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CAPACITATED LOCATION ROUTING PROBLEM WITH SIMULTANEOUS
PICKUP AND DELIVERY UNDER THE RISK OF DISRUPTION

Milad Dehghan1, Seyed Reza Hejazi1, Maryam Karimi-Mamaghan2,
Mehrdad Mohammadi2,∗ and Amir Pirayesh3

Abstract. This paper develops a new mathematical model to study a location-routing problem with
simultaneous pickup and delivery under the risk of disruption. A remarkable number of previous studies
have assumed that network components (e.g., routes, production factories, depots, etc.) are always
available and can permanently serve the customers. This assumption is no longer valid when the network
faces disruptions such as flood, earthquake, tsunami, terrorist attacks and workers strike. In case of any
disruption in the network, tremendous cost is imposed on the stockholders. Incorporating disruption in
the design phase of the network will alleviate the impact of these disasters and let the network resist
disruption. In this study, a mixed integer programming (MIP) model is proposed that formulates a
reliable capacitated location-routing problem with simultaneous pickup and delivery (RCLRP-SPD)
services in supply chain distribution network. The objective function attempts to minimize the sum
of location cost of depots, routing cost of vehicles and cost of unfulfilled demand of customers. Since
the model is NP-Hard, three meta-heuristics are tailored for large-sized instances and the results show
the outperformance of hybrid algorithms comparing to classic genetic algorithm. Finally, the obtained
results are discussed and the paper is concluded.
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1. Introduction

Supply chain management (SCM) consists of efficiently planning, implementing and controlling the supply
chain operations. Activities in SCM include transferring and storing raw materials, work-in-process inventory
and final products from origin to customers [33]. Accordingly, design of a distribution network is a fundamental
step in building an efficient supply chain. In designing a distribution network, decisions vary from the number
of echelons in the network to the optimal location(s) of the facilities. These decisions are often classified into
strategic, tactical, and operational decisions. A strategic decision, which is a long-term one, is not made on a
regular basis and requires major investment in capital. Decisions such as the location and construction decisions
fall into this category. A tactical or mid-term decision is made more frequently than a strategic decision. For
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example, decisions in a vehicle routing problem (VRP) are tactical decisions [30]. Finally, those decisions that
take place regularly are the operational or short-term decisions such as scheduling.

The location-routing problem (LRP) integrates the strategic location and tactical routing decisions [10]. The
LRP is often defined as a special case of VRP, in which the optimal number and location of depots along with
distribution routes must be determined simultaneously [8, 44]. Indeed, the LRP aims to locate the depots and
route the vehicles to meet the demand of customers with a typical objective of minimizing the total cost of
transportation (routing costs), fixed costs of locating depots and fixed costs of vehicles. A capacitated version
of the LRP (CLRP) is provided by imposing capacity constraints on both depots and vehicles [14,56].

Location and routing decisions are traditionally made in succession, where routing decisions follows location
decisions. First, the location of the depots is determined a priori and then, the vehicles are routed through
the customers and from the located depots. However, in real-world application, these decisions should be made
simultaneously since ignoring routes when locating depots increases the cost of distribution and leads to sub-
optimal solutions [51].

In most LRPs, one typical assumption is that depots are always available and can serve customers under any
circumstances. However, this assumption is not valid in real settings when the depots are exposed to uncertainty
risk [10]. The uncertainty in SCM can be generally categorized into operational uncertainty (risk) and disruption.
Operational risks do not affect the functionality of supply chain’s elements and only affect operational factors
that are supposed to be fundamentally uncertain. They are typically inherent uncertainties in input parameters
of a problem such as customer demand, purchasing prices for raw materials or required resources, production
costs, transportation costs, lead times or transportation times. However, disruption risks can either completely
or partly interrupt the functionality of supply chains’ elements, typically for an uncertain amount of time [50].
Such disruptions are caused by nature or disasters such as earthquakes, hurricanes, terrorist attacks, economic
and financial crises, labor strikes, or machine breakdowns [10,30]. Disruptions are mostly discrete and significant,
whereas the uncertainties from operational sources are usually continuous and minor [1]. The occurrence of such
major disruptions in the depots of a supply chain network results in an excessive transportation cost since the
customers previously served by these failed depots have to be served by more distant depots [64]. Therefore, it is
necessary to design a distribution system as reliable as possible to reduce the adverse effects of such disruptions
and their resulting cost. In the context of supply chain design, according to [52], “a reliable system is one that
can perform well even when parts of the system have failed”. This ability is often called “reliability” [53].

Accordingly, this paper aims at developing a RCLRP-SPD, wherein the impact of disruption of depots is
investigated in both the location of depots and the routing of the vehicles through the customers. Indeed, when
disruption happens in the depots, the location of depots may change and this change would probably change
the routing of the vehicles through the customers. Furthermore, the problem is modeled on simultaneous pickup
and delivery, whereby the depot delivers the demand of the customers as well as picking up the products from
the customers, such as unused or damaged products which need to be recovered or destroyed. The RCLRP-SPD
assumes that customer demands are deterministic and when a depot is disrupted, it becomes totally unavailable
to serve customers. When disruption occurs in a depot, the demand of its allocated customers is either serviced
by other depots or lost. The goal is to determine the depot locations, outbound delivery routing and backup
emergency depots under disruptions, in order to minimize the expected total cost (i.e., the sum of fixed location
costs, variable routing costs and demand loss penalties).

