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HEURISTIC APPROACH APPLIED TO THE OPTIMUM STRATIFICATION
PROBLEM

JosE ANDRE BRITO!, LEONARDO DE LiMA%*, PEDRO HENRIQUE GONZALEZ?,
BRENO OLIVEIRA® AND NELSON MACULAN?*

Abstract. The problem of finding an optimal sample stratification has been extensively studied in the
literature. In this paper, we propose a heuristic optimization method for solving the univariate optimum
stratification problem to minimize the sample size for a given precision level. The method is based on
the variable neighborhood search metaheuristic, which was combined with an exact method. Numerical
experiments were performed over a dataset of 24 instances, and the results of the proposed algorithm
were compared with two very well-known methods from the literature. Our results outperformed 94%
of the considered cases. Besides, we developed an enumeration algorithm to find the optimal global
solution in some populations and scenarios, which enabled us to validate our metaheuristic method.
Furthermore, we find that our algorithm obtained the optimal global solutions for the vast majority of
the cases.
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1. INTRODUCTION

The optimum stratification problem, related to the field of probability sampling [8], can be formulated accord-
ing to two possible goals: (A) minimizing the variance of an estimator given a fixed sample size or (B) minimizing
the sample size for a fixed level of precision. In the literature, most methods were developed aiming at the first
goal [2,3,5,6,10,15,18,22, 25,26, 30,37-39], while the second goal has been less studied [23,24,28, 33, 35].

This article’s optimization problem consists of minimizing the total sample size, simultaneously satisfying the
constraints of precision and minimum sample size of each stratum. In this paper, we proposed an optimization
approach aiming to give good solutions to the problem associated with the goal (B). It is worth mentioning
that the stratification methods proposed in the literature do not take into account the constraint of a minimum
sample size per stratum and do not solve problems with negative entries. Our method fills this gap since this
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is very important for the real-life situations of some sampling research in official statistics agencies, such as the
Brazilian Institute of Geography and Statistics (IBGE).

Our approach is developed into two steps: (i) definition of each stratum by obtaining the cutoff points using
the Variable Neighborhood Search (VNS), by Hansen et al. [21]; (ii) sample allocation is obtained optimally by
solving an Integer Programming formulation given by Brito et al. [4]. The proposed method was implemented
in R language, and it is available in the CRAN at https://cran.r-project.org/web/packages/stratvns/.

We applied the proposed algorithm to a dataset of 24 instances (populations) with size (N) ranging from
284 to over 16 057. Most instances are very well-known and are available in R on the packages stratification,
GA/Stratification and sampling. To evaluate the proposed algorithm’s performance against the classical algo-
rithms of Hidiroglou and Kozak, computational experiments were carried out with the 24 instances, considering
eight associated scenarios: the number of strata (L = 3,4,5,6) versus two levels of precision, cv = 5% and
cv = 10%. Considering these scenarios, the proposed metaheuristic outperformed the classical methods in all
cases but one, in which the result was the same as theirs. Hence, our method produced the smallest sample sizes
respecting the level of precision constraint. Also, we implemented an exhaustive method called StratEnum which
was applied to some of the 24 instances and compared the metaheuristic results with those of the StratEnum.
The results show that the proposed algorithm obtained the global optimum in 98.64% of the cases.

The remainder of this paper is organized as follows. In Section 2, we present the basic concepts of sampling,
considering, in particular, the concepts of stratified sampling. In Section 3, we present a detailed description
of the optimal stratification problem. In Section 4, the proposed metaheuristic method and an enumeration
method are presented. In Section 5, we apply our methodology to a dataset from the literature and compare
our results to those obtained by the classical methods proposed by Kozak [28] and Lavallée and Hidiroglou [33].
Finally, in Section 6, this study’s conclusions and possible extensions are presented.

2. SAMPLING CONCEPTS AND STRATIFIED SAMPLING

In the light of society and government demands, the institutes and bureaus that produce official statistics
have been carrying out various surveys that aim to collect information about the characteristics of interest of
different types of population (people, households, companies, schools, farms, among others), for which there is
a need to produce a set of statistics. From these statistics, for example, governments can plan and implement
their economic and social policies. Three examples are the demographic census carried out, in general, every
ten years, the survey of the domestic product (GDP), and the surveys associated with price indices.

Given geographic, logistical, or cost issues, these surveys are mostly carried out by sampling, that is, instead
of performing out a census of the entire population, a survey is conducted based on a subset of selected units of
the population called sample. According to [8], some of the advantages of using sampling instead of the complete
enumeration of the population have cost reduction, time reduction, a more comprehensive data collection, and
higher accuracy in the collection of information. Most surveys carried out by statistical institutes use probability
sampling. More specifically, in this type of sampling, the population of interest elements have a greater than
zero probability of being selected (from a register) to compose the sample, considering adopting a sampling
plan.

The most common examples of sampling plans [36] are simple random sampling, stratified sampling, sys-
tematic sampling, and cluster sampling. Still, in this sense, these researches are based on adopting a complex
sampling plan, that is, one that can combine two or more sampling schemes, particularly stratified sampling,
which is intrinsically associated with the problem studied in this article. Therefore, to facilitate the understand-
ing of the stratification problem addressed in this research, we present below (based on [8,36]) the notations,
definitions, and expressions associated with stratified sampling. The reasons to use stratification are: improving
the accuracy of estimates, the possibility of representing different groups within a population, ensuring the
spread of the sample, and administrative issues.

