a novel hybrid heuristic by combining a reactive extension of the GRASP with Random Variable
Neighborhood Search (VND) meta-heuristic for the purpose of solving the PCCTP. Computational
experiments were conducted on a PCCTP benchmark from the literature, and the results demonstrate
our approach provides a significant improvement in solving PCCTP and comparable with the state-of-
the-art, mainly regarding the computational processing time.

Mathematics Subject Classification. 90C10, 90C11, 90C08, 90C05.

Received October 22, 2020. Accepted April 6, 2021.

1. Introduction

The provision of social, medical or, legal assistance to communities geographically distributed and distant
from large urban centers has been a concern of the various public, philanthropic or private entities. Deploying
fixed units in these locations involves significant investments, and there is still a shortage of professionals with
interest in being in those regions.

One of the most appropriate solutions is to attend to people who live in places far from the service centers is
the use of traveling teams. As an example, the Brazilian Courts of Justice (TJ) have a project called Itinerant
Justice, in which an adapted bus with a full forum structure is used to perform most of the legal services. This
bus periodically arrives at cities far from the TJ units, thus covering a large number of citizens unable to have
legal assistance.

In this context, the Prize-Collecting Covering Tour Problem (PCCTP) arises. The objective of this problem
is to find a minimum cost tour that passes through some mandatory cities (T) and, sometimes, others that are
not mandatory (R). Each city has an associated prize, which represents the number of people served if the tour

Keywords. Prize-collecting covering tour problem, hybrid heuristic, GRASP, VND.

1 Universidade Federal do Maranhão, Av. dos Portugueses, 1966 – Vila Bacanga, Sao Lúıs, MA 65080-805, Brazil
2 Universidade Federal Fluminense, Instituto de Computação, Rua Passo da Pátria 156 – São Domingos, Niterói,
RJ 24210-240, Brazil
3 Institute of Education, Science and Technology of Piaúı, R. Alvaro Mendes, 94 – Centro (Sul), Teresina, PI 64000-040, Brazil
4 Federal Institute of Education, Science and Technology of Rio de Janeiro, Rua José Breves, 550, Centro, Pinheiral,
RJ 27197-000, Brazil
∗Corresponding author: francisco.glaubos@ufma.br

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2021

https://doi.org/10.1051/ro/2021057
https://www.rairo-ro.org
mailto:francisco.glaubos@ufma.br
https://www.edpsciences.org

1442 G. CLÍMACO ET AL.

passes through it. Some cities may be inaccessible (W), and their inhabitants must travel to the closest city to
receive assistance. Besides, the tour must guarantee a minimum attendance of people, so that the trip of a TJ
bus is worthwhile.

The PCCTP is an NP-hard problem as it generalizes the NP-hard Covering Tour Problem (CTP) [12]. Since
it was first introduced by Gendreau et al. [12], several generalizations of the CTP have been proposed. Some
of these variants refer to multi vehicles that must: collectively cover the cities of W [14]; minimize the sum
of arrival times at visited locations, while the total duration of each tour does not exceed a preset time limit
[10]; cover cities of W more than once [22]; and, handle a probabilistic coverage while maximizes the expected
customer demand covered [17]. Other generalizations are three bi-objective versions that despite the traditional
CTP objective: include the minimization of the cover [16]; maximize the number of covered cities W [9]; and,
incorporate the minimization of expected uncovered stochastic demand [32].

All the aforementioned generalizations emerged from real-world needs that have not been considered by the
classic CTP. In this work, we address the Prize-Collecting Covering Tour Problem (PCCTP), in which every
city v ∈ V is associated with a prize pv, and the tour must guarantee a preset minimum prize collection. This
type of generalization, with prizes to be collected at the vertices, is common in the literature and has been
widely addressed in other problems such as the traveling salesman problem [3], vehicle routing problem [31],
and Steiner tree problem [4].

This problem is relatively new in the literature and there are two mathematical formulations describing it.
The first one was proposed by Lyra [19] along with the problem and makes use of constraints based on flow to
eliminate sub-routes in the solution. The second one was proposed by Silva [29], and it is based on multi-flow
constraints to handle with sub-routes in the solution.

Since PCCTP is an NP-Hard problem, it is impracticable to solve large instances (|N | > 100) using only
exact methods [19]. Therefore, heuristic approaches are required to deal with such instances. Lyra [19] proposed
a heuristic based on Greedy Randomized Adaptive Search Procedure (GRASP) combined with a variation of the
VNS (Variable Neighborhood Search) metaheuristic [20]. Its heuristic approach also includes a path-relinking
technique as an improving solutions component.

In the following, Silva [29] proposed new six heuristic methods, in which five of them are based on the ILS
(Iterated Local Search) meta-heuristic [18], and one is an evolutionary heuristic. Silva [29] conducted experiments
on test-problems proposed in his work and the ILS-RDM-CI was the one with the best overall performance.

The ILS-RDM-CI starts by generating an initial random solution through the Cheapest Insertion (CI) heuris-
tic. Then, at each iteration, a disturbance routine is performed followed by a Random Descent Method (RDM)
procedure. The RDM applies a random movement over the best current solution (S) to generate a new neighbor
solution N(S). If this neighbor is better than the S, N(S) becomes the new best current solution. Other-
wise, another neighbor is generated. The RDM method stops when a maximum number of iterations without
improvement is reached, and the whole ILS-RDM-IC heuristic stops when a maximum number of disturbances
is reached.

In this paper, we propose a hybrid heuristic derived from the reactive GRASP metaheuristic [26] for solving
the PCCTP. The GRASP metaheuristic is performed, iteratively, in two main phases: constructive and local
search. The first phase is based on a GENIUS heuristic [11] adapted for the PCCTP, while in the second
phase, several moves are designed and combined in a VND (Random Variable Neighborhood Descent) structure
[20]. The resulting R-GRASP heuristic is fast, and the extensive computational results show the solutions to be
equal to or better than those obtained by the best existing heuristic ILS-RDM-CI. Besides, we have implemented
and tested the two mathematical formulations from the literature using a Mixed-Integer Linear Programming
(MILP) solver, and compared the results with the heuristic.

The remainder of this paper is organized as follows. Section 2 defines formally the PCCTP and its existing
mathematical formulations. Section 3 shows the proposed R-GRASP heuristic. Section 4 presents the computa-
tional results obtained by the proposed and the state-of-the-art heuristics; and in Section 5, some conclusions,
and a few future works are drawn.

REACTIVE GRASP FOR PCCTP 1443

Figure 1. Example of a PCCTP solution.