The RCLRP-SPD is NP-hard as it includes two NP-hard problems which are well-known as: the capacitated
multi-depot location problem, the capacitated vehicle routing problem (CVRP) [14]. Therefore, in order to
solve medium and large-size numerical instances effectively, it is necessary to develop meta-heuristic solution
approaches. Different types of solution algorithms have been proposed for solving the CLRP in the literature,
varying from local searches such as Variable Neighborhood Search (VNS) and Granular Tabu Search (GTS) [15]
to global search algorithms such as genetic algorithms [29]. This paper proposes two hybrid solution algorithms
that combines both local and global search mechanisms for having more efficient exploitation and exploration
simultaneously.
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The rest of the paper is organized as follows. Section 2 reviews the relevant papers in the literature. The
problem is stated and formulated in Section 3. Next, Section 4 proposes a classic genetic and two hybrid solution
approaches to solve the proposed MILP model. Afterward, the results are provided in Section 5. Finally, the
paper is concluded in Section 6.

2. Literature review

This section reviews the latest and most relevant RCLRP and RCLRP-SPD papers. The literature review is
presented in three sections: Section 2.1 reviews the location-routing problems, Section 2.2 reviews the reliable
location-routing problems and finally, Section 2.3 reviews the solution approaches, particularly the heuristic and
meta-heuristic algorithms employed in LRPs.

2.1. Location-routing problem (LRP)

Location-routing problems (LRPs) have been extensively studied by several authors in the literature and the
interested readers are referred to the studies dealing with LRPs and their proposed classifications by Prodhon
and Prins [49] and Drexl and Schneider [12].

Karaoglany et al. [23] studied LRP with simultaneous pickup and delivery, wherein the authors developed
two mixed integer formulations (i.e., a node-based and a flow-based formulation) incorporating a family of
valid inequalities to strengthen the model. In order to solve the mathematical model, the authors developed
a heuristic algorithm based on simulated annealing (SA) algorithm. Through the computational results, they
showed that the flow-based formulation outperforms the node-based formulation in terms of the solution quality
and running time for small-size instances (10–30 customers), while the node-based formulation performs better
than the flow-based formulation for medium-size instances (50–100 customers). Zarandi et al. [61] examined the
LRP with time windows under operational uncertainty, where customers demand and travel times are assumed
to be fuzzy variables. The authors designed a fuzzy chance-constrained programming model using credibility
theory, and a simulation-embedded SA algorithm was then presented to solve the problem. For initializing the
solutions of the proposed SA algorithm, they used a heuristic method based on fuzzy c-means clustering with
Mahalanobis distance and sweeping method.

Huang [19] presented a three-stage solution approach to deal with the multi-compartment capacitated LRP
with pickup-delivery and stochastic demands. This three-stage solution approach solves the model to determine
the depot locations, assign customers to the located depots and route the vehicles through customers subse-
quently. The objective is to minimize depot opening cost, vehicle cost, and travel costs and violation of the
vehicle and depot capacity constraints. Pichka et al. [47] addressed the two-echelon open LRP (2E-OLRP).
This problem is a new variant of the classical LRP that considers location and routing decisions in two-echelon
supply chains in which third-party logistics providers are used. In this research, three new mathematical models
and a hybrid SA algorithm are developed to solve the 2E-OLRP.

Zhang et al. [65] studied the multi-depot emergency facilities LRP with uncertain demand. To incorporate the
uncertain characteristics of the emergency response system, they have developed an uncertain multi-objective
programming model. Due to the computational complexity of the model, a hybrid intelligent algorithm is
designed to solve the proposed model by combining uncertain simulation and a genetic algorithm. Moshref-
Javadi and Lee [41] introduced the latency LRP (LLRP) aiming at the customers’ waiting time minimization
by optimally locating depots and routing of vehicles. To solve the model, the authors presented a memetic
algorithm and a recursive granular algorithm.

Khalili-Damghani et al. [27] studied a bi-objective LRP to distribute perishable products in a supply chain.
Considering the perishability of products, minimizing transportation costs is not the main objective in perishable
supply chain planning. Therefore, the objectives are to minimize the total cost of the system and to balance
the transportation cost of perishable products at distribution centers while the due-date of perishable products
should be met. Timely delivery is an essential factor in the distribution process of perishable products. So, the
authors considered a set of constraints to deliver the products no later than a predetermined time. Since the
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proposed model is NP-hard as well as bi-objective, they developed two solution procedures, i.e., an exact method
called epsilon-constraint and an evolutionary computation, called non-dominated sorting genetic algorithm
(NSGA-II) to find out the near Pareto optimal solutions. Ghaffari-Nasab et al. [17] addressed a bi-objective
CLRP with probabilistic travel times, where the aim is to minimize the total cost and the maximum delivery
time to the customers. The authors presented mathematical programming formulations to model the problem
using two stochastic programming approaches. The deterministic equivalents of the two stochastic models are
extracted and solved by a variable neighborhood descent (VND).

2.2. Reliable location-routing problem (RLRP)

In deterministic LRP we make decisions about depots locations, customer allocation and vehicle routing
to balance the trade-off between fixed set-up costs and variable transportation costs. However, considering
disruption caused by natural disasters, terrorist attacks, or labor strikes, some of the located depots may
become unavailable to serve customers. When disruption occurs in a depot, its customers may have to be
re-allocated from their original depot to other depots with higher transportation costs [9]. Ahmadi-Javid and
Seddighi [1] studied the LRP in a supply chain network composed of a set of producer-distributors that produced
and distributed a single commodity to a number of customers. In this work, the production capacity of each
producer (distributor) varies randomly because of numerous sources of disruptions. In addition, the vehicles
utilized the distribution system are also disrupted randomly.

