

INTEGRATED INVENTORY MODEL INVOLVING QUALITY IMPROVEMENT INVESTMENT AND ADVANCE-CASH-CREDIT PAYMENTS

CHIH-TE YANG^{1,*}, CHIEN-HSIU HUANG² AND LIANG-YUH OUYANG²

Abstract. This paper investigates the effects of investment and inspection policies on an integrated production–inventory model involving defective items and upstream advance-cash-credit payment provided by the supplier. In this model, retailers offer customers a downstream credit period. Furthermore, the defective rate of the item can be improved through capital co-investment by the supplier and retailer. The objective of this study was to determine the optimal shipping quantity, order quantity, and investment alternatives for maximizing the supply chain’s joint total profit per unit time. An algorithm was developed to obtain the optimal solution for the proposed problem. Several numerical examples are used to demonstrate the proposed model and analyze the effects of parameters changes on the optimal solutions. Finally, management implications for relevant decision makers are obtained from the numerical examples.

Mathematics Subject Classification. 90B05.

Received November 12, 2019. Accepted April 4, 2021.

1. INTRODUCTION

Product quality in real life is not always perfect and is dependent on the manufacturer’s production process or the quality of raw materials. Therefore, retailers will assess product quality first instead of immediately stocking it when an order is received. Inventory models of defective products have been studied extensively. Rosenblatt and Lee [34] investigated the influence of imperfect production processes on the economic production quantity (EPQ) model. Kim and Hong [19] extended Rosenblatt and Lee’s [34] model to determine the optimal production run length for deteriorating production processes. Salameh and Jaber [35] also modified an EPQ model by accounting for items with imperfect quality. Further they assumed that poor-quality items are sold as a single batch at a discounted price after the end of the screening process. After this, many studies on imperfect production processes have been published, such as [1, 5, 8, 9, 14, 26, 32, 37, 40].

The production process can be realistically controlled which implies the defective rate of items can be reduced by investing capital to improve the equipment. Porteus [33] first introduced the option of investing capital for improving the quality of the production process and developed an EPQ model with defective items. Hong [10] extended Rosenblatt and Lee’s model [34] by considering the investment for setup reduction and process

Keywords. Inventory, integrated model, defective items, capital investment, advance-cash-credit payment.

¹ Department of International Business, Chien Hsin University of Science and Technology, Taoyuan City, Taiwan.

² Department of Management Sciences, Tamkang University, New Taipei City, Taiwan.

*Corresponding author: ctyang@uch.edu.tw

quality improvement. Ouyang and Chang [28] considered a modified lot size reorder point model with imperfect production process and investigated the effect of quality improvement on the proposed model. Hou and Lin [12] also explored the effects of an imperfect production process on the optimal production run length when capital was invested for process quality improvement. Yang and Pan [44] proposed an integrated inventory model involving variable lead time and quality improvement investment with normally distributed demand. Lai *et al.* [21] developed an inventory system that incorporated the quality improvement cost to reduce the proportion of defects. Recently, an integrated production-inventory model with imperfect production system with partial backlogging was presented by Khanna *et al.* [17]. Other studies related to quality improvement include [6, 11, 15, 16, 20, 30, 41, 46]. Capital investment for improving imperfect production processes is generally provided by the manufacturer. However, if retailers agree to provide a part of the investment capital, they are not required to inspect the goods upon receipt, because the defective rate reaches a low level. Ouyang *et al.* [31] referred to this as “non-inspect.” In this situation, all received products are treated as non-defective to stock and then sell to customers. Therefore, a penalty cost may be incurred for the defective items returned by customers. Consequently, when investment becomes an option, the retailer may trade the inspection cost for the penalty cost. This issue must be considered when analyzing inventory problems.

The traditional economic order quantity (EOQ) and EPQ models do not investigate payment methods and assume that the payment is made immediately upon receiving the consignment. However, in real business transactions, the supplier usually allows the retailer an extended period to provide full payment to attract new customers and increase sales and market share, because it benefits both the supplier and retailer. Goyal [7] incorporated trade credit into the EOQ model. Aggarwal and Jaggi [2] extended Goyal’s model to deteriorating items. Chang *et al.* [3] established an EOQ model for deteriorating items under conditionally permissible delay in payments. Ouyang *et al.* [29] and Sharma *et al.* [39] presented inventory models for non-instantaneous deteriorating items with permissible delay in payments. Lashgari *et al.* [22] and Mukherjee and Mahata [27] investigated inventory control problems for deteriorating items with a two-level trade credit. Recently, Sarkar *et al.* [38] obtained the optimal decision of a retailer for time-varying deterioration items with selling-price and credit-period dependent demand to maximize the retailer’s profit. Related articles include studies by [13, 18, 36]. However, when the purchase amount is large, to avoid customer defaults and to stimulate consumption, the manufacturer usually agrees with the retailer on the following payment method. The retailer is required to prepay a fraction of the procurement cost as a contract to buy items, then pay another fraction of the procurement cost in cash upon receiving the order and receive a short interest-free credit term to pay the remainder of the procurement cost. This is called an advance-cash-credit (ACC) payment scheme [23]. ACC payment schemes are commonly used in real-world sales finance situations. Li *et al.* [23] developed an inventory model for perishable products in which the retailer receives an upstream ACC payment from the supplier and in return offers a downstream cash-credit payment to customers. Wu *et al.* [43] considered an EOQ model including perishable products with expiration dates and ACC payment schemes. Tsao *et al.* [42] developed an EPQ model for perishable products under the ACC payment scheme using a discounted cash flow analysis. Other studies related to inventory model with ACC payment include [4, 23, 24] and so on. Although many scholars have investigated inventory problems with ACC payment, all of them developed EOQ/EPQ models from the perspective of retailers or suppliers.

Therefore, this paper presents an integrated inventory model developed based on the aforementioned studies for defective items in which the defective rate can be improved through capital investment from the supplier and retailer under an ACC payment scheme. Mathematical analyses are used to determine the optimal shipping quantity, order quantity, and defective rate to maximize the supply chain’s joint total profit per unit time. An algorithm is presented that was developed to determine the optimal solution. Numerical examples are used to demonstrate the proposed model and examine the effects of parameter changes on the optimal solutions. Several management implications for relevant decision makers are obtained from the numerical examples.

2. NOTATION AND ASSUMPTIONS

The following notation and assumptions are used in this paper.

Notation

M	Upstream credit period provided by the supplier to the retailer, $M \geq 0$.
N	Downstream credit period provided by the retailer to customers, $N \geq 0$.
l	Time within which the prepayments are made, $l > 0$.
α	Fraction of the procurement cost to be paid in advance, $0 \leq \alpha \leq 1$.
β	Fraction of the procurement cost to be paid at the time of delivery, $0 \leq \beta \leq 1$.
γ	Fraction of the procurement cost granted by the supplier as permissible delay to the retailer, $0 \leq \gamma \leq 1$ and $\alpha + \beta + \gamma = 1$.
D	Demand rate of the market.
P	Production rate of the supplier.
v	Production cost per unit for the supplier.
c	Procurement cost per unit for the retailer, $c > v$.
p	The selling price of the retailer per unit, $p > c$.
A	Retailer's ordering cost per order.
S	Supplier's setup cost per setup.
h_{b_1}	Retailer's holding cost, excluding the interest charged, per non-defective item per unit time.
h_{b_2}	Retailer's holding cost, excluding the interest charged, per defective item per unit time, where $h_{b_2} < h_{b_1}$.
h_{v_1}	Supplier's holding cost excluding the interest charged per item per unit time.
h_{v_2}	Supplier's treatment cost per defective item.
x	Retailer's inspection rate per order.
C_s	Retailer's inspection cost per unit.
C_p	Retailer's penalty cost (including the treatment cost) per defective item returned by the customer.
C_T	Supplier's fixed cost of transportation per shipment.
C_t	The supplier's variable cost of transportation per unit.
I_c	Interest charged per dollar per unit time.
I_e	Interest earned per dollar per unit time.
θ	Opportunity cost of the capital investment per dollar per unit time.
ρ	the proposition of capital that the retailer should invest in production process.
λ_U	Proportion of defective items before improving the production process, where $\lambda_U < 1$.
λ_L	Proportion of defective items that become "non-inspect", $0 < \lambda_L < \lambda_U$.
λ	Proportion of defective items, $\lambda \in (0, \lambda_U]$ is a decision variable.
Q	Retailer's order quantity, which is a decision variable.
T	Length of the retailer's replenishment cycle, which is a decision variable.
n	Number of shipments provided by the supplier to the retailer per production cycle (integer decision variable).
q	Size of each shipment provided by the supplier to the retailer in a production batch (decision variable).
$JTP(\lambda, q, n)$	Joint total profit per unit time, as a function of λ , q , and n .
*	Superscript represents the optimal value.

Assumptions

- (1) There is single-supplier and single-retailer for a single product in this system.
- (2) The supplier's production rate of non-defective item is finite and greater than the demand rate, *i.e.*, $P(1 - \lambda) > D$. Otherwise, there will be no inventory problems.
- (3) The retailer orders a large product quantity (Q) (of non-defective items) per order asks the supplier to deliver q units for n shipments.
- (4) Before product quality improvement, the retailer may make a full inspection with an inspection rate x as soon as the order is received to examine the product quality. When the proportion of defective items becomes equal to or less than a certain low rate (λ_L) through capital investment, the retailer no longer conducts checks on the received items. In this situation, all the items received from the supplier are treated

as non-defective products to stock and sell to customers, which results in λq ($\lambda \leq \lambda_L$) defective items returned by the customers. All the defective items that have been inspected or returned by customers are stored and returned to the supplier at the end of each replenishment cycle.

- (5) All defective items cannot be repaired or reworked. These items have no salvage value.
- (6) The capital investment $[I(\lambda)]$ for improving the production process quality to reduce the defective rate of the product is expressed as a logarithmic function of λ .

$$I(\lambda) = \frac{1}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right), \quad 0 < \lambda \leq \lambda_U,$$

where λ_U is the proportion of defective items before improving the production processes, and δ denotes the percentage decrease in λ per dollar increase in $I(\lambda)$ (please see [15, 30, 33]).

- (7) Capital investment is jointly shared by the retailer and supplier in the integrated supply chain system. Thus, the proportions of capital that the retailer and supplier should invest in the production process are ρ and $1 - \rho$, respectively ($0 \leq \rho \leq 1$). When $\rho = 0$, it means that the supplier is fully responsible for product quality.
- (8) An ACC payment scheme is considered between the retailer and supplier in this model. That is, the retailer prepays α fraction of the pre-determined procurement cost for non-defective at time $-l$ when making a replenishment, pays β fraction of procurement cost at the time of delivery (*i.e.*, time 0), and receives an upstream credit period of M on the remaining γ fraction of procurement cost for each replenishment cycle, where $\alpha + \beta + \gamma = 1$.
- (9) The inspection is nondestructive and error-free.

3. MODEL FORMULATION

3.1. Problem description

In this paper, a single supplier and a single retailer is considered in the supply chain production-inventory system. The integrated inventory model involving defective items and ACC payment schemes. The operation of this production-inventory system is as follows: The retailer orders Q units (of non-defective items) per order, and asks the supplier to deliver q units in n shipments. Each received shipment contains a percentage of defective items with a defective rate λ , and the retailer may inspect all the received items before investing capital to improve the production process. In this situation, the number of defective items λq in each shipment will be checked out immediately, and hence the length of the replenishment cycle is $T = (1 - \lambda)q/D$. Alternatively, if the retailer and supplier joint to co-invest capital for improving the production process and the defective rate of the product (λ) is reduced to the threshold (λ_L) or lower, the retailer does not inspect the received items and stocks them for later use. In this situation, the supplier's shipment size is q , and the length of replenishment cycle is $T = q/D$. Furthermore, the supplier provides an ACC payment scheme and allows the retailer to prepay α fraction of the procurement cost prior to shipment, β fraction of the procurement cost upon receipt of the goods, and obtain an upstream credit period of M on the remaining payment γ , where $\alpha + \beta + \gamma = 1$.