The use of stratified sampling implies partitioning a population U of N units into L subpopulations consisting
of Ny, No, ..., Ny, units. Such subpopulations are called population strata and denoted by E1, Es, ..., Er. The
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following constraints are respected for the construction of the strata:

U=FE UFEU...UE., (2.1)
E;NEy =, Vi ke{l,...,L},j #k,

L
N:ZNh.

h=1

Once these strata are determined, a simple random sample denoted by sy, is selected in each stratum Ej,,(h =
1,..., L), with selections made independently in the different strata, so that the total sample size is given by
the sum of the samples allocated to the strata. Each sample s; has an associated size denoted by nj, with the
total sample size (n) being defined by the sum of the sample sizes of each stratum:

n= Z Np. (2.3)
h=1

To produce the statistic associated with a variable Y of interest, information (such as age and income, among
others) is collected for all investigated sample elements, which is selected from the L strata. For example, the
expression of the total estimator Yag, is defined according to the following equation:

. LN,
Yap =Y o > Ynis
h=1

1€Ssp,

where yp; value of ith unit in stratum h.

Additionally, in order to calculate the value of the variance of the total estimator associated with YAE in
equation (2.6), are defined, respectively, in equations (2.4) and (2.5) define the mean and the population variance
for each stratum, respectively:

— 1
Y= Y v (2.4)
Nh i€Ep
1 —
S?Ly = N —1 Z (yi — Yh)Q- (2.5)
h icEy,

Finally, we have that the variance of the total estimator (YAE) and its associated coefficient of variation are
respectively given by:

L 2
. ny S

V(Yap) =Y Ni(l - 5) - (26)

Pt ' Nk

and
R V(YAE)
cv(Yag) = T , (2.7)
%

where Ty (population total) is defined by
N
Ty =)y
i=1

The expression presented in equation (2.6) or (2.7) allows us to evaluate how accurate is the result obtained
from an estimate derived from one of the variables considered in the research. The lower the value of V(Yag)
or cv(Yag), the better the stratification.
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3. OPTIMAL STRATIFICATION PROBLEM

Suppose that information must be collected for a population U composed of N elements distributed in a set
P =1{1,2,...,N}. A sample is drawn from this population to gather information for a set of variables of interest.
One of these variables is defined by Y = (y1,¥2,...,yn). The goal is to estimate variable Y by using Yag.
Moreover, a variable of size X is considered and used for the stratification of P. The values of X are known for

each population unit, i.e., X = (z1,22,...,ZN).
In order to stratify P, the observations of X are distributed in a non-decreasing order in each stratum
En,h=1,...,L, which are constructed as a function of (L — 1) strata boundaries, denoted by by,bs,...,br_1

such that by < by < --- < by_1, as follows:

E = {l‘j € Xlxj < bl}, (31)
Ep ={z; € X|bp_1 <z; < by}, foreach h=2,...,L—1, .
Ep, = {acj S X|bL,1 < xj}. (33)

After constructing each stratum, in the case of simple stratified sampling, a random sample of size n,(h =
1,...,L) is drawn from each stratum in such a way that ny + - -+ 4+ ny = n, that is, equation (2.3) is satisfied.
Based on this information, the stratification problem will be solved by determining the strata boundaries
b1 < by < --- < bp_q in such a way that the variance of the estimator of the total of the variable Y is minimum.

Since, in general, the values of Y are not known for the entire population, the variance presented in equation
(2.6) cannot be calculated. A typical procedure to solve this problem is to replace Y with X in the variance
equation, considering the correlation between both variables. As a result, strata boundaries and the variance
equation are given as a function of X. Many authors start from this assumption, such as: Dalenius and Hodges
[10], Lavallée and Hidiroglou [33], and Hedlin [22]. In this phase, the importance of selecting a proper auxiliary
variable or stratification variable becomes evident. Its relation to the variable of interest may be analyzed through
previous studies or surveys or by carrying out a pilot survey. Once the replacement is done, the following variance
equation must be minimized:

52
V(Xa) = zNh (1- ) 2, (3.

. V(Xag)
cv(Xag) = T,

where T'x (population total) is defined by
N
TX = Z Z;.
i=1

Table A.1 in the appendix section presents a summary of the notation defined in this paper.

Notice that in order to compute V(X ag) or cv(Xag), a two-level problem needs to be solved: (1) to determine
the population strata, which consequently makes us obtain the values of Nj, and S7_; (2) to define the sample
sizes ny, that will be allocated to these strata.

The resolution of this problem, in its two levels, defines the optimal stratification problem. Concerning the
first level, the solution is associated with delimiting strata, that is, defining cutoff points that allow segmenting
the population into L strata. At the second level, already considering the defined strata, we have the problem
of optimal allocation, which can be addressed according to one of the following objectives:

(i) Determine the sample sizes nj so that the sum 2521 ny is minimal, subject to the “level of precision
constraint”, defined a priori as cv(Xag) < cv;, where cuv; is a target coefficient of variation (fixed precision);
(ii) Minimize V(Xag), subject to Zﬁ:l np = n, where n is defined a priori.
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In the first objective, the goal is the cost reduction associated with the sample size, and in the second
objective, the focus is on obtaining maximum precision.

In general, the steps that are considered in order to solve the optimal stratification problem can be summarized
as follows:

1) Define the objective function to be optimized;
) Define the allocation method;

) Choose the variable to be stratified and define the number of strata (L);
4) Define the number L — 1 of cutoff points;

) Compute the sample size of each stratum, which we denote by nq,ns,...,nr, according to the allocation
method defined in item 2;
(6) Select the objects in each stratum according to the selection method defined in item 2, and with the size ny,
of each stratum h=1,..., L.

