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COMPLETE ANALYSIS OF A DISCRETE-TIME BATCH SERVICE QUEUE
WITH BATCH-SIZE-DEPENDENT SERVICE TIME UNDER CORRELATED

ARRIVAL PROCESS: D-MAP/G(a,b)
n /1

Umesh Chandra Gupta1,∗, Nitin Kumar1, Sourav Pradhan2,
Farida Parvez Barbhuiya3 and Mohan L. Chaudhry4

Abstract. Discrete-time queueing models find a large number of applications as they are used in
modeling queueing systems arising in digital platforms like telecommunication systems and computer
networks. In this paper, we analyze an infinite-buffer queueing model with discrete Markovian arrival
process. The units on arrival are served in batches by a single server according to the general bulk-
service rule, and the service time follows general distribution with service rate depending on the size
of the batch being served. We mathematically formulate the model using the supplementary variable
technique and obtain the vector generating function at the departure epoch. The generating function
is in turn used to extract the joint distribution of queue and server content in terms of the roots of the
characteristic equation. Further, we develop the relationship between the distribution at the departure
epoch and the distribution at arbitrary, pre-arrival and outside observer’s epochs, where the first is
used to obtain the latter ones. We evaluate some essential performance measures of the system and
also discuss the computing process extensively which is demonstrated by some numerical examples.
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1. Introduction

Queueing models involving batch service have been investigated by many researchers in the past due to their
potential applications in several stochastic systems. Chaudhry and Templeton [12] and Medhi [20] provide a
detailed discussion on different types of bulk queueing models. The general bulk service rule finds applications
in the field of manufacturing and production systems, where the server starts service with a batch of minimum
threshold size “a” and a maximum size “b”. Moreover, the instances when the service rate (or service time)
is dependent on the size of the batch being served are more appropriate in modeling many of the real world
problems. Such queues are known as batch-size dependent service queues and play a vital role in group screening
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of blood or urine samples for a particular disease, say HIV (see Abolnikov and Dukhovny [1] as well as Bar-lev
et al. [5, 6]). A group, if found infected by the disease, is set for further testing which may occur individually.
If the size of the batch is large, then testing blood sample may take longer time which is a direct application
of batch-size dependent service. Moreover, in modern telecommunication systems, the transfer of information
(data, voice, videos, and images) occurs in batches of packets where the transmission time depends on the
batch size of packets. In recent years, many researchers have focussed on studying batch-size dependent service
queues, both with finite buffer (see Yu and Alfa [27] as well as Banerjee et al. [4]) and infinite buffer (see Claeys
et al. [14, 15] as well as Pradhan and Gupta [21, 22]). Claeys et al. [15] provided the application of batch-size
dependent service policy mainly in the area of telecommunication system and illustrated the effect of neglecting
batch-size dependent service times on the performance measures of the system.

In many real-world queueing systems, the arrival of customers or units does not occur independent of each
other. As for instance, in telecommunication systems the transmission of information, in the form of packetized
data, takes place with a very high speed over a large network which exhibits burstiness, correlation and self-
similarity. These features cannot be captured well using the traditional Poisson or Bernoulli arrival processes,
and hence Markovian arrival process (MAP) can be adopted to cope with the bursty and correlated nature of the
arrival process, see Chakravarthy [8,9]. In particular, the discrete-time analogue of MAP is discrete-Markovian
arrival process (D-MAP) which is more applicable in telecommunication context due to the discrete nature of the
transmission of information units in slotted systems, see for example Alfa [2,3], Bruneel and Kim [7], Hunter [19],
Takagi [25] and Woodward [26]. The arrival process D-MAP is also a versatile arrival process and covers many
other well known arrival processes such as the Bernoulli arrival process, the switched Bernoulli process (SBP),
the Markov modulated Bernoulli process (MMBP), and the discrete-time PH-renewal process. Much work has
been done in the past on queueing models with D-MAP arrival process with both finite and infinite buffers. As for
instance, Chaudhry and Gupta [10,11] studied the finite-buffer D-MAP/G/1/N and D-MAP/G(a,b)/1/N queues
where they obtained the queue-content distribution at various epochs. Further, Gupta et al. [17] addressed a
more general D-MAP/Gn/1/N queue with the service time depending on the number of customers waiting in
the queue. Yu and Alfa [27] considered a batch-size dependent service D-MAP/G(1,a,b)

n /1/N queue where the
server serves the customers individually if there are less than “a” customers in the queue, otherwise it servers
according to the general bulk service (a, b) rule. For the infinite-buffer queue, Pradhan and Gupta [22] addressed
the continuous-time MAP/G(a,b)

n /1 queue whereas Claeys et al. [14] studied the discrete time analogue of [22]
with the assumption of batch Markovian arrival process.

In this paper, we present a complete theoretical and computational analysis of an infinite-buffer discrete-time
queueing model with the arrival process as D-MAP. We assume that the server provides service in batches
according to the general bulk service rule and the service time follows general distribution and depends on the
size of the batch undergoing service. At first, using the supplementary variable technique, we obtain the steady-
state bivariate vector generating function (VGF) of the queue-length and server content at the departure epoch
of the batch, in a completely known form. Using the bivariate VGF we extract the distribution at the departure
epoch in terms of roots of the associated characteristic equation. Further, in order to obtain the distribution
at arbitrary, pre-arrival and outside observer’s epochs, we establish their relation with the distribution at the
departure epoch. Keeping note of the complexity of the model under consideration, we discuss in detail the
whole computing process by considering discrete phase-type and arbitrary distributed service time distributions
which cover almost all distributions that arise in various applications. We evaluate some significant performance
characteristics of the model and demonstrate the computing process by considering certain numerical examples.
It may be noted here that the use of supplementary variable technique makes the analysis of the model relatively
simpler, which, otherwise, would have been difficult using the embedded Markov chain technique because of the
complexity associated with the construction of the transition probability matrix.

It may be mentioned that Claeys et al. [14] have discussed a batch-service queue with batch Markovian
arrival process and batch-size-dependent service time i.e., D-BMAP/G(l,c)

n /1 queue. They derived the VGF
of joint distribution of queue length and server content at arbitrary slot. However, they did not discuss the
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inversion process for extracting the joint probabilities from that VGF. Instead, they derived the queue content
distribution when server is inactive, server processes at suboptimal capacity, number in a served batch, and tail
distribution. They also investigated the influence of correlation of the arrival process on the behavior of the
system. In the current paper, we first provide the VGF of queue length and server content distribution together
at departure or service completion epoch and then present a simple and elegant procedure for extracting the
joint probabilities from the VGF which involves several complicated mathematical expressions. We also provide
some pertinent marginal distribution along with performance measures using known distributions which are
simple and easy to use.

The information about the joint probabilities of queue and server content has notable advantages in many
applications to control the congestion at the queue level as well as at the server level. For example, for the
transmission of data in the mobile network from a base station (BS) to a suitable client station, where packets
of data arrive and are queued if the transmission channel is busy for onward transmission. The packets are
transmitted in batches with a minimum and maximum thresholds, and the transmission time is dependent on
the batch-size. In the case of heavy load at the BS as well with the transmission channel, onward transmission
of packets can be speeded up by knowing both the loads at the queue as well as at the transmission level.
The distribution of only either queue content or server content may not be helpful to adequately frame such
scenarios. The knowledge about the average number of customers with the server enables us to maximize the
serving capability of the server, for which the server content distribution is inescapable. It also plays a noteworthy
role to compute the system content distribution.

The remaining portion of the paper is organized as follows. In Section 2, we give the detailed description of the
considered discrete-time system followed by the analysis of the model in Section 3. In Section 4, we obtain the
joint queue and server content distribution at various epochs and then discuss the detailed computing process
in Section 5. In Section 6, we discuss a few special cases of the model and evaluate number of performance
measures in Section 7. We present various numerical examples in Section 8 which is followed by the conclusion.

2. Model description, assumptions and notations

We consider a discrete-time queueing model in which the customers arrive according to arrival process D-MAP
and service time of the batches of customers follow general distribution. Below we describe various processes:

– Arrival process: in D-MAP the arrivals are governed by an underlying m-state Markov chain having
probability Cij , (1 ≤ i, j ≤ m) with a transition from state i to j without an arrival, and having probability
Dij , (1 ≤ i, j ≤ m) with a transition from state i to j with an arrival. Let C = [Cij ], D = [Dij ] be the m×m
non-negative matrices both having at least one positive entry. The matrix (C + D) with (C + D)e = e, where
e is a column vector of ones with suitable dimension, is a stochastic matrix corresponding to an irreducible
Markov chain underlying the D-MAP. Let π = [π1, π2, . . . , πm] be the stationary probability vector of the
underlying Markov chain implying π(C + D) = π, πe = 1. The fundamental stationary arrival rate is given
by λ∗ = πDe.