2. Problem definition

The definition of the PCCTP can be given as follows. Consider an undirected graph G = (N,E), with the
set of vertices N = V ∪W and V = R ∪ T . Let D be a coverage distance, ce be a cost associated to each e ∈ E
and pi be a prize associated to each vertex i ∈ V . Let T be a subset containing the vertices that must be visited
and R a subset of vertices that are optional, and therefore may or may not be visited. Finally, let W be a subset
containing the vertices that must be covered by another vertex from V , i.e., a vertex i ∈ V covers a vertex
j ∈ W if cij ≤ D. The goal of the PCCTP is to find a simple minimum cost cycle that visits all vertices in T ,
covers all vertices of W and collects at least a minimum prize (PRIZE). In Figure 1 is depicted a solution for
an example of the PCCTP, in which the value of PRIZE was set to 100.

A real-world application for the PCCTP can be seen in the provision of a route for the TJ’s bus case,
mentioned in Section 1. The vertices of T would represent cities of a particular and important region and thus
are defined as mandatory visiting points, while the vertices in R would represent cities in which the visits are
optional. There is also a set of cities that shall be attended, but for some reason, it is impracticable and their
population must be served by some neighboring cities whose distance is at most D unities away, avoiding large
displacement of people. These last set of cities would be represented by the vertices in W . To be worth the
release of a bus, it is necessary that a minimum number of people be attended. Therefore, the population of
each city in T and R is represented by the prize of each vertex, and the total PRIZE to be collected corresponds
to the minimum total number of citizens to be served.

2.1. Mathematical formulations

In the literature, there are two mathematical formulations for the PCCTP. The first formulation, proposed
by Lyra [19], uses flow variables to avoid the formation of disconnected cycles. The other formulation proposed
by Silva [29], uses multi-flow variables to avoid sub-cycles in the route.

In this section, let G = (V,A) be a complete and directed graph in which V and A are, respectively, the
sets of vertices and arcs, and u a root vertex belonging to T , chosen as the origin of the route. According to
Lyra [19], the PCCTP can be formulated as a model of Integer Linear Programming (ILP) using the following
variables:

1444 G. CLÍMACO ET AL.

– zij : a non-negative integer variable that represents the amount of flow flowing in the arc (i, j);
– yk: a binary variable for every k ∈ V . yk = 1 if vertex k is in the route, and yk = 0 otherwise;
– xij : a binary variable for every arc (i, j) ∈ A. It assumes the value equal to one if the arc (i, j) belongs to

the route, and value equal to zero, otherwise.

In addition, cij represents the cost of using the arc (i, j) ∈ A, pk indicates the premium associated with
vertex k ∈ V , PRIZE is the minimum prize to be collected for the route, and Rw is the set of all k ∈ V vertices
that cover w ∈W . Thus, the ILP model can be defined as follows:

Min
∑

(i,j)∈A

cijxij (2.1)

s.a :
∑
k∈V

pkyk ≥ PRIZE (2.2)∑
k∈Rw

yk ≥ 1, ∀w ∈W (2.3)

∑
(i,k)∈A

xik +
∑

(k,j)∈A

xkj = 2yk, ∀k ∈ V (2.4)

∑
j∈V

zkj =
∑
i∈V

zik + yk, ∀k ∈ V \ {u} (2.5)

∑
j∈V

zuj = 1 (2.6)

∑
j∈V

zju =
∑

j∈V \{u}

yj , (2.7)

xij ≤ zij , ∀(i, j) ∈ A (2.8)
xij ≥ zij/(|V |+ 1), ∀(i, j) ∈ A (2.9)
yk = 1, ∀k ∈ T (2.10)
yk ∈ {0, 1} ∀k ∈ R (2.11)
xij ∈ {0, 1} ∀(i, j) ∈ A (2.12)
zij ∈ Z+ ∀(i, j) ∈ A (2.13)

In this formulation, the objective function (2.1) minimizes the cost of the route. Constraint (2.2) ensures
that the minimum prize, PRIZE, is collected. The constraints (2.3) ensure that each vertex of W is covered by
at least one vertex of the route. Constraints (2.4) are responsible for conserving the flow, while the constraints
(2.5), (2.6) and (2.7) prevent disconnected cycles from the route vertex. Constraints (2.8) and (2.9) ensure that
the routes generated by flow variables zij and binary variables xij coincide. Constraints (2.10) ensure that all
vertices of T are in the route. Finally, constraints (2.11), (2.12) and (2.13) determine the domain of the variables
yk, xij and zij . The formulation of Silva [29] is composed of the following variables.

– xij : a binary variable that assumes value equal to one if the route contains the arc (i, j), and value equal to
zero, otherwise;

– yk: a binary variable that indicates if the vertex k is in the route or not, therefore, yt = 1 for every t ∈ T ;
and

– zkij : a non-negative integer variable representing the amount of flow from product k drained to the arc
(i, j) ∈ A.

REACTIVE GRASP FOR PCCTP 1445

Then, the ILP formulation of Silva [29] can be presented as follows:

Min
∑

(i,j)∈A

cijxij (2.14)

s.a :
∑

j∈V :j 6=i

xij = yi, ∀i ∈ V (2.15)

∑
i∈V :i 6=j

xji = yj , ∀j ∈ V (2.16)

zkij ≤ xij , ∀(i, j) ∈ A, k ∈ V (2.17)∑
i∈V \{u}

zkui = yk, ∀k ∈ V \ {u} (2.18)

∑
i∈V \{u}

zkiu = 0, ∀k ∈ V \ {u} (2.19)

∑
i∈V \{k}

zkik = yk, ∀k ∈ V \ {u} (2.20)

∑
j∈V \{k}

zkkj = 0, ∀k ∈ V \ {u} (2.21)

∑
i∈V :i 6=j

zkij −
∑

i∈V :i 6=j

zkji = 0, ∀k, j ∈ V \ {u}, j 6= k (2.22)

∑
i∈V

piyi ≥ PRIZE (2.23)∑
i∈Rw

yi ≥ 1 ∀w ∈W (2.24)

yi = 1 ∀i ∈ T (2.25)
yi ∈ {0, 1} ∀i ∈ R (2.26)
xij ∈ {0, 1} ∀(i, j) ∈ A (2.27)

zkij ∈ Z+ ∀(i, j) ∈ A, k ∈ V (2.28)

In this formulation, the objective function (2.14) minimizes the total cost of the route. Constraints (2.15) and
(2.16) guarantee that if a vertex is in the route, then that vertex has a degree equal to two. Constraints (2.17)
limit the flow of products to the edge of the route. Constraints (2.18) ensure that only one product is shipped
from the origin to each customer present on the route. Constraints (2.19) do not allow any product to return to
its origin. Constraints (2.20) and (2.21) require that every vertex will receive its corresponding product, which
in turn should not be sent to any other vertex. Constraints (2.22) guarantee the conservation of the flow of
products that have not reached their destination vertices. Constraint (2.23) demands that the PRIZE will be
collected. Constraints (2.24) guarantee that every vertex of W is covered by at least one vertex of the route.
Constraints (2.25) require that all vertices of T be in the route. Finally, constraints (2.26)–(2.28) represent the
domain of the variables yi, xij , and zkij .