As described in this section, Step 1 consists of defining of defining the objective function by either:
(i) minimizing the total estimator variance, that is, maximizing the precision considering a fixed sample size;
(ii) minimizing the sample size, that is, minimizing cost given a fixed precision. Most of the proposed methods
in the literature are related to the objective function described in (i), as can be seen in [2, 3,5, 6, 10—
16,18,22,25,26,37-40]. The objective function described in (ii) was only studied by Hidiroglou [23], Lavallée and
Hidiroglou [33], Kozak [28], Hidiroglou and Kozak [24] and Lisic et al. [35]. Note that both objective functions
are correlated since minimizing variance requires the sample size as an input, and minimizing the sample size
requires precision (that is, variance or variation coefficient) as an input to the problem.

In Step 2, the sample allocation method is chosen among the Uniform, Proportional, Neyman, and Power
methods (see [5]). Notice that none of those allocation methods provides an integer sample size. Step 4 consists
of choosing L — 1 cutoff points denoted by by,...,br_1, considering the variable to be stratified. This step
divides the population into L strata. Once all cutoff points boundary is defined, it is possible to obtain the
subpopulation size N}, and the corresponding variance S,%I of each stratum h. According to [5], finding a global
minimum for this very important problem is a difficult analytically and computationally, since S,?m is a nonlinear
function of the values by, ba,...,br,_1. Step 5 is the second level of the stratification problem, where the sample
size ny, of each stratum is defined in such a way that n, the total sample size which optimizes the objective
function, is obtained. As the second level of the problem has already been solved optimally by Brito et al. [4],
the method proposed in this work uses the allocation presented in that research and focuses only on the first
level of the stratification problem in order to solve the second objective (to minimize the sample size).

To illustrate the stratification problem, we present an example based on a fictitious population of size N = 18,
whose observations associated with the stratification variable X are defined by

X =1{1,1,2,2,3,3,4,4,5,7,7.8,8,10, 10, 15, 31}.

We consider the number of strata as L = 2, and the target coefficient of variation as cv; = 0.02. The first step
towards stratification of a population concerns to the choice of the cutoff points. Here, since L = 2, it implies
the determination of only one cutoff point denoted by b;. Once b; is obtained, stratum F; and Fs are defined,
which allows the determination of population sizes N; and N, in the strata and their respective population
variances S7, and S3,. An allocation method is applied, and the sample sizes n; and ng associated with the
strata are obtained. Consequently, the value of n (total sample) that corresponds to the objective function of the
problem is determined. In Table 1 we consider two choices to by, and their impacts to the minimization process.
First, we take by = 4 which is associated to n = 7. Then, by choosing b; = 8, we get n = 6. It is observed
that the choice of a cutoff point is determinant for the sample size and the coefficient of variation. In this case,
when n = 7 and n = 6, the following values for cv(Xag), 18.34% and 17.95% were observed, respectively, both
satisfying the level of precision constraint.

It is worth mentioning that we did not find any article with a method that guarantees the global optimum
achievement for this minimization problem at the first level, except for the exhaustive enumeration method,
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TABLE 1. Example of optimizing the stratification problem.

by Ex E» Ni N S%, 82, n1 mn2 n
4 111223344 5778810101531 9 9 1,5 62,9 2 5 7
8 11122334457788 10101531 14 4 6,8 99.0 3 3 6

which is described in Section 4.2. However, applying enumeration is infeasible for medium or large-sized popula-
tions (depending on N and L). Therefore, metaheuristic methods are proper for larger instances, which justifies
the proposal of this work.

In this paper, we aim to minimize the sample size by using a metaheuristic procedure. Our approach uses
the Variable Neighborhood Search (VNS) metaheuristic to define good cutoff points for the cutoff sampling
problem. We use the exact method proposed by Brito et al. [4] to allocate samples in each stratum with those
points. Therefore, the first level of the problem is solved using a metaheuristic method, and the second level is
by an exact method.

4. DEVELOPED METHODS

We developed a metaheuristic method for the first level of the optimal stratification problem. In this sense, we
implemented the Variable Neighborhood Search (VNS), proposed by Hansen and Mladenovié [20]. Each solution,
generated by the optimization process of the VNS, is given as an input to the mathematical formulation proposed
by Brito et al. [4], which optimally solves the second level of the problem. The integration of both levels’ solution
is done in Algorithm 1, proposed in this article, and named StratVNS. This algorithm was implemented in R
and is available in the stratvns, https://cran.r-project.org/web/packages/stratvns/.

In this context, a solution is feasible whenever it attains all of the following conditions for each stratum: the
sampling size is at least ny,, that is, ny > nmin; the number of population elements is at least Ny, that is,
Np > Nnin; the coefficient of variation is is less than or equal to a target coefficient of variation cv;, that is,
cv < cuy, see equation (3.5). Feasibility is checked for every intermediate solution of the algorithm (values of
Ny, and S3,).

In line 2 of Algorithm 1, the duplications of population X are removed, producing the set @) whose values
will be used as possible cutoff points by the algorithm to determine the values of N} and S,%l,. In line 3, the
procedure InitialSolution() generates 20 random solutions and returns the best feasible solution associated
with the smallest sample size. From lines 5 to 11, we execute a multi-start of the VNS metaheuristic, and the
algorithm stops when either the maximum CPU time or the maximum number of iterations is achieved. In line
7, the evaluation of objective function is done for the solution " by calling the integer formulation of [4], which
optimally solves the second level of the stratification problem returning the sample size. Notice that the same
happens inside the VNS procedure, which is presented in the next subsection.