– Service rule: a single server serves the customers in batches according to general bulk service (a, b) rule.
If the queue contains less than “a” customers, server enters into the idle period and waits to initiate the
service until at least “a” customers get accumulated. When the queue size is r (a ≤ r ≤ b), entire group
of customers are taken for service. However, if the queue size is greater than “b”, the server serves first “b”
customers and the remaining customers have to wait for the next round of service.

– Service process: the service time of the batches follow general distribution and are assumed to be dependent
on batch size of the ongoing service. Let us define the random variable Vr (a ≤ r ≤ b) as the service time
of a batch of size r with probability mass function sr(l) = Pr(Vr = l), l ≥ 1, probability generating
function S∗r (z) =

∑∞
l=1 sr(l)z

l, and the mean service time µ−1
r = Sr =

∑∞
l=1 l sr(l) = S

∗(1)
r (1), where

S
∗(1)
r (1) = d

dzS
∗
r (z)

∣∣∣
z=1

.
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Figure 1. Various time epochs in LAS-DA.

– Late arrival system with delayed access: in discrete-time, the time axis is divided into intervals of equal
length referred to as (time) slots, separated by slot boundaries. We assume that the length of each slot is
unity and time axis is marked as 0, 1, 2, . . . , t, . . . . We further assume that a potential arrival occurs in the
interval (t−, t) and a potential departure takes place in the interval (t, t+). However, if an arrival finds the
server idle, it cannot depart in the same slot in which it has arrived and has to wait for at least one slot
before getting served. This is referred to as late arrival system with delayed access (LAS-DA), see Hunter
[19]. Various time epochs at which events occur are delineated in Figure 1.

– For the stability of the system, we must have that ρ < 1 where ρ = λ∗

bµb
.

Let Ar(n, k), a ≤ r ≤ b, be the matrix of order m ×m whose (i, j)th element is the conditional probability
that, a departure which left at least a customers in the queue with the arrival process in state i, exactly n new
customers arrive during the service period (of length k slots) of a batch of r customers; the phase of the arrival
process is j at the departure epoch. Thus Ar(n, k) can be written as

Ar(0, k) = Ar(0, k − 1)C, k ≥ 1,
Ar(n, k) = Ar(n, k − 1)C + Ar(n− 1, k − 1)D, k ≥ n ≥ 1,

with Ar(0, 0) = I and Ar(n, k) = 0, n > k ≥ 0, where I and 0 are identity and zero matrix of order m ×m,
respectively. Also, let A∗r(z, k) be the matrix-generating function of Ar(n, k), then

A∗r(z, k) =
∞∑
n=0

Ar(n, k)zn = [A∗r(z, 1)]k = [C + Dz]k, (2.1)

where A∗r(z, 1) = C + Dz is the matrix-generating function of the number of customers arriving in one slot.
Let us denote the matrix Ar(n) = [Ar(n)]i,j , n ≥ 0, a ≤ r ≤ b, 1 ≤ i, j ≤ m, to be the conditional probability
that, a departure left at least “a” customers in the queue with the arrival process in state i, and during the
service period of r customers exactly n new customers arrive with the phase of the arrival process being j at
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the departure epoch. So, Ar(n) can be written as

Ar(n) =
∞∑

k=max(1,n)

sr(k)Ar(n, k), n ≥ 0.

Further, let A∗r(z) be the matrix-generating function of Ar(n). Therefore, we have

A∗r(z) =
∞∑
n=0

Ar(n)zn =
∞∑
k=1

sr(k)[C + Dz]k ≡ Sr(C + Dz), a ≤ r ≤ b. (2.2)

Remark 2.1. As and when more notations are used, they are defined at respective places.

3. Analysis of the model

Let us define the following random variables at the beginning of the slot boundary i.e. just before a potential
arrival:

– Nq(t−) ≡ Number of customers in the queue waiting for service at t−.
– Ns(t−) ≡ Number of customers with the server at t−.
– J(t−) ≡ Phase of the arrival process at t−.
– U(t−) ≡ Remaining service time of a batch in service (if any) at t−.

Let us define for 1 ≤ i ≤ m,

pi(n, 0; t−) = Pr{Nq(t−) = n,Ns(t−) = 0, J(t−) = i, server idle}, 0 ≤ n ≤ a− 1,
πi(n, r, u; t−) = Pr{Nq(t−) = n,Ns(t−) = r, J(t−) = i, U(t−) = u, server busy},

n ≥ 0, a ≤ r ≤ b, u ≥ 1.

Also, let us define the limiting probabilities as

pi(n, 0) = lim
t− →∞

pi(n, 0; t−),

πi(n, r, u) = lim
t− →∞

πi(n, r, u; t−).

Further, we define

p(n, 0) = [p1(n, 0), . . . , pi(n, 0), . . . , pm(n, 0)],
π(n, r, u) = [π1(n, r, u), . . . , πi(n, r, u), . . . , πm(n, r, u)].

Relating the states of the system at two consecutive time epochs t− and (t+1)− for each phase, and then using
matrix and vector notations after taking t− →∞, we obtain, in steady-state,

p(0, 0) = p(0, 0)C +
b∑

r=a

π(0, r, 1)C, (3.1)

p(n, 0) = p(n, 0)C +
b∑

r=a

π(n, r, 1)C + p(n− 1, 0)D +
b∑

r=a

π(n− 1, r, 1)D,

1 ≤ n ≤ a− 1, (3.2)
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π(0, a, u) = π(0, a, u+ 1)C + p(a− 1, 0)Dsa(u) +
b∑

r=a

π(a, r, 1)Csa(u)

+
b∑

r=a

π(a− 1, r, 1)Dsa(u), (3.3)

π(0, r, u) = π(0, r, u+ 1)C +
b∑
i=a

π(r, i, 1)Csr(u) +
b∑
i=a

π(r − 1, i, 1)Dsr(u),

a+ 1 ≤ r ≤ b, (3.4)
π(n, r, u) = π(n, r, u+ 1)C + π(n− 1, r, u+ 1)D, n ≥ 1, a ≤ r ≤ b− 1, (3.5)

π(n, b, u) = π(n, b, u+ 1)C + π(n− 1, b, u+ 1)D +
b∑

r=a

π(n+ b, r, 1)Csb(u)

+
b∑

r=a

π(n+ b− 1, r, 1)Dsb(u), n ≥ 1. (3.6)

Let us define the VGF of π(n, r, u) as

π∗(n, r, z) =
∞∑
u=1

π(n, r, u)zu, |z| ≤ 1, n ≥ 0, a ≤ r ≤ b. (3.7)

It follows from (3.7) that

π∗(n, r, 1) =
∞∑
u=1

π(n, r, u) = π(n, r), n ≥ 0, a ≤ r ≤ b.

Multiplying (3.3)–(3.6) by zu and summing over u from 1 to ∞, we get

π∗(0, a, z) =
1
z

(π∗(0, a, z)− zπ(0, a, 1))C + p(a− 1, 0)DS∗a(z)

+
b∑

r=a

π(a, r, 1)CS∗a(z) +
b∑

r=a

π(a− 1, r, 1)DS∗a(z), (3.8)

π∗(0, r, z) =
1
z

(π∗(0, r, z)− zπ(0, r, 1))C +
b∑
i=a

π(r, i, 1)CS∗r (z)

+
b∑
i=a

π(r − 1, i, 1)DS∗r (z), a+ 1 ≤ r ≤ b, (3.9)

π∗(n, r, z) =
1
z

(π∗(n, r, z)− zπ(n, r, 1))C

+
1
z

(π∗(n− 1, r, z)− zπ(n− 1, r, 1))D, n ≥ 1, a ≤ r ≤ b− 1, (3.10)

π∗(n, b, z) =
1
z

(π∗(n, b, z)− zπ(n, b, 1))C +
1
z

(π∗(n− 1, b, z)− zπ(n− 1, b, 1))D

+
b∑

r=a

π(n+ b, r, 1)CS∗b (z) +
b∑

r=a

π(n+ b− 1, r, 1)DS∗b (z), n ≥ 1. (3.11)
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Post multiplying (3.1) and (3.2) by e and then summing over n and r, we get

p(a− 1, 0)De =
a−1∑
n=0

b∑
r=a

π(n, r, 1)Ce+
a−2∑
n=0

b∑
r=a

π(n, r, 1)De. (3.12)

Post multiplying (3.8)–(3.11) by e and then summing over n and r, we get(
z − 1
z

) ∞∑
n=0

b∑
r=a

π∗(n, r, z)e = −
∞∑
n=0

b∑
r=a

π(n, r, 1)e

+
a−1∑
n=0

b∑
r=a

π(n, r, 1)CeS∗a(z) +
a−2∑
n=0

b∑
r=a

π(n, r, 1)DeS∗a(z)

+
b∑

r=a

π(a, r, 1)CeS∗a(z) +
b∑

r=a

π(a− 1, r, 1)DeS∗a(z),

+
b∑

n=a+1

b∑
r=a

π(n, r, 1)CeS∗n(z) +
b−1∑
n=a

b∑
r=a

π(n, r, 1)DeS∗n(z)

+
∞∑

n=b+1

b∑
r=a

π(n, r, 1)CeS∗b (z) +
∞∑
n=b

b∑
r=a

π(n, r, 1)DeS∗b (z). (3.13)

⇒
(
z − 1
z

) ∞∑
n=0

b∑
r=a

π∗(n, r, z)e =
a∑

n=0

b∑
r=a

π(n, r, 1)Ce(S∗a(z)− 1) +
a−1∑
n=0

b∑
r=a

π(n, r, 1)De(S∗a(z)− 1)

+
b∑

n=a+1

b∑
r=a

π(n, r, 1)Ce(S∗n(z)− 1) +
b−1∑
n=a

b∑
r=a

π(n, r, 1)De(S∗n(z)− 1)

+
∞∑

n=b+1

b∑
r=a

π(n, r, 1)Ce(S∗b (z)− 1) +
∞∑
n=b

b∑
r=a

π(n, r, 1)De(S∗b (z)− 1).

