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INTEGRATED INVENTORY MODEL INVOLVING QUALITY IMPROVEMENT
INVESTMENT AND ADVANCE-CASH-CREDIT PAYMENTS

CuiH-TE YANGY*, CHIEN-HSIU HUANG? AND LIANG-YUH OUYANG?

Abstract. This paper investigates the effects of investment and inspection policies on an integrated
production—inventory model involving defective items and upstream advance-cash-credit payment pro-
vided by the supplier. In this model, retailers offer customers a downstream credit period. Furthermore,
the defective rate of the item can be improved through capital co-investment by the supplier and re-
tailer. The objective of this study was to determine the optimal shipping quantity, order quantity, and
investment alternatives for maximizing the supply chain’s joint total profit per unit time. An algorithm
was developed to obtain the optimal solution for the proposed problem. Several numerical examples
are used to demonstrate the proposed model and analyze the effects of parameters changes on the
optimal solutions. Finally, management implications for relevant decision makers are obtained from the
numerical examples.
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1. INTRODUCTION

Product quality in real life is not always perfect and is dependent on the manufacturer’s production process
or the quality of raw materials. Therefore, retailers will assess product quality first instead of immediately
stocking it when an order is received. Inventory models of defective products have been studied extensively.
Rosenblatt and Lee [34] investigated the influence of imperfect production processes on the economic production
quantity (EPQ) model. Kim and Hong [19] extended Rosenblatt and Lee’s [34] model to determine the optimal
production run length for deteriorating production processes. Salameh and Jaber [35] also modified an EPQ
model by accounting for items with imperfect quality. Further they assumed that poor-quality items are sold as
a single batch at a discounted price after the end of the screening process. After this, many studies on imperfect
production processes have been published, such as [1,5,8,9,14,26,32,37,40].

The production process can be realistically controlled which implies the defective rate of items can be reduced
by investing capital to improve the equipment. Porteus [33] first introduced the option of investing capital for
improving the quality of the production process and developed an EPQ model with defective items. Hong
[10] extended Rosenblatt and Lee’s model [34] by considering the investment for setup reduction and process
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quality improvement. Ouyang and Chang [28] considered a modified lot size reorder point model with imperfect
production process and investigated the effect of quality improvement on the proposed model. Hou and Lin
[12] also explored the effects of an imperfect production process on the optimal production run length when
capital was invested for process quality improvement. Yang and Pan [44] proposed an integrated inventory
model involving variable lead time and quality improvement investment with normally distributed demand.
Lai et al. [21] developed an inventory system that incorporated the quality improvement cost to reduce the
proportion of defects. Recently, an integrated production-inventory model with imperfect production system
with partial backlogging was presented by Khanna et al. [17]. Other studies related to quality improvement
include [6,11,15,16,20,30,41,46]. Capital investment for improving imperfect production processes is generally
provided by the manufacturer. However, if retailers agree to provide a part of the investment capital, they are
not required to inspect the goods upon receipt, because the defective rate reaches a low level. Ouyang et al.
[31] referred to this as “non-inspect.” In this situation, all received products are treated as non-defective to
stock and then sell to customers. Therefore, a penalty cost may be incurred for the defective items returned by
customers. Consequently, when investment becomes an option, the retailer may trade the inspection cost for
the penalty cost. This issue must be considered when analyzing inventory problems.

The traditional economic order quantity (EOQ) and EPQ models do not investigate payment methods and
assume that the payment is made immediately upon receiving the consignment. However, in real business trans-
actions, the supplier usually allows the retailer an extended period to provide full payment to attract new
customers and increase sales and market share, because it benefits both the supplier and retailer. Goyal [7]
incorporated trade credit into the EOQ model. Aggarwal and Jaggi [2] extended Goyal’s model to deteriorating
items. Chang et al. [3] established an EOQ model for deteriorating items under conditionally permissible delay
in payments. Ouyang et al. [29] and Sharma et al. [39] presented inventory models for non-instantaneous deterio-
rating items with permissible delay in payments. Lashgari et al. [22] and Mukherjee and Mahata [27] investigated
inventory control problems for deteriorating items with a two-level trade credit. Recently, Sarkar et al. [38] ob-
tained the optimal decision of a retailer for time-varying deterioration items with selling-price and credit-period
dependent demand to maximize the retailer’s profit. Related articles include studies by [13, 18, 36]. However,
when the purchase amount is large, to avoid customer defaults and to stimulate consumption, the manufacturer
usually agrees with the retailer on the following payment method. The retailer is required to prepay a fraction
of the procurement cost as a contract to buy items, then pay another fraction of the procurement cost in cash
upon receiving the order and receive a short interest-free credit term to pay the remainder of the procurement
cost. This is called an advance-cash-credit (ACC) payment scheme [23]. ACC payment schemes are commonly
used in real-world sales finance situations. Li et al. [23] developed an inventory model for perishable products
in which the retailer receives an upstream ACC payment from the supplier and in return offers a downstream
cash-credit payment to customers. Wu et al. [43] considered an EOQ model including perishable products with
expiration dates and ACC payment schemes. Tsao et al. [42] developed an EPQ model for perishable products
under the ACC payment scheme using a discounted cash flow analysis. Other studies related to inventory model
with ACC payment include [4,23,24] and so on. Although many scholars have investigated inventory problems
with ACC payment, all of them developed EOQ/EPQ models from the perspective of retailers or suppliers.

Therefore, this paper presents an integrated inventory model developed based on the aforementioned studies
for defective items in which the defective rate can be improved through capital investment from the supplier
and retailer under an ACC payment scheme. Mathematical analyses are used to determine the optimal shipping
quantity, order quantity, and defective rate to maximize the supply chain’s joint total profit per unit time. An
algorithm is presented that was developed to determine the optimal solution. Numerical examples are used to
demonstrate the proposed model and examine the effects of parameter changes on the optimal solutions. Several
management implications for relevant decision makers are obtained from the numerical examples.

2. NOTATION AND ASSUMPTIONS

The following notation and assumptions are used in this paper.
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Upstream credit period provided by the supplier to the retailer, M > 0.

Downstream credit period provided by the retailer to customers, N > 0.

Time within which the prepayments are made, [ > 0.

Fraction of the procurement cost to be paid in advance, 0 < a < 1.

Fraction of the procurement cost to be paid at the time of delivery, 0 < 5 < 1.

Fraction of the procurement cost granted by the supplier as permissible delay to the retailer,
0<y<landa+g8+~vy=1.

Demand rate of the market.

Production rate of the supplier.

Production cost per unit for the supplier.

Procurement cost per unit for the retailer, ¢ > v.

The selling price of the retailer per unit, p > c.

Retailer’s ordering cost per order.

Supplier’s setup cost per setup.

Retailer’s holding cost, excluding the interest charged, per non-defective item per unit time.
Retailer’s holding cost, excluding the interest charged, per defective item per unit time,
where hy, < hy, .

Supplier’s holding cost excluding the interest charged per item per unit time.

Supplier’s treatment cost per defective item.

Retailer’s inspection rate per order.

Retailer’s inspection cost per unit.

Retailer’s penalty cost (including the treatment cost) per defective item returned by the
customer.

Supplier’s fixed cost of transportation per shipment.

The supplier’s variable cost of transportation per unit.

Interest charged per dollar per unit time.

Interest earned per dollar per unit time.

Opportunity cost of the capital investment per dollar per unit time.

the proposition of capital that the retailer should invest in production process.