In Table 2, we give a brief description of the functions of Algorithm 1.

4.1. Variable Neighborhood Search procedure

In Algorithm 2, the proposed Variable Neighborhood Search (VNS) is presented. Each solution is represented
by a vector of cutting points b = (b1, ba,...,br—1). A set of neighborhood structures for a given integers k and
s, denoted by NGy s(z), is defined as follows: given a solution z, a solution ' € NGy s(z) has k (such that
1 <k <L —2) of its elements randomly chosen to be modified, and the remaining (L — 1 — k) elements are
fixed. Assume the k chosen elements are 1, ...,z and let ¢; be the position of z; in set @) foreach j =1,... k.
Then, each new element :E; replacing x; will be chosen from the interval q;, s < z; < q¢;4s. Note that the
neighborhood structures NGy, s(z) are nested.
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Algorithm 1: StratVNS Algorithm.
Input: X, L, cvi, Nmin, Nmin, Emax, tmax, C PUtimeM ax

2 @ = RemoveDuplications (X);
3 b = InitialSolution (Q, L, nmin, Nmin, 0t );
41=1;
5 while (i < imax) and (CPUtime < CPUtimeMazx) do
6 b/ = \ZI\IS(Q7 X, b, kmax, Tminy Nmina C”t);
7 if FvalObjFunc(b', cvy) < EvalObjFunc(b, cv;) then
8 ‘ b="b";
9 end
10 i=14+1;
11 end

Output: b, ny, N, S7,.

TABLE 2. Description of the functions of Algorithm 1.

Routines Description

RemoveDuplications(X) Remove all data duplications from the X vector

EvalObjFunc(b, cv) Returns the optimal sample size considering the cutoff
points of b by calling the integer programming formula-
tion of [4]

InitialSolution(Q, L, Nmin, Nmin, cv:) Twenty random solutions are generated. The best feasi-
ble solution (associated with the smallest sample size) is
chosen

With the Shaking(b, k, s) procedure, solution ¥’ is obtained by perturbing solution b, considering the neighbor-
hood NGy 4(b). The shaking procedure corresponds to randomly choosing a neighbor from the set NGy, 4(b),
which will be used as an input to the local search. This new solution &' differs from b by k elements after
randomly choosing a neighbor in NGy, 5(b) and is given as an input to the local search.

Due to the high computational cost of obtaining all solutions in a given neighborhood, we use the reduced
VNS (RVNS) procedure. The RVNS method consists of obtaining ¢max random solutions selected from NGy, o
where no descent is required. The random solutions are compared with the current solution, and an update
takes place in case of improvement. The application of an exhaustive local search procedure or, even of first
improvement, is not feasible in this case, since each evaluation of the objective function implies solving an integer
programming problem. Then, the RVNS method generates tyax random solutions from NGy, ¢ (V') and returns
the best solution (smallest sample size), say b”, among all t;,.x solutions. There is no guarantee that b” is a
local optimum. The neighborhood structures of the Shaking and RVNS procedures are the same, except for the
range of the modification. Algorithm 2 stops when the maximum number of iterations with no improvements
(reduction of the sample size) is achieved.

For the sake of clarity, consider the following example. Suppose that the stratification variable of the popula-
tion of interest has the following values X = {1,1,1,2,2,3,3,4,4,5,7,7,8,8,10,10, 15,31}, and the number of
strata is equal to L = 3, and cv; = 10%. In Algorithm 1, after applying RemoveDuplications(X ), we obtain the
set Q ={1,2,3,4,5,7,8,10,15,31}. In the sequel, the InitialSolution() provides the initial solution b = (5, 8)
corresponding to the cutoff points, which is given that is given to the VNS procedure as an input. In Algo-
rithm 3, let ¥k =1 and s = s’ = 2. Assume that the element b, = 8 was randomly chosen to be modified in the
Shaking() procedure. In this case, the new cutoff point b} is randomly chosen from the set {5, 7,10, 15}. Suppose
that b, = 10, which implies that o’ = (5,10). Let t;nax = 4, and suppose that b} is chosen from the set {3,4,7,8}
inside the RVNS() procedure. In this case, the set of possible solutions is S = {(3,10), (4,10), (7,10), (8,10)}.



986 J. ANDRE BRITO ET AL.

The feasibility is checked and the objective function is evaluated for every solution in S. After that, we obtain
b” = (4,10) as the feasible solution with minimum sample size. In Line 9, the EvalObjFunc() is computed
for b = (5,8) and b = (4,10), which means that the second level is optimally solved for both solutions, and
the one with minimum sample size is kept as the best solution. In this case, EvalObjFunc((5,8), 0.01) = 8
and EValObjFunc((4,10), 0.01) = 6, the current solution is updated, k is incremented to 2, and the algorithm
continues.

Algorithm 2: VNS general framework.