(3.14)

Letting z → 1 in (3.14), we get

1−
a−1∑
n=0

p(n, 0)e =
a∑

n=0

b∑
r=a

π(n, r, 1)eSa +
b∑

n=a+1

b∑
r=a

π(n, r, 1)eSn

+
∞∑

n=b+1

b∑
r=a

π(n, r, 1)eSb. (3.15)

Further, define the VGF of π∗(n, r, z) as

π̃∗(x, ξ, z) =
∞∑
n=0

b∑
r=a

π∗(n, r, z)xnξr, |x| ≤ 1, |ξ| ≤ 1, |z| ≤ 1.

Now multiplying (3.8)–(3.11) by xn and ξr and summing over n from 0 to ∞, and r from a to b, we get

π̃∗(x, ξ, z)
(
zI−C−Dx

z

)
= −

∞∑
n=0

b∑
r=a

π(n, r, 1)xnξr(C + Dx) + p(a− 1, 0)DξaS∗a(z)
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+
b∑

n=a

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)ξnS∗n(z)

+
∞∑

n=b+1

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)xn−bξbS∗b (z). (3.16)

Our aim is to determine the bivariate VGF of the queue and server content. For this, we utilize the eigenvalues
and eigenvectors of (C + Dx), see Claeys et al. [14] and Pradhan and Gupta [22]. Now, let γ1(x), γ2(x), . . . , γm(x)
be the eigenvalues and η1(x),η2(x), . . . ,ηm(x) be the corresponding right eigenvectors of (C + Dx). Thus, for
1 ≤ i ≤ m, we have

(C + Dx)ηi(x) = γi(x)ηi(x),
{γi(x)I− (C + Dx)}ηi(x) = 0. (3.17)

Setting z = γi(x) in (3.16) and post-multiplying it by ηi(x) on both sides and using (3.17), we get

∞∑
n=0

b∑
r=a

π(n, r, 1)xnξr(C + Dx)ηi(x) = p(a− 1, 0)DξaS∗a(γi(x))ηi(x)

+
b∑

n=a

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)ξnS∗n(γi(x))ηi(x)

+
∞∑

n=b+1

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)xn−bξbS∗b (γi(x))ηi(x).

(3.18)

Since (3.18) is true for all i from 1 to m, so we have

∞∑
n=0

b∑
r=a

π(n, r, 1)xnξr(C + Dx)[η1(x), . . . ,ηm(x)]

= p(a− 1, 0)Dξa[S∗a(γ1(x))η1(x), . . . , S∗a(γm(x))ηm(x)]

+
b∑

n=a

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)ξn [S∗n(γ1(x))η1(x), . . . , S∗n(γm(x))ηm(x)]

+
∞∑

n=b+1

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)xn−bξb [S∗b (γ1(x))η1(x), . . . , S∗b (γm(x))ηm(x)] . (3.19)

Further, define

R(x) = [η1(x),η2(x), . . . ,ηm(x)]. (3.20)

The inverse of R(x) exists whenever each eigenvalue is of multiplicity 1. For details, see [14, 22]. Now, using
(3.20) in (3.19) and then post-multiplying it by R−1(x), we get

∞∑
n=0

b∑
r=a

π(n, r, 1)xnξr(C + Dx)

= p(a− 1, 0)DξaR(x)[diag{S∗a(γi(x))}mi=1]R−1(x)

+
b∑

n=a

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)ξnR(x) [diag{S∗n(γi(x))}mi=1] R−1(x)
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+
∞∑

n=b+1

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)xn−bξbR(x) [diag{S∗b (γi(x))}mi=1] R−1(x), (3.21)

where [diag{S∗r (γi(x))}mi=1], a ≤ r ≤ b, is a diagonal matrix of order m with diagonal entries
S∗r (γ1(x)), . . . , S∗r (γm(x)). Using the theory of eigenvalues and eigenvectors, we can write

C + Dx = R(x) [diag{γi(x)}mi=1] R−1(x),
and S∗r (C + Dx) = R(x) [diag{S∗r (γi(x))}mi=1] R−1(x). (3.22)

Now, using (2.2) and (3.22) in (3.21), we obtain

∞∑
n=0

b∑
r=a

π(n, r, 1)xnξr(C + Dx) = p(a− 1, 0)DξaA∗a(x)

+
b∑

n=a

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)ξnA∗n(x)

+
∞∑

n=b+1

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)xn−bξbA∗b(x), (3.23)

where A∗r(x) = S∗r (C + Dx), (a ≤ r ≤ b). Now, using (3.23), we obtain the bivariate VGF of the queue content
at the departure epoch which is given in the next section.

3.1. Bivariate VGF at departure epoch

Let us define π+(n, r) = [π+
1 (n, r), π+

2 (n, r), . . . , π+
m(n, r)] as the joint probability vector whose jth element

(π+
j (n, r)) is the probability that there are n customers in the queue at departure epoch of a batch of size

r and arrival process is in phase j. Also let φ+(n) = Probability vector that there are n customers in the
queue at departure epoch of a batch =

∑b
r=a π

+(n, r). Further, define π̃+(x, ξ) =
∑∞
n=0

∑b
r=a π

+(n, r)xnξr

and Φ+(x) =
∑∞
n=0 φ

+(n)xn. Using probabilistic arguments, π+(n, r) and π(n, r, 1) are connected as:

π+(0, r) = Ωπ(0, r, 1)C, (3.24)
π+(n, r) = Ω(π(n, r, 1)C + π(n− 1, r, 1)D), n ≥ 1, a ≤ r ≤ b, (3.25)

where Ω−1 =
∑∞
n=0

∑b
r=a π(n, r, 1)e.

Lemma 3.1.

Ω−1 = ψ−1

(
1−

a−1∑
n=0

p(n, 0)e

)
,

where ψ =
∑a−1
n=0 φ

+(n)eSa +
∑b
n=a φ

+(n)eSn +
∑∞
n=b+1 φ

+(n)eSb.

Proof. Equation (3.15) can be written as

1−
a−1∑
n=0

p(n, 0)e =
b∑

r=a

π(0, r, 1)CeSa +
a−1∑
n=1

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)eSa

+
b∑

n=a

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)eSn
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+
∞∑

n=b+1

b∑
r=a

(π(n, r, 1)C + π(n− 1, r, 1)D)eSb.

Multiplying both sides of above equation by Ω and using (3.24) and (3.25), we get

Ω

(
1−

a−1∑
n=0

p(n, 0)e

)
=

a−1∑
n=0

φ+(n)eSa +
b∑

n=a

φ+(n)eSn +
∞∑

n=b+1

φ+(n)eSb.

�

Lemma 3.2.

Ωp(a− 1, 0) =
a−1∑
n=0

φ+(n)
(
D
)(a−1−n)

(I−C)−1,

where D = (I−C)−1D.

Proof. Multiplying (3.1) by Ω and using (3.24) and (3.25), we get

Ωp(0, 0)(I−C) = φ+(0),
Ωp(0, 0) = φ+(0)(I−C)−1.

Now multiplying (3.2) by Ω for n = i and after simplification, we finally get

Ωp(i, 0)(I−C) =
i∑

n=0

φ+(n)
(
D
)(i−n)

, 1 ≤ i ≤ a− 1,

which gives

Ωp(a− 1, 0)(I−C) =
a−1∑
n=0

φ+(n)
(
D
)(a−1−n)

,

Ωp(a− 1, 0) =
a−1∑
n=0

φ+(n)
(
D
)(a−1−n)

(I−C)−1.