Proportion of defective items before improving the production process, where A\yy < 1.
Proportion of defective items that become “non-inspect”, 0 < Ay, < Ay.

Proportion of defective items, A € (0, A 7] is a decision variable.

Retailer’s order quantity, which is a decision variable.

Length of the retailer’s replenishment cycle, which is a decision variable.

Number of shipments provided by the supplier to the retailer per production cycle (integer
decision variable).

Size of each shipment provided by the supplier to the retailer in a production batch (decision
variable).

Joint total profit per unit time, as a function of A, ¢, and n.

Superscript represents the optimal value.

(1) There is single-supplier and single-retailer for a single product in this system.

(2) The supplier’s production rate of non-defective item is finite and greater than the demand rate, i.e.,
P(1—)\) > D. Otherwise, there will be no inventory problems.

(3) The retailer orders a large product quantity (@) (of non-defective items) per order asks the supplier to
deliver ¢ units for n shipments.

(4) Before product quality improvement, the retailer may make a full inspection with an inspection rate x
as soon as the order is received to examine the product quality. When the proportion of defective items
becomes equal to or less than a certain low rate (Ar) through capital investment, the retailer no longer
conducts checks on the received items. In this situation, all the items received from the supplier are treated
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as non-defective products to stock and sell to customers, which results in Ag(A < Ap) defective items
returned by the customers. All the defective items that have been inspected or returned by customers are
stored and returned to the supplier at the end of each replenishment cycle.

(5) All defective items cannot be repaired or reworked. These items have no salvage value.

(6) The capital investment [I(\)] for improving the production process quality to reduce the defective rate of
the product is expressed as a logarithmic function of .

1. /A
I(A):(sln(/{]), 0< A<\,

where Ay is the proportion of defective items before improving the production processes, and § denotes the
percentage decrease in A per dollar increase in I(\) (please see [15,30,33]).

(7) Capital investment is jointly shared by the retailer and supplier in the integrated supply chain system.
Thus, the proportions of capital that the retailer and supplier should invest in the production process are p
and 1 — p, respectively (0 < p < 1). When p = 0, it means that the supplier is fully responsible for product
quality.

(8) An ACC payment scheme is considered between the retailer and supplier in this model. That is, the retailer
prepays « fraction of the pre-determined procurement cost for non-defective at time —[ when making a
replenishment, pays /8 fraction of procurement cost at the time of delivery (i.e., time 0), and receives an
upstream credit period of M on the remaining « fraction of procurement cost for each replenishment cycle,
where a4+ 3+ v = 1.

(9) The inspection is nondestructive and error-free.

3. MODEL FORMULATION

3.1. Problem description

In this paper, a single supplier and a single retailer is considered in the supply chain production-inventory
system. The integrated inventory model involving defective items and ACC payment schemes. The operation of
this production-inventory system is as follows: The retailer orders @ units (of non-defective items) per order, and
asks the supplier to deliver ¢ units in n shipments. Each received shipment contains a percentage of defective
items with a defective rate A\, and the retailer may inspect all the received items before investing capital to
improve the production process. In this situation, the number of defective items Ag in each shipment will be
checked out immediately, and hence the length of the replenishment cycle is T' = (1 — X\)g/D. Alternatively, if
the retailer and supplier joint to co-invest capital for improving the production process and the defective rate of
the product () is reduced to the threshold (Ay) or lower, the retailer does not inspect the received items and
stocks them for later use. In this situation, the supplier’s shipment size is ¢, and the length of replenishment
cycle is T' = ¢/ D. Furthermore, the supplier provides an ACC payment scheme and allows the retailer to prepay
« fraction of the procurement cost prior to shipment, 3 fraction of the procurement cost upon receipt of the
goods, and obtain an upstream credit period of M on the remaining payment ~, where a + 3+ v = 1.

In the following text, we first establish the total profit per unit time for the retailer and supplier and
subsequently determine the joint total profit per unit time of the integrated inventory system.

3.2. Retailer’s total profit per unit time

When the investment option is available, the retailer’s total profit per replenishment cycle with an ACC
payment scheme, a downstream trade credit policy, and defective items in each arriving shipment is composed
of the following elements.
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Sales revenue.
The retailer’s sales revenue per cycle is pDT, where

_ { (1—Ng/D, if A\p <A< v, -

q/D, if0<\< AL

Procurement cost.

The retailer’s procurement cost per replenishment cycle is ¢(1 — \)g.

Ordering cost.

The retailer’s ordering cost per replenishment cycle is A.

Opportunity cost of capital investment.

Capital investment for improving the production process quality creates an opportunity cost [#1(\)]. The
amount of capital investment is shared between the retailer and supplier, and the ratio shared by the retailer
is p(0 < p < 1). Therefore, the opportunity cost incurred by the retailer for improving the production
process quality per cycle is p0I(A\)T = p(6/6)T In(Ay /), where T is as given in (3.1).

Inspection cost.

The initial defective rate for the items received by the retailer is Ay, which can be improved through
capital investment. If the defective rate (\) is lowered to a certain threshold (Ar) (i.e., 0 < A < AL) or
below, the retailer does not inspect the received items, and the inspection cost per cycle is zero. However, if
AL < A < Ay, the retailer inspects the items after receipt. The unit inspection cost is Cs, and the retailer
receives a shipment of size g. The inspection cost per replenishment cycle for the retailer is as follows:

CS(L if AL <)\SAU7

Holding cost of non-defective items.

Defective items with a defective rate A are inspected by the retailer (the inspection rate is ) if A\, < A < Ay.
Therefore, the holding cost of non-defective items (including defective items before identification) per cycle
is as follows:

hoy [(1 = X)qT/2 + Ag*/(22)] = he, ¢*[(1 = X)*/(2D) + A/ (22)].

However, if 0 < A < A, free inspection is adopted, and all the received items are treated as non-defective
items for stocking and sales. Therefore, the holding cost per cycle is hy, ¢T'/2 = hy, ¢*/(2D), and the total
holding cost of the non-defective items per replenishment cycle is given as follows:

hy 1 @°[(1 = A)?/(2D) + A/ (22)], if Ap <A < A,
hy,q2/(2D), if0< A< AL

Holding cost of defective items.

There are Ag defective items in each shipment. When A, < A < Ay, the defective items will be inspected
and returned to the supplier at the end of each shipment cycle. In this situation, the holding cost of the
defective items per replenishment cycle is hy, [AgT — Ag?/(22)] = hp,A¢*[(1 — X\)/D — 1/(2x)]. By contrast,
if 0 < A < A, the defective items are sequentially returned by customers because of the free inspection
policy. These defective items will be stored and returned to the supplier at the end of each cycle. Thus,
the holding cost for defective items per cycle is hy, \gT/2 = hy,A\¢g%/(2D). Therefore, the holding cost for
defective items per replenishment cycle is as follows:

ho, A\G2[(1 = N)/D —1/(22)], if AL <A < Ay,
hy, A%/ (2D), if0< A<
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(h) Penalty cost for defective items (external failure cost).
Although adopting a free inspection policy can reduce inspection cost, all units of received items treated as
non-defective products are sold, and the defective items (Ag items) are returned by customers. This results
in the retailer incurring a penalty cost of C), per unit. By contrast, when the defective rate (\) is above a
certain threshold (i.e., A\, < A < Ay), the retailer inspects all the received items. Therefore, no penalty
cost is incurred. The penalty cost of defective items per cycle is as follows.

0, if A\p < A< Ay,
CoAg, if0<A<AL.