In the following text, we first establish the total profit per unit time for the retailer and supplier and subsequently determine the joint total profit per unit time of the integrated inventory system.

3.2. Retailer's total profit per unit time

When the investment option is available, the retailer's total profit per replenishment cycle with an ACC payment scheme, a downstream trade credit policy, and defective items in each arriving shipment is composed of the following elements.

(a) Sales revenue.

The retailer's sales revenue per cycle is pDT , where

$$T = \begin{cases} (1 - \lambda)q/D, & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ q/D, & \text{if } 0 < \lambda \leq \lambda_L. \end{cases} \quad (3.1)$$

(b) Procurement cost.

The retailer's procurement cost per replenishment cycle is $c(1 - \lambda)q$.

(c) Ordering cost.

The retailer's ordering cost per replenishment cycle is A .

(d) Opportunity cost of capital investment.

Capital investment for improving the production process quality creates an opportunity cost $[\theta I(\lambda)]$. The amount of capital investment is shared between the retailer and supplier, and the ratio shared by the retailer is ρ ($0 \leq \rho \leq 1$). Therefore, the opportunity cost incurred by the retailer for improving the production process quality per cycle is $\rho\theta I(\lambda)T = \rho(\theta/\delta)T \ln(\lambda_U/\lambda)$, where T is as given in (3.1).

(e) Inspection cost.

The initial defective rate for the items received by the retailer is λ_U , which can be improved through capital investment. If the defective rate (λ) is lowered to a certain threshold (λ_L) (i.e., $0 < \lambda \leq \lambda_L$) or below, the retailer does not inspect the received items, and the inspection cost per cycle is zero. However, if $\lambda_L < \lambda \leq \lambda_U$, the retailer inspects the items after receipt. The unit inspection cost is C_s , and the retailer receives a shipment of size q . The inspection cost per replenishment cycle for the retailer is as follows:

$$\begin{cases} C_s q, & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ 0, & \text{if } 0 < \lambda \leq \lambda_L. \end{cases}$$

(f) Holding cost of non-defective items.

Defective items with a defective rate λ are inspected by the retailer (the inspection rate is x) if $\lambda_L < \lambda \leq \lambda_U$. Therefore, the holding cost of non-defective items (including defective items before identification) per cycle is as follows:

$$h_{b_1}[(1 - \lambda)qT/2 + \lambda q^2/(2x)] = h_{b_1}q^2[(1 - \lambda)^2/(2D) + \lambda/(2x)].$$

However, if $0 < \lambda \leq \lambda_L$, free inspection is adopted, and all the received items are treated as non-defective items for stocking and sales. Therefore, the holding cost per cycle is $h_{b_1}qT/2 = h_{b_1}q^2/(2D)$, and the total holding cost of the non-defective items per replenishment cycle is given as follows:

$$\begin{cases} h_{b_1}q^2[(1 - \lambda)^2/(2D) + \lambda/(2x)], & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ h_{b_1}q^2/(2D), & \text{if } 0 < \lambda \leq \lambda_L. \end{cases}$$

(g) Holding cost of defective items.

There are λq defective items in each shipment. When $\lambda_L < \lambda \leq \lambda_U$, the defective items will be inspected and returned to the supplier at the end of each shipment cycle. In this situation, the holding cost of the defective items per replenishment cycle is $h_{b_2}[\lambda qT - \lambda q^2/(2x)] = h_{b_2}\lambda q^2[(1 - \lambda)/D - 1/(2x)]$. By contrast, if $0 < \lambda \leq \lambda_L$, the defective items are sequentially returned by customers because of the free inspection policy. These defective items will be stored and returned to the supplier at the end of each cycle. Thus, the holding cost for defective items per cycle is $h_{b_2}\lambda qT/2 = h_{b_2}\lambda q^2/(2D)$. Therefore, the holding cost for defective items per replenishment cycle is as follows:

$$\begin{cases} h_{b_2}\lambda q^2[(1 - \lambda)/D - 1/(2x)], & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ h_{b_2}\lambda q^2/(2D), & \text{if } 0 < \lambda \leq \lambda_L. \end{cases}$$

(h) Penalty cost for defective items (external failure cost).

Although adopting a free inspection policy can reduce inspection cost, all units of received items treated as non-defective products are sold, and the defective items (λq items) are returned by customers. This results in the retailer incurring a penalty cost of C_p per unit. By contrast, when the defective rate (λ) is above a certain threshold (i.e., $\lambda_L < \lambda \leq \lambda_U$), the retailer inspects all the received items. Therefore, no penalty cost is incurred. The penalty cost of defective items per cycle is as follows.

$$\begin{cases} 0, & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ C_p \lambda q, & \text{if } 0 < \lambda \leq \lambda_L. \end{cases}$$

(i) Interest charged and interest earned.

There are two possible credit payment cases based on the values of the upstream (M) and downstream (N) credit periods: $N \leq M$ and $N \geq M$.

Case 1. $N \leq M$.

There exist two subcases according to the value of the downstream credit period (N) and time at which the retailer receives the payment from the last customer.

Subcase 1. $N \leq M \leq T + N$.

In this subcase, the interest charged for credit payment per replenishment cycle is given as follows:

$$cI_c(1 - \lambda)q \left\{ \alpha(N + l) + \beta N + \frac{(\alpha + \beta)T}{2} \right\} + \frac{cI_c D \gamma (T + N - M)^2}{2}.$$

The interest earned for credit payment per cycle is as follows:

$$\frac{pI_e \gamma D (M - N)^2}{2}.$$

The retailer's total profit per unit time is the combination of the aforementioned elements divided by the length of the replenishment cycle (T), where T is as given in (3.1).

$$\text{TPB}_1(\lambda, q) = \begin{cases} \text{TPB}_{11}(\lambda, q), & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ \text{TPB}_{12}(\lambda, q), & \text{if } 0 < \lambda \leq \lambda_L, \end{cases} \quad (3.2)$$

where

$$\begin{aligned} \text{TPB}_{11}(\lambda, q) = & (p - c)D - \frac{\rho\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - \frac{D}{(1 - \lambda)} \left\{ \frac{A}{q} + C_s + h_{b_1}q \left[\frac{(1 - \lambda)^2}{2D} + \frac{\lambda}{2x} \right] \right. \\ & + h_{b_2}\lambda q \left[\frac{1 - \lambda}{D} - \frac{1}{2x} \right] + cI_c(1 - \lambda) \left[\alpha(N + l) + \beta N + \frac{(\alpha + \beta)(1 - \lambda)q}{2D} \right] \\ & \left. + \frac{cI_c D \gamma [(1 - \lambda)q/D + N - M]^2}{2q} - \frac{pI_e \gamma D (M - N)^2}{2q} \right\}, \end{aligned} \quad (3.3)$$

and

$$\begin{aligned} \text{TPB}_{12}(\lambda, q) = & pD - \frac{\rho\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - D \left\{ c(1 - \lambda) + \frac{A}{q} + \frac{h_{b_1}q}{2D} + \frac{h_{b_2}\lambda q}{2D} + C_p\lambda + cI_c(1 - \lambda) \right. \\ & \times \left[\alpha(N + l) + \beta N + \frac{(\alpha + \beta)q}{2D} \right] + \frac{cI_c D \gamma (q/D + N - M)^2}{2q} - \frac{pI_e \gamma D (M - N)^2}{2q} \right\}. \end{aligned} \quad (3.4)$$

Sub-case 2. $M \geq T + N$.

In this subcase, the interest charged for credit payment per replenishment cycle is given as follows:

$$cI_c(1 - \lambda)q \left[\alpha(N + l) + \beta N + \frac{(\alpha + \beta)T}{2} \right].$$

The interest earned for credit payment per cycle is as follows:

$$pI_e\gamma D \left[\frac{T^2}{2} + T(M - T - N) \right].$$

The retailer's total profit per unit time is the combination of the aforementioned elements divided by the length of the replenishment cycle (T), where T is as given in (3.1).

$$\text{TPB}_2(\lambda, q) = \begin{cases} \text{TPB}_{21}(\lambda, q), & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ \text{TPB}_{22}(\lambda, q), & \text{if } 0 < \lambda \leq \lambda_L, \end{cases} \quad (3.5)$$

where

$$\begin{aligned} \text{TPB}_{21}(\lambda, q) = & (p - c)D - \frac{\rho\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - \frac{D}{(1 - \lambda)} \left\{ \frac{A}{q} + C_s + h_{b1}q \left[\frac{(1 - \lambda)^2}{2D} + \frac{\lambda}{2x} \right] \right. \\ & + h_{b2}\lambda q \left[\frac{1 - \lambda}{D} - \frac{1}{2x} \right] + cI_c(1 - \lambda) \left[\alpha(N + l) + \beta N + \frac{(\alpha + \beta)(1 - \lambda)q}{2D} \right] \\ & \left. - pI_e(1 - \lambda)\gamma \left[M - N - \frac{(1 - \lambda)q}{2D} \right] \right\}, \end{aligned} \quad (3.6)$$

and

$$\begin{aligned} \text{TPB}_{22}(\lambda, q) = & pD - \frac{\rho\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - D \left\{ c(1 - \lambda) + \frac{A}{q} + \frac{h_{b1}q}{2D} + \frac{h_{b2}\lambda q}{2D} + C_p\lambda + cI_c(1 - \lambda) \right. \\ & \times \left. \left[\alpha(N + l) + \beta N + \frac{(\alpha + \beta)q}{2D} \right] - pI_e\gamma \left(M - N - \frac{q}{2D} \right) \right\}. \end{aligned} \quad (3.7)$$

Case 2. $N \geq M$.

In this case, no interest is earned for credit payment. The interest charged for credit payment per replenishment cycle is given as follows:

$$cI_c(1 - \lambda)q \left[\alpha(N + l) + \beta N + \gamma(N - M) + \frac{T}{2} \right].$$

The retailer's total profit per unit time is the combination of the aforementioned elements divided by the length of the replenishment cycle (T), where T is as given in (3.1).

$$\text{TPB}_3(\lambda, q) = \begin{cases} \text{TPB}_{31}(\lambda, q), & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ \text{TPB}_{32}(\lambda, q), & \text{if } 0 < \lambda \leq \lambda_L, \end{cases} \quad (3.8)$$

where

$$\begin{aligned} \text{TPB}_{31}(\lambda, q) = & (p - c)D - \frac{\rho\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - \frac{D}{(1 - \lambda)} \left\{ \frac{A}{q} + C_s + h_{b1}q \left[\frac{(1 - \lambda)^2}{2D} + \frac{\lambda}{2x} \right] + h_{b2}\lambda q \right. \\ & \times \left. \left[\frac{1 - \lambda}{D} - \frac{1}{2x} \right] + cI_c(1 - \lambda) \left[\alpha(N + l) + \beta N + \gamma(N - M) + \frac{(1 - \lambda)q}{2D} \right] \right\}, \end{aligned} \quad (3.9)$$

and

$$\begin{aligned} \text{TPB}_{32}(\lambda, q) = & pD - \frac{\rho\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - D \left\{ c(1 - \lambda) + \frac{A}{q} + \frac{h_{b1}q}{2D} + \frac{h_{b2}\lambda q}{2D} + C_p\lambda + cI_c(1 - \lambda) \right. \\ & \times \left. \left[\alpha(N + l) + \beta N + \gamma(N - M) + \frac{q}{2D} \right] \right\}. \end{aligned} \quad (3.10)$$

3.3. Supplier's total profit per unit time

The supplier's total profit per production cycle consists of the following elements:

(a) Sales revenue.