�

Now multiplying (3.23) by Ω and using the definition of departure epoch probabilities and Lemma 3.1, we
get

π̃+(x, ξ) =
a−1∑
n=0

φ+(n)
(
D
)(a−n)

ξaA∗a(x) +
b∑

n=a

φ+(n)ξnA∗n(x) +
ξb

xb

∞∑
n=b+1

φ+(n)xnA∗b(x). (3.26)

Setting ξ = 1 in (3.26), we get the VGF of only queue length distribution Φ+(x)(= π̃+(x, 1)) as

Φ+(x) =
a−1∑
n=0

φ+(n)
(
D
)(a−n)

A∗a(x) +
b∑

n=a

φ+(n)A∗n(x) +
1
xb

∞∑
n=b+1

φ+(n)xnA∗b(x), (3.27)

which gives

Φ+(x)(xbI−A∗b(x)) =
a−1∑
n=0

φ+(n)
((

D
)(a−n)

xbA∗a(x)− xnA∗b(x)
)
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+
b−1∑
n=a

φ+(n)
(
xbA∗n(x)− xnA∗b(x)

)
. (3.28)

From (3.26), we have

π̃+(x, ξ) =
a−1∑
n=0

φ+(n)
(
D
)(a−n)

ξaA∗a(x) +
b∑

n=a

φ+(n)ξnA∗n(x)

+
ξb

xb

(
Φ+(x)−

b∑
n=0

φ+(n)xn
)

A∗b(x). (3.29)

Now substituting the value of the vector Φ+(x) from (3.28) into (3.29), we get

π̃+(x, ξ) =
a−1∑
n=0

φ+(n)
(
D
)(a−n)

ξaA∗a(x) +
b∑

n=a

φ+(n)ξnA∗n(x)

+
ξb

xb

([
a−1∑
n=0

φ+(n)
((

D
)(a−n)

xbA∗a(x)− xnA∗b(x)
)

+
b−1∑
n=a

φ+(n)
(
xbA∗n(x)− xnA∗b(x)

)]
(xbI−A∗b(x))−1

−
b∑

n=0

φ+(n)xn
)

A∗b(x). (3.30)

Post multiplying by (xbI−A∗b(x)) on both sides of (3.30), we obtain

π̃+(x, ξ) =

(
a−1∑
n=0

φ+(n)
( (
ξb − ξa

) (
D
)(a−n)

A∗a(x)A∗b(x) +
(
D
)(a−n)

ξaxbA∗a(x)− ξbxnA∗b(x)
)

+
b−1∑
n=a

φ+(n)
( (
ξb − ξn

)
A∗n(x)A∗b(x) + ξnxbA∗n(x)− ξbxnA∗b(x)

))(
xbI−A∗b(x)

)−1
. (3.31)

4. Joint queue and server content distributions at various epochs

In this section, we obtain joint queue and server content distribution at arbitrary, pre-arrival and outside
observer’s epochs.

4.1. Joint queue and server content distribution at arbitrary epoch

The joint distribution of queue and server content at arbitrary epoch plays an important role in obtaining
system length distribution and also in evaluation of several key performance measures of the queueing model
under consideration. The following theorem presents a correspondence between departure and arbitrary epoch
probability vectors.

Theorem 4.1. The steady-state probability vectors {p(n, 0),π(n, r)} and {π+(n, r),φ+(n)} are connected by

p(n, 0) = Ω−1
n∑
j=0

φ+(j)
(
D
)(n−j)

(I−C)−1
, 0 ≤ n ≤ a− 1, (4.1)

π(0, a) =
(
p(a− 1, 0)D + Ω−1

(
φ+(a)− π+(0, a)

) )
(I−C)−1

, (4.2)
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π(0, r) = Ω−1
(
φ+(r)− π+(0, r)

)
(I−C)−1

, a+ 1 ≤ r ≤ b, (4.3)

π(n, r) =
(
π(n− 1, r)D− Ω−1π+(n, r)

)
(I−C)−1

, n ≥ 1, a ≤ r ≤ b− 1, (4.4)

π(n, b) =
(
π(n− 1, b)D + Ω−1

(
φ+(n+ b)− π+(n, b)

) )
(I−C)−1

, n ≥ 1. (4.5)

Proof. From Lemma 3.2, we obtain (4.1). Now setting z = 1 in (3.8)–(3.11), we get

π(0, a) (I−C) = − π(0, a, 1)C + p(a− 1, 0)D +
b∑

r=a

π(a, r, 1)C +
b∑

r=a

π(a− 1, r, 1)D, (4.6)

π(0, r) (I−C) = − π(0, r, 1)C +
b∑
i=a

π(r, i, 1)C +
b∑
i=a

π(r − 1, i, 1)D, a+ 1 ≤ r ≤ b, (4.7)

π(n, r) (I−C) = − π(n, r, 1)C + (π(n− 1, r)− π(n− 1, r, 1))D, n ≥ 1, a ≤ r ≤ b− 1, (4.8)

π(n, b) (I−C) = − π(n, b, 1)C + (π(n− 1, b)− π(n− 1, b, 1))D +
b∑

r=a

π(n+ b, r, 1)C

+
b∑

r=a

π(n+ b− 1, r, 1)D, n ≥ 1. (4.9)

Multiplying (4.6)–(4.9) by Ω, using Lemmas 3.1 and 3.2, and the definition of departure epoch, we get the
required relation between arbitrary and departure epochs as given in (4.2)–(4.5). �

4.2. Queue length and server content distribution at pre-arrival epoch

Let p−(n, 0), (0 ≤ n ≤ a − 1) be the 1 × m vectors whose ith component p−i (n, 0) is the steady-state
probability that an arrival finds n customers in the queue with server idle and phase of the arrival process i.
Similarly, let π−(n, r), (n ≥ 0, a ≤ r ≤ b) be the 1×m vectors whose ith component π−i (n, r) is the steady-state
probability that an arrival finds n (≥ 0) customers in the queue with server busy having r (a ≤ r ≤ b) customers
in service and phase of the arrival process being i. It can be easily shown (see [22]) that the vectors p−(n, 0)
and π−(n, r) are given by

p−(n, 0) =
p(n, 0)D

λ∗
, 0 ≤ n ≤ a− 1, (4.10)

π−(n, r) =
π(n, r)D

λ∗
, a ≤ r ≤ b, n ≥ 0. (4.11)

4.3. Queue length and server content distribution at outside observer’s epoch

In LAS-DA, since an outside observer’s observation epoch falls in a time interval after the potential departure
of a batch and before a potential arrival, the probability vector π◦(n, r), (a ≤ r ≤ b, n ≥ 0) that an outside
observer sees n customers in the queue and r with the server is the same as that of the arbitrary epoch
π(n, r), (a ≤ r ≤ b, n ≥ 0), i.e. π◦(n, r) = π(n, r), (a ≤ r ≤ b, n ≥ 0).

This completes the theoretical analysis of the model. In the next section, we present a step-wise procedure
for computing the distribution of queue and server content at various epochs. One can observe from Section 4
that in order to obtain these distributions, first we have to find the distribution at departure epoch which is
discussed in the next section.

5. Computing process to obtain the distributions at various epochs

In this section we present the step-wise computing procedure for evaluation of the distribution at departure
epoch. In order to extract the probability distribution from (3.31), first we have to determine the unknown
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probability vectors {φ+(n)}b−1
n=0. Thus in total we have to determine mb unknowns i.e. {φ+

i (n)}b−1
n=0, 1 ≤ i ≤ m.

We obtain these unknowns from (3.28) using the roots method given in Chaudhry et al. [13], Gupta et al. [18]
and Pradhan and Gupta [22]. For this, we first obtain the expressions for A∗r(x), a ≤ r ≤ b, by considering
commonly used service-time distributions.

5.1. Evaluation of A∗r(x), a ≤ r ≤ b
In this section, we obtain the expression for A∗r(x), a ≤ r ≤ b when service-time distribution follows: (i)

discrete phase-type (DPH) distribution (ii) arbitrary distribution. These distributions cover almost all types of
distributions that arise in many real life situations.

5.1.1. Service-time follows DPH distribution

Let service-time follow a DPH distribution with representation DPHr(βr,Tr), (a ≤ r ≤ b), where βr and Tr

are row vectors and matrices, respectively, of dimension ν. We have sr(k) = βrT
k−1
r T0

r, where T0
r = (Iν−Tr)e.

Using (2.2), we obtain

A∗r(x) =
∞∑
k=1

[C + Dx]k ⊗ sr(k),

=
∞∑
k=1

[Im(C + Dx)k−1(C + Dx)]⊗
(
βrT

k−1
r T0

r

)
= (Im ⊗ βr)

( ∞∑
k=1

(C + Dx)k−1 ⊗Tk−1
r

)(
(C + Dx)⊗T0

r

)
= (Im ⊗ βr)

( ∞∑
k=1

((C + Dx)⊗Tr)k−1

)(
(C + Dx)⊗T0

r

)
.

A∗r(x) = (Im ⊗ βr)(Imν − (C + Dx)⊗Tr)−1
(
(C + Dx)⊗T0

r

)
,

where ⊗ is used for the Kronecker product.
Since the inverse term is appearing in the expression of A∗r(x), we can write A∗r(x) as

A∗r(x) =
Xr(x)
yr(x)

,

where
Xr(x) = (Im ⊗ βr) Adj (Imν − (C + Dx)⊗Tr)

(
(C + Dx)⊗T0

r

)
and

yr(x) = Det (Imν − (C + Dx)⊗Tr).