(i) Interest charged and interest earned.

There are two possible credit payment cases based on the values of the upstream (M) and downstream (V)
credit periods: N < M and N > M.

Case 1. N < M.
There exist two subcases according to the value of the downstream credit period (V) and time at which the
retailer receives the payment from the last customer.
Subcase 1. N <M <T + N.
In this subcase, the interest charged for credit payment per replenishment cycle is given as follows:

cl.(1 )\)q{a(]\[Jrl)er\f+ (aJrﬂ)T} n cICD’y(TJerM)z'

2 2
The interest earned for credit payment per cycle is as follows:

pleyD(M — N)?
2

The retailer’s total profit per unit time is the combination of the aforementioned elements divided by
the length of the replenishment cycle (T'), where T is as given in (3.1).

TPBll()\aq)a if )\L <A < )\Ua

TPB(\, q) =
1) {TP312(A,q), 0 <A<

(3.2)

where

C—op_ P (M) D4 a3, A
TPB11(A,¢) =(p—¢)D 6111()\) (1_)\){q+C’s+hb1q 5D o

(a+p)(1— /\)Q}
2D

1-—A 1
N cI.Dy[(1 = Ng/D+N - M  plyD(M — N)Q}

2q 2q

(3.3)

and

0 A 2D 2D

(a+B)q]  el.Dy(q/D+ N —M)? pl.yD(M — N)?
s q]+ v(q - _ pley . } (3.4)

0 A h h
TPB12()\7Q):pD—'Dln(/\U>—D{c(l—>\)+q+ nd  heAd oy -

X [a(N+l)+ﬁN+
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Sub-case 2. M >T + N.
In this subcase, the interest charged for credit payment per replenishment cycle is given as follows:

(a+ ﬂ)T} ,

cl.(1—X)gq [oz(N +1)+ N + 5

The interest earned for credit payment per cycle is as follows:

2

T
pl.yD [2 -I-T(M—T—N)} .

The retailer’s total profit per unit time is the combination of the aforementioned elements divided by
the length of the replenishment cycle (T'), where T is as given in (3.1).

TPB21()\,q), if A <A< )\U,

TPB2 (A, q) = 3.5
2(%9) {TPng()\,q), if0 <A< AL (3:5)
where
_ 0 (dw)_ D [A (=27, 3
TPBa1(A, @) = (p—¢)D 5 ln( 3 ) =Y { . + Cat g |5+ o
1-a 1 (a+B)(1—Ng
+ hy, A [ 3] zx] +ele(1-2) [a(N+l) + BN + D
- _ N Gl
PL(1— Ay [M N (3.6)
and
S U AN B A hyg | heNg _
TPB32(A,q) =pD - = ln< /\) D{c(l A+ PREET Y + O+l (1))
(a+B)q q
x[a(N—l—lH—ﬁN—i— o —pIefy(M—N—2D> . (3.7)

Case 2. N > M.
In this case, no interest is earned for credit payment. The interest charged for credit payment per replenish-
ment cycle is given as follows:

cl.(1—N)gq [a(N+l)+ﬁN+7(N—M)+€] :

The retailer’s total profit per unit time is the combination of the aforementioned elements divided by the
length of the replenishment cycle (T'), where T is as given in (3.1).

TPB31(A,q), if A\p <X <Ay,
TPBs(\, q) = {TPBﬂ( 9 s v (3.8)
32(A,q), HO<A< AL,
where
0 A D A 1—X)? A
TPB31()\,Q) = (p—C>D — %ln (;J) — m {q +CS +hb1q |:<2D) + 21‘:| +hb2)\q
1—AX 1 (1-XNg
and

pd . (v A he g heAg
TPB =pD—"—In|—|—-D 1-— — I.(1—
32(A\q) =p 5 H( )\) {C( A) + . +55 5D + CpA + el (1= N)
q

x [a(N+l)+BN+7(N7M)+ E]}' (3.10)
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3.3. Supplier’s total profit per unit time

The supplier’s total profit per production cycle consists of the following elements:

(a) Sales revenue.
The supplier produces ng units in each production run and delivers g units to the retailer in each shipment.
However, a certain proportion of the defective items are returned by the retailer (A). Therefore, the supplier’s
sales revenue per production cycle is ¢(1 — A\)ng, where

{nl, if)\L<)\§)\U,
n =

: (3.11)
na, o< A< AL,

(b) Production cost.
The supplier produces ng units in each production run. Therefore, the supplier’s production cost per
production cycle is vng, where n is as given in (3.11).

(c) Setup cost.
The supplier’s setup cost per production cycle is S.

(d) Transportation cost.
The supplier’s transportation cost per shipment includes the fixed per-lot transportation cost (Cr) and
variable transportation cost (Cq). Therefore, the total transportation cost per production cycle can be
calculated as n(Cr + Ctq), where n is as given in (3.11).

(e) Opportunity cost of capital investment.
The capital investment is shared between the retailer and supplier, with the proportion of the supplier’s
investment being 1 — p(0 < p < 1). Therefore, the opportunity cost of capital investment per production
cycle for the supplier is (1 — p)0I(A\)nT, where T and n are as given in (3.1) and (3.11), respectively.

(f) Holding cost.
Once the first ¢ units are produced, the supplier delivers them to the retailer immediately. Following, the
supplier schedules successive deliveries every (1 — \)g/D units of time until the inventory level decreases
to zero if A, < A < Ay. The behavior of the inventory level for the supplier is illustrated in Figure la. The
cumulative inventory per production cycle for the supplier is as follows:

{nlq (q+ (1 — 1 (1_A)q> - n%f] - [(I_A)qQ 1424+ (m —1))]

P D 2P D
1 (=D =-X m

_ 2| - I
- [P+ 2D 2P

However, if 0 < A < Ap, the retailer does not inspect the received items, and all the items are stored directly.
In this case, the cumulative inventory per production cycle for the supplier is as follows (see Fig. 1b):

2

2.2
a 4y _ma e 1)) =g | L2t 2]
[”2‘1(P+("2 1)D) QP} {D(1+2+ +(n2 1))}_”2‘1 [P+ 2D QP]

Therefore, the holding cost per production cycle is as follows:

{hv1n1q2 {% 4 od-d g—P} . if AL < A< A,
honog? [ + 250 — 2], if0<A<AL
(g) Treatment cost for defective items.
For each shipment of size g, Aq defective items are returned by the retailer at the end of the shipment cycle.

The treatment cost for the returned defective items per production cycle is h,,nAq, where n is as given in
(3.11).
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Inventory level

A n g/P
"""""""""""" A
_____ |:| Retailer’s cumulative inventory
) Supplier’s cumulative inventory
,,/// niq
1-2
q/P (n-1)(1-4)g/D
(a)
Inventory level
A ny g/P
"""""""""""" A
|:| Retailer’s cumulative inventory
‘ Supplier’s cumulative inventory
nyq
I
<le — Y > time
q/P (ny-1)q/D
(b)

FIGURE 1. Supplier’s inventory levels per production run. (a) A <A < Ap. (b) 0 < A < Ap.
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(h) Interest charged and interest earned.
Under the ACC payment policy, the supplier receives « fraction of the procurement cost at time —[ and
provides a credit period of M on the remaining v portion of the procurement cost for each replenishment
cycle. Therefore, the interest charged and interest earned per replenishment cycle are given by vyvl.(1 —
AMngM and acl.(1 — M)ngl, respectively, where n is as given in (3.11).
The supplier’s total profit per unit time is the combination of the aforementioned elements divided by the
length of production cycle (nT), where T and n are as given in (3.1) and (3.11), respectively.