3. A GRASP algorithm

The GRASP (Greedy Randomized Adaptive Search Procedure) metaheuristic is a multi-start process that
can obtain sufficiently good solutions for computationally difficult problems. This method has been applied suc-
cessfully in solving various optimization problems, in several areas such as scheduling [21], telecommunications
[30], routing [15], partitioning, allocation, and assignment [26].

1446 G. CLÍMACO ET AL.

Figure 2. GENI – Insertion type 1 of vertex v between vi and vj .

This metaheuristic is executed iteratively, and each iteration is composed of two phases: construction and
local search. A feasible solution S is generated in the construction phase, and then its neighborhood N(S) is
explored by a local search, in order to find a better solution. This iterative process is repeated until a stop
criterion is reached, that can be a limited number of iterations allowed, a number of iterations without solution
improvement, among others. Once this stopping criterion is reached, the best solution found in all iterations S∗

is returned.

3.1. Construction phase

For generating an initial solution for our proposed heuristic, we devised an adaptation of the GENIUS heuristic
[11] originally proposed for the TSP and it is divided into two phases: a construction approach, the GENI step
(Generalized Insertion), and a method of improvement, the Unstringing and Stringing (US) step.

The GENI is a generalized insertion-based method whose main characteristic is that the evaluation of the
possible insertions of a vertex is not essentially limited to a position between consecutive vertices. In the GENI
step, there are two different ways for inserting a vertex v. Suppose v will be inserted between two other vertices
vi and vj of the route. Since the route has an orientation, consider vk a vertex in the path from vj to vi, and
vl a vertex in the path from vi to vj . Also, consider that given a vh vertex of the route, vh−1 is its predecessor
and vh+1 is its successor. The two types of insertion are explained below, and illustrated in Figures 2 and 3:

– Insertion type 1 : before inserting v, the edges (vi, vi+1), (vj , vj+1) and (vk, vk+1) are removed, and then
replaced by the four new edges (vi, v), (v, vj), (vi+1, vk) and (vj+1, vk+1), such that k 6= i and k 6= j. For the
preservation of the route orientation, the direction of the paths (vi+1, ..., vj) and (vj+1, ..., vk) are inverted.

– Insertion type 2 : before the insertion, one verifies if vk 6= vj , vk 6= vj+1, vl 6= vi and vl 6= vi+1. If it is true,
so the removal of the following edges occurs: (vi, vi+1), (vl−1, vl), (vj , vj+1) and (vk−1, vk), followed by
the insertion of the edges (vi, v), (v, vj), (vl,vj+1), (vk−1 , vl−1) and (vi+1 , vk). Thus, as in the previous
insertion, the orientation of the paths (vi+1, ..., vl−1) and (vl,..., vj) are inverted to maintain the direction
of the route.

In Algorithm 1, the pseudo-code of the GENI step is illustrated, in which the method receives a partial
route S and a randomly chosen vertex v to be inserted. In line 1, the neighborhood Np(v) is created for each
vertex v. Np(v) consists of the p vertices of the route that are closest to v, according to the instance distance
matrix. From lines 3 to 16, for every two neighbors of v and for each orientation of the route (clockwise and
counter-clockwise), both types of insertion are tested. Finally, the best solution is returned on line 17.

After the first step, the US step is applied to improve the route constructed. In this step, iteratively, each
one of the vertices in S is removed and reinserted into S, using the GENI procedure. Similarly to the GENIUS
construction step, the US has two types of removal for a given vertex. Let Np(v) be the p closest neighbors of
a vertex v, the two types of removal are detailed below and illustrated in Figures 4 and 5:

REACTIVE GRASP FOR PCCTP 1447

Figure 3. GENI – Insertion type 2 of the vertex v between vi and vj .

Algorithm 1. GENI(S, v).
1: Np ← DefineNearbyV ertices(V);
2: f∗ ←∞; S∗ ← S;
3: for vi, vj ∈ Np(v), vi 6= vj do
4: for orientation ∈ {clockwise,counter-clockwise} do
5: S′ ← insertion type1(vi, vj , S, v, orientation);
6: if f(S′) < f∗ then
7: S∗ ← S′;
8: f∗ ← f(S∗);
9: end if

10: S′′ ← insertion type2(vi, vj , S, v, orientation);
11: if f(S′′) < f∗ then
12: S∗ ← S′′;
13: f∗ ← f(S∗);
14: end if
15: end for
16: end for
17: return S∗

– US – Removal type 1 : let vj ∈ Np(vi+1), and let vk ∈ Np(vi−1) be a vertex in the path (vi+1,..., vj−1) for a
given orientation. When removing the vertex vi, the edges (vi−1, vi), (vi, vi+1), (vk, vk+1) and (vj , vj+1) are
also removed. Then, the route is reconnected using the edges (vi−1, vk), (vi+1, vj) and (vk+1, vj+1). Moreover,
the direction of the paths (vi+1,..., vk) and (vk+1, ..., vj) must be inverted.

– US – Removal type 2 : given an orientation of the route, consider vj ∈ Np(vi + 1) and vk a vertex in the
path (vj+1, ..., vi−2), in which vk ∈ Np(vi−1), and vl ∈ Np(vk + 1) belongs to the path (vj ,...,vk−1). When
removing the vertex vi from the route, one also removes the edges (vi−1, vi), (vi, vi+1), (vj−1, vj), (vl, vl+1)
and (vk, vk+1), and then, the connectivity of the route is re-established including the edges (vi−1, vk),-
(vl+1, vj−1), (vi+1, vj) and (vl, vk+1). Lastly, the direction of the paths (vi+1, ..., vj−1) and (vl+1, ..., vk) are
inverted to ensure the orientation of the route.

Algorithm 2 presents, in more detail, how the US step is performed. From lines 3 to 16, for each vertex in S
and each direction of the route, the two types of removal are executed. For reinserting the vertex v in the route,
every removal is followed by the two insertions types mentioned in the GENI step. Finally, in line 17, the route
with the lowest cost is returned.

For the PCCTP, we have used the GENIUS procedure as follows. A partial route is generated by three vertices
randomly chosen from T , and then, as long as the PRIZE is not reached and there is any uncovered vertex

1448 G. CLÍMACO ET AL.

Figure 4. US – Removal type 1 of the vertex vi.

Figure 5. US – Removal type 2 of the vertex vi.

Algorithm 2. US(S).
1: S∗ ← S
2: f∗ ← f(S∗)
3: for each v ∈ S do
4: for orientation ∈ {clockwise, counter-clockwise} do
5: S′ ← removal type1(v, S, orientation)
6: if (f(S′) < f∗) then
7: S∗ ← S′

8: f∗ ← f(S∗)
9: end if

10: S′′ ← removal type2(v, S, orientation)
11: if (f(S′′) < f∗) then
12: S∗ ← S′′

13: f∗ ← f(S∗)
14: end if
15: end for
16: end for
17: return S∗

w ∈ W , the following phases are performed: (i) a candidate list (CL) is created containing all vertices outside
the route; (ii) a Restricted Candidate List (RCL) is formed by the best-quality vertices from CL; (iii) a vertex
is selected at random from the RCL and inserted in the route using the GENI procedure; and (iv) one tries to
improve the route by performing the US method. The pseudo-code of the GENIUS procedure is presented in
Algorithm 3.