Thus we can conclude that each element of the matrix A∗r(x) is a rational function with the denominator as
yr(x).

Remark 5.1. (i) If we set βr = (1) and Tr = [1− µr], we get A∗r(x) for geometric service time distribution.

(ii) If we set βr = (1, 0, 0, . . . , 0) and Tr =


1− µr µr

1− µr µr
. .
. .

1− µr

, we get A∗r(x) for negative binomial

service time distribution.
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5.1.2. Service-time follows arbitrary distribution

Let service-time be arbitrarily distributed with maximum K slots so that

S∗r (z) =
K∑
n=1

sr(n)zn,
K∑
i=1

sr(i) = 1.

This leads to A∗r(x) =
∑K
n=1 sr(n)(C + Dx)n.

Remark 5.2. If sr(K) = 1 and sr(i) = 0, (for all i < K) then we obtain A∗r(x) for deterministic service time
distribution with parameter K, i.e., A∗r(x) = (C + Dx)K .

Remark 5.3. From the above expressions of A∗r(x), we can conclude that each element of A∗r(x) can be written
as A∗r(x) = Xr(x)

yr(x) . Note that for arbitrary service time distribution yr(x) = 1.

5.2. Computing process for evaluation of distributions at departure epochs

First we present step-wise computing process for the evaluation of unknown probability vector, then using it
we extract the remaining probability vectors.

5.2.1. Determination of unknown probability vectors

As each element of the matrix A∗r(x) is a rational function, we assume that the (i, j)-th element of A∗r(x) is
Xr;i,j(x)
yr(x) . So that the (i, j)-th element of (xbI−A∗b(x)) is

[xbI−A∗b(x)]i,j =
wi,j(x)
yb(x)

, where wi,j(x) =
{
xbyb(x)−Xb;i,j(x), i = j
−Xb;i,j(x), i 6= j.

(5.1)

Now (3.28) can be written in the form of m simultaneous equations in m unknowns φ+
j (x), 1 ≤ j ≤ m.

w1,1(x)φ+
1 (x) + w2,1(x)φ+

2 (x) + . . .+ wm,1(x)φ+
m(x) = Θ1(x)

w1,2(x)φ+
1 (x) + w2,2(x)φ+

2 (x) + . . .+ wm,2(x)φ+
m(x) = Θ2(x)

...
...

w1,m(x)φ+
1 (x) + w2,m(x)φ+

2 (x) + . . .+ wm,m(x)φ+
m(x) = Θm(x),

where Θj(x), 1 ≤ j ≤ m is given as

Θj(x) =

[
b−1∏
i=a+1

yi(x)

{
m∑
l=1

a−1∑
n=0

m∑
k=1

φ+
k (n)(D)(a−n)

k,l Xa;l,j(x)xbyb(x)

−
m∑
l=1

a−1∑
n=0

φ+
l (n)xnXb;l,j(x)ya(x)

}
−

m∑
l=1

b−1∑
n=a

φ+
l (n)

{
xbyb(x)Xn;l,j(x)

− xnyn(x)Xb;l,j(x)}
b−1∏

i=a, i 6=n

yi(x)

/[
b−1∏
i=a

yi(x)

]
. (5.2)

Now solving the above system of equations using Cramer’s rule, we obtain φ+
j (x), 1 ≤ j ≤ m, as

φ+
j (x) =

|Vj(x)|
|V (x)|

, 1 ≤ j ≤ m, (5.3)
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where both Vj(x) and V (x) are square matrices and their (k, l)-th element is given by

[Vj(x)]k,l =
{
vl,k(x), l 6= j
Θk(x), l = j

and [V (x)]k,l = vl,k(x). (5.4)

The j-th column of the square matrix Vj(x) is replaced by [Θ1(x),Θ2(x), . . . ,Θm(x)]T and all other elements
are the same as those of V (x).

Let us assume that |V (x)| is a polynomial in x which must possess a non-zero coefficient of power of x.
Finally, we have

φ+
j (x) =

Υj(x)
Υ(x)

, 1 ≤ j ≤ m, (5.5)

where Υj(x) = |Vj(x)| and Υ(x) = |V (x)|. To be more specific what we are having now is the pgf of only queue
length distribution for each phase at a departure epoch. Till now we have not discussed about the determination
of unknown probability vectors. To do this, we consider (5.5), and let us call Υ(x) = 0 as characteristic equation
associated with the pgf of each phase. It can be easily shown that |xbI−A∗b(x)| ≡ Υ(x)

{yb(x)}m = 0 has exactly mb
roots inside and on the closed complex unit disk |x| ≤ 1, see Gail et al. [16], p. 5. Let us assume that these roots
are distinct and denote them as x1, x2, . . . , xmb with xmb = 1. However, in case of repeated roots the procedure
has to be modified slightly which is a standard procedure in the literature on queueing theory.

Analyticity of φ+
j (x) in |x| ≤ 1 implies that the roots x1, x2, . . . , xmb−1 of Υ(x) = 0 (the denominator of (5.5))

must coincide with that of numerator. Thus, by taking any one component of Φ+(x), say φ+
j (x), (1 ≤ j ≤ m)

we are led to mb− 1 equations as

Υj(xi) = 0, 1 ≤ i ≤ mb− 1. (5.6)

The necessity of one more equation can be fulfilled by employing the normalizing condition Φ+(1)e = 1, which
leads to

m∑
j=1

Υ
′

j(1) = Υ
′
(1). (5.7)

Solving (5.6) and (5.7) together, we get the mb unknowns φ+
j (n), (0 ≤ n ≤ b− 1, 1 ≤ j ≤ m).

5.3. Extraction of probability vectors from bivariate VGF

In the previous section, we have obtained unknown probability vectors {φ+(n)}b−1
n=0. So, we have bivariate

VGF π̃+(x, ξ) (see, (3.31)) in completely known form. Now, our aim is to extract the probability vectors
π+(n, r), n ≥ 0, a ≤ r ≤ b. However, it is not easy to invert π̃+(x, ξ) directly. To make it simpler we first
collect the coefficient of ξj , a ≤ j ≤ b, from both the sides of (3.31), and they are given by

coefficient of ξa :
∞∑
n=0

π+(n, a)xn =
a∑

n=0

φ+(n)D
a−n

A∗a(x). (5.8)

coefficient of ξj :
∞∑
n=0

π+(n, j)xn = φ+(j)A∗j (x), a+ 1 ≤ j ≤ b− 1. (5.9)

coefficient of ξb :
∞∑
n=0

π+(n, b)xn =

[
a−1∑
n=0

φ+(n)
{

D
a−n

A∗a(x)− xnI
}

+
b−1∑
n=a

φ+(n) {A∗n(x)− xnI}

]
A∗b(x)

[
xbI−A∗b(x)

]−1
. (5.10)
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Collecting the coefficient of xn from both the sides of (5.8) and (5.9) we get

π+(n, a) =
a∑

n=0

φ+(n)D
a−n

Aa(n), n ≥ 0. (5.11)

π+(n, j) = φ+(j)Aj(n), a+ 1 ≤ j ≤ b− 1, n ≥ 0. (5.12)

Now, only vector π+(n, b) is left to be determined. That can be done by inverting (5.10), where each component
of the vector is a polynomial in x for a specific service time distribution.

Let us denote
∑∞
n=0 π

+(n, b)xn as ψ+(x) =
[
ψ+

1 (x), ψ+
2 (x), . . . , ψ+

m(x)
]

to make the analysis easier for the
rest of the portion of this section. In order to extract the probability vectors from ψ+(x), the same analysis as
used in the previous section for Φ+(x) has to be carried out. In view of this, Φ+(x) and Θj(x) (used in the
earlier case in (5.2)) has to be replaced by ψ+(x) and Fj(x), respectively, where Fj(x), (1 ≤ j ≤ m) is given by

Fj(x) =

 m∑
i=1


m∑
l=1

a−1∑
n=0

m∑
k=1

φ+
k (n)(D)(a−n)

k,l

b−1∏
v=a+1

yv(x)Xa;l,i(x) +
b−1∑
n=a

φ+
l (n)

b−1∏
v=a;v 6=n

yv(x)Xn;l,i(x)


−

(
b−1∑
n=0

φ+
i (n)xn

)
b−1∏
v=a

yv(x)

}
Xb;i,j(x)

]/[
b−1∏
v=a

yv(x)

]
. (5.13)

Therefore the simplified form of ψ+
j (x) is given by

ψ+
j (x) =

|Vj(x)|
|V (x)|

, 1 ≤ j ≤ m, (5.14)

where both Vj(x) and V (x) represent square matrices with (k, l)-th elements given by

[Vj(x)]k,l =
{
vl,k(x), l 6= j
Fk(x), l = j

and [V (x)]k,l = vl,k(x). (5.15)

The j-th column of the square matrix Vj(x) is replaced by [F1(x), F2(x), . . . , Fm(x)]T and all other elements
are the same as those of V (x).