Input: Currently solution b. Define integers s, s’, nlterWithNoImpMax and tmax. Define the set of neighborhood
structures NGyg,s and NGy, o for k =1,.. ., kmax
2 nlterWithNolmp = 0
3 while (nlterWithNoImp < nlterWithNoImpMaz) do

4 k=1
5 nlterWithNolmp = nlterWithNolmp + 1
6 while k < kpax do
7 b = Shaking(b, k, s);
8 b” = RVNS(V, k, tmax, 8);
9 if FvalObjPunc(b”, cv:) < EvalObjFunc(b, cv:) then
10 b="b";
11 k=1;
12 nlterWithNolmp = 0
13 else
14 | k=k+1;
15 end
16 end
17 end
Output: b

4.2. Enumeration method

Alternatively, to apply the VNS algorithm, one can consider using the exhaustive enumeration algorithm
described in Algorithm 3. This algorithm guarantees the global optimum for the stratification problem in its
two levels: the cutoff points and the allocation of the sample to the strata. However, its use is only feasible under
certain conditions that we will explain further on. This algorithm was developed based on the discretization
considered in Section 4 for applying the VNS method, that is, the elements of the @ set. The algorithm generates
all possible stratifications of a population. It is based on the determination of all integer and non-negative
solutions of the following linear equation:

wy + e wy -+ wp = Q) (4.1)
wp >2,h=1,...,L, (4.2)

where each wy, corresponds to the number of observations of () that are in the hth strata. Notice that equation
(4.2) implies N, > 2,h =1,..., L.

For each (wy,...,wy) solution that satisfies equations (4.1) and (4.2), we have corresponding values of Np,
and S,%w. These values, together with the coefficient of variation fixed a priori (cv;), are used as input for the
formulation proposed by Brito et al. [4]. To meet the constraint associated with equation (4.2), the following
substitution can be made in equation (4.1): wy, = 2z, + 2, (h =1,..., L), producing;:

24zt 42 =|Q| — 2L (4.3)
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The total T of entire solutions of equation (4.3) (see [42]), corresponding to the total number of feasible
solutions S for the stratification problem (possible stratum sizes) at the first level, can be defined by:

(@ -1

T=la—mz -

(4.4)

For example, assuming |Q| = 200 and L = 3, we have T = 11)3%! = 19110 feasible solutions that must be
evaluated by applying the formulation of [4]. Keeping |@Q| fixed and increasing L by one, T = 1216 185, indicating
a substantial number of solutions that must be listed for equation (4.4). Tests performed with this algorithm
showed that its application that its application is computationally feasible when 7" < 107. Algorithm 3 is the

enumeration algorithm, denoted by StratENUM.

Algorithm 3: StratENUM Algorithm.
Input: Q, L, cv;

1 Determine all solutions of equation (4.3) and keep them in matrix Z of dimension 7" X L;

2 Compute N;, and S7, for each solution obtained in line 1 and keep them in matrix V' of dimension T' x 2L (values
of Ni, and S7.) ;

3 Considering the parameter cve, apply the optimal allocation according to [4] to each row of matrix V' in order to
obtain the sample size associated with each of them;

4 Select the row of the matrix V whose Nj, and S?, are associated with the smallest sample size obtained in line 3;
Output: Ny, S?.,np,n,cv

5. COMPUTATIONAL EXPERIMENTS

In this section, computational experiments for the StratVNS and StratENUM are presented. The best two
known algorithms in the literature, LH88 [33] and Ko04 [28], were used as a baseline to evaluate the efficiency of
the proposed algorithm. The functions associated with the LH88 and Ko04 algorithms are implemented in the
stratification package (strata.LH function with default arguments) of the R Language, and functions associated
with StratVNS and StratENUM are implemented in the stratvns package. All routines used in STRATVNS
are available at http://github.com/pehgonzalez/stratification. In the Appendix A, we show an example
using all of these functions.

All numerical experiments were performed on a computer with an AMD-FX6300 six-core processor, with a
3.5 GHz CPU and 16 GB of RAM. To evaluate the proposed methods, the StratVNS algorithm was applied to
24 benchmark public datasets from the literature. The StratENUM algorithm was applied to all instances, such
that T < 107, for different values of L. We have implemented all algorithms described in the previous sections
in R language.

The remainder of this section is organized as follows: Section 5.1 presents the characteristics of each benchmark
instance, and in Section 5.2, the results obtained in our computational experiments are presented.

5.1. Instances

Twenty four instances were used to test the proposed algorithms. The instances either come from statistical
packages or are generated from statistical distributions. For example, consider the populations used in the
following works: [5, 18,22,25]. We have used instances available in the statistical software R in the following
packages (http://cran.r-project.org/web/packages/available_packages_by_name.html): stratification,
GA/Stratification ([25]) and sampling. Also, some instances from different authors were used as presented in
Table 3, which also shows the identification code, name, source, and description of each instance. The descriptive
statistics of these 24 instances are summarized in Table 4. The first column presents the identification code of
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TABLE 3. Description of the 24 populations from literature.

1D Name Reference Description

Uo1 BeeFarms [7] Australian cattle farms stratified by indus-
trial regions

U02 betal03 GAA4Stratification  Population generated from Beta distribu-
tion with parameters a = 10 and b = 3

U03 chil GAA4Stratification  Population generated by the Chi-Square
distribution with 1 degree of freedom

Uo4 chib GAA4Stratification  Population generated by the Chi-Square
distribution with 5 degrees of freedom

U05 debtors Stratification Debtor population in an Irish firm

U06 HHINCTOT Stratification Canada 2001 family income before taxes

uo7 1802004 GAA4Stratification  Net sales of Turkish industrial companies
in 2004. Population divided by 1000

U08, U09, U10, U1l Kozakl, ..., Kozakd [31] Populations given in the article by Kozak
and Verma

U12 me84 Sampling Number of municipal employees in 284
municipalities in Sweden in 1984

U13 mrts Stratification Simulated population of the Monthly
Wholesale Trade Survey from Statistics
Canada