TPV(A, , i AL <A< Ay,
TPV(\,n) = 1(ymy), AL v (3.12)
TPVo(\ o), 0 <A<\,
where
o D S CT (1 - p)9(1 - )\) )\U
TPVi(\,ny) = cD (1_”{ to Gt - (55 ) + hug
1 (m—-1)1-\) m
S i /A AL Y Y A L= MM — acl o(1 — , 1
X{P—F 5D 5p + hy, A+l (1= A) acl (1= N1 (3.13)
and
) S Cr L (-pf (A
TPVQ()\,TLQ)D{C(].)\)'UWthwln T 7hvlq
1 77,271 no
x [P+ D —QP] —hw/\—mzlc(l—)\)M—i-ozcle(l—)\)l}. (3.14)

3.4. Joint total profit per unit time

When the retailer and supplier build a long-term strategic partnership, they together determine the optimal
policy. Therefore, the joint total profit per unit time is the sum of the retailer’s and supplier’s total profits per
unit time. From the values of the upstream and downstream credit periods (M and N, respectively), the joint
total profit per unit time [JTP(A, ¢,n)] can be obtained as follows:

JTP;(\,q,n), ifN<M<T+N,

JTP(\,q,n) = < JTPa(N\, ¢,n), if M >T+ N, (3.15)
JTP3(\,¢,n), if N>M,

where
JTP;i (N, q,n1), if AL < X< Ay,
JTP;(\, ¢,n) = 1hgm), iy v
JTPiQ(}\,q,nQ), 1f0<>\§)\L,
_{TPB¢1(>\,Q)+TPV1(A,n1), if AL < A< Ay, (316)
L TPBia(\,q) + TPVa(\, ny), if 0< X< AL, ’
i=1,2,3.

4. THEORETICAL RESULTS

The objective of the proposed model was to determine the optimal batch quantity (¢*), proportion of defective
items (A*), and number of shipments per production cycle (n*) for maximizing the joint total profit per unit
time. It is found that the problem to maximize the joint total profit per unit time JTP;()\, ¢,n) is mixed integer
non-linear program problem, where n is a integer, A and ¢ are real numbers. To solve this problem, we first
considered the following two situations: (i) A < A < Ay and (ii) 0 < A < Az and explained the concavities
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of the total profits per unit time with respect to n and ¢ under the various situations. Then an algorithm was
developed to the optimal solutions (A*, ¢*,n*) for the whole problem.

Situation 1. \; < A < A\y.
In this situation, consider the following three joint total profit functions:

0 A D A+C S 1—))2 A
JTPu(/\,q,m)pDln<U)1_)\{m( +Or)+ +Cs+v+0t+hb1Q|:(2)+:|

) A niq D 2z
1-x 1 (1-XN)g
+hb2/\q[ D —2A+clc(1—)\) [a(N+l)+ﬁN+7(N—M)+ 5D ]
1 (-1 -X n
+ hoy q {P + 5D 5P + hop, A+ 90l (1 = MM — acl (1 — M)
_ _ 2
4 (el = ple)yD(M — N) } (4.1)
2q
B 0. (I D (ni(A+Cp)+ 8 (1=X2 A
JTPm(A,q,nl)—pD—éln(A)—l_A{ e H 0+ v+ Gt hyg | =55+ o
1-Xx 1 [ (a+B)(1—=Ng
+ hyy Mg [D - 2:8} + el (1= )\ _oz(N—i—l) + AN + s
—pL(1 = \)y {M - N - “;IDA)Q} + vl (1 — \)M — acl, (1 — M)l
1 (TLl — 1)(17)\) nl_
+ ha,q {P + ) od + hoy A (4.2)
B 0. (I D (ni(A+Cp)+ 8 (1-X)2 A
JTP31(\, q,n1) = pD 5IH<A) 1_A{ e +Cs v+ Cot g |5 + o
1-x 1 [ (1—-N4g
h - | 4el(1- N+0)+BN+yN—-M)+—=2
i | 158 = | et =8 ol 0+ 5N (v - 2y + B2
1 (n1 - 1)(1—/\) ’fl1_
+hv1q{P+ 5D 2P + hoy A+ 0L (1 = NM — acl,(1 — \)I (4.3)

Firstly, for fixed ¢ and A € (Ap, Ay], the effect of ny on the joint total profit per unit time JTPq1(A, q,n1)
in (4.1) needs to be checked. By taking the second-order derivative of JTP11(A, ¢, n1) with respect to ni, we
obtain the following:

dQJTP11(>\, q,nl) —-2DS

dn? T nd(l—A\)g
which implies the function JTP11(), ¢, n1) is a concave function of n;. Consequently, the search for the optimal
value of ny (denoted by nj;) is reduced to a local maximum.

Then, for a given ny and A € (Ap, Ay], the condition dJTP11(A, g, n1)/d g = 0 should be satisfied to maximize
the joint total profit per unit time [JTP1;(A, ¢, n1)]. This implies the following:

<0,

m[2(A+ Or) = (pL — cI)yD(M = N)?| +25  (hy, + cI.)(1 = V)2

2112 2D
(hy, — hipy)XA By, A(1 = \) I (m—11-X n]
2% D oo, P + 2D or| 0- (4.4)

For notational convenience let

Ay =n[2(A+Cp) — (pl. — ¢l.)y D(M — N)?] +2S
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and
AQ =

h 1) (1 —)N)? hy, — hp, )N hp, AM(1— A 1 —1)(1—=X\
(b1+021))( ) +( b1 2xb2) + bo ( )+hv1|: +(n1 )( )_ﬂ

P 2D 2P
then we have the following result.

Lemma 4.1. For any given n1 and X\ € (Ap, \v], if n1[2(A+ Cr) — (pl. — cl.)yD(M — N)?] +2S < 0, then
JTP11(\, ¢,m1) has a mazimum value at the point

Aq
= n = . 4.5
4= Qi x =/ I (4.5)

Proof. See the Appendix A. |

Otherwise, ¢ = 0.

Similarly, for fixed ¢ and A € (Ar, Ay], we can also show that JTPg; (A, ¢,n1) and JTP31(), ¢, n1) are concave

functions of n; because
d2JTP;1 (), q, —2DS )
1 gm) <0, i=23
dnj ni(1—A)gq
Therefore, the search for the optimal number of shipments (nj; and n%;) is simplified to finding the local
maximum. Let

— [hbl + Clc(a + ﬁ) +pIe’ﬂ(1 — )‘)2 (hb1 — hbz))‘ th)\(l - )\) 1 (nl - 1)(1 — )\) ny
A3 = 2D + o + D the | Bt 2D 2P|’
and
(b el = N2 (B, — hy)A By A(1—A) 1 (m-DA-N m
Aa = 2D + 2 + D the |5+ 2D 2P|’

and we have the following result.