Let us assume that |V (x)| is a polynomial in x which must possess a non-zero coefficient of power of x.
Finally, we have

ψ+
j (x) =

Υj(x)
Υ(x)

, 1 ≤ j ≤ m, (5.16)

where Υj(x) = |Vj(x)| and Υ(x) = |V (x)|. As ψ+
j (x) is a rational function in completely known polynomials,

we can proceed to find its partial fraction. Let us assume that Υj(x) and Υ(x) are the polynomials of degree
L1 and M1, respectively.

We already know that Υ(x) = 0 has mb roots inside or on the unit circle. So, there are total (M1−mb) distinct
roots of Υ(x) = 0 in |x| > 1 (for repeated roots see Rem. 5.4). Let us denote these roots by α1, α2, . . . , αM1−mb.
Now based on the value of L1 and M1, the following two cases arise:

Case 1. L1 ≥M1.
Applying the partial-fraction expansion, the rational function ψ+

j (x) (1 ≤ j ≤ m), can be uniquely written
as

ψ+
j (x) =

L1−M1∑
i=0

τi,jx
i +

M1−mb∑
k=1

γk,j
αk − x

, (5.17)
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for some constants τi,j and γk,j ’s. The first sum is the result of the division of the polynomial Υj(x) by Υ(x)
and the constants τi,j are the coefficients of the resulting quotient. Using the residue theorem, we have

γk,j = −Υj(αk)
Υ′(αk)

, k = 1, 2, . . . ,M1 −mb.

Now, collecting the coefficient of xn from both the sides of (5.17), we get

π+
j (n, b) = τn,j +

M1−mb∑
k=1

γk,j

αn+1
k

, n ≥ 0. (5.18)

Case 2. L1 < M1.
Using partial-fraction technique on ψ+

j (x) we have

ψ+
j (x) =

M1−mb∑
k=1

γk,j
αk − x

, (5.19)

where

γk,j = −Υj(αk)
Υ′(αk)

, k = 1, 2, . . . ,M1 −mb.

Now, collecting the coefficient of xn from both the sides of (5.19), we obtain

π+
j (n, b) =

M1−mb∑
k=1

γk,j

αn+1
k

, n ≥ 0. (5.20)

This completes the analysis of obtaining the departure epoch probability vectors presented in (5.11), (5.12),
(5.18) and (5.20).

Remark 5.4. In this paper we are assuming that all the roots of Υ(x) = 0 are distinct, for repeated roots
slight modification is needed. For that, one may refer to Pradhan and Gupta [22,23].

6. Special cases

In this section we discuss some special cases of the model.

6.1. D-MAP/G/1/∞ queue

We assume that the server provides individual service to the customers, according to the order of their arrival,
i.e., a = 1, b = 1. As a result, the question of dependency of service rate on the batch size does not arise, hence
Gn = G. Therefore, our model reduces to the D-MAP/G/1/∞ queue.

From (3.28) we get the VGF of the queue content at a departure epoch as

Φ+(x)(xI−A∗1(x)) = φ+(0)
( (

D
)
xA∗1(x)−A∗1(x)

)
. (6.1)

The probability vectors of the queue content at arbitrary and pre-arrival epochs are given by

p(0, 0) = Ω−1φ+(0) (I−C)−1
, (6.2)

π(0, 1) =
(
p(0, 0)D + Ω−1

(
φ+(1)− π+(0, 1)

))
(I−C)−1

, (6.3)

π(n, 1) =
(
π(n− 1, 1)D + Ω−1

(
φ+(n+ 1)− π+(n, 1)

))
(I−C)−1

, n ≥ 1. (6.4)
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p−(0, 0) =
p(0, 0)D

λ∗
, (6.5)

π−(n, 1) =
π(n, 1)D

λ∗
, n ≥ 0. (6.6)

Here π+(n, 1) = φ+(n), n ≥ 0. One may note that the waiting-time analysis of D-MAP/G/1 queue can be
obtained from those of Samanta [24] by considering Dn = 0, n ≥ 2.

6.2. D-MAP/Gb/1/∞ queue

We assume that the server provides service to the customers in batches of fixed size say b, i.e., a = b.
Moreover, the service rate does not depend on the service batch size, i.e., Gn = G. Thus, our model reduces to
D-MAP/Gb/1/∞ queue.

From (3.28) we get the VGF of the queue content at a departure epoch as

Φ+(x)(xbI−A∗(x)) =
b−1∑
n=a

φ+(n)
(
xbA∗(x)− xnA∗(x)

)
. (6.7)

The probability vectors of the queue content at arbitrary and pre-arrival epochs are given by

p(n, 0) = Ω−1
n∑
j=0

φ+(j)
(
D
)(n−j)

(I−C)−1
, 0 ≤ n ≤ b− 1. (6.8)

π(0, b) =
(
p(b− 1, 0)D + Ω−1(φ+(b)− π+(0, b))

)
(I−C)−1

, (6.9)

π(n, b) =
(
π(n− 1, b)D + Ω−1

(
φ+(n+ b)− π+(n, b)

) )
(I−C)−1

, n ≥ 1. (6.10)

p−(n, 0) =
p(n, 0)D

λ∗
, 0 ≤ n ≤ b− 1, (6.11)

π−(n, b) =
π(n, b)D

λ∗
, n ≥ 0. (6.12)

Remark 6.1. In the case of D-MAP/G/1/∞ and D-MAP/Gb/1/∞ queues, only the VGF of the queue length
can be obtained since in both the cases the server serves only a fixed number of customers, i.e., one and b,
respectively.

6.3. D-MAP/G(a,b)/1/∞ queue

The results of this model can be obtained by dropping the batch-size dependency service in our model, i.e.,
we assume Gn = G. From (3.28) we get the VGF of the queue content at a departure epoch as

Φ+(x)(xbI−A∗(x)) =
a−1∑
n=0

φ+(n)
( (

D
)(a−n)

xbA∗(x)− xnA∗(x)
)

+
b−1∑
n=a

φ+(n)
(
xbA∗(x)− xnA∗(x)

)
. (6.13)

Joint VGF of the queue and server content distribution at a departure epoch is given by

π̃+(x, ξ) =

(
a−1∑
n=0

φ+(n)
( (
ξb − ξa

) (
D
)(a−n)

A∗(x)A∗(x) +
(
D
)(a−n)

ξaxbA∗(x)− ξbxnA∗(x)
)
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+
b−1∑
n=a

φ+(n)
( (
ξb − ξn

)
A∗(x)A∗(x) + ξnxbA∗(x)− ξbxnA∗(x)

))
(xbI−A∗(x))−1.

(6.14)

Joint queue and server content distribution at arbitrary and pre-arrival epochs are the same as given in (4.1)–
(4.5) and (4.10), (4.11), respectively.

7. Performance measures

Having found the probability vectors p(n, 0), (0 ≤ n ≤ a − 1), π(n, r), (a ≤ r ≤ b, n ≥ 0), the other
significant distributions of interest can be easily obtained and are given below:

– Distribution of the number of customers in the system at an arbitrary epoch (including number of customers
with the server) is given by

psystem
n =


p(n, 0)e 0 ≤ n ≤ a− 1,∑min(b,n)
r=a π(n− r, r)e a ≤ n ≤ b,∑b
r=a π(n− r, r)e n ≥ b+ 1.

– Distribution of the number of customers in the queue at arbitrary epoch is given by

pqueue
n =

{
p(n, 0)e+

∑b
r=a π(n, r)e 0 ≤ n ≤ a− 1,∑b

r=a π(n, r)e n ≥ a.
– Distribution of the number of customers in service given that server is busy

pserver
r = c

∞∑
n=0

π(n, r)e, a ≤ r ≤ b, (7.1)

where c−1 =
[
1−

∑a−1
n=0 p(n, 0)e

]
= Pbusy.

It is very much essential to study the performance measures of the queueing system as they play a notable
role in designing and improving the efficiency of the system. Some performance measures are listed below:

– Average number of customers waiting in the queue (Lq) =
∑∞
n=0 np

queue
n .

– Average number of customers in the system (L) =
∑∞
n=0 np

system
n .

– Average number of customers with the server (Ls) =
∑b
r=a rp

server
r .

– Average waiting time of a customer in the queue (Wq) = Lq
λ∗ , as well as in the system (W ) = L

λ∗ .
– The probability that the server is idle (Pidle) =

∑a−1
n=0 p(n, 0)e.

Besides these performance measures a system designer may be interested in knowing information about the
filling degree which is defined as the ratio of average number of customers in a served batch to the maximum
number of customers that can be served, i.e., Ls

b by which server’s efficiency can be upgraded.

8. Numerical examples

In this section, we illustrate the methodology and the results derived in previous sections through some
numerical examples which have been done using Maple 15 on PC having configuration Intel (R) Core (TM)
i5-3470 CPU Processor @ 3.20 GHz with 4.00 GB of RAM. Though several results have been generated, a few of
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Table 1. DPH distribution for different batch-size.