U14 p100el0 GAA4Stratification  Population generated by the Normal dis-
tribution with g = 100 and o = 10

U15 P75 GA4Stratification  Population in thousands of 284 municipal-
ities in Sweden in 1975

Ui16 pop800 [22] Generated from the Log-Normal distribu-
tion (X = e?), where Z follows an N
(p=4;0% =2.7)

U17 rev84 Sampling Property values in millions of Swedish kro-
nor from 284 municipalities in 1984

U18 SugarCaneFarms [7] Australia’s sugar cane farm population

U19 Swiss Sampling Information on Swiss municipalities (2003)

U20 TaxableIncome Sampling Income of municipalities in Belgium in
2001 (in euros, divided by 1000)

U21 Usbanks Stratification Million dollar funds from major US com-
mercial banks

U22 Uscities Stratification Population in thousands of American cities
in 1940

U23 Uscolleges Stratification Number of students at four-year US col-
leges in 1952-1953

U24 Rchisq2-30 [1] Population generated by the Chi-Square

distribution with 30 degrees of freedom

the population. The second column presents the population size (N). The third column shows the number of
distinct values: the cardinality of set @, denoted by |@|. The fourth and fifth columns present the minimum
and maximum values of the stratification variable X, corresponding to the population. The last column shows
the coefficient of skewness. It is worth highlighting three points: There are only two populations of a size larger
than or equal to N = 10000, the population U14 has zero skewness, and the population U16 has the largest

positive skewness 22.2.
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TABLE 4. Basic information of the 24 populations from literature.

ID N Q| Minimum Maximum Skewness
U0l 430 353 50 24250 4.6
U02 1000 1000 358 986 -0.7
U03 1000 1000 0O 13 2.7
U04 1000 1000 0.1 23.4 1.4
U05 3369 1129 40 28000 6.4
U06 16057 225 0 690000 2.7
Uo7 487 487 63 583 10446592  10.1
Uo08 4000 51 3 72 1.4
U09 4000 2837 243 28578 2.7
U10 2000 581 6 2793 3.5
Ull 10000 5453 62 74 398 4.2
U12 284 264 173 47074 8.7
U13 2000 2000 141 486 367 8.6
U14 1000 1000 74 127.3 0.0
Ul5 284 68 4 671 8.5
U16 800 402 1 473510 22.2
U17 284 277 347 59 877 7.9
U18 338 101 18 280 2.3
U19 2896 881 0 3634 2.7
U20 589 589 1097 5416419 9.3
U21 357 200 70 977 2.1
U22 1038 116 10 198 2.9
U23 677 576 200 9623 2.5
U24 1000 1000 13 61 0.6

TABLE 5. Possible values for the parameters of the StratVNS algorithm.

Parameter Values

Kmax 2,3

tmax 5, 10, 15, 20
s 10, 20, 30, 40
s’ 30, 40, 50, 60
fmax 2,3,4
maxstart 2, 3,4

nlterWithnolmpMax 5, 10

5.2. Parameters tuning

In addition to the stratification parameters, the VNS parameters were tuned. The values associated with
these parameters, except for the maximum CPU time, were defined from experiments previously carried out
with populations U01, U16, and U23. More specifically, the following sets of values were initially defined for
each of these parameters according to Table 5.

Then, considering each 2304 combinations of these parameters, the number of strata L = 3 and L = 4, and
cvy equal to 5% and 10%, the StratVNS algorithm was applied 10 times in populations U01, U16, and U23, with
92 160 executions in total. For each combination, the median was calculated with the sample sizes produced in
the ten runs. Finally, from the analysis of the five smallest median values, associated with the combinations of
parameters, in each of the three populations evaluated considering the number of strata and the target coefficient
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TABLE 6. Configuration of parameters.

Parameter Values
kmax 3

tmax 15

S 30

s’ 50
Tmax 3
maxstart 3
nlterWithnolmpMax 5
cpuTime 3600 s

TABLE 7. Total Sample Size (n) produced by each algorithm and number of strata (L) of the
24 populations, for cv; = 10%.

1D L=3 L=4 L=5 L=6
LH88 Ko04 StratVNS LH88 Ko04 StratVNS LH88 Ko04 StratVNS LH88 Ko04 StratVNS

U0l 26 23 22 14 13 13 14 11 10 13 13 12
Uuo2 6 6 6 8 8 8 10 10 10 12 12 12
U3 22 21 20 14 12 12 10 10 10 12 12 12
uo4 9 8 8 8 8 8 10 10 10 12 12 12
Uo5 35 34 34 21 19 19 14 12 12 12 12 12
vo6 13 11 11 9 8 8 10 10 10 12 12 12
Uo7 23 21 21 16 14 13 14 10 10 14 12 12
U088 6 6 6 8 8 8 10 10 10 12 12 12
vo9 11 10 10 8 8 8 10 10 10 12 12 12
vl 17 15 15 10 9 9 10 10 10 12 12 12
Uil 19 19 20 12 11 11 10 10 10 12 12 12
U12 18 17 17 10 9 8 10 10 10 12 12 12
U113 22 21 21 13 11 13 10 10 10 12 12 12
Ul4 6 6 6 8 8 8 10 10 10 12 12 12
Uls 20 18 17 11 10 9 11 10 10 12 12 12
Ul6 22 22 22 * 17 15 * 12 11 * 13 13
v1r 17 17 16 10 9 9 10 10 10 12 12 12
U1s 7 6 6 8 8 8 10 10 10 12 12 12
U119 15 15 15 11 9 9 10 10 10 12 12 12
U20 22 21 21 15 14 14 15 10 10 12 12 12
U21 8 8 7 8 8 8 10 10 10 12 12 12
U22 11 10 9 8 8 8 10 10 10 12 12 12
U23 12 10 10 9 8 8 10 10 10 12 12 12
U24 6 6 6 8 8 8 10 10 10 12 12 12

Notes. “Means that the algorithm did not converge.

of variation cvy, the standard configuration with the greatest repetition among the five values was sought. The
best configuration obtained is presented in Table 6, and it was used in all the experiments carried out in this
work.