Xie et al. [55] studied the RLRP wherein all located depots are independently disrupted with a same probabil-
ity. One of the assumptions made in this study is that customers receive delivery service in fixed groups. In other
words, a vehicle is assigned to visit the customers in each group. Under this assumption, if one depot fails, then
all of its customers will be reassigned to another backup depot within the same group, which is rather restrictive.
Moreover, the vehicle delivery distance is approximated by the sum of the local travel distances within the group
and the line-haul distance between this group and the affected depot. Zhang et al. [64] examined an LRP that
includes a set of warehouses which are randomly disrupted. A scenario dependent MILP model is proposed to
optimize the location of depots, delivery routing towards faraway areas and alternative planning. The authors
proposed a meta-heuristic algorithm exploiting maximum-likelihood sampling, route-reallocation improvement,
two-stage neighborhood search and SA algorithm.

Mohammadi et al. [38] developed a MINLP location-allocation model in a supply chain management problem
to design reliable logistics networks that perform as well as possible under normal condition, and also perform
relatively well when disruptions occur. They proposed a single objective scenario based robust optimization
problem to minimize the nominal cost. In addition, to solve the proposed model, a new self-adaptive meta-
heuristic algorithm based on genetic and imperialist competitive algorithms is developed. Li et al. [28] proposed
two related models for the design of distribution networks exposed to the risk of disruption (i.e., reliable p-median
problem and reliable uncapacitated fixed-charge location problem). Both models accounted for heterogeneous
facility failure probabilities and one layer of supplier backup. Both models are formulated as nonlinear integer
programming models which are proven to be NP-hard. To solve the proposed model, the authors developed an
algorithm based on Lagrangian relaxation. Wang et al. [54] examined a facility location problem under random
facility disruption and presented a MINLP model for designing a reliable supply chain network that is exposed
to the risk of disruption. They solved the proposed model using a Lagrangian relaxation-based algorithm.

2.3. Heuristic/meta-heuristic approaches

Among different evolutionary algorithms, genetic algorithms (GAs) are probably the most widely used class
of evolutionary algorithms and have been applied as well to the VRPs and LRPs. A comprehensive survey of
different types of GAs for these problems can be found in [20].

To solve CLRP, Derbel et al. [11] developed a GA-based hybrid algorithm and an iterated local search (ILS).
Since GA could fail to converge to the global optimum and ILS could fall to the local optimum too quickly,
they embedded ILS into GA to refine the search through successive iterations and maximize the chance of
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convergence to the optimal solution. Karaoglan and Altiparmak [21] proposed a memetic algorithm for solving
a CLRP with Mixed Backhauls. They conducted an experimental study and compared the results with the
branch-and-cut algorithm’s lower bounds. Results showed that the memetic algorithm was able to find optimal
or very good quality solutions within a reasonable computation time.

Escobar et al. [14] presented a two-phase hybrid heuristic (2-Phase HGTS), wherein the first phase constructs
a solution (i.e., Construction phase), and the second phase (i.e., Improvement phase) employs a modified Gran-
ular Tabu Search (GTS) approach with different diversification strategies to modify the constructed solution.
Furthermore, a random perturbation procedure is considered to prevent the algorithm from remaining in a local
optimum for a given number of iterations. Ardjmand et al. [3] developed a new model for the location-routing
problem. They proposed a new GA that solves the model within a reasonable computational time. Yu and Lin
[56] proposed an SA heuristic with a special solution encoding scheme for solving the LRP with simultaneous
pickup and delivery (LRPSPD). The solution encoding scheme can broaden the search space and facilitate the
search for a better solution. The results showed the efficiency of the proposed SA to solve LRPSPD and its
superiority over the existing exact approaches in terms of the quality of the solution. Yu et al. [57] presented an
SA algorithm in which each solution is represented as a giant tour. Move, swap and 2-opt were used as neigh-
borhoods and they operated on the giant tour. Therefore, a neighborhood move may change the position of the
customer, open or close depots or reassign customers to the locations. Ferreira and de Queiroz [16] hybridized
two heuristic algorithms based on the SA algorithm combined with a diversification procedure to solve a CLRP.

2.4. This paper’s contributions

Table 1 summarizes the reviewed articles with their characteristics in two main aspects as problem char-
acteristics and solution approach. In Table 1, SPD, LSbMH and PbMH stand for Simultaneous Pickup and
Delivery, Local Search based Meta-Heuristics (i.e., single solution based meta-heuristics) and Population based
Meta-Heuristics, respectively. This Table 1 helps to well position our work comparing to the literature.

Based on Table 1, the main contributions of this paper that distinguish it from the existing studies in the
literature are:

– Studying a reliable capacitated location-routing problem with simultaneous pickup and delivery (RCLRP-
SPD) wherein depots are stochastically disrupted and become unavailable to serve the customer demands.

– Proposing a new mixed-integer linear programming (MILP) model for the proposed RCLRP-SPD.
– Developing an efficient scenario-based approach to cope with the stochastic disruption of depots.
– Proposing three tailored meta-heuristic algorithms (i.e., two hybrid algorithms and a classical genetic algo-

rithm) for solving the proposed MILP.

3. Problem statement and formulation

This section proposes a MILP model to formulate a RCLRP-SPD. Section 3.1 states the problem with its
underlying assumptions. Afterward, Section 3.2 proposes the MILP model for the problem.

3.1. Problem statement

The goal of the proposed RCLRP-SPD is to choose and locate a set of depots (facilities) and to build vehicles’
routes to meet customers delivery and pickup demands, such that the total expected cost of location, routing
and disruption is minimized. In this problem, each potential depot could be stochastically disrupted, and each
customer has certain demand. In Figures 1 and 2, two solutions of the CLRP and RCLRP are illustrated.

In Figure 1, three depots (i.e., depots number 1, 4 and 5) are located (opened) and the customers are allocated
to the located depots and served in a particular order. Furthermore, if each of the depots fails, its allocated
customers will not be served anymore and this would impose high costs on the system. On the other hand,
Figure 2 illustrates the reliable version of the CLRP, wherein the located depot number 4 is disrupted and some
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Table 1. Position of this paper comparing to the literature.