Batch size βn Tn Sn

6
(

0.3 0.1 0.2 0.4
)





0.6 0.0 0.0 0.3
0.0 0.6 0.1 0.0
0.0 0.0 0.5 0.2
0.1 0.1 0.0 0.7



 6.604651

7
(

0.4 0.2 0.4
)




0.8 0.0 0.1
0.1 0.6 0.1
0.0 0.1 0.8



 8.461538

8
(

0.25 0.25 0.25 0.25
)





0.4 0.0 0.0 0.5
0.0 0.7 0.2 0.0
0.0 0.0 0.5 0.3
0.2 0.1 0.0 0.6



 8.678160

9
(

0.5 0.3 0.2
)




0.7 0.1 0.1
0.1 0.7 0.1
0.1 0.2 0.6



 10.000000

10
(

0.1 0.1 0.8
)




0.7 0.2 0.1
0.2 0.6 0.1
0.1 0.0 0.8



 14.500000

them are presented here which may be useful to researchers and practitioners. Numerical results for two different
service-time distributions viz. discrete phase-type and negative binomial are given in the following examples.
All the results are presented in 6 decimal places for sake of brevity. While dealing with the communication
channel, one may encounter transmission errors which may arise due to fading channel, electrical defectiveness,
unfavorable weather, etc. Discrete phase-type distribution (DPH) is a powerful tool to regulate this error. It
also covers a wide range of almost all relevant discrete distributions such as geometric and negative binomial.
Moreover, negative binomial distribution is one of the significant discrete distribution which can capture several
real-life scenarios. Keeping this in mind, discrete phase type and negative binomial distributions have been
considered as service time distributions in two examples. The purpose of these two examples is to show the
applicability and simple usability of the proposed procedure and results.

Example 8.1. D-MAP/DPH(6,10)
n /1 queue. Here the service time distribution is discrete phase (DPH)-type.

In this example the D-MAP is represented by the matrices

C =

 0.30 0.10 0.15
0.35 0.05 0.20
0.15 0.10 0.15

 and D =

 0.10 0.25 0.10
0.20 0.15 0.05
0.45 0.05 0.10

,
that gives π = [0.489130, 0.260869, 0.2500000] and λ∗ = 0.474456. The DPH-type distribution has the represen-
tation (β, T), where β is a row vector of order ν and T is a square matrix of order ν. Other parameters are:
a = 6, b = 10, and the batch-size dependent service time distribution for DPHn(βn,Tn), 6 ≤ n ≤ 10 is given in
the Table 1.

So ρ = 0.687961. The joint queue and server content distribution for D-MAP/DPH(6,10)
n /1 queue, at different

epochs has been displayed in Tables 2 and 3.
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Table 2. Joint distribution of queue and server content and phase of the arrival process at
departure epoch for D-MAP/G(6,10)

n /1 queue with G ∼ PH.

r = 6 r = 7 r = 8 r = 9 r = 10

n π
+
1 (n, 6)π+

2 (n, 6)π+
3 (n, 6)π+

1 (n, 7)π+
2 (n, 7)π+

3 (n, 7)π+
1 (n, 8)π+

2 (n, 8)π+
3 (n, 8)π+

1 (n, 9)π+
2 (n, 9)π+

3 (n, 9)π+
1 (n, 10)π+

2 (n, 10)π+
3 (n, 10)ψ+

n e

0 0.061704 0.019139 0.036378 0.002201 0.000721 0.001313 0.001720 0.000563 0.001026 0.001112 0.000365 0.000664 0.000742 0.000243 0.000443 0.128338
1 0.089756 0.052001 0.044366 0.003533 0.001955 0.001758 0.002712 0.001512 0.001345 0.001834 0.001003 0.000917 0.001763 0.000847 0.000934 0.206243
2 0.063869 0.036551 0.031714 0.002716 0.001534 0.001358 0.002033 0.001152 0.001015 0.001476 0.000826 0.000740 0.002307 0.001180 0.001197 0.149676
3 0.046943 0.026801 0.023328 0.002122 0.001195 0.001060 0.001574 0.000887 0.000786 0.001196 0.000668 0.000599 0.002589 0.001356 0.001332 0.112443
4 0.034584 0.019762 0.017180 0.001660 0.000935 0.000829 0.001233 0.000694 0.000616 0.000968 0.000541 0.000485 0.002711 0.001436 0.001388 0.085031
5 0.025346 0.014503 0.012584 0.001299 0.000732 0.000649 0.000971 0.000546 0.000485 0.000784 0.000438 0.000393 0.002734 0.001459 0.001396 0.064325
10 0.005068 0.002908 0.002513 0.000374 0.000211 0.000187 0.000296 0.000166 0.000148 0.000273 0.000152 0.000136 0.002272 0.001226 0.001155 0.017092
20 0.000193 0.000110 0.000095 0.000030 0.000016 0.000014 0.000027 0.000015 0.000013 0.000033 0.000018 0.000016 0.001182 0.000640 0.000600 0.003011
50 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000138 0.000075 0.000070 0.000283
75 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000022 0.000012 0.000011 0.000045
100 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000004 0.000002 0.000002 0.000008
≥120 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Total 0.389016 0.207070 0.198695 0.018123 0.009663 0.009262 0.013871 0.007396 0.007089 0.010711 0.005711 0.005474 0.057674 0.030757 0.029477 1.000000

Example 8.2. D-MAP/NB(4,7)
n /1 queue. In this case the service time distribution is negative binomial (NB).

The matrices corresponding to the D-MAP are given by

C =

 0.4 0.1 0.05
0.25 0.05 0.30
0.10 0.15 0.15

 and D =

 0.15 0.20 0.10
0.15 0.20 0.05
0.05 0.45 0.10

.
That gives π = [0.398305, 0.355932, 0.245762] and λ∗ = 0.469067. Other input parameters are: a = 4, b = 7,
and mean service times of NB distribution for batch size dependent service time distributions are taken as

Batch size (r) Sr
4 3.000000
5 4.000000
6 5.666667
7 9.000000

So ρ = 0.603087. The joint queue and server content distribution for D-MAP/NB(4,7)
n /1 queue, at different

epochs has been displayed in Tables 4 and 5.
Now, we investigate the effect of correlation of arrival process on a few performance measures viz, filling

degree, average queue length, average waiting time in the system. For this, we choose arrival processes with
negative, zero, and positive correlation. The input parameters are given below:

Positive correlation: we choose following set of matrices with correlation = 0.2806.

C =
(

0.9130 0.0090
0.0060 0.5992

)
, D =

(
0.0770 0.0090
0.0040 0.3908

)
.

Zero correlation: we choose following set of matrices with zero correlation.

C =
(

0.4364 0.2636
0.5364 0.1636

)
, D =

(
0.2 0.1
0.1 0.2

)
.

Negative correlation: we choose following set of matrices with correlation = −0.053120.

C =
(

0.2364 0.0
0.5364 0.0636

)
, D =

(
0.5 0.2636
0.00 0.4

)
.
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Table 3. Joint distribution of queue and server content and phase of the arrival process at
arbitrary epoch for D-MAP/G(5,9)

n /1 queue with G ∼PH.

r = 0 r = 6 r = 7 r = 8

n p1(n, 0) p2(n, 0) p3(n, 0) π1(n, 6) π2(n, 6) π3(n, 6) π1(n, 7) π2(n, 7) π3(n, 7) π1(n, 8) π2(n, 8) π3(n, 8)

0 0.009760 0.003225 0.005833 0.049774 0.027979 0.024815 0.002449 0.001110 0.001335 0.001869 0.000847 0.001019

1 0.024974 0.011735 0.013344 0.036004 0.020578 0.017882 0.001886 0.001040 0.000940 0.001437 0.000792 0.000716

2 0.035927 0.017995 0.018805 0.026319 0.015058 0.013068 0.001463 0.000825 0.000731 0.001120 0.000631 0.000560

3 0.044173 0.022675 0.022910 0.019207 0.010998 0.009533 0.001143 0.000644 0.000570 0.000882 0.000496 0.000441

4 0.050406 0.026215 0.026015 0.013966 0.008004 0.006930 0.000891 0.000502 0.000445 0.000695 0.000391 0.000347

5 0.055122 0.028893 0.028364 0.010125 0.005806 0.005023 0.000694 0.000391 0.000347 0.000548 0.000308 0.000274

10 0.001989 0.001141 0.000986 0.000197 0.000111 0.000098 0.000167 0.000094 0.000084

20 0.000075 0.000043 0.000037 0.000015 0.000009 0.000008 0.000015 0.000009 0.000008

50 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

75 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

100 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

≥120 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Total 0.220364 0.110740 0.115273 0.181736 0.103536 0.090314 0.010959 0.005886 0.005584 0.008603 0.004619 0.004384

r = 9 r = 10

n π1(n, 9) π2(n, 9) π3(n, 9) π1(n, 10) π2(n, 10) π3(n, 10)