Lemma 4.2. For any given ny and A € (Ap, Ay|, we have JTPa1(\, q,n1) and JTP31(A, q,n1) has mazimum
values at the point

ni(A+Cr)+ S
n = —7 4.6
q21,n1,1 \/ A (4.6)
and
ni(A+Cr)+ S
Sl A = | ————— 4.7
431,n1,\ \/ i, (4.7)
respectively.
Proof. See the Appendix B. O

Situation 2. 0 < X < \L.
In this situation, from (3.16), (3.4), (3.7), (3.10), and (3.14), we will consider the following three joint total
profit functions:

h hp, A
+Cp>\+v+Ct+(b1+ b2 )q

0
JTPIQ()‘a Q»nQ) - pD ——In ( naq 2D

)\U> {n2<A+CT)+S
N ) TP e

h\
(a+PB)q] | cleyg

5D + 5D +cl.y(N — M)

+el (1)) l:a(N-ﬁ-l) +8N +
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1 n2—1 %)
+hv1q{P+ 5D ap

] + hp, A+ yvl(1 — AN)M — acl.(1 — )l

1. — pl.)yD(M — N)?
i (a0 -7} ws)
2q
- 0 )\U n2<A+CT)+S (hbl +hb2)\)q
JTPQQ()\,q,nQ)—pD_gln ()\> _D{n2q+0p>\+v+ct+2D
N (a+B)g] v 4
+el(1—A) {a(N—H)—%BN—#QD ply (M N E)
1 77,271 U»)
+ hyq [P + 5D QP] + ho, AN+ yvl. (1 = NM — acl (1 — )\)l} , (4.9)
. % AU ng(A-l-OT)—FS (hbl +h52/\)q
JTng(/\,q,ng)—pD—(sln<A)—D{ n2q —‘GCA-i-’U—f-Ct—f— 2D
+ecl(1—X) [Oz(NJrl) +OBN+~(N-M)+ %]
1 n2—1 no
+ hyq [P + 5D QP] + hy A+ yvl(1 — AN)M — acl.(1 — )\)l} . (4.10)

For a fixed ¢ and A € (0,\.], the effect of ny on the joint total profit per unit time JTP;2(A, ¢, ng), for
i =1,2,3, is explained in (4.8)—(4.10). The second-order derivative of JTP;5(A, q,n2), (i = 1,2, 3) with respect
to ny provides the following equation:

dQJTP,‘Q(/\, q,ng) - —2DS
dn3 - niq

<0, i=1,23.

Therefore, JTP;5(\, ¢, n2) is a concave function of ny for i = 1,2, 3 and the search for the optimal number of
shipments (n)y, ¢ = 1,2, 3) is simplified to finding the local maximum. Let

and

As =n2[2(A+ Cr) — (ple — el.)yD(M — N)?] + 28,

_hp, F A e[l = Aa+ B)] 1 ne—1 ng
Ae=—"5p + 2D the |55 Tap|

_ hpy Fhp A+ pley+ el (a+ B)(1—A) 1 na—1 o
A7 = 2D the |5t 55 Ta3p)|

AS = hb1 + th)\ + CIC(I - )\) h,Ul |: 1 ng — 1 n2:| :

2D Pt 2D " ap

and then we have the following result.

Lemma 4.3. For any given ny and X € (0, 1], we have JTP;2(X, q,n2) for i =1,2,3 has mazimum values at

the points

and

respectively.

As
=/ 7 4.11
q12,m2,\ 51126 (4.11)

na(A+Cr)+ S
=/ 4.12
q22,n2,)\ \/ n2A7 ) ( )
na(A+Cr)+ S
n = —, 4.1
q32,m2,\ \/ naAs ( 3)
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Proof. See the Appendix C. (]

Next, for any given nq, ng, and g, it is obvious that JTP;1 (A, ¢,n1) and JTP;2(A, ¢, n2),i = 1,2, 3, are smooth
curves of A € (Ar, A\y] and A\ € (0, A], respectively. Therefore, the following iterative algorithm was developed
to search the optimal solution (A\*,¢*,n*) for the whole problem.

Algorithm

Step 1. Compare M with N. If N < M, perform Step 2. If N > M, skip to Step 5.
Step 2. Set ny = 1.
Step 2.1. Divide the interval (Ar, Ay] into m equal subintervals, and let A; = A + j(Ay — Ap)/m, j =

1,2,...,m, where m is sufficiently large.
Step 2.2. If n1[2(A+Cr)— (ple—cl.)yD(M —N)?|+2S < 0, let Qi1ny,n; = 0and JTP11(Aj, qiin, ;5 11) =
0. for each \j,j = 1,2,...,m. Otherwise, for each \;, j = 1,2,...,m, determine qi1,,,, from (4.5).

Furthermore, if D(M — N) < (1 — Xj) qi1,n,,»,, calculate JTP11(\;, q11,n,,2;,71) from (4.1). Otherwise,
set JTPll(/\j,qanh,\j,’l’Ll) =0.

Step 2.3. For each \;, j = 1,2,...,m, determine go1 5,5, from (4.6). If D(M — N) > (1 — Xj) g21,n, A
calculate JTP21 (A, g21,n,,x,,71) from (4.2). Otherwise, set JTP21(Aj, g21,n,,,,71) = 0.

Step 2.4. Find MaXi:LQ;j:1727m7m,JTPi1()\j, qil,nl,)\j 3 nl), and let JTP(I)(/\(nl), qn17)‘(n1) ; Tll) =
Maxi—1,2; j=1,2,....mJTPi1 (), Gi1,ny A, 1)

Step 2.5. Set n; = ny + 1, and repeat Steps 2.1-2.4 to obtain JTP(l)(/\(m),qnh)\(nl),nl)

Step 2.6. If JTPY (X, g, n1) < JTPY (A1), Gny—1a00, 0y — 1), set JTPM (N gf,nf) =
JTP(l)()\(nl—l)vQm—l,k(nﬁwnl — 1), where (A\},qf,n?) = (A(n1*1)7qn1_11>\(n171)’n1 — 1) is the optimal
solution for Situation 1. Otherwise, return to Step 2.5.

Step 3. Set no, = 1.

Step 3.1. Divide the interval (0, A\z] into m equal subintervals, and let A\; = jAr/m, j =1,2,...,m, where
m is sufficiently large.

Step 3.2. If ny[2(A + Cr) — (ple — cl.)yD(M — N)?)] +2S < 0, for each \;,j = 1,2,...,m, let
Q12,n00; = 0 and JTP12()j, q12,n,,0,,n2) = 0. Otherwise, for each \;, j = 1,2,...,m, determine
@12,n,,; from (4.11). If D(M — N) < q12,n5,x,;, calculate JTP12()j, q12,n,,2,,n2) from (4.8). Otherwise,
set JTP12(Aj,Q127n27)\j,n2) =0.

Step 3.3. For each \;, j = 1,2,...,m, determine g2 p, »; from (4.12). If D(M — N) > g2, »;, calcu-
late the corresponding joint total profit per unit time JTP2s();, g22,n,,2;, n2) from (4.9). Otherwise, set
JTP22(Nj, g22,n,,2;,12) = 0.

Step 3.4. Find  Max;—1 5 j-12,...mJTPi2(Aj, Giznyr,m2),  and  let  JTPP (N, qnang,,) m2) =

..... mITPi2(Nj, Gi2,n 2> 2)

Step 3.5. Set ny = ny + 1, and repeat Steps 3.1-3.4 to obtain JTP(Q)()\(nZ),qnw\m),ng)

Step 3.6. If JTP® (A(n,), nory)72) < TP (Nnyo1)s Gno—1.0, 1)» 12 — 1), set JTPP (A3, g5, n3) =
JTP(Z)()\(nzfl)zanfl,A(n,z_l);nQ — 1), where (A\3,q3,n5) = ()\(n2,1)7qn271,>\(n2_1),712 — 1) is the optimal
solution for Situation 2. Otherwise, return to Step 3.5.