The supplier produces nq units in each production run and delivers q units to the retailer in each shipment. However, a certain proportion of the defective items are returned by the retailer (λ). Therefore, the supplier's sales revenue per production cycle is $c(1 - \lambda)nq$, where

$$n = \begin{cases} n_1, & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ n_2, & \text{if } 0 < \lambda \leq \lambda_L. \end{cases} \quad (3.11)$$

(b) Production cost.

The supplier produces nq units in each production run. Therefore, the supplier's production cost per production cycle is v_nq , where n is as given in (3.11).

(c) Setup cost.

The supplier's setup cost per production cycle is S .

(d) Transportation cost.

The supplier's transportation cost per shipment includes the fixed per-lot transportation cost (C_T) and variable transportation cost (C_tq). Therefore, the total transportation cost per production cycle can be calculated as $n(C_T + C_tq)$, where n is as given in (3.11).

(e) Opportunity cost of capital investment.

The capital investment is shared between the retailer and supplier, with the proportion of the supplier's investment being $1 - \rho$ ($0 \leq \rho \leq 1$). Therefore, the opportunity cost of capital investment per production cycle for the supplier is $(1 - \rho)\theta I(\lambda)nT$, where T and n are as given in (3.1) and (3.11), respectively.

(f) Holding cost.

Once the first q units are produced, the supplier delivers them to the retailer immediately. Following, the supplier schedules successive deliveries every $(1 - \lambda)q/D$ units of time until the inventory level decreases to zero if $\lambda_L < \lambda \leq \lambda_U$. The behavior of the inventory level for the supplier is illustrated in Figure 1a. The cumulative inventory per production cycle for the supplier is as follows:

$$\begin{aligned} & \left[n_1q \left(\frac{q}{P} + \frac{(n_1 - 1)(1 - \lambda)q}{D} \right) - \frac{n_1^2 q^2}{2P} \right] - \left[\frac{(1 - \lambda)q^2}{D} (1 + 2 + \dots + (n_1 - 1)) \right] \\ &= n_1 q^2 \left[\frac{1}{P} + \frac{(n_1 - 1)(1 - \lambda)}{2D} - \frac{n_1}{2P} \right]. \end{aligned}$$

However, if $0 < \lambda \leq \lambda_L$, the retailer does not inspect the received items, and all the items are stored directly. In this case, the cumulative inventory per production cycle for the supplier is as follows (see Fig. 1b):

$$\left[n_2q \left(\frac{q}{P} + (n_2 - 1) \frac{q}{D} \right) - \frac{n_2^2 q^2}{2P} \right] - \left[\frac{q^2}{D} (1 + 2 + \dots + (n_2 - 1)) \right] = n_2 q^2 \left[\frac{1}{P} + \frac{n_2 - 1}{2D} - \frac{n_2}{2P} \right].$$

Therefore, the holding cost per production cycle is as follows:

$$\begin{cases} h_{v_1} n_1 q^2 \left[\frac{1}{P} + \frac{(n_1 - 1)(1 - \lambda)}{2D} - \frac{n_1}{2P} \right], & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ h_{v_1} n_2 q^2 \left[\frac{1}{P} + \frac{n_2 - 1}{2D} - \frac{n_2}{2P} \right], & \text{if } 0 < \lambda \leq \lambda_L. \end{cases}$$

(g) Treatment cost for defective items.

For each shipment of size q , λq defective items are returned by the retailer at the end of the shipment cycle. The treatment cost for the returned defective items per production cycle is $h_{v_2} n \lambda q$, where n is as given in (3.11).

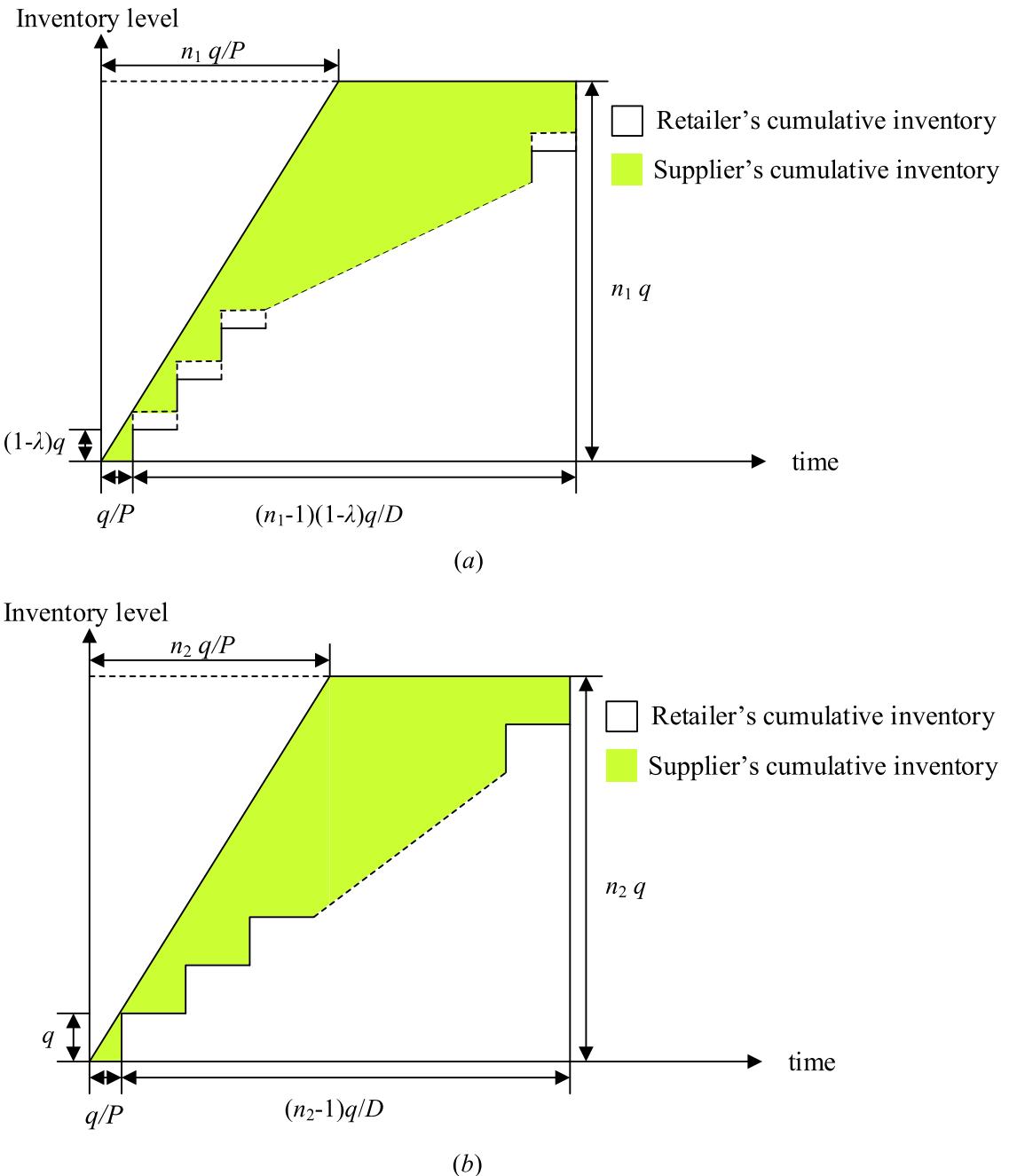


FIGURE 1. Supplier's inventory levels per production run. (a) $\lambda_L < \lambda \leq \lambda_U$. (b) $0 < \lambda \leq \lambda_L$.

(h) Interest charged and interest earned.

Under the ACC payment policy, the supplier receives α fraction of the procurement cost at time $-l$ and provides a credit period of M on the remaining γ portion of the procurement cost for each replenishment cycle. Therefore, the interest charged and interest earned per replenishment cycle are given by $\gamma v I_c (1 - \lambda) n q M$ and $\alpha c I_e (1 - \lambda) n q l$, respectively, where n is as given in (3.11).

The supplier's total profit per unit time is the combination of the aforementioned elements divided by the length of production cycle (nT), where T and n are as given in (3.1) and (3.11), respectively.

$$TPV(\lambda, n) = \begin{cases} TPV_1(\lambda, n_1), & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ TPV_2(\lambda, n_2), & \text{if } 0 < \lambda \leq \lambda_L, \end{cases} \quad (3.12)$$

where

$$\begin{aligned} TPV_1(\lambda, n_1) = cD - \frac{D}{(1-\lambda)} & \left\{ v + \frac{S}{n_1 q} + \frac{C_T}{q} + C_t + \frac{(1-\rho)\theta(1-\lambda)}{\delta D} \ln \left(\frac{\lambda_U}{\lambda} \right) + h_{v_1} q \right. \\ & \times \left[\frac{1}{P} + \frac{(n_1-1)(1-\lambda)}{2D} - \frac{n_1}{2P} \right] + h_{v_2} \lambda + \gamma v I_c (1 - \lambda) M - \alpha c I_e (1 - \lambda) l \left. \right\}, \end{aligned} \quad (3.13)$$

and

$$\begin{aligned} TPV_2(\lambda, n_2) = D & \left\{ c(1-\lambda) - v - \frac{S}{n_2 q} - \frac{C_T}{q} - C_t - \frac{(1-\rho)\theta}{\delta D} \ln \left(\frac{\lambda_U}{\lambda} \right) - h_{v_1} q \right. \\ & \times \left[\frac{1}{P} + \frac{n_2-1}{2D} - \frac{n_2}{2P} \right] - h_{v_2} \lambda - \gamma v I_c (1 - \lambda) M + \alpha c I_e (1 - \lambda) l \left. \right\}. \end{aligned} \quad (3.14)$$

3.4. Joint total profit per unit time

When the retailer and supplier build a long-term strategic partnership, they together determine the optimal policy. Therefore, the joint total profit per unit time is the sum of the retailer's and supplier's total profits per unit time. From the values of the upstream and downstream credit periods (M and N , respectively), the joint total profit per unit time [$JTP(\lambda, q, n)$] can be obtained as follows:

$$JTP(\lambda, q, n) = \begin{cases} JTP_1(\lambda, q, n), & \text{if } N \leq M \leq T + N, \\ JTP_2(\lambda, q, n), & \text{if } M \geq T + N, \\ JTP_3(\lambda, q, n), & \text{if } N \geq M, \end{cases} \quad (3.15)$$

where

$$\begin{aligned} JTP_i(\lambda, q, n) &= \begin{cases} JTP_{i1}(\lambda, q, n_1), & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ JTP_{i2}(\lambda, q, n_2), & \text{if } 0 < \lambda \leq \lambda_L, \end{cases} \\ &= \begin{cases} TPB_{i1}(\lambda, q) + TPV_1(\lambda, n_1), & \text{if } \lambda_L < \lambda \leq \lambda_U, \\ TPB_{i2}(\lambda, q) + TPV_2(\lambda, n_2), & \text{if } 0 < \lambda \leq \lambda_L, \end{cases} \end{aligned} \quad (3.16)$$

$i = 1, 2, 3$.