Reference Problem characteristics Solution approach
Location Routing Depot

Capacity
SPD Disruption LSbMH PbMH Hybrid

Yu et al. [57] * * * *
Karaoglan et al. [23] * * * * *
Derbel et al. [11] * * * * * *
Escobar et al. [14] * * * * *
Ahmadi-Javid and
Seddighi [1]

* * * * *

Zarandi et al. [61] * * *
Ghaffari-Nasab
et al. [17]

* * * *

Escobar et al. [15] * * * * *
Nadizadeh and
Nasab [43]

* * * * *

Zhang et al. [64] * * * * *
Huang [19] * * * * *
Khalili-Damghani
et al. [27]

* * *

Karaoglan and
Altiparmak [21]

* * * * *

Marinakis [31] * * * * *
Yu and Lin [56] * * * * *
Lopes et al. [29] * * * * * *
Moshref-Javadi and
Lee [41]

* * * * *

Xie et al. [55] * * *
Mohammadi et al.
[38]

* * * *

Majidi et al. [30] * *
Dehghani et al. [10] * * *
Pichka et al. [47] * * * * *
Zhang et al. [65] * * * * *
Ferreira and
de Queiroz [16]

* * * *

Yu et al. [58] * * * * * *
Pekel and
Soner Kara [46]

* * * * *

Oudouar et al.
[45]

* * * * *

This Study * * * * * * * *

of its customers are served by depot number 1 but with a higher transportation cost and finally some of them
are served via the emergency depot.

The main assumptions of the proposed RCLRP-SPD are as follows:

– Only one depot and one vehicle can be allocated to each customer.
– Route of each vehicle starts and ends at the same depot.
– A single product is delivered and picked up in this problem.
– All vehicles have a same capacity (homogeneous fleety), but depots have different capacities.
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Figure 1. The scheme of a CLRP.

Figure 2. The scheme of a RCLRP.

– Customers have known pickup and delivery demands and predefined locations.
– Potential depots have known capacities and locations.
– There is a fixed cost for vehicles and depots.
– Several vehicles can be assigned to each located depot.
– Disruptions are assumed to be independent and depots can simultaneously be disrupted.
– Simultaneous pickup and delivery are assumed for each customer.
– Disruption probability of each depot is known.
– The penalty cost of the unmet demand is known.

In real-world situations, it is not possible to predict accurately the exact value of future parameters. Therefore,
considering uncertainty makes the decision makers more capable to have better planning for the future.
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The first step in dealing with uncertainty in modeling and optimizing supply chain related problems is to
determine how to display uncertainty. Three well-known and widely-used methods for this purpose are [5]:

(I) Distribution-based approach, wherein the normal distribution is typically used with a specific mean and
standard deviation to model uncertain parameters [2, 31,34].

(II) Fuzzy-based approach, wherein the parameters are treated as fuzzy numbers with membership functions
[36,42,43,60,62].

(III) Scenario-based approach, wherein some discrete scenarios with relevant levels of probability are used to
describe the expected occurrence of specific results [38,64].

In this paper, disruption of depots is modeled by a set of discrete scenarios. Each scenario specifies a subset
of depots that become non-operational or disrupted with a specific probability of occurrence. In case of a
disruption, the affected customers whose allocated depots are disrupted, may be served by other located depots
or emergency depots. Obviously, allowing more surviving (backup) depots to cover customers that were once
serviced by a disrupted depot will increase the flexibility of the distribution system. Accordingly, Section 3.2
formulates a scenario based RCLRP-SPD.

3.2. Problem formulation

This section presents a scenario-based mathematical formulation for the studied problem. This formulation
is based on the model proposed by Zhang et al. [64] for the RLRP but extends it to account for the multiple
vehicles. Unlike [64], which has only considered delivery decisions, the presented formulation tackles with both
pickup and delivery decisions. Our model aims to minimize the total expected costs of all scenarios including
fixed costs, expected travel costs and expected penalty costs. Let G = (V,A) be an undirected network, where
V is the set of nodes, composed of a subset of geographically dispersed customers denoted by I and a subset of
potential depots denoted by J . A = {(i, j)|i, j ∈ V, i 6= j} is the set of arcs that connect each pair of nodes in
V . Let S be the set of scenarios, each specifying a set of disrupted depots. Before proposing the MILP model,
necessary notations are explained as follows.

Sets
I Set of customers.
J Set of potential depots.
S Set of scenarios.
H Set of vehicles.
e Emergency depot.

Parameters
fdj Fixed cost of depot j.
cdj Capacity of depot j.
qj Failure probability of depot j.
di Delivery goods demand of customer i.
pi Pickup goods demand of customer i.
θi Penalty of serving customer i using the emergency depot.
cv Capacity of vehicles.
fv Fixed cost of each vehicle.
tcij Traveling cost from node i to node j.
ajs If depot j in scenario s is not disrupted 1, otherwise 0. Disrupted depots are known a priori ;

therefore, ajs is a binary parameter.
prs Probability that scenario s occurs.
M A big number.
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Decision variables
Yj If depot j is open 1, otherwise 0.
Zijs If customer i is served by depot j in scenario s 1, otherwise 0.
Xikhjs If node k is visited immediately after node i on a route originating from depot j by vehicle h in

scenario s 1, otherwise 0.
Tijs Delivery goods transported between node i and node j in scenario s.
Wijs Pickup goods transported between node i and node j in scenario s.
Uihj An auxiliary integer variable to eliminate the subtours.