Step 4. Find Maxg—; 2JTP™ (X%, ¢, n%). Let JTP(\*, ¢*, n*) = Maxj—1 oJTP® (A2, ¢F, ), where (\*, ¢*, n*)

is the optimal solution. Then, skip to Step 8.

Step 5. Set ny = 1.
Step 5.1. Divide the interval (Az, \y] into m equal subintervals, and let \; = A + j(Av — Ap)/m, j =

YR

A(ny)?

MaXi:1,2; j=1,2

1,2,...,m, where m is sufficiently large.
Step 5.2. For each )\, j =1,2,...,m, find ¢31,n,,x, from (4.7), and calculate JTP31();, ¢31,n,,x,,71) from
(4.3).

Step 5.3. Find  Max;j—12 .. mJTP31(A;,q31,n,,2;,71), and let JTP(I)()\(,LI),qnh)\(”l),nl) =
Maxj—1 2. .mJTP31(A;, g31,n1,2,,71)
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Step 5.4. Set n; = ny + 1, and repeat Steps 5.1-5.3 to obtain JTP(l)()\(m),qnh)\m),nl).

Step 5.5. If JTP(I)()‘(nl)vqn1,)\(n1)an1) < JTP(l)(A(nl—l)ainfl,)\(m,l)anl - 1)7 set JTP(I)()\T,QT,HT) =
JTP(I)(A(nl—l)vinfl)\(nl,l)anl - 1)7 where ()\T,(]T,TLT) = (>‘(Tn—1)’qnlflq)\(nlflwnl - 1) is the optimal
solution for Situation 1. Otherwise, return to Step 5.4.

Step 6. Set no = 1.

Step 6.1. Divide the interval (0, A\z] into m equal subintervals, and let A\; = jAr/m, j =1,2,...,m, where
m is sufficiently large.

Step 6.2. For each )\, j = 1,2,...,m, find g2, x, from (4.13), and calculate JTP32()\;, g32,n,,2,, n2) from
(4.10).

Step 6.3. Find Man=1727.._7mJTP32(>\j,Q327n27)\j7n2), and let JTP(Q)()\(nz),qn27)\("2),TLQ) =
Maxj=12,...mJTP32()\}, q32,n,,, M2)

Step 6.4. Set no = no + 1, and repeat Steps 6.1-6.3 to obtain JTP(Q)()\(M),qm,,\(m,ng)

Step 6.5. If JTP® (A (), s, n2) < JTPA(Nm1), Gna—17n, 1y»12 — 1), set JTPA (A3, ¢3,13) =
JTP® ()\(n271)7Qn2—17k<n2—1>7n2 — 1), where (A\3,q3,n3) = (A(nzfl)yQn2—1,)\(n271),n2 — 1) is the optimal
solution for Situation 2. Otherwise, return to Step 6.4.

Step 7. Find Maxy—1 2JTP® (X5 g ni), and let JTP(A\*,¢*,n*) = Maxz_12JTP® (X g n}), where

(\*, ¢*,n*) is the optimal solution.

Step 8. Stop.

A(ng)?

The aforementioned algorithm can be implemented using a computer-oriented numerical technique for any
given set of parameter values. Once the optimal value (A*,¢*,n*) is obtained, it can obtain the joint capital
investment I(A\*) = (1/9) In (Ay/\*) and T* = (1 — X\*)q* /D or ¢* /D according to the value of A* that belongs
to the interval (Ar, Ay] or (0, Ar]. Further, JTP* = JTP(\*, ¢*,n*) can be found.

5. NUMERICAL EXAMPLES
The above theoretical results and algorithm can be applied to the following numerical example.

Example 5.1. Consider an inventory system with the following data: A = 50, P = 2000, D = 1000, S = 200,
v =10, ¢ = 20, p = 40, hp, = 2, hp, = 0.5, hy, = 1.5, hy, = 0.5, z = 3000, Cs = 0.3, Cr = 10, C; = 0.3,
C, =10, § = 0.01, 6 = 0.0003, p = 0.5, A\y = 0.05, A\, = 0.005, @ = 0.2, 3 = 0.3, v = 0.5, M = 45/365 (=
0.123288), N = 30/365 (= 0.082192), I = 10/365 (= 0.027397), I. = 0.03 and I, = 0.01 in appropriate units.
Further, we set m = 500. Using the aforementioned algorithm, we obtain the computational results presented
in Table 1.

Table 1 reveals that the optimal number of shipments per production cycle for this example is n* = 3, the
batch quantity per shipment is ¢ = 228.608 units, and the proportion of defective items is A* = 0.00318 <
0.005 = Ar, which implies that the retailer does not inspect the received items. In this situation, the retailer’s
optimal order quantity is Q* = n*¢* = 685.824 units, optimal length of the replenishment cycle is T* = ¢*/D =
0.2286, and optimal joint total profit per unit time is JTP* = $28 433.008. To understand the effects of capital
investment, we determined the optimal number of shipments per production cycle (nly), batch quantity per
shipment (g3,), and retailer’s optimal order quantity (Q3,;) without capital investment. For the joint total
profit per unit time without capital investment JTPyy, nyy; = 4, ¢iy; = 205.886, and JTP; = 27867.647. A
comparison of the results with and without capital investment indicates that the supply chain benefits when
capital is jointly invested for quality improvement of the product.

Example 5.2. In this example, the effects of parameter changes on the optimal solutions can be analyzed. We
divide the parameters into four segments for discussion: retailer’s parameters, supplier’s parameters, investing
parameters, and trade credit parameters. The comparison results are represented in Tables 2-5.

The following observations can be made from the results presented in Table 2:
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TABLE 1. Results of using the algorithm for Example 5.1.

n Ang) Gnyany)  JTPW N2 A(na) Gnaya(ma)  JTPP
A@)s 1Ay s M) (Ang)s @nz A(ng) s 2)
1 0.00510 395.158  28111.974 1 000318 394.011  28221.714
2 0.00510 280.351  28287.191 2 0.00318  279.424  28396.086
3 0.00510 229.430 28324.489 3 0.00318 228.608 28433.008
4 000510 199.025  28323.164 4 000318  198.271  28431.458

Notes. Boldface type expresses the optimal solution of Situations 1 and 2, respectively.

TABLE 2. Optimal solutions under various retailer’s parameters.

Parameters Value n* A" q* Q" JTP*
A 40 4 0.0031826  189.051 756.205 28483.10
45 4 0.0031825 193.716  774.864 28456.97
50 3 0.0031814 228.608 685.824 28433.01
55 3 0.0031813 233.073 699.220 28411.35
60 3 0.0031812 237.455 712.364 28390.10
D 800 3 0.0039759 201.367 604.100 22608.95
900 3 0.0035346 215.210 645.631 25518.65
1000 3 0.0031814 228.608 685.824 28433.01
1100 4 0.0028932  210.799 843.197 31356.44
1200 4 0.0026523 223.276 893.102 34285.74
hy, 1.6 3 0.0031811 238.66 715.980 28479.71
1.8 3 0.0031813 233.472 700.416 28456.11
2 3 0.0031814 228.608 685.824 28433.01
2.2 4 0.0031824 194.823 779.292 28411.81
2.4 4 0.0031825 191.549 766.195 28392.49
Ry 0.4 3 0.0031849 228.616 685.847 28433.04
0.45 3 0.0031832 228.612 685.835 28433.03
0.5 3 0.0031814 228.608 685.824 28433.01
0.55 3 0.0031797 228.604 685.813 28432.99
0.6 3 0.0031780 228.601 685.802 28432.97
T 2400 3 0.0031814  228.608 685.824 28433.01
2700 3 0.0031814 228.608 685.824 28433.01
3000 3 0.0031814 228.608 685.824 28433.01
3300 3 0.0031814 228.608 685.824 28433.01
3600 3 0.0031814 228.608 685.824 28433.01
Cs 0.08 3 0.0031814 228.608 685.824 28433.01
0.09 3 0.0031814 228.608 685.824 28433.01
0.1 3 0.0031814 228.608 685.824 28433.01
0.11 3 0.0031814  228.608 685.824 28433.01
0.12 3 0.0031814 228.608 685.824 28433.01
Cy 8 3 0.0039320 228.605 685.814 28440.07
9 3 0.0035171 228.606 685.819 28436.35
10 3 0.0031814 228.608 685.824 28433.01
11 3 0.0029042 228.609 685.828 28429.97
12 3 0.0026715  228.61 685.831 28427.18
P 32 3 0.0031814 228.638 685.915 20432.86
36 3 0.0031814 228.623 685.869 24432.93
40 3 0.0031814 228.608 685.824 28433.01
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TABLE 2. continued.