5.3. Computational results

This section compares the computational results obtained from the classical methods LH88 and Ko04 with
those from the proposed algorithms, StratVNS and StratEnum. We considered eight scenarios corresponding
to the parameters cv; = 10%,5% and L = 3,4, 5,6 for each instance. We evaluate the results produced by the
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TABLE 8. Total Sample Size (n) produced by each algorithm and number of strata (L) of the
24 populations, for cv; = 5%.

1D L=3 L=4 L=5 L=6
LH88 Ko04 StratVNS LH88 Ko04 StratVNS LH88 Ko04 StratVNS LH88 Ko04 StratVNS

U0l 54 54 54 38 37 36 30 26 25 22 20 19
U02 6 6 6 8 8 8 10 10 10 12 12 12
vuo3 73 73 72 44 42 42 30 27 27 21 20 20
Uo4 30 28 28 19 17 17 12 11 11 13 12 12
vUos 121 120 120 72 70 70 47 44 44 33 32 32
U06 43 42 42 28 25 25 20 17 17 18 13 12
Uo7 43 42 42 33 31 31 24 22 23 24 18 18
U0 14 13 12 11 8 8 11 10 10 12 12 12
U09 38 37 37 23 22 22 16 15 15 12 12 13
U10 58 57 57 34 33 33 24 22 22 19 17 16
Ullr 75 73 74 44 42 43 29 28 29 23 20 21
U122 * 40 40 * 23 23 * 16 16 20 13 14
U1s 74 73 73 42 41 41 29 27 28 22 20 22
U4 6 6 6 8 8 8 10 10 10 12 12 12
Uls 39 38 38 * 25 25 * 17 17 * 14 13
Ul6 42 42 42 * 28 28 * 20 20 * 19 16
Ulr 41 41 41 26 25 25 18 17 17 17 14 13
U188 20 20 20 13 12 12 11 10 10 13 12 12
U19 57 56 56 35 33 33 24 22 22 19 16 16
U20 58 57 57 39 37 37 31 28 25 20 19 18
U21 25 25 25 20 14 14 13 11 10 15 12 12
v22 37 33 32 20 18 18 19 11 10 20 12 12
U23 38 37 37 25 23 23 21 16 15 17 12 12
U24 6 6 6 8 8 8 10 10 10 12 12 12

*Means that the algorithm did not converge.

TABLE 9. Number of best solutions by strata and cv.

cvy = 10% cvy = 5%
L LH88 Ko04 StratVNS LH88 Ko04 StratVNS
3 7 18 23 8 21 23
4 9 20 23 3 23 23
5 18 22 24 3 19 21
6 21 23 24 5 17 20

Strat VNS algorithm using LH88 and Ko04 as a baseline. Notice that the Ko04 and LHS88 algorithms can produce
infeasible solutions since neither of them was designed to obey constraints associated with the minimum sample
size per stratum n;,, especially when ny,;, > 3. However, this did not occur for the populations used in these
experiments.

In Tables 7 and 8, we present the results produced by each method (LH88, Ko04, StratVNS) for the number
of strata ranging from 3 to 6 for all populations, with mininum sample size np, > 2, cv; = 10%, and cv; = 5%,
respectively. Table 9 and Figures 1 and 2 show a summary of the results presented in Tables 7 and 8. More
specifically, the total of best solutions produced by each of the algorithms is presented for all eight scenarios.

Table 9 and Figures 1 and 2 show that the StratVNS algorithm had a performance far superior to the others,
as it produced the most significant amount of best solutions for all strata numbers.
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FIGURE 1. Number of best solutions per method with cv; = 10%.
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FIGURE 2. Number of best solutions per method with cv; = 5%.

In addition to the experiment with the StratVINS algorithm, a second experiment was carried out con-
sidering applying the StratENUM algorithm described in Section 4.2. Using the targets cvy = 5% and
cvy = 10%, StratEnum was applied to all populations where 7' < 107. In these cases, 74 global optimal solu-
tions (37 for each cv;) were obtained corresponding to the sample sizes (n), in a total of 192 possible solutions
(cvy x 24populations x number of strata). The optimal solutions produced were compared to the corresponding
solutions produced by the StratVNS algorithm. Table 9, in the appendix, shows the disaggregated results (by
population, cv; and strata) to the global optimum produced by the StratENUM algorithm and the solutions
produced by the StratVNS algorithm. Table A.2 also shows the obtained sample sizes and the total number of
feasible solutions (tfeasible) evaluated by the StratENUM algorithm to get the global optimum. It is observed
that the StratVNS algorithm achieved the global optimum in 37 out of 37 cases for cv; = 10% (corresponding
to 100%), and in 36 out of 37 cases (corresponding to 97%) for cv, = 5%.