4. THEORETICAL RESULTS

The objective of the proposed model was to determine the optimal batch quantity (q^*), proportion of defective items (λ^*), and number of shipments per production cycle (n^*) for maximizing the joint total profit per unit time. It is found that the problem to maximize the joint total profit per unit time $JTP_i(\lambda, q, n)$ is mixed integer non-linear program problem, where n is a integer, λ and q are real numbers. To solve this problem, we first considered the following two situations: (i) $\lambda_L < \lambda \leq \lambda_U$ and (ii) $0 < \lambda \leq \lambda_L$ and explained the concavities

of the total profits per unit time with respect to n and q under the various situations. Then an algorithm was developed to the optimal solutions (λ^*, q^*, n^*) for the whole problem.

Situation 1. $\lambda_L < \lambda \leq \lambda_U$.

In this situation, consider the following three joint total profit functions:

$$\begin{aligned} \text{JTP}_{11}(\lambda, q, n_1) = & pD - \frac{\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - \frac{D}{1-\lambda} \left\{ \frac{n_1(A+C_T)+S}{n_1q} + C_s + v + C_t + h_{b_1}q \left[\frac{(1-\lambda)^2}{2D} + \frac{\lambda}{2x} \right] \right. \\ & + h_{b_2}\lambda q \left[\frac{1-\lambda}{D} - \frac{1}{2x} \right] + cI_c(1-\lambda) \left[\alpha(N+l) + \beta N + \gamma(N-M) + \frac{(1-\lambda)q}{2D} \right] \\ & + h_{v_1}q \left[\frac{1}{P} + \frac{(n_1-1)(1-\lambda)}{2D} - \frac{n_1}{2P} \right] + h_{v_2}\lambda + \gamma v I_c(1-\lambda)M - \alpha c I_e(1-\lambda)l \\ & \left. + \frac{(cI_c - pI_e)\gamma D(M-N)^2}{2q} \right\} \end{aligned} \quad (4.1)$$

$$\begin{aligned} \text{JTP}_{21}(\lambda, q, n_1) = & pD - \frac{\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - \frac{D}{1-\lambda} \left\{ \frac{n_1(A+C_T)+S}{n_1q} + C_s + v + C_t + h_{b_1}q \left[\frac{(1-\lambda)^2}{2D} + \frac{\lambda}{2x} \right] \right. \\ & + h_{b_2}\lambda q \left[\frac{1-\lambda}{D} - \frac{1}{2x} \right] + cI_c(1-\lambda) \left[\alpha(N+l) + \beta N + \frac{(\alpha+\beta)(1-\lambda)q}{2D} \right] \\ & - pI_e(1-\lambda)\gamma \left[M - N - \frac{(1-\lambda)q}{2D} \right] + \gamma v I_c(1-\lambda)M - \alpha c I_e(1-\lambda)l \\ & \left. + h_{v_1}q \left[\frac{1}{P} + \frac{(n_1-1)(1-\lambda)}{2D} - \frac{n_1}{2P} \right] + h_{v_2}\lambda \right\} \end{aligned} \quad (4.2)$$

$$\begin{aligned} \text{JTP}_{31}(\lambda, q, n_1) = & pD - \frac{\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - \frac{D}{1-\lambda} \left\{ \frac{n_1(A+C_T)+S}{n_1q} + C_s + v + C_t + h_{b_1}q \left[\frac{(1-\lambda)^2}{2D} + \frac{\lambda}{2x} \right] \right. \\ & + h_{b_2}\lambda q \left[\frac{1-\lambda}{D} - \frac{1}{2x} \right] + cI_c(1-\lambda) \left[\alpha(N+l) + \beta N + \gamma(N-M) + \frac{(1-\lambda)q}{2D} \right] \\ & + h_{v_1}q \left[\frac{1}{P} + \frac{(n_1-1)(1-\lambda)}{2D} - \frac{n_1}{2P} \right] + h_{v_2}\lambda + \gamma v I_c(1-\lambda)M - \alpha c I_e(1-\lambda)l \\ & \left. \right\}. \end{aligned} \quad (4.3)$$

Firstly, for fixed q and $\lambda \in (\lambda_L, \lambda_U]$, the effect of n_1 on the joint total profit per unit time $\text{JTP}_{11}(\lambda, q, n_1)$ in (4.1) needs to be checked. By taking the second-order derivative of $\text{JTP}_{11}(\lambda, q, n_1)$ with respect to n_1 , we obtain the following:

$$\frac{d^2 \text{JTP}_{11}(\lambda, q, n_1)}{dn_1^2} = \frac{-2DS}{n_1^3(1-\lambda)q} < 0,$$

which implies the function $\text{JTP}_{11}(\lambda, q, n_1)$ is a concave function of n_1 . Consequently, the search for the optimal value of n_1 (denoted by n_{11}^*) is reduced to a local maximum.

Then, for a given n_1 and $\lambda \in (\lambda_L, \lambda_U]$, the condition $\partial \text{JTP}_{11}(\lambda, q, n_1) / \partial q = 0$ should be satisfied to maximize the joint total profit per unit time [$\text{JTP}_{11}(\lambda, q, n_1)$]. This implies the following:

$$\begin{aligned} & \frac{n_1[2(A+C_T) - (pI_e - cI_c)\gamma D(M-N)^2] + 2S}{2n_1q^2} - \frac{(h_{b_1} + cI_c)(1-\lambda)^2}{2D} \\ & - \frac{(h_{b_1} - h_{b_2})\lambda}{2x} - \frac{h_{b_2}\lambda(1-\lambda)}{D} - h_{v_1} \left[\frac{1}{P} + \frac{(n_1-1)(1-\lambda)}{2D} - \frac{n_1}{2P} \right] = 0. \end{aligned} \quad (4.4)$$

For notational convenience let

$$\Delta_1 \equiv n_1[2(A+C_T) - (pI_e - cI_c)\gamma D(M-N)^2] + 2S$$

and

$$\Delta_2 \equiv \frac{(h_{b_1} + cI_c)(1 - \lambda)^2}{2D} + \frac{(h_{b_1} - h_{b_2})\lambda}{2x} + \frac{h_{b_2}\lambda(1 - \lambda)}{D} + h_{v_1} \left[\frac{1}{P} + \frac{(n_1 - 1)(1 - \lambda)}{2D} - \frac{n_1}{2P} \right]$$

then we have the following result.

Lemma 4.1. *For any given n_1 and $\lambda \in (\lambda_L, \lambda_U]$, if $n_1[2(A + C_T) - (pI_e - cI_c)\gamma D(M - N)^2] + 2S \leq 0$, then $JTP_{11}(\lambda, q, n_1)$ has a maximum value at the point*

$$q = q_{11, n_1, \lambda} = \sqrt{\frac{\Delta_1}{2n_1\Delta_2}}. \quad (4.5)$$

Otherwise, $q = 0$.

Proof. See the Appendix A. \square

Similarly, for fixed q and $\lambda \in (\lambda_L, \lambda_U]$, we can also show that $JTP_{21}(\lambda, q, n_1)$ and $JTP_{31}(\lambda, q, n_1)$ are concave functions of n_1 because

$$\frac{d^2 JTP_{i1}(\lambda, q, n_1)}{dn_1^2} = \frac{-2DS}{n_1^3(1 - \lambda)q} < 0, \quad i = 2, 3.$$

Therefore, the search for the optimal number of shipments (n_{21}^* and n_{31}^*) is simplified to finding the local maximum. Let

$$\Delta_3 \equiv \frac{[h_{b_1} + cI_c(\alpha + \beta) + pI_e\gamma](1 - \lambda)^2}{2D} + \frac{(h_{b_1} - h_{b_2})\lambda}{2x} + \frac{h_{b_2}\lambda(1 - \lambda)}{D} + h_{v_1} \left[\frac{1}{P} + \frac{(n_1 - 1)(1 - \lambda)}{2D} - \frac{n_1}{2P} \right],$$

and

$$\Delta_4 \equiv \frac{(h_{b_1} + cI_c)(1 - \lambda)^2}{2D} + \frac{(h_{b_1} - h_{b_2})\lambda}{2x} + \frac{h_{b_2}\lambda(1 - \lambda)}{D} + h_{v_1} \left[\frac{1}{P} + \frac{(n_1 - 1)(1 - \lambda)}{2D} - \frac{n_1}{2P} \right],$$

and we have the following result.

Lemma 4.2. *For any given n_1 and $\lambda \in (\lambda_L, \lambda_U]$, we have $JTP_{21}(\lambda, q, n_1)$ and $JTP_{31}(\lambda, q, n_1)$ has maximum values at the point*

$$q_{21, n_1, \lambda} = \sqrt{\frac{n_1(A + C_T) + S}{n_1\Delta_3}}, \quad (4.6)$$

and

$$q_{31, n_1, \lambda} = \sqrt{\frac{n_1(A + C_T) + S}{n_1\Delta_4}}, \quad (4.7)$$

respectively.

Proof. See the Appendix B. \square

Situation 2. $0 < \lambda \leq \lambda_L$.

In this situation, from (3.16), (3.4), (3.7), (3.10), and (3.14), we will consider the following three joint total profit functions:

$$\begin{aligned} JTP_{12}(\lambda, q, n_2) &= pD - \frac{\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - D \left\{ \frac{n_2(A + C_T) + S}{n_2q} + C_p \lambda + v + C_t + \frac{(h_{b_1} + h_{b_2}\lambda)q}{2D} \right. \\ &\quad \left. + cI_c(1 - \lambda) \left[\alpha(N + l) + \beta N + \frac{(\alpha + \beta)q}{2D} \right] + \frac{cI_c\gamma q}{2D} + cI_c\gamma(N - M) \right\} \end{aligned}$$

$$+ h_{v_1} q \left[\frac{1}{P} + \frac{n_2 - 1}{2D} - \frac{n_2}{2P} \right] + h_{v_2} \lambda + \gamma v I_c (1 - \lambda) M - \alpha c I_e (1 - \lambda) l \\ + \frac{(c I_c - p I_e) \gamma D (M - N)^2}{2q} \}, \quad (4.8)$$

$$\begin{aligned} \text{JTP}_{22}(\lambda, q, n_2) = pD - \frac{\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - D \left\{ \frac{n_2(A + C_T) + S}{n_2 q} + C_p \lambda + v + C_t + \frac{(h_{b_1} + h_{b_2} \lambda) q}{2D} \right. \\ \left. + c I_c (1 - \lambda) \left[\alpha(N + l) + \beta N + \frac{(\alpha + \beta) q}{2D} \right] - p I_e \gamma \left(M - N - \frac{q}{2D} \right) \right. \\ \left. + h_{v_1} q \left[\frac{1}{P} + \frac{n_2 - 1}{2D} - \frac{n_2}{2P} \right] + h_{v_2} \lambda + \gamma v I_c (1 - \lambda) M - \alpha c I_e (1 - \lambda) l \right\}, \quad (4.9) \end{aligned}$$

$$\begin{aligned} \text{JTP}_{32}(\lambda, q, n_2) = pD - \frac{\theta}{\delta} \ln \left(\frac{\lambda_U}{\lambda} \right) - D \left\{ \frac{n_2(A + C_T) + S}{n_2 q} + C_p \lambda + v + C_t + \frac{(h_{b_1} + h_{b_2} \lambda) q}{2D} \right. \\ \left. + c I_c (1 - \lambda) \left[\alpha(N + l) + \beta N + \gamma(N - M) + \frac{q}{2D} \right] \right. \\ \left. + h_{v_1} q \left[\frac{1}{P} + \frac{n_2 - 1}{2D} - \frac{n_2}{2P} \right] + h_{v_2} \lambda + \gamma v I_c (1 - \lambda) M - \alpha c I_e (1 - \lambda) l \right\}. \quad (4.10) \end{aligned}$$