Emergency depot e, has no fixed cost, a failure probability of 0 and infinite capacity. If a customer i is not
served in a scenario, we assign it to the emergency depot e, which induces an unmet demand penalty θi.

In certain scenarios, if a depot survives, then it is “normal” (non-disrupted); if it is both normal and open,
we call it “available”. Considering this point, customers can only obtain service from available depots in each
scenario. Consider Jns = {j|j ∈ J, ajs = 1} as the set of normal depots in scenario s. In the strategic decision,
assume that the set of depots selected to be opened is denoted by Jo. Then, the set of available depots in
scenario s is Jas = Jns ∩ Jo. Since each scenario specifies a subset of depots which become non-operational or
disrupted (ajs,∀j ∈ J,∀s ∈ S), the probability that scenario s occurs is represented using equation (3.1).

prs =
∏

j∈J:ajs=0

qj .
∏

j∈J:ajs=1

(1− qj) . (3.1)

A total of 2|J| possible scenarios exist, which leads to an exponential growth in problem size and huge
computational burden to solve the problem. By increasing the number of depots by one, we double the number
of scenarios.

Based on the provided notations, the proposed MILP model for the RCLRP-SPD is as follow:

min OFV =
∑
j∈J

fdjYj +
∑
s∈S

prs

 ∑
i∈I∪Jns

∑
k∈I∪Jns

∑
h∈H

∑
j∈Jns

tcikXikhjs +
∑
i∈I

Ziesθi +
∑

j∈Jns

∑
i∈I

∑
h∈H

Xjihjsfv


(3.2)

subject to:

Zijs ≤ Yj ∀i ∈ I, j ∈ Jns, s ∈ S (3.3)∑
j∈Jns∪e

Zijs = 1 ∀i ∈ I, s ∈ S (3.4)

∑
i∈I

diZijs ≤ cdjYj ∀j ∈ Jns, s ∈ S (3.5)∑
i∈I

piZijs ≤ cdjYj ∀j ∈ Jns, s ∈ S (3.6)∑
k ∈ I ∪ {j}

k 6= i

∑
h∈H

Xkihjs = Zijs ∀i ∈ I, j ∈ Jns, s ∈ S (3.7)

∑
k ∈ I ∪ Jns

i 6= k

∑
h∈H

∑
j∈Jns

Xkihjs ≤ 1 ∀i ∈ I, s ∈ S (3.8)

∑
k ∈ I ∪ Jns

k 6= i

∑
h∈H

∑
j∈Jns

Xkihjs =
∑

k ∈ I ∪ Jns
k 6= i

∑
h∈H

∑
j∈Jns

Xikhjs ∀i ∈ I ∪ Jns, s ∈ S (3.9)

∑
k ∈ I
k 6= i

Xkihjs +
∑

k ∈ Jns
k = j

Xkihjs =
∑
k ∈ I
k 6= i

Xikhjs +
∑

k ∈ Jns
k = j

Xikhjs ∀i ∈ I, j ∈ Jns, h ∈ H, s ∈ S (3.10)



1380 M. DEHGHAN ET AL.∑
i ∈ Jns

i = j

∑
k∈I

∑
j∈Jns

Xikhjs ≤ 1 ∀h ∈ H, s ∈ S (3.11)

∑
i∈I∪Jns

Tijs −
∑

i∈I∪Jns

Tjis = dj

( ∑
i∈I∪Jns

∑
h∈H

∑
m∈Jns

Xijhms

)
∀j ∈ I, s ∈ S (3.12)

∑
i∈I∪Jns

Wjis −
∑

i∈I∪Jns

Wijs = pj

( ∑
i∈I∪Jns

∑
h∈H

∑
m∈Jns

Xijhms

)
∀j ∈ I, s ∈ S (3.13)

Wijs + Tijs ≤ cv

(∑
h∈H

∑
m∈Jns

Xijhms

)
∀i ∈ I ∪ Jns, j ∈ I ∪ Jns, s ∈ S (3.14)

∑
i∈I

Tijs = 0 ∀j ∈ Jns, s ∈ S (3.15)∑
i∈I

Wjis = 0 ∀j ∈ Jns, s ∈ S (3.16)

Uihj + 1 ≤ Ukhj +M (1−Xikhjs) ∀i, k ∈ I; i 6= k, j ∈ Jns, h ∈ H, s ∈ S (3.17)
Yj ∈ {0, 1} ∀j ∈ Jns (3.18)
Zijs ∈ {0, 1} ∀i ∈ I, j ∈ Jns ∪ e, s ∈ S (3.19)
Xikhjs ∈ {0, 1} ∀i ∈ I ∪ Jns, k ∈ I ∪ Jns, h ∈ H,

j ∈ Jns, s ∈ S (3.20)
Tijs,Wijs ≥ 0 ∀i ∈ I ∪ Jns, j ∈ I ∪ Jns, s ∈ S (3.21)
Uihj ∈ integer ∀i ∈ I, j ∈ Jns, h ∈ H. (3.22)

The objective function (3.2) minimizes sum of the depots fixed costs (scenario-independent) and the expected
costs of each scenario including routing costs, penalty costs and vehicles fixed costs (scenario-dependent) respec-
tively. Constraint (3.3) ensures that a customer in any scenario could be assigned to a depot if the depot is
opened. Constraint (3.4) ensures that each customer is assigned to exactly one depot in each scenario. Con-
straints (3.5) and (3.6) are depots capacity constraints in each scenario. Constraint (3.7) links the allocation
and routing in each scenario. Constraint (3.8) ensures that, in each scenario, each customer is visited only once.
Constraint (3.9) is the flow conservation constraint which forces that, in each scenario, the input flow to each
customer/depot is equal to the output flow from that customer/depot. Constraint (3.10) checks the feasibility
of the route in each scenario when starting the routes from the depots. Constraint (3.11) ensures that each
vehicle is assigned at most to a single depot in each scenario. Constraints (3.12)–(3.14) control and impose
the vehicles capacities in each scenario. Constraint (3.15) ensures that the amount of delivery demand when
vehicles return to depots is zero. Constraint (3.16) ensures the amount of pickup demand when vehicles start
routes from depots is zero. Constraint (3.17) is the sub-tour elimination constraint in each scenario. Constraints
(3.18)–(3.22) are the integrality and non-negativity constraints.