For cvy = 10%, the average execution time of the StratVNS and StratENUM for 37 cases was, respectively,
17 and 5448s. For cv; = 5%, the average execution time of the StratVNS and StratENUM was 25 and 9127s,
respectively. The StratENUM maximum execution time was obtained for population U6, corresponding to 26 h
for cv, = 10%, and 55h for cv, = 5%.
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It is worth mentioning that the strata boundaries provided by StratVNS algorithm were not the same from
the other two methods of the literature. To illustrate this fact, we present the strata boundaries, sizes, and
variances of the population Ul2 for L = 4 and cv; = 10% in Table A.3 of the appendix.

From the obtained results, the Strat VNS algorithm can be considered an alternative to the classical methods
of the literature to solve the stratification problem when we consider minimizing the sample size. Besides, the
proposed algorithm proved to be the most appropriate one when there is a constraint on the minimum sample
size per stratum.

6. CONCLUSION

The stratification problem has been studied since [9]. No algorithm in the literature always obtains the optimal
global solution for this problem according to the stratified population. So far, the methods that produced the
most favorable results were [28,33]. However, they do not allow us to include the constraint of minimum sample
size per stratum. They also do not allow negative values in the observations of the stratification variable. In
this article, it was possible to go one step further towards obtaining better quality solutions. The StratVNS
algorithm produced better solutions than the two algorithms known in the literature in 94% of the studied
instances. Moreover, it was possible to produce a global minimum for the considered stratification problem for
the first time by applying the StratENUM algorithm, which is new in the literature. Furthermore, our method
applies to all types of population, even those with negative values.

Possible extensions of this work include a generalization of the method for the multivariate stratification
problem and changing the method to minimize the variance of an estimator, given sample size. There is also
the possibility of testing other metaheuristics.

APPENDIX A.

TABLE A.1. Notation.

Parameter/Variable Description

U=1{1,2,...,N} Population of size N

N Number of population elements

L Number of cutoff points

h Stratum index

Ny, Number of population elements in stratum h

Ey Set of population elements in stratum h

Sh Set, of population elements sampled in stratum h
nh Sample size of stratum h

n Total sample size given by Zﬁzl nh

Y Variable of interest

Y Population mean of stratum h

S;Qly Population variance of stratum h

Yag Total estimator

V(YAE) Variance of the total estimator Yag

CU(VAE) Coefficient of variation of the total estimator Yag
Ut Target coefficient of variation or precision level
Ty Population total of the variable of interest Y

b; ith cutoff point
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TABLE A.2. Sample sizes corresponding to the global optimum.

cv:=10% cvy = 5%
POP L nStratENUM  tfeasible nStratVNS nStratENUM  tfeasible nStratVNS
Uo1 3 22 60726 22 54 60726 54
U02 3 6 495510 6 6 495510 6
U03 3 20 495510 20 72 495510 72
U4 3 8 495510 8 28 495510 28
U05 3 34 632250 34 120 632250 120
U06 3 11 24 310 11 42 24 310 42
Uo7 3 21 116 403 21 42 116 403 42
U08 3 6 1081 6 12 1081 12
U09 3 10 4011528 10 37 4011528 37
Ui 3 15 166176 15 57 166 176 57
Ul2 3 17 33670 17 40 33670 40
U13 3 21 1991010 21 73 1991010 73
Ui4 3 6 495510 6 6 495510 6
U15 3 17 2016 17 38 2016 38
U16 3 22 79003 22 42 79003 42
u17 3 16 37128 16 41 37128 41
U18 3 6 4656 6 20 4656 20
U19 3 15 384126 15 56 384126 56
v20 3 21 170820 21 57 170820 57
U21 3 7 19110 7 24 19110 25*
U22 3 9 6216 9 32 6216 32
U23 3 10 163 306 10 37 163 306 37
U24 3 6 495510 6 6 495510 6
uUo1 4 13 6963596 13 36 6963596 36
U06 4 8 1750540 8 25 1750540 25
Uo08 4 8 15180 8 8 15180 8
U12 4 8 2862209 8 23 2862209 23
U15 4 9 39711 9 25 39711 25
vuir 4 9 3317040 9 25 3317040 25
U18 4 8 142 880 8 12 142 880 12
U21 4 8 1216865 8 14 1216865 14
U22 4 8 221815 8 18 221815 18
U08 5 10 148 995 10 10 148 995 10
U15 5 10 557 845 10 17 557 845 17
U18 5 10 3183545 10 10 3183545 10
U22 5 10 5773185 10 10 5773185 10
U08 6 12 1086008 12 12 1086008 12

Notes. “The only case in which StratVNS did not produce the global optimum.

TABLE A.3. Detailed Results for Population U12 (L =4 and cv; = 10%).

by, Np Si2wv
Ko04 1.018,1 2.929,9 12.724,0 163 85 33 3 41.304,9 231.853,7 1.949.479,6 103.280.422,2
LHS88 1.010,0 2.830,5 16.302,0 163 84 34 3 41.304,9 216.532,1 1.999.348,9 103.280.422,2

StratVNS ~ 1.061,0 3.070,0 7.910,0 170 80 31 3 49.779,9 253.597,9 1.854.485,0 103.280.422,2




HEURISTIC APPROACH APPLIED TO THE OPTIMUM STRATIFICATION PROBLEM 995

Let X be the vector with 284 values associated with population U12. The results of Table A.3 were obtained
using the following commands in R:

strata. LH(X,CV=0.1,Ls=4,alloc=c(0.5,0,0.5),takeall=0, algo = ”Kozak”, model="none”)

strata. LH(X,CV=0.1,Ls=4,alloc=c(0.5,0,0.5),takeall=0, algo = ”Sethi”, model="none”)

STRATVNS(X,L=4)
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