Parameters Value n* A" q* Q" JTP*
44 3 0.0031814 228.593 685.778 32433.08
48 3 0.0031814 228.577 685.732 36433.16

c 16 3 0.0031776  231.438 694.315 28449.89
18 3 0.0031795  230.01 690.03 28441.43
20 3 0.0031814 228.608 685.824 28433.01
22 3 0.0031833 227.232 681.696 28424.63
24 4 0.0031858 196.229 784.915 28416.50

TABLE 3. Optimal solutions under various supplier’s parameters.

Parameters Value n* \* q* Q" JTP*
P 1600 4 0.0031821 205.262 821.047 28469.28
1800 4 0.0031822 201.289 805.154 28448.11
2000 3 0.0031814  228.608 685.824 28433.01
2200 3 0.0031815 227.018 681.054 28425.24
2400 3 0.0031815 225.718 677.154 28418.81
S 160 3 0.0031818  216.250 648.750 28493.10
180 3 0.0031816  222.515 667.544 28462.56
200 3 0.0031814 228.608 685.824 28433.01
220 4 0.0031822 202.724 810.895 28406.52
240 4 0.0031821 207.081 828.322 28382.12
hoy 1.2 4 0.0031820 209.829 839.315 28492.62
1.35 4 0.0031822 203.805 815.218 28461.61
1.5 3 0.0031814  228.608 685.824 28433.01
1.65 3 0.0031816  223.483 670.45 28 407.58
1.8 3 0.0031817 218.689 656.066 28382.71
R, 0.4 3 0.0032121 228.608 685.824 28433.33
0.45 3 0.0031967 228.608 685.824 28433.17
0.5 3 0.0031814  228.608 685.824 28433.01
0.55 3 0.0031663 228.608 685.824 28432.85
0.6 3 0.0031513 228.608 685.824 28432.69
Cr 8 3 0.0031815  226.797 680.392 28441.79
9 3 0.0031814  227.704 683.113 28437.39
10 3 0.0031814  228.608 685.824 28433.01
11 3 0.0031814  229.508 688.524 28428.64
12 3 0.0031814 230.404 691.213 28424.29
C 0.24 3 0.0031814  228.608 685.824 28493.01
0.27 3 0.0031814  228.608 685.824 28463.01
0.3 3 0.0031814 228.608 685.824 28433.01
0.33 3 0.0031814  228.608 685.824 28403.01
0.36 3 0.0031814  228.608 685.824 28373.01
v 8 3 0.0031803 228.608 685.824 30436.69
9 3 0.0031809 228.608 685.824 29434.85
10 3 0.0031814  228.608 685.824 28433.01
11 3 0.0031820 228.608 685.824 27431.16
12 3 0.0031825 228.608 685.824 26429.32
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TABLE 4. Optimal solutions under various investing parameters.

Parameters Value n* A" q* Q" JTP”

é 0.00024 3 0.0039768 228.604 685.813 28411.02
0.00027 3 0.0035349 228.606 685.819 28423.00
0.0003 3 0.0031814 228.608 685.824 28433.01
0.00033 3 0.0028922 228.609 685.828 28441.50
0.00036 3 0.0026512 228.585 685.756 28 448.80

AU 0.04 3 0.0031814 228.608 685.824  28440.45
0.045 3 0.0031814  228.608 685.824 28436.52
0.05 3 0.0031814 228.608 685.824 28433.01
0.055 3 0.0031814  228.608 685.824 28429.83
0.06 3 0.0031814 228.608 685.824 28426.93

AL 0.004 3 0.0031814 228.608 685.824 28433.01
0.0045 3 0.0031814 228.608 685.824 28433.01
0.005 3 0.0031814 228.608 685.824 28433.01
0.0055 3 0.0031814 228.608 685.824 28433.01
0.006 3 0.0031814 228.608 685.824 28433.01

0 0.008 3 0.0025451 228.584 685.753  28452.09
0.009 3 0.0028633 228.609 685.828 28442.36
0.01 3 0.0031814 228.608 685.824 28433.01
0.011 3 0.0034996  228.607 685.820 28423.97
0.012 3 0.0038177 228.605 685.815 28415.27

(1) When the retailer’s ordering cost (A) or penalty cost (C}) increases, the optimal proportion of defective
items (A*) and joint total profit (JTP*) decrease, whereas the optimal shipping quantity (¢*) and order
quantity (Q* = n*q*) (for the same n*) increase.

(2) As the market demand (D) increases, \* decreases; however, ¢*, @* (for the same n*), and JTP* increase.

(3) The retailer’s holding cost per non-defective item (hs,) and procurement cost (¢) positively affect A* but
negatively affect ¢*, @* (for the same n*), and JTP*.

(4) When the retailer’s holding cost per defective item (hs,) increases, A*, ¢*, Q*, and JTP* decrease.

(5) When the retailer’s unit selling price (p) increases, ¢* and Q* decrease, but JTP* increases. Furthermore,
the selling price (p) has no effect on \*.

(6) The inspection rate (x) and inspection cost (Cs) have no effect on the optimal solutions under the “non-
inspect” situation in which the retailer no longer conducts any checks on the received items.

From the results of Table 3, we have: (1) All the supplier parameters negatively affect JTP*. (2) When the
supplier’s production rate (P), holding cost (h,,) (excluding interest charge), or production cost (v) increases,
A* increases (for the same n*). (3) When the supplier’s setup cost (5), treatment cost per defective item (h,, ),
or fixed cost of transportation (Cr) increases, A* decreases (for the same n*). (4) The optimal shipping quantity
and order quantity decrease (for the same n*) with an increase in the supplier’s production rate (P) but increase
(for the same n*) with an increase in the supplier’s setup cost (S) and fixed cost of transportation (Cr).

From the results shown in Table 4, the following observations can be made: (1) The percentage decrease in
the defective rate per dollar increase in the capital investment () has a negative effect on A*. However, the
opportunity cost of the capital investment () has a positive effect on A*. (2) The value of § has a positive effect
on JTP*, whereas 6 and Ay negatively affect JTP*. (3) As the percentage decrease in the defective rate per
dollar increase in capital investment ¢ or the opportunity cost of the capital investment 6 increase, both the
optimal shipping quantity ¢* and the order quantity Q* = n*q* increase firstly and then decrease.