4. Solution approaches

Metaheuristic algorithms have been widely used in the literature to solve optimization problems [13,24,40]. In
this regard, the papers in the literature use either population-based evolutionary algorithms or single solution-
based local search algorithms. The former is powerful in diversification and the latter is powerful in intensifi-
cation. In this paper, we attempt to propose a hybrid algorithm which is powerful in both diversification and
intensification [13, 24]. Indeed, hybrid algorithms attempts to benefit from the strengths of different algorithm
in a single algorithm [25, 26, 37, 39, 59, 63]. Accordingly, we proposed a hybrid algorithm by the combination of
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genetic algorithm (GA) (as a powerful algorithm in diversification) and two local search algorithms (as powerful
algorithms in intensification).

Genetic algorithm (GA), which was first developed by Holland [18], is one of the most well-known evolutionary
optimization algorithms. GA evolves a population of randomly generated solutions with size Psize using crossover
and mutation operators. At each iteration, a number of solutions are generated through crossover operator with
rate CR and a set of other solution are generated through mutation operator with rate MR. In crossover, a
pair of selected parents (using tournament selection mechanism) are crossed with the hope of creating better
children. Despite crossover, mutation operator is employed on an individual solution in order to diversify the
solution space and escape from the local optimum. These operators are employed to generate new solutions as
a next offspring so that the current population and generated offspring are combined together for creating next
generation. In this paper, we do not consider the elitism operator. GA can be used in various types of problems
with appropriate genetic representation, fitness function, and evolution operators.

For solving the proposed RCLRP-SPD, we propose two efficient hybrid GA by hybridizing the GA with
variable neighborhood descent (VND) (HGAVND) and the GA with a local search (HGALS) [4]. In addition,
the proposed model aims at locating depots which are less sensitive to disruption and lead to the minimum cost
no matter which disruption scenario occurs. Indeed, the final solution would be the most reliable solution when
exposed to any disruption scenario. Therefore, the located depot(s) is (are) the same for all scenarios. Since in
the RCLRP-SPD the open depots are the same for all scenarios, a two-stage mechanism is developed in the
algorithms. The first and the second stages are called “Location-Allocation” stage and “Vehicle Routing” stage
respectively. In the Location-Allocation stage, the depots are located and the customers are allocated to the
opened depots. Once the first stage is solved, its results are fed to the second stage and the routing decisions are
made in the second stage. Indeed, the routing is solved for each scenario independently. Besides to the proposed
HGAVND and HGALS algorithms, we also employ classical GA to better show how these hybridizations improve
the performance of the classical GA. Therefore, we consider three combinations of algorithms to solve the
two “Location-Allocation” and “Vehicle Routing” stages as GA→GA, GA→HGAVND, and GA→HGALS. For
instance, the combination GA→GA means that the GA is used for solving both stages; and the combination
GA→HGAVND states that stage 1 is solved using GA and stage 2 is solved using HGAVND. As it can be seen,
for solving the “Location-Allocation” stage (i.e., stage 1), we only use classical GA but the “Vehicle Routing”
stage (i.e., stage 2) is solved using all three algorithms (i.e., GA, HGAVND, and HGALS).

4.1. Solution representation

Any evolutionary algorithm’s performance remarkably depends on its representation of the solution. Since GA
is a population-based algorithm, the solution representation should not consume much memory. The solution
representation contains two different parts and each part corresponds to a stage of the proposed algorithms.
These parts are described in the following.

(i) Location-Allocation: Figure 3a shows the location-allocation decisions in a network with 8 customers.
Numbers 1–8 represent the ycustomers, and each “D” shows a depot. The number of “D”s plus 1 demon-
strates the number of located depots. In Figure 3, there are totally three located depots. Starting from
the left, the customers are allocated to the first located depot until they will not exceed the capacity of
the corresponding depot. For instance, customer number 1 has been allocated to the first depot. Then,
customers number 3, 5, 8 and 4 should be allocated to the second located depot but only customers 3, 5
and 8 can be allocated since adding customer 4 will exceed the capacity of the second depot. Therefore, the
demand of customer number 4 is unmet. This procedure continues until the most possible customers are
allocated to the located depots. Figure 3b illustrates the scheme of the location-allocation decisions.

(ii) Vehicle Routing: Figure 4a shows the solution representation regarding the vehicle assignments and routing.
Numbers 1–12 represent the customers. In this figure, each “V” signifies that the route is terminated and
another route from the same depot is started, even though the accumulated demand has not exceeded
vehicle capacity, while each “D” terminates the assignments of routes to the current depot and starts the
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(a)

(b)

Figure 3. Location-Allocation representation. (a) Location-Allocation matrix. (b) Scheme of
Location-Allocation.

(a)

(b)

Figure 4. Vehicle Routing representation. (a) Vehicle Routing matrix. (b) Scheme of Vehicle
Routing.

assignment to the next depot. Note that every “D” represents a new depot and a new vehicle. A vehicle has
been assigned to the first and the third depots, but two vehicles have been assigned to the second located
depot. The route of the third located depot serves customers 9, 11 and 3. Since adding customer 6 exceeds
the vehicle capacity, the route is terminated. Note that the capacity of depots is not taken into consideration
during the decoding process. Therefore, a per unit penalty cost P is added to the objective function value
whenever the total demand served by a depot exceeds its capacity.