REACTIVE GRASP FOR PCCTP 1449

A vertex is inserted into the RCL if its incremental cost is inferior to the threshold cmin + (α× (cmax− cmin)),
where cmin and cmax are, respectively, the smallest and the largest incremental costs in CL. The greedy parameter
α ∈ [0, 1] indicates how greedy the heuristic is, the higher the value of α the greedier.

For calculating the incremental cost, we used the following greedy function, which considers the insertion of
a vertex k between two other vertices i and j.

g(k) = min
i,j∈V :i 6=j

(cik + ckj − cij) , (3.1)

where cij , cik and ckj are, respectively, the cost of the edges (i, j), (i, k) and (k, j).

Algorithm 3. GENIUS(seed,α).
1: i, j, k ← SelectRandom(T, seed);
2: S ← ∪ {i, j, k};
3: CL← V ;
4: CL← CL \ {i, j, k}
5: while (∃ t ∈ T : t /∈ S) or (∃ not covered w ∈W) or (PRIZE not collected) do
6: RCL← setRCL(CL,α);
7: v ← SelectRandom(RCL, seed);
8: S′ ← GENI(S, v);
9: CL← CL\v;

10: end while
11: S′′ ← US(S′); //route improvement
12: return S′′;

3.2. Local search phase

Each solution built at the constructive phase is the starting point for a local search procedure in which
we try to improve the solution. In our approach, the solution goes through a local search performed by the
VND method [20]. Proposed by Mladenović and Hansen [20], the VND is a local search metaheuristic that
uses different neighborhood structures. Given an ordered list of neighborhoods, the VND starts by exploring
the first neighborhood of S, Nk(S), and if a better solution is not found, the next neighborhood N (k+1)(S) is
explored. Otherwise, it returns to the first neighborhood on the list. The algorithm stops when all neighborhood
structures are explored, returning the best solution found.

The VND is detailed in the pseudo-code of Algorithm 4. From lines 2 to 10, it tries the next neighborhood
if the current solution is not improved. Otherwise, the local optimal solution for the current neighborhood is
obtained, and k is set to 1 so that the loop restarts for the newly accepted solution. When none of the neighbors
are able to improve S, i.e., k > kmax, the best current solution is returned.

For the VND, we used the following 15 neighborhood structures based on classical movements for the TSP as
swap and shift, and heuristics as GENIUS and Cheapest Insertion. In particular, one of them, the double remove -
simple insert cheapest, is proposed in this work.

Of the 15 neighborhood structures used, ten are intra-route:

1. shift: changes the position of a vertex within the route;
2. swap: swaps the position of two vertices in the route;
3. or-opt: movement similar to shift, but the position of n vertices is changed;
4. 2-opt: removes two non-adjacent edges of the solution and inserts two new ones to keep the single cycle;
5. 3-opt: removes three non-adjacent edges and inserts three new ones, similar to 2-opt;
6. remove simple re insert cheapest: removes a vertex and reinserts it via the cheaper insertion;
7. remove simple re insert genius: removes a vertex and reinsert it via GENIUS method;

1450 G. CLÍMACO ET AL.

8. remove genius re insert cheapest: Removes a vertex using a GENIUS removal method and inserts using
lower cost criteria between adjacent vertices;

9. remove genius re insert genius: removes and reinsert a vertex of the route using GENIUS;
10. remove cheapest re insert genius: removes using cheaper insertion criteria and re-enter via GENIUS;

and five of them are extra-route:

1. double remove simple insert cheapest: tries to replace two vertices with a single one that does not belong to
the solution;

2. remove simple insert cheapest: replaces a vertex of the route with an outside vertex, inserting via cheaper
insertion;

3. remove simple insert genius: replaces a vertex of the route with an outside vertex, inserting via GENIUS;
4. remove genius insert genius: replaces a vertex of the route with an outside vertex, by removing and inserting

via GENIUS; and
5. remove genius insert cheapest: removes a vertex from the solution via GENIUS and inserts a new one via

cheapest insertion.

It is important to remark that only feasible movements are performed.

Algorithm 4. VND(S).
1: k ← 1
2: while k ≤ k max do
3: S′ ← firstImprovingSolution(N (k)(S));
4: if S’ is better than S then
5: S ← S′;
6: k ← 1;
7: else
8: k ← k + 1;
9: end if

10: end while
11: return S

3.3. R-GRASP heuristic

In the construction phase of the R-GRASP, a preliminary computational experience showed that no value of
α always produced the best results. Therefore, we decided to devise a reactive version of the GRASP proposed
by Prais and Ribeiro [23], in which α is taken at random from a set of discrete values. Initially, all α values
have the same probability of being chosen. In the iterative process, one keeps the value of the solutions obtained
for each value of α. After a certain number of iterations, the probabilities are updated. Those corresponding
to values of which have produced good solutions are increased and, conversely, those corresponding to values
producing low-quality solutions are decreased. The Reactive GRASP (R-GRASP) is described in Algorithm 5,
and the value of β is fixed at 10, as in [23].

From lines 1 to 5, some variables are initialized and, from lines 6 to 24, while the maximum number of
iterations maxIt is not reached, the following instructions are executed. In line 7 α∗ is chosen at random from
set D with probability of pα. In lines 8 and 9, at each iteration, the solution construction and local search
procedures are performed. An initial solution S is built using the GENIUS method, adapted for the PCCTP,
and then the local search is performed employing the VND method. At the end of the local search, the VND
returns a solution value S′ that is compared to the best current solution value (line 10). If S′ is better than
Sbest, then the best solution value is updated (line 11). From lines 13 to 15, the worst solution value found so
far is updated. From lines 18 to 22, the probabilities are updated every 15 GRASP iterations. Finally, in line
25, the best solution value obtained over all iterations is returned.