For a fixed q and $\lambda \in (0, \lambda_L]$, the effect of n_2 on the joint total profit per unit time $\text{JTP}_{i2}(\lambda, q, n_2)$, for $i = 1, 2, 3$, is explained in (4.8)–(4.10). The second-order derivative of $\text{JTP}_{i2}(\lambda, q, n_2)$, ($i = 1, 2, 3$) with respect to n_2 provides the following equation:

$$\frac{d^2 \text{JTP}_{i2}(\lambda, q, n_2)}{dn_2^2} = \frac{-2DS}{n_2^3 q} < 0, \quad i = 1, 2, 3.$$

Therefore, $\text{JTP}_{i2}(\lambda, q, n_2)$ is a concave function of n_2 for $i = 1, 2, 3$ and the search for the optimal number of shipments ($n_{i2}^*, i = 1, 2, 3$) is simplified to finding the local maximum. Let

$$\begin{aligned} \Delta_5 &\equiv n_2[2(A + C_T) - (p I_e - c I_c) \gamma D (M - N)^2] + 2S, \\ \Delta_6 &\equiv \frac{h_{b_1} + h_{b_2} \lambda}{2D} + \frac{c I_c [1 - \lambda(\alpha + \beta)]}{2D} + h_{v_1} \left[\frac{1}{P} + \frac{n_2 - 1}{2D} - \frac{n_2}{2P} \right], \\ \Delta_7 &\equiv \frac{h_{b_1} + h_{b_2} \lambda + p I_e \gamma + c I_c (\alpha + \beta)(1 - \lambda)}{2D} + h_{v_1} \left[\frac{1}{P} + \frac{n_2 - 1}{2D} - \frac{n_2}{2P} \right], \end{aligned}$$

and

$$\Delta_8 \equiv \frac{h_{b_1} + h_{b_2} \lambda + c I_c (1 - \lambda)}{2D} + h_{v_1} \left[\frac{1}{P} + \frac{n_2 - 1}{2D} - \frac{n_2}{2P} \right],$$

and then we have the following result.

Lemma 4.3. *For any given n_2 and $\lambda \in (0, \lambda_L]$, we have $\text{JTP}_{i2}(\lambda, q, n_2)$ for $i = 1, 2, 3$ has maximum values at the points*

$$q_{12,n_2,\lambda} = \sqrt{\frac{\Delta_5}{2n_2 \Delta_6}}, \quad (4.11)$$

$$q_{22,n_2,\lambda} = \sqrt{\frac{n_2(A + C_T) + S}{n_2 \Delta_7}}, \quad (4.12)$$

and

$$q_{32,n_2,\lambda} = \sqrt{\frac{n_2(A + C_T) + S}{n_2 \Delta_8}}, \quad (4.13)$$

respectively.

Proof. See the Appendix C. \square

Next, for any given n_1 , n_2 , and q , it is obvious that $\text{JTP}_{i1}(\lambda, q, n_1)$ and $\text{JTP}_{i2}(\lambda, q, n_2)$, $i = 1, 2, 3$, are smooth curves of $\lambda \in (\lambda_L, \lambda_U]$ and $\lambda \in (0, \lambda_L]$, respectively. Therefore, the following iterative algorithm was developed to search the optimal solution (λ^*, q^*, n^*) for the whole problem.

Algorithm

Step 1. Compare M with N . If $N \leq M$, perform Step 2. If $N > M$, skip to Step 5.

Step 2. Set $n_1 = 1$.

Step 2.1. Divide the interval $(\lambda_L, \lambda_U]$ into m equal subintervals, and let $\lambda_j = \lambda_L + j(\lambda_U - \lambda_L)/m$, $j = 1, 2, \dots, m$, where m is sufficiently large.

Step 2.2. If $n_1[2(A + C_T) - (pI_e - cI_c)\gamma D(M - N)^2] + 2S \leq 0$, let $q_{11,n_1,\lambda_j} = 0$ and $\text{JTP}_{11}(\lambda_j, q_{11,n_1,\lambda_j}, n_1) = 0$. for each λ_j , $j = 1, 2, \dots, m$. Otherwise, for each λ_j , $j = 1, 2, \dots, m$, determine q_{11,n_1,λ_j} from (4.5). Furthermore, if $D(M - N) \leq (1 - \lambda_j)q_{11,n_1,\lambda_j}$, calculate $\text{JTP}_{11}(\lambda_j, q_{11,n_1,\lambda_j}, n_1)$ from (4.1). Otherwise, set $\text{JTP}_{11}(\lambda_j, q_{11,n_1,\lambda_j}, n_1) = 0$.

Step 2.3. For each λ_j , $j = 1, 2, \dots, m$, determine q_{21,n_1,λ_j} from (4.6). If $D(M - N) \geq (1 - \lambda_j)q_{21,n_1,\lambda_j}$, calculate $\text{JTP}_{21}(\lambda_j, q_{21,n_1,\lambda_j}, n_1)$ from (4.2). Otherwise, set $\text{JTP}_{21}(\lambda_j, q_{21,n_1,\lambda_j}, n_1) = 0$.

Step 2.4. Find $\text{Max}_{i=1,2; j=1,2,\dots,m} \text{JTP}_{i1}(\lambda_j, q_{i1,n_1,\lambda_j}, n_1)$, and let $\text{JTP}^{(1)}(\lambda_{(n_1)}, q_{n_1,\lambda_{(n_1)}}, n_1) = \text{Max}_{i=1,2; j=1,2,\dots,m} \text{JTP}_{i1}(\lambda_j, q_{i1,n_1,\lambda_j}, n_1)$

Step 2.5. Set $n_1 = n_1 + 1$, and repeat Steps 2.1–2.4 to obtain $\text{JTP}^{(1)}(\lambda_{(n_1)}, q_{n_1,\lambda_{(n_1)}}, n_1)$

Step 2.6. If $\text{JTP}^{(1)}(\lambda_{(n_1)}, q_{n_1,\lambda_{(n_1)}}, n_1) \leq \text{JTP}^{(1)}(\lambda_{(n_1-1)}, q_{n_1-1,\lambda_{(n_1-1)}}, n_1 - 1)$, set $\text{JTP}^{(1)}(\lambda_1^*, q_1^*, n_1^*) = \text{JTP}^{(1)}(\lambda_{(n_1-1)}, q_{n_1-1,\lambda_{(n_1-1)}}, n_1 - 1)$, where $(\lambda_1^*, q_1^*, n_1^*) = (\lambda_{(n_1-1)}, q_{n_1-1,\lambda_{(n_1-1)}}, n_1 - 1)$ is the optimal solution for Situation 1. Otherwise, return to Step 2.5.

Step 3. Set $n_2 = 1$.

Step 3.1. Divide the interval $(0, \lambda_L]$ into m equal subintervals, and let $\lambda_j = j\lambda_L/m$, $j = 1, 2, \dots, m$, where m is sufficiently large.

Step 3.2. If $n_2[2(A + C_T) - (pI_e - cI_c)\gamma D(M - N)^2] + 2S \leq 0$, for each λ_j , $j = 1, 2, \dots, m$, let $q_{12,n_2,\lambda_j} = 0$ and $\text{JTP}_{12}(\lambda_j, q_{12,n_2,\lambda_j}, n_2) = 0$. Otherwise, for each λ_j , $j = 1, 2, \dots, m$, determine q_{12,n_2,λ_j} from (4.11). If $D(M - N) \leq q_{12,n_2,\lambda_j}$, calculate $\text{JTP}_{12}(\lambda_j, q_{12,n_2,\lambda_j}, n_2)$ from (4.8). Otherwise, set $\text{JTP}_{12}(\lambda_j, q_{12,n_2,\lambda_j}, n_2) = 0$.

Step 3.3. For each λ_j , $j = 1, 2, \dots, m$, determine q_{22,n_2,λ_j} from (4.12). If $D(M - N) \geq q_{22,n_2,\lambda_j}$, calculate the corresponding joint total profit per unit time $\text{JTP}_{22}(\lambda_j, q_{22,n_2,\lambda_j}, n_2)$ from (4.9). Otherwise, set $\text{JTP}_{22}(\lambda_j, q_{22,n_2,\lambda_j}, n_2) = 0$.

Step 3.4. Find $\text{Max}_{i=1,2; j=1,2,\dots,m} \text{JTP}_{i2}(\lambda_j, q_{i2,n_2,\lambda_j}, n_2)$, and let $\text{JTP}^{(2)}(\lambda_{(n_2)}, q_{n_2,\lambda_{(n_2)}}, n_2) = \text{Max}_{i=1,2; j=1,2,\dots,m} \text{JTP}_{i2}(\lambda_j, q_{i2,n_2,\lambda_j}, n_2)$

Step 3.5. Set $n_2 = n_2 + 1$, and repeat Steps 3.1–3.4 to obtain $\text{JTP}^{(2)}(\lambda_{(n_2)}, q_{n_2,\lambda_{(n_2)}}, n_2)$

Step 3.6. If $\text{JTP}^{(2)}(\lambda_{(n_2)}, q_{n_2,\lambda_{(n_2)}}, n_2) \leq \text{JTP}^{(2)}(\lambda_{(n_2-1)}, q_{n_2-1,\lambda_{(n_2-1)}}, n_2 - 1)$, set $\text{JTP}^{(2)}(\lambda_2^*, q_2^*, n_2^*) = \text{JTP}^{(2)}(\lambda_{(n_2-1)}, q_{n_2-1,\lambda_{(n_2-1)}}, n_2 - 1)$, where $(\lambda_2^*, q_2^*, n_2^*) = (\lambda_{(n_2-1)}, q_{n_2-1,\lambda_{(n_2-1)}}, n_2 - 1)$ is the optimal solution for Situation 2. Otherwise, return to Step 3.5.

Step 4. Find $\text{Max}_{k=1,2} \text{JTP}^{(k)}(\lambda_k^*, q_k^*, n_k^*)$. Let $\text{JTP}(\lambda^*, q^*, n^*) = \text{Max}_{k=1,2} \text{JTP}^{(k)}(\lambda_k^*, q_k^*, n_k^*)$, where (λ^*, q^*, n^*) is the optimal solution. Then, skip to Step 8.

Step 5. Set $n_1 = 1$.

Step 5.1. Divide the interval $(\lambda_L, \lambda_U]$ into m equal subintervals, and let $\lambda_j = \lambda_L + j(\lambda_U - \lambda_L)/m$, $j = 1, 2, \dots, m$, where m is sufficiently large.

Step 5.2. For each λ_j , $j = 1, 2, \dots, m$, find q_{31,n_1,λ_j} from (4.7), and calculate $\text{JTP}_{31}(\lambda_j, q_{31,n_1,\lambda_j}, n_1)$ from (4.3).

Step 5.3. Find $\text{Max}_{j=1,2,\dots,m} \text{JTP}_{31}(\lambda_j, q_{31,n_1,\lambda_j}, n_1)$, and let $\text{JTP}^{(1)}(\lambda_{(n_1)}, q_{n_1,\lambda_{(n_1)}}, n_1) = \text{Max}_{j=1,2,\dots,m} \text{JTP}_{31}(\lambda_j, q_{31,n_1,\lambda_j}, n_1)$

Step 5.4. Set $n_1 = n_1 + 1$, and repeat Steps 5.1–5.3 to obtain $JTP^{(1)}(\lambda_{(n_1)}, q_{n_1, \lambda_{(n_1)}}, n_1)$.