0 0.001475 0.000663 0.000806 0.001170 0.000523 0.000641 0.135302

1 0.001181 0.000646 0.000590 0.001904 0.000943 0.000999 0.137597

2 0.000950 0.000532 0.000477 0.002350 0.001210 0.001217 0.139246

3 0.000770 0.000430 0.000386 0.002606 0.001366 0.001340 0.140577

4 0.000623 0.000348 0.000312 0.002730 0.001446 0.001399 0.141673

5 0.000505 0.000282 0.000253 0.002763 0.001473 0.001412 0.142591

10 0.000175 0.000098 0.000088 0.002337 0.001261 0.001188 0.010022

20 0.000021 0.000011 0.000010 0.001227 0.000664 0.000623 0.002781

50 0.000000 0.000000 0.000000 0.000143 0.000077 0.000073 0.0002948

75 0.000000 0.000000 0.000000 0.000023 0.000013 0.000012 0.000048

100 0.000000 0.000000 0.000000 0.000004 0.000002 0.000002 0.000008

≥120 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Total 0.007656 0.004106 0.003904 0.059808 0.031978 0.030537 1.000000

L = 8.532111, Lq = 4.617451, Ls = 7.072806

Pidle = 0.446378, W = 17.982915, Wq = 9.732085

Table 4. Joint distribution of queue and server content and phase of the arrival process at
departure epoch for D-MAP/G(4,7)

n /1 queue, with G ∼NB.

r = 4 r = 5 r = 6 r = 7

n π+
1 (n, 4) π+

2 (n, 4) π+
3 (n, 4) π+

1 (n, 5) π+
2 (n, 5) π+

3 (n, 5) π+
1 (n, 6) π+

2 (n, 6) π+
3 (n, 6) π+

1 (n, 7) π+
2 (n, 7) π+

3 (n, 7) ψ+
n e

0 0.121956 0.042343 0.076275 0.001589 0.000563 0.000865 0.000425 0.000151 0.000224 0.000094 0.000033 0.000047 0.244565

1 0.134098 0.144599 0.087626 0.002001 0.001966 0.001316 0.000626 0.000557 0.000402 0.000204 0.000146 0.000122 0.373663

2 0.073266 0.086478 0.047233 0.001404 0.001522 0.000904 0.000546 0.000541 0.000347 0.000268 0.000224 0.000165 0.212898

3 0.032838 0.040127 0.021078 0.000813 0.000914 0.000521 0.000398 0.000411 0.000253 0.000285 0.000254 0.000177 0.098069

4 0.013417 0.016701 0.008592 0.000430 0.000493 0.000275 0.000266 0.000281 0.000169 0.000271 0.000250 0.000169 0.041314

5 0.005194 0.006540 0.003321 0.000215 0.000251 0.000138 0.000169 0.000181 0.000108 0.000241 0.000227 0.000150 0.016735

10 0.000031 0.000040 0.000019 0.000004 0.000005 0.000003 0.000012 0.000013 0.000007 0.000087 0.000085 0.000054 0.000360

15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000024 0.000024 0.000015 0.000063

20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000006 0.000006 0.000004 0.000016

≥30 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Total 0.383811 0.340657 0.246069 0.006651 0.005942 0.004147 0.002685 0.002400 0.001667 0.002374 0.002122 0.001468 1.000000

Service time distribution is taken as DPH with a = 5, b = 8 and

βr = (0.5, 0.5), Tr =
(

1− θr θr
0 1− θr

)
.

By varying the values of θr (5 ≤ r ≤ 8), we get different µr−1 = Sr which eventually lead to different ρ. In
Table 6, we present how the different values of µr−1 lead to different values of ρ.

In Figure 2, we study the effect of correlation (positive, zero and negative) on the filling degree with respect to
the traffic intensity ρ. It may be observed that for a very low value of ρ, the filling degree is the same for positive
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Table 5. Joint distribution of queue and server content and phase of the arrival process at
arbitrary epoch for D-MAP/G(4,7)

n /1 queue, with G ∼NB.

r = 0 r = 4 r = 5 r = 6 r = 7
n p1(n, 0) p2(n, 0) p3(n, 0) π1(n, 4) π2(−n, 4) π3(n, 4) π1(n, 5) π2(n, 5) π3(n, 5) π1(n, 6) π2(n, 6) π3(n, 6) π1(n, 7) π2(n, 7) π3(n, 7) pqueue

n

0 0.031317 0.011129 0.016323 0.065014 0.073832 0.042988 0.001416 0.001094 0.000858 0.000626 0.000459 0.000373 0.000282 0.000197 0.000165 0.246073
1 0.064769 0.047618 0.039072 0.031897 0.038565 0.020591 0.000751 0.000853 0.000497 0.000400 0.000421 0.000262 0.000339 0.000295 0.000210 0.246540
2 0.083587 0.069883 0.051231 0.013668 0.016862 0.008760 0.000412 0.000473 0.000265 0.000270 0.000286 0.000172 0.000330 0.000305 0.000206 0.246710
3 0.092196 0.080329 0.056750 0.005436 0.006804 0.003478 0.000210 0.000244 0.000134 0.000171 0.000184 0.000109 0.000293 0.000278 0.000184 0.246800
4 0.002068 0.002614 0.001322 0.000103 0.000120 0.000066 0.000105 0.000113 0.000067 0.000248 0.000239 0.000156 0.007221
5 0.000763 0.000971 0.000487 0.000049 0.000057 0.000031 0.000063 0.000068 0.000040 0.000204 0.000198 0.000128 0.003059
10 0.000004 0.000005 0.000002 0.000000 0.000000 0.000000 0.000003 0.000004 0.000002 0.000062 0.000061 0.000039 0.000182
15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000016 0.000016 0.000010 0.000042
20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000004 0.000004 0.000002 0.000010
≥30 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Total 0.271871 0.208960 0.163376 0.119276 0.140197 0.077901 0.002985 0.002893 0.001881 0.001724 0.001630 0.001080 0.002447 0.002250 0.001522 1.000000

L = 3.012144, Lq = 1.553687, Ls = 4.099194
Pidle = 0.644208, W = 6.421554, Wq = 3.312288

Table 6. Values of ρ for different θr.

r θr µr
−1 = Sr ρ r θr µr

−1 = Sr ρ
r = 5 1.810000 0.828729 r = 5 0.362000 4.143646
r = 6 1.551428 0.966851 0.1 r = 6 0.310286 4.834254 0.5
r = 7 1.357500 1.104972 r = 7 0.271500 5.524862
r = 8 1.206667 1.243094 r = 8 0.241333 6.215470
r = 5 0.904167 1.658986 r = 5 0.301833 4.969630
r = 6 0.775000 1.935484 0.2 r = 6 0.258714 5.797902 0.6
r = 7 0.678125 2.211982 r = 7 0.226375 6.626173
r = 8 0.602778 2.488479 r = 8 0.201222 7.454444
r = 5 0.604167 2.482759 r = 5 0.258667 5.798969
r = 6 0.517857 2.896552 0.3 r = 6 0.221714 6.765464 0.7
r = 7 0.453125 3.310345 r = 7 0.194000 7.731959
r = 8 0.402778 3.724138 r = 8 0.172444 8.698454
r = 5 0.452500 3.31491 r = 5 0.226167 6.632277
r = 6 0.387857 3.867403 0.4 r = 6 0.193857 7.737656 0.8
r = 7 0.339375 4.419889 r = 7 0.169625 8.843036
r = 8 0.301667 4.972376 r = 8 0.150778 9.948416

correlation, negative correlation and independent case (zero correlation). However, this quantity increases as
ρ increases. At this point, for any particular value of ρ, the filling degree is significantly higher for positive
correlation as compared to the independent case and negative correlation.

A similar behavior can be observed in Figure 3 and 4 where the effect of correlation is studied on the average
queue length and the average waiting time in the system respectively. In Figure 3 a major impact of correlation
in the arrival process can be observed only when ρ exceeds certain value (here ρ > 0.4). However, in Figure 4
the effect can be seen even for lower values of ρ. These observations suggest that ignoring the correlation in the
arrival process may not enable one to determine the performance measures precisely which may have a negative
impact on the efficiency of the system, more specifically, when the traffic intensity is higher.

9. Conclusion

In this paper, we have addressed a much complicated yet significant, infinite-buffer discrete-time batch service
queue with the assumption of correlated arrival process, i.e., discrete-time Markovian arrival process, with
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Figure 2. Filling degree versus ρ for different correlation.

Figure 3. Average queue length (Lq) versus ρ for different correlation.

Figure 4. Average waiting time in the system (W ) versus ρ for different correlation.
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general batch size dependent service time distribution. We have used the supplementary variable technique for
the mathematical modeling and the pgf approach to obtain the probability vector generating function of the
joint distribution of the queue and server content at the departure epoch. The required distribution is then
extracted from the completely known generating function using the roots method, and its relation has been
established with the distribution at various epochs such as arbitrary, pre-arrival and outside observer’s epochs.
We have discussed some significant characteristics along with some special cases of the model. The computing
process is explained thoroughly and some numerical results are also presented.
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