REACTIVE GRASP FOR PCCTP 1451

Algorithm 5. R-GRASP(maxIt, seed, β = 10).
1: D ← {0.1, 0.2 . . . , 0.9} {set of possible values for α}
2: nα∗ ← 0 {number of iterations with α∗, ∀α∗ ∈ D}
3: Sumα∗ ← 0 {sum of values of solutions obtained with α∗}
4: pα= 1

|D|
∀α ∈ D

5: Sbest ←∞; Sworst ← 0; it← 0
6: while (it < maxIt) do
7: Choose α∗ from D with probability of pα
8: S ← GENIUS(seed, α∗)
9: S′ ← V ND(S)

10: if S′ < Sbest then
11: Sbest ← S′

12: end if
13: if S′ > Sworst then
14: Sworst ← S′

15: end if
16: sumα∗ ← sumα∗ + S′

17: nα∗ ← nα∗ + 1
18: if mod(it, 15) == 0 then
19: meanα ← sumα∗

nα∗

20: evalα ←
(
Sworst−meanα
Sworst−Sbest

)β
∀α ∈ D

21: pα ← evalα
(
∑
α′∈D evalα′)

∀α ∈ D
22: end if
23: it← it+ 1;
24: end while
25: return Sbest;

4. Computational results

In this section, it is presented the computational experiments performed with the R-GRASP, the ILS-RDM-
CI, and the mathematical formulations. All strategies presented were implemented in C programming language
and compiled with GCC version 4.7.0. All experiments were carried out on a 3.2 GHz Intel CoreTM i5 CPU under
Linux Fedora 15 operational system. As regards the MIP solver, Gurobi optimizer [13] was used disabling its
preprocessing heuristics, cuts, and the parallel mode set to none. We remark that the original source code of the
ILS-RDM-CI heuristic was kindly provided by its author Silva [29] and used in our computational experiments.

4.1. Instances

The instances used in this work were proposed by Silva [29], and consist of 144 test problems adapted from
the Traveling Salesman Problem (TSP) available at the TSP Library (TSPLIB) [25]. To prevent any instance
of the PCCTP from becoming an instance of the Covering Tour Problem (CTP), the PRIZE is never satisfied
with the collection of only the prizes associated with the mandatory vertices T .

These instances were named according to their original name in the TSPLIB, adding additional information
about the subsets R, T , W and the percentage of prize to be collected, concerning the total available prize.
For example, the instance brazil58 R18 T20 W20 25 has the following characteristics: 58 vertices in total; 18
optional vertices R; 20 mandatory vertices T ; 20 vertices to be covered W ; and 25% of the total instance prize
must be collected. These instances were made public in the Mendeley repository (see [5]).

4.2. Mathematical formulations

This section presents an unprecedented comparison between the two formulations present in the literature,
Flow [19] and Multi-flow [29], since the Flow formulation has never been tested before in Silva’s instances [29].
Then, the formulation with the best results will be compared with the performance of the proposed heuristic.

1452 G. CLÍMACO ET AL.

Table 1. Results for the mathematical formulations.

Flow Multi-flow
Instance Sol Best Bound T (s) Sol Best Bound T (s)
bier127 R43 T42 W42 75 251 062 83 756 3 600.0 – 96 950 3 600.0
brg180 R36 T36 W108 25 142 850 180 3 600.0 – – 3 600.0
pr76 R14 T46 W16 75 219 818 66871 3 600.0 90 862 90 862 523.3
lin105 R21 T63 W21 50 58 498 6 833 3 600.0 – 11 573 3 600.0
pr107 R35 T36 W36 75 57 482 20 295 3 600.0 – 37 040 3 600.0
pr144 R28 T29 W87 50 82 642 11 123 3 600.0 30 294 30 294 408.0
bier127 R24 T26 W77 50 125 855 62 064 3 600.0 74 745 74 745 495.2
kroA100 R34 T33 W33 75 47 550 10 137 3 600.0 – 14 549 3 600.0
kroB200 R40 T40 W120 50 45 214 7 306 3 600.0 – – 3 600.0
gr96 R18 T58 W20 25 – 33 028 3 600.0 42 746 42746 1 670.9
pr76 R24 T26 W26 50 116 859 52 704 3 600.0 74 539 74 539 1 012.3
gr96 R32 T32 W32 50 74 785 28 599 3 600.0 35 461 35 461 993.1
kroC100 R20 T60 W20 25 45 872 12 478 3 600.0 16 785 16 785 3 369.8
pr136 R26 T28 W82 25 76 646 34 449 3 600.0 47 620 47 620 243.8
kroE100 R34 T33 W33 75 27 385 10 255 3 600.0 – 14 202 3 600.0
kroC100 R34 T33 W33 50 40 281 8 004 3 600.0 13 235 13 235 1 796.3
pr124 R24 T25 W75 75 62 995 15 408 3 600.0 36 719 33 585 3 600.0
kroB100 R34 T33 W33 75 25 197 11 115 3 600.0 – 14 301 3 600.0
kroB100 R34 T33 W33 50 24 846 9 217 3 600.0 – 12 506 3 600.0
pr152 R29 T31 W92 75 70 971 19 577 3 600.0 49 167 40 798 3 600.0
u159 R31 T32 W96 50 47 566 24 433 3 600.0 28 613 28613 606.4
kroB150 R30 T30 W90 25 18 533 5 384 3 600.0 – 7 196 3 600.0
kroE100 R20 T60 W20 25 – 12 235 3 600.0 17 199 17 199 3 091.3
d198 R39 T40 W119 25 14 140 6 432 3 600.0 – 10 911 3 600.0

Table 1 presents the results obtained by executing these formulations. The first column refers to the name
of the instances. From the second column, the solution, the best bound and the time spent (in seconds) by
each formulation are presented. For clarity and ease of reading purposes, it was decided to present only the 50
instances that yield the biggest differences of performance between the formulations, either in solution quality
or CPU time. The complete results are available in a Mendeley repository (see [6]).

The fields with “–” indicate that, due to the time exceeded by 1 h of processing, or problems related to lack
of memory, it was not possible to solve the respective instance. The values in bold indicate the best results in
processing time and the best solution found.

From Table 1, it can be seen that, among the most prominent results, it is shown that the Multi-flow
formulation [29] outperforms the Flow formulation [19] in terms of processing time and quality of the solution
obtained. Considering all the 144 instances and the solution quality achieved, the Multi-Flow model wins in 46,
ties in 82, and loses in 16 instances. Concerning the CPU time spent, the formulation of Silva [29] is faster for
48 instances, slower for just one instance, and ties in 95 cases, where the time limit is reached in both models.

REACTIVE GRASP FOR PCCTP 1453

Table 1. Continued.