Step 5.5. If $JTP^{(1)}(\lambda_{(n_1)}, q_{n_1, \lambda_{(n_1)}}, n_1) \leq JTP^{(1)}(\lambda_{(n_1-1)}, q_{n_1-1, \lambda_{(n_1-1)}}, n_1 - 1)$, set $JTP^{(1)}(\lambda_1^*, q_1^*, n_1^*) = JTP^{(1)}(\lambda_{(n_1-1)}, q_{n_1-1, \lambda_{(n_1-1)}}, n_1 - 1)$, where $(\lambda_1^*, q_1^*, n_1^*) = (\lambda_{(n_1-1)}, q_{n_1-1, \lambda_{(n_1-1)}}, n_1 - 1)$ is the optimal solution for Situation 1. Otherwise, return to Step 5.4.

Step 6. Set $n_2 = 1$.

Step 6.1. Divide the interval $(0, \lambda_L]$ into m equal subintervals, and let $\lambda_j = j\lambda_L/m$, $j = 1, 2, \dots, m$, where m is sufficiently large.

Step 6.2. For each λ_j , $j = 1, 2, \dots, m$, find q_{32, n_2, λ_j} from (4.13), and calculate $JTP_{32}(\lambda_j, q_{32, n_2, \lambda_j}, n_2)$ from (4.10).

Step 6.3. Find $\text{Max}_{j=1, 2, \dots, m} JTP_{32}(\lambda_j, q_{32, n_2, \lambda_j}, n_2)$, and let $JTP^{(2)}(\lambda_{(n_2)}, q_{n_2, \lambda_{(n_2)}}, n_2) = \text{Max}_{j=1, 2, \dots, m} JTP_{32}(\lambda_j, q_{32, n_2, \lambda_j}, n_2)$

Step 6.4. Set $n_2 = n_2 + 1$, and repeat Steps 6.1–6.3 to obtain $JTP^{(2)}(\lambda_{(n_2)}, q_{n_2, \lambda_{(n_2)}}, n_2)$

Step 6.5. If $JTP^{(2)}(\lambda_{(n_2)}, q_{n_2, \lambda_{(n_2)}}, n_2) \leq JTP^{(2)}(\lambda_{(n_2-1)}, q_{n_2-1, \lambda_{(n_2-1)}}, n_2 - 1)$, set $JTP^{(2)}(\lambda_2^*, q_2^*, n_2^*) = JTP^{(2)}(\lambda_{(n_2-1)}, q_{n_2-1, \lambda_{(n_2-1)}}, n_2 - 1)$, where $(\lambda_2^*, q_2^*, n_2^*) = (\lambda_{(n_2-1)}, q_{n_2-1, \lambda_{(n_2-1)}}, n_2 - 1)$ is the optimal solution for Situation 2. Otherwise, return to Step 6.4.

Step 7. Find $\text{Max}_{k=1, 2} JTP^{(k)}(\lambda_k^*, q_k^*, n_k^*)$, and let $JTP(\lambda^*, q^*, n^*) = \text{Max}_{k=1, 2} JTP^{(k)}(\lambda_k^*, q_k^*, n_k^*)$, where (λ^*, q^*, n^*) is the optimal solution.

Step 8. Stop.

The aforementioned algorithm can be implemented using a computer-oriented numerical technique for any given set of parameter values. Once the optimal value (λ^*, q^*, n^*) is obtained, it can obtain the joint capital investment $I(\lambda^*) = (1/\delta) \ln(\lambda_U/\lambda^*)$ and $T^* = (1 - \lambda^*)q^*/D$ or q^*/D according to the value of λ^* that belongs to the interval $(\lambda_L, \lambda_U]$ or $(0, \lambda_L]$. Further, $JTP^* = JTP(\lambda^*, q^*, n^*)$ can be found.

5. NUMERICAL EXAMPLES

The above theoretical results and algorithm can be applied to the following numerical example.

Example 5.1. Consider an inventory system with the following data: $A = 50$, $P = 2000$, $D = 1000$, $S = 200$, $v = 10$, $c = 20$, $p = 40$, $h_{b_1} = 2$, $h_{b_2} = 0.5$, $h_{v_1} = 1.5$, $h_{v_2} = 0.5$, $x = 3000$, $C_s = 0.3$, $C_T = 10$, $C_t = 0.3$, $C_p = 10$, $\theta = 0.01$, $\delta = 0.0003$, $\rho = 0.5$, $\lambda_U = 0.05$, $\lambda_L = 0.005$, $\alpha = 0.2$, $\beta = 0.3$, $\gamma = 0.5$, $M = 45/365 (= 0.123288)$, $N = 30/365 (= 0.082192)$, $l = 10/365 (= 0.027397)$, $I_c = 0.03$ and $I_e = 0.01$ in appropriate units. Further, we set $m = 500$. Using the aforementioned algorithm, we obtain the computational results presented in Table 1.

Table 1 reveals that the optimal number of shipments per production cycle for this example is $n^* = 3$, the batch quantity per shipment is $q^* = 228.608$ units, and the proportion of defective items is $\lambda^* = 0.00318 < 0.005 = \lambda_L$, which implies that the retailer does not inspect the received items. In this situation, the retailer's optimal order quantity is $Q^* = n^*q^* = 685.824$ units, optimal length of the replenishment cycle is $T^* = q^*/D = 0.2286$, and optimal joint total profit per unit time is $JTP^* = \$28433.008$. To understand the effects of capital investment, we determined the optimal number of shipments per production cycle (n_{WI}^*), batch quantity per shipment (q_{WI}^*), and retailer's optimal order quantity (Q_{WI}^*) without capital investment. For the joint total profit per unit time without capital investment JTP_{WI}^* , $n_{WI}^* = 4$, $q_{WI}^* = 205.886$, and $JTP_{WI}^* = 27867.647$. A comparison of the results with and without capital investment indicates that the supply chain benefits when capital is jointly invested for quality improvement of the product.

Example 5.2. In this example, the effects of parameter changes on the optimal solutions can be analyzed. We divide the parameters into four segments for discussion: retailer's parameters, supplier's parameters, investing parameters, and trade credit parameters. The comparison results are represented in Tables 2–5.

The following observations can be made from the results presented in Table 2:

TABLE 1. Results of using the algorithm for Example 5.1.

n_1	$\lambda_{(n_1)}$	$q_{n_1, \lambda_{(n_1)}}$	$JTP^{(1)}$ ($\lambda_{(n_1)}, q_{n_1, \lambda_{(n_1)}}, n_1$)	n_2	$\lambda_{(n_2)}$	$q_{n_2, \lambda_{(n_2)}}$	$JTP^{(2)}$ ($\lambda_{(n_2)}, q_{n_2, \lambda_{(n_2)}}, n_2$)
1	0.00510	395.158	28 111.974	1	0.00318	394.011	28 221.714
2	0.00510	280.351	28 287.191	2	0.00318	279.424	28 396.086
3	0.00510	229.430	28 324.489	3	0.00318	228.608	28 433.008
4	0.00510	199.025	28 323.164	4	0.00318	198.271	28 431.458

Notes. Boldface type expresses the optimal solution of Situations 1 and 2, respectively.

TABLE 2. Optimal solutions under various retailer's parameters.

Parameters	Value	n^*	λ^*	q^*	Q^*	JTP^*
A	40	4	0.0031826	189.051	756.205	28 483.10
	45	4	0.0031825	193.716	774.864	28 456.97
	50	3	0.0031814	228.608	685.824	28 433.01
	55	3	0.0031813	233.073	699.220	28 411.35
	60	3	0.0031812	237.455	712.364	28 390.10
D	800	3	0.0039759	201.367	604.100	22 608.95
	900	3	0.0035346	215.210	645.631	25 518.65
	1000	3	0.0031814	228.608	685.824	28 433.01
	1100	4	0.0028932	210.799	843.197	31 356.44
	1200	4	0.0026523	223.276	893.102	34 285.74
h_{b_1}	1.6	3	0.0031811	238.66	715.980	28 479.71
	1.8	3	0.0031813	233.472	700.416	28 456.11
	2	3	0.0031814	228.608	685.824	28 433.01
	2.2	4	0.0031824	194.823	779.292	28 411.81
	2.4	4	0.0031825	191.549	766.195	28 392.49
h_{b_2}	0.4	3	0.0031849	228.616	685.847	28 433.04
	0.45	3	0.0031832	228.612	685.835	28 433.03
	0.5	3	0.0031814	228.608	685.824	28 433.01
	0.55	3	0.0031797	228.604	685.813	28 432.99
	0.6	3	0.0031780	228.601	685.802	28 432.97
x	2400	3	0.0031814	228.608	685.824	28 433.01
	2700	3	0.0031814	228.608	685.824	28 433.01
	3000	3	0.0031814	228.608	685.824	28 433.01
	3300	3	0.0031814	228.608	685.824	28 433.01
	3600	3	0.0031814	228.608	685.824	28 433.01
C_s	0.08	3	0.0031814	228.608	685.824	28 433.01
	0.09	3	0.0031814	228.608	685.824	28 433.01
	0.1	3	0.0031814	228.608	685.824	28 433.01
	0.11	3	0.0031814	228.608	685.824	28 433.01
	0.12	3	0.0031814	228.608	685.824	28 433.01
C_p	8	3	0.0039320	228.605	685.814	28 440.07
	9	3	0.0035171	228.606	685.819	28 436.35
	10	3	0.0031814	228.608	685.824	28 433.01
	11	3	0.0029042	228.609	685.828	28 429.97
	12	3	0.0026715	228.61	685.831	28 427.18
p	32	3	0.0031814	228.638	685.915	20 432.86
	36	3	0.0031814	228.623	685.869	24 432.93
	40	3	0.0031814	228.608	685.824	28 433.01

TABLE 2. continued.

Parameters	Value	n^*	λ^*	q^*	Q^*	JTP*
c	44	3	0.0031814	228.593	685.778	32 433.08
	48	3	0.0031814	228.577	685.732	36 433.16
	16	3	0.0031776	231.438	694.315	28 449.89
	18	3	0.0031795	230.01	690.03	28 441.43
	20	3	0.0031814	228.608	685.824	28 433.01
c	22	3	0.0031833	227.232	681.696	28 424.63
	24	4	0.0031858	196.229	784.915	28 416.50

TABLE 3. Optimal solutions under various supplier's parameters.

Parameters	Value	n^*	λ^*	q^*	Q^*	JTP*
P	1600	4	0.0031821	205.262	821.047	28 469.28
	1800	4	0.0031822	201.289	805.154	28 448.11
	2000	3	0.0031814	228.608	685.824	28 433.01
	2200	3	0.0031815	227.018	681.054	28 425.24
	2400	3	0.0031815	225.718	677.154	28 418.81
S	160	3	0.0031818	216.250	648.750	28 493.10
	180	3	0.0031816	222.515	667.544	28 462.56
	200	3	0.0031814	228.608	685.824	28 433.01
	220	4	0.0031822	202.724	810.895	28 406.52
	240	4	0.0031821	207.081	828.322	28 382.12
h_{v_1}	1.2	4	0.0031820	209.829	839.315	28 492.62
	1.35	4	0.0031822	203.805	815.218	28 461.61
	1.5	3	0.0031814	228.608	685.824	28 433.01
	1.65	3	0.0031816	223.483	670.45	28 407.58
	1.8	3	0.0031817	218.689	656.066	28 382.71
h_{v_2}	0.4	3	0.0032121	228.608	685.824	28 433.33
	0.45	3	0.0031967	228.608	685.824	28 433.17
	0.5	3	0.0031814	228.608	685.824	28 433.01
	0.55	3	0.0031663	228.608	685.824	28 432.85
	0.6	3	0.0031513	228.608	685.824	28 432.69
C_T	8	3	0.0031815	226.797	680.392	28 441.79
	9	3	0.0031814	227.704	683.113	28 437.39
	10	3	0.0031814	228.608	685.824	28 433.01
	11	3	0.0031814	229.508	688.524	28 428.64
	12	3	0.0031814	230.404	691.213	28 424.29
C_t	0.24	3	0.0031814	228.608	685.824	28 493.01
	0.27	3	0.0031814	228.608	685.824	28 463.01
	0.3	3	0.0031814	228.608	685.824	28 433.01
	0.33	3	0.0031814	228.608	685.824	28 403.01
	0.36	3	0.0031814	228.608	685.824	28 373.01
v	8	3	0.0031803	228.608	685.824	30 436.69
	9	3	0.0031809	228.608	685.824	29 434.85
	10	3	0.0031814	228.608	685.824	28 433.01
	11	3	0.0031820	228.608	685.824	27 431.16
	12	3	0.0031825	228.608	685.824	26 429.32

TABLE 4. Optimal solutions under various investing parameters.