From Table 5, it is obtained that: (1) When the interest charged I.., the downstream credit period by the
retailer to customers N increases, the optimal proportion of defective items A* increases but the shipping
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TABLE 5. Optimal solutions under various credit parameters.

Parameters Value n* A" q* Q" JTP*

1. 0.024 3 0.0031764 231.438 694.315 28453.8
0.027 3 0.0031789  230.010 690.030 28443.4
0.03 3 0.0031814 228.608 685.824 28433.01
0.033 3 0.0031839 227.232 681.696 28422.7
0.036 4 0.0031870 196.229 784.915 28412.6

I. 0.008 3 0.0031815 228.638 685.915 28432.6
0.009 3 0.0031815 228.623 685.869 28432.8
0.01 3 0.0031814 228.608 685.824 28433.01
0.011 3 0.0031814 228.593 685.778 28433.2
0.012 3 0.0031814 228.577 685.732 28433.4

M 0.09863 3 0.0031803 228.544 685.632 28429.6
0.110959 3 0.0031809 228.569 685.707 28431.3
0.123288 3 0.0031814 228.608 685.824 28433.01
0.135616 3 0.0031820 228.660 685.981 28434.6
0.147945 3 0.0031825 228.727 686.180 28436.1

N 0.065753 3 0.0031799 228.681 686.043 28442.5
0.073973 3 0.0031807 228.641 685.924 28437.8
0.082192 3 0.0031814 228.608 685.824 28433.01
0.090411 3 0.0031822 228.581 685.742 28428.2
0.09863 3 0.0031829 228.559 685.678 28423.4

l 0.021918 3 0.0031813  228.608 685.824 28433.4
0.024658 3 0.0031814 228.608 685.824 28433.2
0.027397 3 0.0031814 228.608 685.824 28433.01
0.030137 3 0.0031815 228.608 685.824 28432.8
0.032877 3 0.0031816  228.608 685.824 28432.6

quantity ¢*, the order quantity @* = n*¢* (for the same n*) and the joint total profit JTP* decrease. (2) When
the length of time during which the prepayments are paid [ increases, the optimal proportion of defective items
A* increases but the joint total profit JTP* decreases. (3) The interest earned I, has a positive impact on the
optimal joint total profit JTP*, but has negative impacts on the optimal proportion of defective items A\*, the
shipping quantity ¢* and the order quantity Q* = n*q¢*. (4) The upstream credit period by the supplier to
the retailer M has positive impacts on the optimal proportion of defective items A\*, the shipping quantity ¢*,
the order quantity Q* = n*¢* and the joint total profit JTP*.

6. CONCLUSIONS

In this study, an integrated production-inventory model is presented involving defective items and ACC
payment. The product quality can be improved through capital investment from the supplier and retailer. The
theorems proposed in this paper ensure the existence and uniqueness of the optimal solutions and add rigor to
the model. An algorithm is used to determine the optimal solutions. Several numerical examples are used to
demonstrate the model and examine the effects of parameter changes on the optimal solutions. Furthermore, the
optimal solutions with and without capital investment are determined and compared. The comparison results
indicate that the supply chain benefits when capital is jointly invested for the quality improvement of a product.
Moreover, it reveals that the optimal shipping, order, investment, and inspection policies are determined by
trading off the opportunity cost of the capital investment and inspection cost for the penalty cost from the
numerical examples.
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The proposed model can be extended in several ways. For example, it may be used to study the demand rate
as a function of factors such as the selling price, time, and stock. Furthermore, the model can be generalized to
account for shortages, quantity discounts, and inflation.

APPENDIX A.

Proof of Lemma 4.1. Taking the first-order derivative of JTP11(\, ¢,n1) with respect to ¢ gives the following:

dJTPll(/\, q,’l’Ll) . D ny [2(A + OT) — (p]e — CIC)’)/D(M — N)Q} + 25 B (hb1 + CIC)(l — /\)2
dg DY 2n1q? 2D
_ (hbl —th))\ _ hb2>\(1—>\) 1 (nl—l)(l—)\) n1:|}

—hy | =
2z D ! P+ 2D 2P

(A1)

Then, the second-order derivative of JTP11(\, ¢, n1) with respect to g can be obtained as follows:

d?JTP11 (N, ¢,m)  —D{m[2(A+ Cr) — (pl. — cl.)yD(M — N)?] + 25}

dg? (1—-XNnig3

From (A.1), if n1[2(A + Cr) — (pl. — cl.)yD(M — N)?] + 25 < 0, dJTP11(), ¢, n1)/dgq < 0. This implies that
for a fixed ny and A € (Ap, A\y], JTP11(A, ¢,n1) is a decreasing function of ¢. In this case, the optimal size of
each shipment from the supplier to the retailer is ¢ = 0, which is not true in reality. Therefore, it is reasonable
to assume that n,[2(A + Cr) — (pl, — cl.)yD(M — N)?] 425 > 0. In this case, d2JTP;;(\, q,n1)/dg? < 0.
Consequently, if ni[2(A + Cr) — (pl. — el.)yD(M — N)?] +2S > 0, JTP11(\, ¢,n1) is a concave function of
q for any given ny and A € (A, Ay|. Thus, a unique value of (¢11,n,,1) is obtained when solving the equation

dJTP11(A, ¢,n1)/dg = 0 that maximizes JTP11(X\, q,m1) a8 ¢11,n,,0 = “21?722' This completes the proof. O

APPENDIX B.

Proof of Lemma 4.2. For any given n; and X € (A, A\y], JTP21(X, ¢,n1) and JTP31(\, ¢, n1) are concave func-

tions of ¢, because
dQJTPﬂ()\,q,nl) —-2D [nl(A—i-C’T) —|—S]

= 0 ) = 2, 3.
dg? (1—XNniqg? <D ¢ ’
Thus, there exist unique values of (ga1,n,,x and ¢s1,,,,x) that maximize JTP21 (), ¢, n1) and JTP31 (A, g,n1) as
follows:
. nl(A + CT) + S
q21,’l’L1,)\ - nlAg bl
and
(A4 COr) + S’
q31,n1,A = —n1A4
This completes the proof. (I

ApPENDIX C.

Proof of Lemma 4.3. Using a similar approach shown as in Lemma 4.1, the following equation is obtained for
any given ny and A € (0, \z].

d2JTP12()\,q7n2) B _D {n2[2(A + CT) — (pl. — CIC) vD (M — N)z] + 25}

dg? naq3
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We may assume without loss of generality (WLOG) that ny[2(A + Cr) — (ple — cIe)vD (M — N)?] + 25 > 0,
then d?>JTP12(, ¢,n2)/dg? < 0 and hence the optimal solution of ¢ (denoted by q12.,, x) that maximizes the
joint total profit per unit time JTP15(\, q,n2) can be obtained by solving the equation dJTP12(), ¢,n2)/dg =0

A
as q12,ny, X = 4/ ﬁ

Similarly, the following equation can be obtained:
dQJTPiQ(/\,q,TLQ) —2D[’I’L2(A+OT) + S]

dg? - naq? <=

Hence the optimal solution of ¢ (denoted by ¢2.n,.x,% = 2,3) that maximizes JTP;2(\, ¢,n2),7 = 2,3, can be
obtained by solving the equation dJTP;5(X, ¢, n2)/dg = 0,i = 2,3, as follows:

na(A+Cr)+ 8

QQQ,ng,)\ == TLQA7 )
and
N2 (A +Cr) + S.
q32,ny, X = —n2A8
This completes the proof. O
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