4.2. Initial population construction

Each stage of the proposed algorithms requires an initial population. The initial population of the first stage
is generated in a greedy manner. We generate an initial population including greedy heuristic solution as well
as a random solution. The Location-Allocation part of the solution representation is then constructed by a
greedy method with the hope that a good initial solution can be found within a reasonable time. In this greedy
algorithm, all potential depots are opened and each customer is allocated to the closest located depot according
to an increasing order of Di +Pi until the depot capacity is not exceeded; if exceeded, the next closest depot is
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Figure 5. PMX crossover.

selected. This greedy solution is then improved through the algorithm by closing unnecessarily opened depots.
The population of the second stage is generated randomly.

4.3. Fitness function

The fitness function is defined by the solution representation and measures the quality of each solution. The
fitness of each stage is calculated as follow:

(i) Location-Allocation: in this stage, the fitness function includes depots fixed cost, direct distance cost between
the depots and customers location, and penalty cost of unmet customers. Since we want to minimize the
cost, lower value of the fitness function implies higher fitness.

(ii) Vehicle Routing: in the second stage, the fitness function includes vehicles fixed cost, vehicles routing cost,
constant P if the depot capacity is exceeded and the penalty cost of unmet customers. Since we want to
minimize the cost, lower value of the fitness function implies higher fitness.

4.4. Crossover operator

To obtain a near – optimum solution, genetic evolutionary operators are used to create a better solution and
replace them with those that existed in the initial population. Crossover is the GA’s main operator, sharing
information between two randomly selected parents in the hope of better offspring. These offspring are compared
with respect to the fitness function and passed onto the next generation. In this paper, partially mapped
crossover (PMX) is employed in both parts of “Location-Allocation” and “Vehicle Routing”. The PMX indexes
in the middle part of the solution representation are exchanged and the missing stops replace their matching
index in the second parent. Stop indexes are exchanged based on the mapping set, which is constructed by
comparing the exchanging parts of two parents [6]. This popular crossover method is illustrated in Figure 5.
Note that each “V” and “D” can be replaced by numbers.

4.5. Mutation operator

Mutation is a strategy of diversification that aims to explore new areas of solution space, avoid early conver-
gence, and escape from local optima. Through the mutation operator, three “Swap”, “2-Opt-a”, and “2-Opt-b”
moves in the both “Location-Allocation” and “Vehicle Routing” parts. Using the “Swap” operator, two genes
from the chromosome are selected and swapped. Using the “2-Opt-a” move, two points in the chromosome
are selected and the order of the in-between genes is reversed. Using the “2-Opt-b” move, two points in the
chromosome are selected and the order of the in-between alleles is randomly changed. These mutation operators
are illustrated in Figure 6.

4.6. Hybrid genetic algorithm

In this paper, we propose two hybrid GA by hybridizing the GA with VND (HGAVND) and the GA with
a local search (HGALS). Both HGAVND and HGALS are employed to jointly solve routing in the “Vehicle
Routing” part. Since the GA may fail to converge to a global optimum, we use VND and a local search to refine
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Figure 6. Examples of the “swap”, “2-Opt-a” and “2-Opt-b” mutation operators.

the GA search through successive iterations and maximize the chance of convergence to an optimal solution
[7, 32,35,48].

The VND is a deterministic version of the variable neighborhood search (VNS) algorithm proposed by
Mladenović and Hansen [35]. VND’s basic idea is to explore a set of predefined neighborhood structures
(N(l)(l = 1, 2, . . ., lmax)) successively in order to obtain a better solution. It explores a set of neighborhoods sys-
tematically in order to obtain various local optima and escape from local optima. The overview of the proposed
hybrid GA-VND (HGAVND) algorithm is depicted in Figure 7. In the proposed HGAVND, we incorporate
VND into the GA’s general scheme. This allows us to take advantage of VND features in order to improve
the population generated by the GA and thus to complement the genetic search. In Figure 7, MaxIt GA is the
maximum number of iterations of the GA (number of generations). In addition, p hybrid is a factor to calculate
the probability of doing VND in the proposed HGAVND.

It is noteworthy that implementing the VND at each iteration of the GA increases the computational time.
Therefore, the VND is involved in the GA with a probability equal to prob(i). This value increases by the
number of iterations. Accordingly, we give more chance to the VND in the later iterations. Then, as we find the
promising regions of the feasible solution space, we gradually increase the probability of employment of VND
[48]. The pseudo code of the VND proposed for HGAVND algorithm is depicted in Figure 8, wherein ItrH is
the maximum iteration for the VND.

In the VND used to complement the GA in our hybrid approach, we use seven neighborhoods (lmax = 7) in
both hybridization algorithm, namely N(1), N(2), N(3), N(4), N(5), N(6) and N(7), which are described in
the following [14,21,32]:

– N(1): randomly selects two customers assigned to two different routes and interchanges them.
– N(2): randomly selects a customer and inserts it at a random position in a different route.
– N(3): randomly selects two customers assigned to a route and interchanges them.
– N(4): randomly selects two different routes and sequential customers are interchanged.
– N(5): randomly selects two customers assigned to a route and customers of the in-between alleles are reversed.
– N(6): three arcs which are on the same route are deleted. Then three new arcs are created.
– N(7): randomly selects two sequential customers assigned to a route and adds them to the random position

in another random route with same sequential.