Flow Multi-flow
Instance Sol Best Bound T (s) Sol Best Bound T (s)
gr120 R40 T40 W40 25 17 438 3 514 3 600.0 4 301 4 301 1 929.8
pr107 R20 T22 W65 50 47 333 23 618 3 600.0 35 869 35 869 65.7
lin105 R35 T35 W35 75 – 6 340 3 600.0 11 090 10 549 3 600.0
rd100 R34 T33 W33 25 15 716 4 168 3 600.0 5 970 4 989 3 600.0
brazil58 R11 T35 W12 50 32 029 16 750 3 600.0 23 312 23 312 109.6
ch150 R30 T30 W90 75 10 981 3 876 3 600.0 4 292 4 292 513.7
ch130 R26 T78 W26 75 5 443 3 352 3 600.0 – – 3 600.0
gr120 R24 T24 W72 75 9 702 3 563 3 600.0 4 275 4 275 139.7
si175 R35 T35 W105 25 9 941 3 593 3 600.0 4 845 4 845 1 960.3
gr96 R18 T20 W58 75 34 379 24 392 3 600.0 30 015 30 015 467.1
ch130 R26 T26 W78 50 – 34 08 3 600.0 4139 4 139 296.0
kroC100 R20 T20 W60 75 15 900 7 078 3 600.0 12 582 12 582 78.4
rat195 R39 T39 W117 50 2 345 1 034 3 600.0 – 1 147 3 600.0
lin105 R21 T21 W63 25 11 121 4 853 3 600.0 8 893 8 893 90.9
brazil58 R18 T20 W20 25 21 198 15 786 3 600.0 19 417 19 417 798.9
kroE100 R20 T20 W60 50 12 260 6 632 3 600.0 10 586 10 586 551.7
eil101 R19 T61 W21 50 1 547 451 3 600.0 – 503 3 600.0
gr137 R26 T28 W83 25 59 114 25 048 3 600.0 60 630 39 167 3 600.0
rd100 R20 T20 W60 75 6 705 4 834 3 600.0 5 421 5 421 143.4
kroA100 R20 T20 W60 25 11 980 5 566 3 600.0 10 848 10 848 104.6
eil101 R33 T34 W34 75 1 367 407 3 600.0 462 462 3 600.0
hk48 R9 T29 W10 25 10 557 8 557 3 600.0 9 708 9 708 50.5
gr48 R9 T29 W10 75 5 135 4 097 3 600.0 4 415 4 415 0.4
rat99 R19 T20 W60 25 1 362 737 3 600.0 792 792 12.8
pr76 R14 T16 W46 25 66 533 50 625 3 600.0 66 007 66 007 10.4
kroA150 R30 T30 W90 50 19 405 6 544 3 600.0 19 898 9 778 3 600.0

4.3. Heuristics

The GRASP heuristic includes a probabilistic behavior by setting, in the construction phase, a Restricted
Candidate List (RCL) with the best candidates. In our proposal, the RCL is composed of all elements v ∈ CL
whose incremental cost is inferior to cmin + α∗(cmax − cmin).

As we made use of a reactive GRASP, there was no need to tune the α parameter, so the tuning experiments
were made just for the maxIt parameter. We have conducted the tuning experiment on a subset of 37 instances
that best represent the whole set of instances. By running ten executions for each one of the 37 instances, and
for each value of maxIt ∈ {50, 60, 70, 80, 90, 100}, we realized that maxIt = 70 fits better our approach.

Next, we conducted experiments with the remaining 107 instances, which were not used for tuning. Both
approached were run ten times with the same ten different seeds, and the results are presented in Table 2. As
in the section above, we have decided to present only the 50 instances in which R-GRASP had the greatest
impact over ILS-RDM-CI, and the complete results are available in a Mendeley repository (see [6]).

In Table 2, the first column indicates the name of the instance, and the results obtained by the MIP solver
Gurobi through the formulation of Silva [29], are presented on the second and third columns. The remaining
columns show for each method, respectively, the best solution, the average solution, and the average time spent.
The last column shows the percentage time difference between the compared heuristics according to equation
(4.1). Moreover, the symbol “–” indicates that no solution was found by Gurobi within a one-hour CPU time,
and the best results are bold-faced.

1454 G. CLÍMACO ET AL.

Table 2. Comparison between R-GRASP and ILS-RDM-CI heuristics.

ILS-RDM-CI R-GRASP

Instance Multi-flow
Best

Sol.

Avg.

Sol.

Avg.

T (s)

Best

Sol.

Avg.

Sol.

Avg.

T (s)
DiffT

pr226 R76 T75 W75 25 – 40 994 41 014.00 1 627.04 40 994 40 994.00 4.37 −99.70

rd400 R136 T132 W132 75 – 35 465 36 107.90 1 497.27 35 465 35 465.00 6.30 −99.50

pr124 R42 T41 W41 25 – 61 068 61 077.70 2 463.89 61 068 61 068.00 15.24 −99.30

lin318 R108 T105 W105 50 3 571 3 571 3 571.00 8.89 3 571 3 571.00 0.05 −99.30

kroA150 R50 T50 W50 25 2 650 2 650 2 650.00 27.96 2 650 2 650.00 0.19 −99.20

gr229 R77 T76 W76 75 19 417 19 417 19 417.00 55.64 19 417 19 417.00 0.44 −99.10

pr299 R101 T99 W99 75 35 869 35 869 35 869.00 22.79 35 869 35 869.00 0.17 −99.10

d198 R66 T66 W66 75 36 719 34 359 34 359.00 201.94 34 359 34 359.00 1.52 −99.10

kroB150 R50 T50 W50 50 5 970 5 552 5 552.00 169.72 5 552 5 552.00 1.32 −99.10

ts225 R75 T75 W75 75 792 792 792.00 74.65 792 792.00 0.65 −99.00

pr299 R59 T180 W60 25 13 235 13 235 13 238.40 821.52 13 235 13 235.00 7.55 −98.90

gil262 R88 T87 W87 50 863 847 847.00 217.58 847 847.00 2.09 −98.90

a280 R94 T93 W93 25 248 248 248.00 3.68 248 248.00 0.04 −98.80

lin318 R63 T191 W64 75 338 338 338.00 122.08 338 338.00 1.26 −98.80

si175 R59 T58 W58 75 5 421 5 421 5 421.00 35.57 5 421 5 421.00 0.37 −98.80

tsp225 R75 T75 W75 50 273 273 273.00 67.94 273 273.00 0.75 −98.70

pr299 R59 T60 W180 50 4 275 4 275 4 275.00 57.88 4 275 4 275.00 0.63 −98.70

pr144 R48 T48 W48 75 90 862 90 862 90 862.00 90.38 90 862 90 862.00 1.09 −98.60

rat195 R39 T39 W117 50 – 1 199 1 202.80 3 308.10 1 199 1 199.00 42.48 −98.50

gil262 R51 T158 W53 75 60 630 39 305 39 305.00 101.86 39 305 39 305.00 1.34 −98.50

gr137 R45 T46 W46 50 – 10 916 10 918.30 1 187.35 10 916 10 916.00 15.92 −98.40

si175 R35 T35 W105 25 6 916 6 916 6 916.00 115.10 6 916 6 916.00 1.69 −98.30

pr264 R88 T88 W88 50 4 301 4 301 4 301.00 82.83 4 301 4 301.00 1.23 −98.30

kroB200 R40 T40 W120 50 356 356 356.00 241.04 356 356.00 3.90 −98.10

rat195 R39 T117 W39 75 – 4 383 4 385.50 1 680.15 4 383 4 383.00 30.41 −97.90

kroB150 R30 T90 W30 75 12 582 12 582 12 582.00 14.77 12 582 12 582.00 0.27 −97.90