Parameters	Value	n^*	λ^*	q^*	Q^*	JTP*
δ	0.00024	3	0.0039768	228.604	685.813	28 411.02
	0.00027	3	0.0035349	228.606	685.819	28 423.00
	0.0003	3	0.0031814	228.608	685.824	28 433.01
	0.00033	3	0.0028922	228.609	685.828	28 441.50
	0.00036	3	0.0026512	228.585	685.756	28 448.80
λ_U	0.04	3	0.0031814	228.608	685.824	28 440.45
	0.045	3	0.0031814	228.608	685.824	28 436.52
	0.05	3	0.0031814	228.608	685.824	28 433.01
	0.055	3	0.0031814	228.608	685.824	28 429.83
	0.06	3	0.0031814	228.608	685.824	28 426.93
λ_L	0.004	3	0.0031814	228.608	685.824	28 433.01
	0.0045	3	0.0031814	228.608	685.824	28 433.01
	0.005	3	0.0031814	228.608	685.824	28 433.01
	0.0055	3	0.0031814	228.608	685.824	28 433.01
	0.006	3	0.0031814	228.608	685.824	28 433.01
θ	0.008	3	0.0025451	228.584	685.753	28 452.09
	0.009	3	0.0028633	228.609	685.828	28 442.36
	0.01	3	0.0031814	228.608	685.824	28 433.01
	0.011	3	0.0034996	228.607	685.820	28 423.97
	0.012	3	0.0038177	228.605	685.815	28 415.27

- (1) When the retailer's ordering cost (A) or penalty cost (C_p) increases, the optimal proportion of defective items (λ^*) and joint total profit (JTP*) decrease, whereas the optimal shipping quantity (q^*) and order quantity ($Q^* = n^*q^*$) (for the same n^*) increase.
- (2) As the market demand (D) increases, λ^* decreases; however, q^* , Q^* (for the same n^*), and JTP* increase.
- (3) The retailer's holding cost per non-defective item (h_{b_1}) and procurement cost (c) positively affect λ^* but negatively affect q^* , Q^* (for the same n^*), and JTP*.
- (4) When the retailer's holding cost per defective item (h_{b_2}) increases, λ^* , q^* , Q^* , and JTP* decrease.
- (5) When the retailer's unit selling price (p) increases, q^* and Q^* decrease, but JTP* increases. Furthermore, the selling price (p) has no effect on λ^* .
- (6) The inspection rate (x) and inspection cost (C_s) have no effect on the optimal solutions under the “non-inspect” situation in which the retailer no longer conducts any checks on the received items.

From the results of Table 3, we have: (1) All the supplier parameters negatively affect JTP*. (2) When the supplier's production rate (P), holding cost (h_{v_1}) (excluding interest charge), or production cost (v) increases, λ^* increases (for the same n^*). (3) When the supplier's setup cost (S), treatment cost per defective item (h_{v_2}), or fixed cost of transportation (C_T) increases, λ^* decreases (for the same n^*). (4) The optimal shipping quantity and order quantity decrease (for the same n^*) with an increase in the supplier's production rate (P) but increase (for the same n^*) with an increase in the supplier's setup cost (S) and fixed cost of transportation (C_T).

From the results shown in Table 4, the following observations can be made: (1) The percentage decrease in the defective rate per dollar increase in the capital investment (δ) has a negative effect on λ^* . However, the opportunity cost of the capital investment (θ) has a positive effect on λ^* . (2) The value of δ has a positive effect on JTP*, whereas θ and λ_U negatively affect JTP*. (3) As the percentage decrease in the defective rate per dollar increase in capital investment δ or the opportunity cost of the capital investment θ increase, both the optimal shipping quantity q^* and the order quantity $Q^* = n^*q^*$ increase firstly and then decrease.

From Table 5, it is obtained that: (1) When the interest charged I_c , the downstream credit period by the retailer to customers N increases, the optimal proportion of defective items λ^* increases but the shipping

TABLE 5. Optimal solutions under various credit parameters.

Parameters	Value	n^*	λ^*	q^*	Q^*	JTP*
I_c	0.024	3	0.0031764	231.438	694.315	28453.8
	0.027	3	0.0031789	230.010	690.030	28443.4
	0.03	3	0.0031814	228.608	685.824	28433.01
	0.033	3	0.0031839	227.232	681.696	28422.7
	0.036	4	0.0031870	196.229	784.915	28412.6
I_e	0.008	3	0.0031815	228.638	685.915	28432.6
	0.009	3	0.0031815	228.623	685.869	28432.8
	0.01	3	0.0031814	228.608	685.824	28433.01
	0.011	3	0.0031814	228.593	685.778	28433.2
	0.012	3	0.0031814	228.577	685.732	28433.4
M	0.09863	3	0.0031803	228.544	685.632	28429.6
	0.110959	3	0.0031809	228.569	685.707	28431.3
	0.123288	3	0.0031814	228.608	685.824	28433.01
	0.135616	3	0.0031820	228.660	685.981	28434.6
	0.147945	3	0.0031825	228.727	686.180	28436.1
N	0.065753	3	0.0031799	228.681	686.043	28442.5
	0.073973	3	0.0031807	228.641	685.924	28437.8
	0.082192	3	0.0031814	228.608	685.824	28433.01
	0.090411	3	0.0031822	228.581	685.742	28428.2
	0.09863	3	0.0031829	228.559	685.678	28423.4
l	0.021918	3	0.0031813	228.608	685.824	28433.4
	0.024658	3	0.0031814	228.608	685.824	28433.2
	0.027397	3	0.0031814	228.608	685.824	28433.01
	0.030137	3	0.0031815	228.608	685.824	28432.8
	0.032877	3	0.0031816	228.608	685.824	28432.6

quantity q^* , the order quantity $Q^* = n^*q^*$ (for the same n^*) and the joint total profit JTP* decrease. (2) When the length of time during which the prepayments are paid l increases, the optimal proportion of defective items λ^* increases but the joint total profit JTP* decreases. (3) The interest earned I_e has a positive impact on the optimal joint total profit JTP*, but has negative impacts on the optimal proportion of defective items λ^* , the shipping quantity q^* and the order quantity $Q^* = n^*q^*$. (4) The upstream credit period by the supplier to the retailer M has positive impacts on the optimal proportion of defective items λ^* , the shipping quantity q^* , the order quantity $Q^* = n^*q^*$ and the joint total profit JTP*.

6. CONCLUSIONS

In this study, an integrated production-inventory model is presented involving defective items and ACC payment. The product quality can be improved through capital investment from the supplier and retailer. The theorems proposed in this paper ensure the existence and uniqueness of the optimal solutions and add rigor to the model. An algorithm is used to determine the optimal solutions. Several numerical examples are used to demonstrate the model and examine the effects of parameter changes on the optimal solutions. Furthermore, the optimal solutions with and without capital investment are determined and compared. The comparison results indicate that the supply chain benefits when capital is jointly invested for the quality improvement of a product. Moreover, it reveals that the optimal shipping, order, investment, and inspection policies are determined by trading off the opportunity cost of the capital investment and inspection cost for the penalty cost from the numerical examples.

The proposed model can be extended in several ways. For example, it may be used to study the demand rate as a function of factors such as the selling price, time, and stock. Furthermore, the model can be generalized to account for shortages, quantity discounts, and inflation.

APPENDIX A.

Proof of Lemma 4.1. Taking the first-order derivative of $JTP_{11}(\lambda, q, n_1)$ with respect to q gives the following:

$$\begin{aligned} \frac{dJTP_{11}(\lambda, q, n_1)}{dq} &= \frac{D}{1-\lambda} \left\{ \frac{n_1[2(A+C_T) - (pI_e - cI_c)\gamma D(M-N)^2] + 2S}{2n_1q^2} - \frac{(h_{b1} + cI_c)(1-\lambda)^2}{2D} \right. \\ &\quad \left. - \frac{(h_{b1} - h_{b2})\lambda}{2x} - \frac{h_{b2}\lambda(1-\lambda)}{D} - h_{v1} \left[\frac{1}{P} + \frac{(n_1-1)(1-\lambda)}{2D} - \frac{n_1}{2P} \right] \right\}. \end{aligned} \quad (\text{A.1})$$

Then, the second-order derivative of $JTP_{11}(\lambda, q, n_1)$ with respect to q can be obtained as follows:

$$\frac{d^2JTP_{11}(\lambda, q, n_1)}{dq^2} = \frac{-D\{n_1[2(A+C_T) - (pI_e - cI_c)\gamma D(M-N)^2] + 2S\}}{(1-\lambda)n_1q^3}.$$

From (A.1), if $n_1[2(A+C_T) - (pI_e - cI_c)\gamma D(M-N)^2] + 2S \leq 0$, $dJTP_{11}(\lambda, q, n_1)/dq < 0$. This implies that for a fixed n_1 and $\lambda \in (\lambda_L, \lambda_U]$, $JTP_{11}(\lambda, q, n_1)$ is a decreasing function of q . In this case, the optimal size of each shipment from the supplier to the retailer is $q = 0$, which is not true in reality. Therefore, it is reasonable to assume that $n_1[2(A+C_T) - (pI_e - cI_c)\gamma D(M-N)^2] + 2S > 0$. In this case, $d^2JTP_{11}(\lambda, q, n_1)/dq^2 < 0$. Consequently, if $n_1[2(A+C_T) - (pI_e - cI_c)\gamma D(M-N)^2] + 2S > 0$, $JTP_{11}(\lambda, q, n_1)$ is a concave function of q for any given n_1 and $\lambda \in (\lambda_L, \lambda_U]$. Thus, a unique value of $(q_{11, n_1, \lambda})$ is obtained when solving the equation $dJTP_{11}(\lambda, q, n_1)/dq = 0$ that maximizes $JTP_{11}(\lambda, q, n_1)$ as $q_{11, n_1, \lambda} = \sqrt{\frac{\Delta_1}{2n_1\Delta_2}}$. This completes the proof. \square

APPENDIX B.

Proof of Lemma 4.2. For any given n_1 and $\lambda \in (\lambda_L, \lambda_U]$, $JTP_{21}(\lambda, q, n_1)$ and $JTP_{31}(\lambda, q, n_1)$ are concave functions of q , because

$$\frac{d^2JTP_{i1}(\lambda, q, n_1)}{dq^2} = \frac{-2D[n_1(A+C_T) + S]}{(1-\lambda)n_1q^3} < 0, \quad i = 2, 3.$$

Thus, there exist unique values of $(q_{21, n_1, \lambda}$ and $q_{31, n_1, \lambda})$ that maximize $JTP_{21}(\lambda, q, n_1)$ and $JTP_{31}(\lambda, q, n_1)$ as follows:

$$q_{21, n_1, \lambda} = \sqrt{\frac{n_1(A+C_T) + S}{n_1\Delta_3}},$$

and

$$q_{31, n_1, \lambda} = \sqrt{\frac{n_1(A+C_T) + S}{n_1\Delta_4}}.$$

This completes the proof. \square

APPENDIX C.

Proof of Lemma 4.3. Using a similar approach shown as in Lemma 4.1, the following equation is obtained for any given n_2 and $\lambda \in (0, \lambda_L]$.

$$\frac{d^2JTP_{12}(\lambda, q, n_2)}{dq^2} = -\frac{D\{n_2[2(A+C_T) - (pI_e - cI_c)\gamma D(M-N)^2] + 2S\}}{n_2q^3}.$$

We may assume without loss of generality (WLOG) that $n_2[2(A + C_T) - (pI_e - cI_c)\gamma D(M - N)^2] + 2S > 0$, then $d^2JTP_{12}(\lambda, q, n_2)/dq^2 < 0$ and hence the optimal solution of q (denoted by $q_{12, n_2, \lambda}$) that maximizes the joint total profit per unit time $JTP_{12}(\lambda, q, n_2)$ can be obtained by solving the equation $dJTP_{12}(\lambda, q, n_2)/dq = 0$ as $q_{12, n_2, \lambda} = \sqrt{\frac{\Delta_5}{2n_2\Delta_6}}$.

Similarly, the following equation can be obtained:

$$\frac{d^2JTP_{i2}(\lambda, q, n_2)}{dq^2} = \frac{-2D[n_2(A + C_T) + S]}{n_2q^3} < 0, \quad i = 2, 3.$$

Hence the optimal solution of q (denoted by $q_{i2, n_2, \lambda}, i = 2, 3$) that maximizes $JTP_{i2}(\lambda, q, n_2), i = 2, 3$, can be obtained by solving the equation $dJTP_{i2}(\lambda, q, n_2)/dq = 0, i = 2, 3$, as follows:

$$q_{22, n_2, \lambda} = \sqrt{\frac{n_2(A + C_T) + S}{n_2\Delta_7}},$$

and

$$q_{32, n_2, \lambda} = \sqrt{\frac{n_2(A + C_T) + S}{n_2\Delta_8}}.$$

This completes the proof. \square

REFERENCES

- [1] E. Abdullah and O. Gultekin, An economic order quantity model with defective items and shortages. *Int. J. Prod. Econ.* **106** (2007) 544–549.
- [2] S.P. Aggarwal and C.K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments. *J. Oper. Res. Soc.* **46** (1995) 658–662.
- [3] C.T. Chang, L.Y. Ouyang and J.T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering quantity. *Appl. Math. Model.* **27** (2003) 983–996.
- [4] C.T. Chang, L.Y. Ouyang, J.T. Teng, K.K. Lai and L.E. Cárdenas-Barrón, Manufacturer's pricing and lot-sizing decisions for perishable goods under various payment terms by a discounted cash flow analysis, *Int. J. Prod. Econ.* **218** (2019) 83–95.
- [5] K.J. Chung and K.L. Hou, An optimal production run time with imperfect production processes and allowable shortages. *Comput. Oper. Res.* **30** (2003) 483–490.
- [6] T.K. Datta, Inventory system with defective products and investment opportunity for reducing defective proportion. *Oper. Res.* **17** (2017) 297–312.
- [7] S.K. Goyal, Economic order quantity under conditions of permissible delay in payments. *J. Oper. Res. Soc.* **36** (1985) 335–339.
- [8] S.K. Goyal, L. Eduardo and C. Barron, Note on: Economic production quantity model for items with imperfect quality—a practical approach. *Int. J. Prod. Econ.* **77** (2002) 85–87.
- [9] K.A. Halim, B.C. Giri and K.S. Chaudhuri, Fuzzy EPQ models for an imperfect production system. *Int. J. Syst. Sci.* **40** (2009) 45–52.
- [10] J.D. Hong, Optimal production cycles, procurement schedules, and joint investment in an imperfect production system. *Eur. J. Oper. Res.* **100** (1997) 413–428.
- [11] J.D. Hong and J.C. Hayya, Joint investment in quality improvement and setup reduction. *Comput. Oper. Res.* **22** (1995) 567–574.
- [12] K.L. Hou and L.C. Lin, Optimal production run length and capital investment in quality improvement with an imperfect production process. *Int. J. Syst. Sci.* **35** (2004) 133–137.
- [13] C.K. Jaggi, P.K. Kapur, S.K. Goyal and S.K. Goel, Optimal replenishment and credit policy in EOQ model under two-levels of trade credit policy when demand is influenced by credit period. *Int. J. Syst. Assur. Eng. Manage.* **3** (2012) 352–359.
- [14] C.W. Kang, M. Ullah and B. Sarkar, Optimum ordering policy for an imperfect single-stage manufacturing system with safety stock and planned backorder. *Int. J. Adv. Manuf. Technol.* **95** (2018) 109–120.
- [15] G. Keller and H. Noori, Impact of investing in quality improvement on the lot size model. *Omega* **16** (1988) 595–601.
- [16] M. Khan, M.Y. Jaber and A.R. Ahmad, An integrated supply chain model with errors in quality inspection and learning in production. *Omega* **42** (2014) 16–24.
- [17] A. Khanna, P. Gautam, B. Sarkar and C.K. Jaggi, Integrated vendor-buyer strategies for imperfect production systems with maintenance and warranty policy. *RAIRO:OR* **54** (2020) 435–450.
- [18] S. Khanra, B. Mandal and B. Sarkar, A comparative study between inventory followed by shortages and shortages followed by inventory under trade-credit policy. *Int. J. Appl. Comput. Math.* **1** (2015) 399–426.

- [19] C.H. Kim and Y. Hong, An optimal production run length in deteriorating production processes. *Int. J. Prod. Econ.* **58** (1999) 183–189.
- [20] M.S. Kim, J.S. Kim, B. Sarkar, M. Sarkar and M.W. Iqbal, An improved way to calculate imperfect items during long-run production in an integrated inventory model with backorders. *J. Manuf. Syst.* **47** (2018) 153–167.
- [21] X. Lai, Z. Chen, B.C. Giri and C.H. Chiu, Two-echelon inventory optimization for imperfect production system under quality competition environment. *Math. Prob. Eng.* (2015) 2015.
- [22] M. Lashgari, A.A. Taleizadeh and S.S. Sana, An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. *J. Ind. Manage. Optim.* **12** (2016) 1091–1119.
- [23] R. Li, Y.L. Chan and C.T. Chang, Leopoldo Eduardo Cárdenas-Barrón, Pricing and lot-sizing policies for perishable products with advance-cash-credit payments by a discounted cash-flow analysis. *Int. J. Prod. Econ.* **193** (2017) 578–589.
- [24] R. Li, Y. Liu, J.T. Teng and Y.C. Tsao, Optimal pricing, lot-sizing and backordering decisions when a seller demands for an advance-cash-credit payment scheme. *Eur. J. Oper. Res.* **278** (2019) 283–295.
- [25] R. Li, K. Skouri, J.T. Teng and W.G. Yang, Seller's optimal replenishment policy and payment term among advance, cash, and credit payments. *Int. J. Prod. Econ.* **197** (2018) 35–42.
- [26] B. Maddah and M.Y. Jaber, Economic order quantity for items with imperfect quality: revisited. *Int. J. Prod. Econ.* **112** (2) 808–815.
- [27] A. Mukherjee and G.C. Mahata, Optimal replenishment and credit policy in an inventory model for deteriorating items under two-levels of trade credit policy when demand depends on both time and credit period involving default risk. *RAIRO:OR* **52** (2018) 1175–1200.
- [28] L.Y. Ouyang and H.C. Chang, Quality improvement on lot size reorder point model with partial backorders based on limited information of demand. *J. Stat. Manage. Syst.* **3** (2000) 75–89.
- [29] L.Y. Ouyang, K.S. Wu and C.T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. *Comput. Ind. Eng.* **51** (2006) 637–651.
- [30] L.Y. Ouyang, K.S. Wu and C.H. Ho, An integrated vendor-buyer inventory model with quality improvement and lead time reduction. *Int. J. Prod. Econ.* **108** (2007) 349–358.
- [31] L.Y. Ouyang, L.Y. Chen and C.T. Yang, Impacts of collaborative investment and inspection policies on the integrated inventory model with defective items. *Int. J. Prod. Res.* **51** (2013) 5789–5802.
- [32] S. Papachristos and I. Konstantaras, Economic ordering quantity models for items with imperfect quality. *Int. J. Prod. Econ.* **100** (2006) 148–154.
- [33] E.L. Porteus, Optimal lot sizing, process quality improvement and setup cost reduction. *Oper. Res.* **34** (1986) 137–144.
- [34] M.J. Rosenblatt and H.L. Lee, Economic production cycles with imperfect production processes. *IIE Trans.* **18** (1986) 48–55.
- [35] M.K. Salameh and M.Y. Jaber, Economic production quantity model for items with imperfect quality. *Int. J. Prod. Econ.* **64** (2000) 59–64.
- [36] S.S. Sana, An EOQ model with a varying demand followed by advertising expenditure and selling price under permissible delay in payments: for a retailer. *J. Modell. Ident. Control* **5** (2008) 166–172.
- [37] S.S. Sana, A production-inventory model of imperfect quality products in a three-layer supply chain. *Decis. Support Syst.* **50** (2011) 539–547.
- [38] B. Sarkar, B.K. Dey, M. Sarkar, S. Hur, B. Mandal and V. Dhaka, Optimal replenishment decision for retailers with variable demand for deteriorating products under a trade-credit policy. *RAIRO:OR* **54** (2020) 1685–1701.
- [39] A.K. Sharma, S. Tiwari, V.S.S. Yadavalli and C.K. Jaggi, Optimal trade credit and replenishment policies for non-instantaneous deteriorating items. *RAIRO:OR* **54** (2020) 1793–1826.
- [40] G. Treviño-Garza, K.K. Castillo-Villar and L.E. Cárdenas-Barrón, Joint determination of the lot size and number of shipments for a family of integrated vendor-buyer systems considering defective products. *Int. J. Syst. Sci.* **46** (2015) 1705–1716.
- [41] P.K. Tripathy, W.M. Wee and P.R. Majhi, An EOQ model with process reliability considerations. *J. Oper. Res. Soc.* **54** (2003) 549–554.
- [42] Y.C. Tsao, R.P.F.R. Putri, C. Zhang and V.T. Linh, Optimal pricing and ordering policies for perishable products under advance-cash-credit payment scheme. *J. Ind. Eng. Int.* (2019) 1–16.
- [43] J. Wu, J.T. Teng and Y.L. Chan, Inventory policies for perishable products with expiration dates and advance-cash-credit payment schemes. *Int. J. Syst. Sci.: Oper. Logistics* **5** (2018) 310–326.
- [44] J.S. Yang and J.C. Pan, Just-in-time purchasing: an integrated inventory model involving deterministic variable lead time and quality improvement investment. *Int. J. Prod. Res.* **42** (2004) 853–863.
- [45] C.T. Yang, Q. Pan, L.Y. Ouyang and J.T. Teng, Retailer's optimal order and credit policies when a supplier offers either a cash discount or a delay payment linked to order quantity. *Eur. J. Ind. Eng.* **7** (2013) 370–392.
- [46] S.H. Yoo, D. Kim and M.S. Park, Inventory models for imperfect production and inspection processes with various inspection options under one-time and continuous improvement investment. *Comput. Oper. Res.* **39** (2012) 2001–2015.