gr229 R45 T138 W46 50 – 35 442 35 442.00 1 721.60 35 442 35 442.00 31.58 −97.90

ts225 R45 T135 W45 50 – 550 551.00 552.07 550 550.00 10.66 −97.80

kroA200 R68 T66 W66 50 419 419 419.00 10.82 419 419.00 0.20 −97.80

bier127 R43 T42 W42 75 554 554 554.00 92.55 554 554.00 1.73 −97.80

eil101 R33 T34 W34 75 4 845 4 845 4 863.60 4 252.27 4 845 4 847.40 84.02 −97.70

pr264 R52 T159 W53 75 3 524 3 524 3 524.00 3.31 3 524 3 524.00 0.07 −97.60

brg180 R36 T36 W108 25 – 15 197 15 201.00 2 460.12 15 197 15 197.00 52.49 −97.50

gr229 R45 T46 W138 25 – 14 606 14 613.00 892.98 14 606 14 608.50 19.44 −97.50

kroB200 R68 T66 W66 75 10 848 10 848 10 848.00 52.14 10 848 10 848.00 1.12 −97.50

rat195 R65 T65 W65 25 540 505 505.00 53.65 505 505.00 1.14 −97.50

rd400 R80 T80 W240 50 74 745 74 745 74 745.00 42.41 74 745 74 745.00 0.98 −97.30

ch130 R26 T78 W26 75 7 593 7 593 7 593.00 14.01 7 593 7 593.00 0.37 −97.00

ch150 R30 T90 W30 50 66 007 66 007 66 007.00 5.87 66 007 66 007.00 0.15 −97.00

kroA150 R30 T90 W30 75 35 461 35 461 35 461.00 254.77 35 461 35 461.00 6.85 −96.90

gr202 R39 T41 W122 75 – 46 122 46 262.30 3 410.33 46 122 46 122.00 94.63 −96.80

d198 R39 T119 W40 50 387 387 387.00 56.11 387 387.00 1.57 −96.80

tsp225 R75 T75 W75 25 10 586 10 586 10 586.00 16.16 10 586 10 586.00 0.44 −96.80

kroA200 R40 T120 W40 25 – 25 905 25 934.40 1 805.06 25 905 25 905.00 52.32 −96.60

tsp225 R45 T45 W135 75 – 5 747 5 754.60 31 233.58 5.747 5 747.00 950.23 −96.50

pr107 R35 T36 W36 75 2 824 2 824 2,824.00 16.47 2,824 2,824.00 0.52 −96.40

a280 R56 T168 W56 50 4 292 4 292 4 292.00 107.75 4 292 4 292.00 3.34 −96.40

kroB100 R34 T33 W33 50 5 186 5 186 5 186.00 45.80 5 186 5 191.80 1.44 −96.30

ch130 R44 T43 W43 25 – 506 506.20 1 058.25 506 506.00 36.40 −96.00

a280 R56 T56 W168 75 – 46 940 46 954.40 2720.76 46 940 46 940.00 92.66 −96.00

REACTIVE GRASP FOR PCCTP 1455

Table 3. Summary of the results for the 107 instances: number of wins, ties, and losses of the
R-GRASP.

Best Sol. Avg. Sol. Avg. T (s)
Wins 11 48 (37) 96
Ties 86 40 0
Losses 10 19 (7) 11

DiffT = 100 × (TGRASP − Tils)
Tils

· (4.1)

From Table 2, one can observe that, regarding the best solution, the proposed approach outperforms the ILS-
based heuristic in five and ties in the remaining instances. Concerning the average solution, the performance
of the R-GRASP is even better, improving the results of the literature in 14 cases. The major improvement
obtained by our heuristic was in terms of computational time spent, in which a reduction of time above 96%
was applied for all 50 instances.

The summary of the complete results, with all the 107 instances, are presented in Table 3, which is shown
how many times the R-GRASP was superior (or not) to the ILS-RDM-CI and how many ties occurred, in terms
of the best solution, average solution, and average time in 10 executions. To better compare the results from
Table 3, we have applied the Non-parametric Friedman’s test [28] which presents, among brackets, the number
of R-GRASP wins and losses that have statistical significance with a certain confidence interval.

Friedman’s test is normally used to evaluate heuristics that make use of randomness, by identifying whether
or not the difference between their averages were due to the superiority of some of the heuristics, or just due to
the randomness of the methods. We have used the implementation provided by the [24] package, and we have
set the p-value equal to 0.05. Two hypotheses were made:

– The null hypothesis (H0): There are no significant differences between the average solutions found by the
compared heuristics; and

– the alternative hypothesis (H1): There are significant differences between the average solutions found by the
compared heuristics.

Hence, H0 can be rejected with 95% of confidence if, for each instance, Friedman’s test outputs a value
smaller than or equal to the p-value. If H0 is rejected, the alternative hypothesis H1 is considered.

From Table 3, we can observe that regarding the best solution, our approach is capable of improving them in
11 cases. Concerning the average solution, the achievements of our approach are more significant. The R-GRASP
reached better average solutions for 48 instances out of 107, in which there is statistical significance for 37 of
them. On the other hand, the ILS-RDM-CI performed better in only 19 cases, of which seven are statistically
significant. Regarding the processing time, a huge improvement was achieved by our approach, which was faster
in 96 instances.

5. Conclusions

Both GENIUS and VND heuristics have been successfully applied to different combinatorial problems. In
this work, we have proposed a Reactive GRASP heuristic, combining both GENIUS and VND to find good
quality solutions for the PCCTP. The GENIUS heuristic was used to create an initial solution with the α
periodically updated over the iterations, while the VND procedure was used to perform the local searches,
randomly exploring the solution space with insertions, removals and swap movements.

In order to verify the contribution of our proposal, experiments were performed in instances from literature
and the results were compared to the state-of-the-art heuristic ILS-RDM-CI. The computational results showed

1456 G. CLÍMACO ET AL.

that our proposal can produce, on average, 82.24% better or equal solutions than the ILS-based heuristic. In
terms of computational time spent, the proposed heuristic was far faster than ILS-RDM-CI, employing a huge
average time reduction of at least 80%, on 90% of the instances. Also, the R-GRASP results seem particularly
interesting in terms of the intermediate instances, where exact resolution is not possible within reasonable time
constraints, if the well-known commercial software, Gurobi, is used.

However, we must admit that even R-GRASP needs quite a lot of time when dealing with such large instances
as rd400 R80 T240 W80 25, pr226 R44 T136 W46 50, and gil262 R51 T53 W158 25. In order to improve
R-GRASP performances on PCCT problems, we may reconsider the GENI procedure which represents the
major part of the computational time. For the construction phase, we could avoid building the initial solution
from scratch by using long-term memory, through data mining or path-relinking [27]. For improving the solution
quality, we intend to study the incorporation of a MIP model to the R-GRASP for solving related subproblems
of the PCCTP, since it has been proved to be a interesting approach [1, 2, 7].

Finally, we would like to note that the algorithm is quite flexible and could be adapted to accommodate
other conditions or constraints, such as the covering tour problem [8] or prize-collecting traveling salesman
problem [3].

References

[1] F. Al-Hawari, M. Al-Ashi, F. Abawi and S. Alouneh, A practical three-phase ilp approach for solving the examination
timetabling problem. Int. Trans. Oper. Res. 27 (2020) 924–944.

[2] C. Almeder, A hybrid optimization approach for multi-level capacitated lot-sizing problems. Eur. J. Oper. Res. 200 (2010)
599–606.

[3] J. Bérubé, M. Gendreau and J. Potvin, A branch-and-cut algorithm for the undirected prize collecting traveling salesman
problem. Networks: An Int. J. 54 (2009) 56–67.

[4] S.A. Canuto, M.G.C. Resende and C.C. Ribeiro, Local search with perturbations for the prize-collecting Steiner tree problem
in graphs. Networks: An Int. J. 38 (2001) 50–58.

[5] G. Climaco, Prize-collecting covering tour problem (Data Set). Mendeley Data, V1 (2020). https://doi.org/10.17632/
8yjbfgcfvn.1.

[6] G. Climaco, Prize-collecting covering tour problem (Complete Results). Mendeley Data, V2 (2021). https://doi.org/10.
17632/8yjbfgcfvn.2.

[7] G. Cĺımaco, I. Rosseti, L. Simonetti and M. Guerine, Combining integer linear programming with a state-of-the-art heuristic
for the 2-path network design problem. Int. Trans. Oper. Res. 26 (2019) 615–641.

[8] J.R. Current and D.A. Schilling, The covering salesman problem. Transp. Sci. 23 (1989) 208–213.

[9] A.D. Ebrahimi and R. Sahraeian, The maximal backup covering tour problem. In: 6th International Conference on Industrial
Engineering and Industrial Management, Vigo, Spain (2012) 367–374.

[10] D.A. Flores-Garza, M.A. Salazar-Aguilar, S.U. Ngueveu and G. Laporte, The multi-vehicle cumulative covering tour problem.
Ann. Oper. Res. 258 (2017) 761–780.

[11] M. Gendreau, A. Hertz and G. Laporte, New insertion and postoptimization procedures for the traveling salesman problem.
Oper. Res. 40 (1992) 1086–1094.

[12] M. Gendreau, G. Laporte and F. Semet, The covering tour problem. Oper. Res. 45 (1997) 568–576.

[13] Gurobi Optimization, Gurobi optimizer reference manual (2019). Last accessed on December 10, 2019.

[14] M. Hachicha, M.J. Hodgson, G. Laporte and F. Semet, Heuristics for the multi-vehicle covering tour problem. Comput. Oper.
Res. 27 (2000) 29–42.

[15] M. Hamidi, K. Farahmand, S. Reza and K.E. Nygard, A hybrid grasp-tabu search metaheuristic for a four-layer location-routing
problem. Int. J. Logist. Syst. Manag. 12 (2012) 267–287.

[16] N. Jozefowiez, F. Semet and E. Talbi, The bi-objective covering tour problem. Comput. Oper. Res. 34 (2007) 1929–1942.

[17] İ. Karaoğlan, G. Erdoğan and Ç Koç, The multi-vehicle probabilistic covering tour problem. Eur. J. Oper. Res. 271 (2018)
278–287.

[18] H.R. Lourenço, O.C. Martin and T. Stützle, Iterated local search. In: Handbook of metaheuristics, edited by J.-Y. Potvin,
M. Gendreau. Springer, Boston, MA (2003) 320–353.

[19] A.R. de Lyra, O problema de recobrimento de rotas com coleta de prêmios: regras de redução, formulação matemática e
heuŕısticas (in portuguese), Master’s thesis, Programa de Pós-Graduação em Computao, Instituto de Computação, Universi-
dade Federal Fluminense, Niterói, RJ (2004).

[20] N. Mladenović and P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24 (1997) 1097–1100.

[21] C. Park and J. Seo, A grasp approach to transporter scheduling for ship assembly block operations management. Eur. J. Indus.
Eng. 7 (2013) 312–332.

[22] T.A. Pham, M. Hà and X.H. Nguyen, Solving the multi-vehicle multi-covering tour problem. Comput. Oper. Res. 88 (2017)
258–278.

https://doi.org/10.17632/8yjbfgcfvn.1
https://doi.org/10.17632/8yjbfgcfvn.1
https://doi.org/10.17632/8yjbfgcfvn.2
https://doi.org/10.17632/8yjbfgcfvn.2

REACTIVE GRASP FOR PCCTP 1457

[23] M. Prais and C.C. Ribeiro, Reactive grasp: An application to a matrix decomposition problem in TDMA traffic assignment.
INFORMS J. Comput. 12 (2000) 164–176.

[24] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria (2017).

[25] G. Reinelt, TSPLIB – a traveling salesman problem library. ORSA J. Comput. 3 (1991) 376–384.

[26] M.G.C. Resende and C.C. Ribeiro, Greedy randomized adaptive search procedures. In: Handbook of Metaheuristics, edited by
F. Glover and G. Kochenberger. Springer, Boston, MA (2003) 219–249.

[27] Í. Santana, A. Plastino and I. Rosseti, Improving a state-of-the-art heuristic for the minimum latency problem with data
mining. Int. Trans. Oper. Res. (2020) DOI: 10.1111/itor.12774.

[28] S. Siegel, Nonparametric statistics for the behavioral sciences. McGraw-Hill (1956).

[29] M.S.A. Silva, Problema de Recobrimento de Rotas com Coleta de Prêmios (in portuguese), Master’s thesis, Programa de
Pós-Graduação em Computao, Instituto de Computao, Instituto de Computação, Universidade Federal Fluminense, Niterói,
RJ (2009).

[30] B. Sylvain, H. Hideki, V. Michel and W. Christophe, Un algorithme grasp pour le problème de planification de techniciens et
d’interventions pour les télécommunications. RAIRO: OR, 43 (2009) 387–407.

[31] D. Trachanatzi, M. Rigakis, M. Marinaki and Y. Marinakis, A firefly algorithm for the environmental prize-collecting vehicle
routing problem. Swarm Evol. Comput. 57 (2020) 100712.

[32] F. Tricoire, A. Graf and W.J. Gutjahr, The bi-objective stochastic covering tour problem. Comput. Oper. Res. 39 (2012)
1582–1592.

https://doi.org/10.1111/itor.12774

	Introduction
	Problem definition
	Mathematical formulations

	A GRASP algorithm
	Construction phase
	Local search phase
	R-GRASP heuristic

	Computational results
	Instances
	Mathematical formulations
	Heuristics

	Conclusions
	References