HGALS is similar to HGAVND, with difference in local search. In HGAVND we obtain local optima in every
neighborhood structure, but in HGALS, all the neighborhood structures are applied together and we obtain
local optima in all neighborhood structures. The pseudo code of the local search proposed for HGALS algorithm



CLRP-SPD UNDER THE RISK OF DISRUPTION 1385

Figure 7. HGAVND algorithm.

Figure 8. VND’s pseudo code.
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Figure 9. Local search’s pseudo code.

is depicted in Figure 9, wherein ItrH is the maximum number of iterations of the proposed local search in the
HGALS.

5. Computational study

In this section, we present extensive computational results in order to assess the effectiveness of the proposed
GA, HGAVND and HGALS algorithms for solving the RCLRP-SPD in two stages. The GA, HGAVND, and
HGALS algorithms are coded using MATLAB R2014a and the mathematical model is solved with CPLEX
12.7.1.0 (with a time limit of 3 h) solver in GAMS 24.9.1 software on IntelrCoreTMi7-720QM (1.6 GHz, 4 GB
RAM).

5.1. Parameter setting

The efficiency and effectiveness of all meta-heuristic algorithms are significantly influenced by its parameters.
In this study, the parameters optimization of the proposed GA, HGAVND and HGALS are performed based on
Taguchi methods. The experimental design of Taguchi has been widely used for optimization problems. Taguchi
design is based on two major tools: orthogonal array (OA) and signal-to-noise (S/N) ratio. The OA is a matrix
of numbers containing experimental schemes based on different levels of factors. The S/N ratio is the measure
of variation and guarantees the robustness of this kind of experimental design. The term “signal” represents
“mean response variable” as the desired value and “noise” represents “standard deviation” as undesirable value
[7]. Taguchi method is utilized via Minitab 18 software for design of experiments (DOE) and analyzing their
results. The aim of the Taguchi method is to maximize the S/N ratio which is calculated by equation (5.1) for
minimization problems for each parameter i on its related level j.

(S/N ratio)ij = −10 log10

(∑
Z2

ij

n

)
∀i, j (5.1)

where zij is the objective function value using parameter i on level j and n is the number of repetitions for the
corresponding experiment.

Since the proposed algorithms are executed in two stages, the parameters of each stage are tuned separately
as follows:
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Table 2. Different levels of GA parameters in “Location-Allocation” parameters.

GA parameters “Location-Allocation” Levels
1 2 3 4

Number of generations 50 75 100 200
Psize 200 250 275 300
CR 0.6 0.7 0.8 0.9
MR 0.2 0.3 0.4 0.5

Figure 10. The S/N value index of hybrid algorithms for “Location-Allocation” parameters.

Table 3. Different levels of hybrid parameters in “Vehicle Routing” parameters.

GA parameters “Vehicle Routing” Levels
1 2 3

Number of generations 100 150 200
Psize 150 200 250
CR 0.7 0.8 0.9
MR 0.2 0.3 0.4
ItrH 50 75 100
p hybrid 1.1 1.15 1.2

(i) Location-Allocation: since GA solves the first stage, different levels of the “Location-Allocation” parameters
for tuning process is shown in Table 2. According to the S/N ratio plot shown in Figure 10, it is inferred
that the number of generations, Psize, CR and MR are tuned at 100, 200, 0.8 and 0.5, respectively.

(ii) Vehicle Routing: since hybrid algorithms solve the second stage, different levels of the “Vehicle Routing”
parameters for tuning process is shown in Table 3. According to the S/N ratio plot shown in Figure 11, it
is inferred that the number of generation, population size, crossover rate, mutation rate, number of gener-
ation in hybridization algorithms and parameter that affects the probability of starting the hybridization
algorithms, are tuned at 150, 200, 0.9, 0.4, 100 and 1.15, respectively.
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Figure 11. The S/N value index of hybrid algorithms for “Vehicle Routing” parameters.

5.2. Computational results

This section provides comprehensive numerical results to demonstrate the efficacy of the proposed MILP
model and the solution approaches. Numerous instances are generated based on [64] and solved in this section.
Regarding the failure probability, 5 levels are considered as [0.01, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.8, 0.9],
which are expressed as “a” to “e”, respectively. These instances are labeled as |I| − |J | − |H|-a, where |I| is the
number of customers, |J | is the number of potential depots, |H| is the number of vehicles, and finally “a” denotes
the level of failure probability. Each instance of the problem is executed 30 times and the results, including the
best, the worst, the average and the standard deviation (σ) values are reported afterwards.

The potential location of customers and depots are randomly generated in a continuous space between [1, 10].
The cost between two nodes is calculated as the Euclidean distance between them. The delivery demand and
pickup demand of each customer are randomly distributed in [10, 100]. The unmet-demand penalty (i is chosen
from [100, 120]. The fixed setup cost of each depot and vehicle are drawn uniformly from [100, 500] and [50, 100],
respectively. We first calculate the C and D as:

C =
∑I

i=1 di

|J |
(5.2)

D =
∑I

i=1 di

|H|
· (5.3)

Each capacity cdj andcv are then drawn uniformly from [1.5C, 2.5C] and [D, 1.5D], respectively. In medium
and large instances, all parameters are generated like small instances, except cdj , cv and θi that are drawn
uniformly from [1.5C, 1.8C], 2/3[D, 1.5D] and [50, 100], respectively.

5.2.1. Analysis of small-size instances

Three sets of instances are solved with different failure probability from “a” to “e”, where the failure probabil-
ity increases from “a” to “e”. Two number of potential depots are considered for small-size instances. Therefore,
the number of all scenarios is then 22 and instances are solved in four scenarios. The results of CPLEX, GA,
HGAVND, and HGALS have been provided in Table 4. Since for all 30 executions, the optimal solution is
found, Table 4 contains only the best values (best, worst and average are the same and σ = 0). The results are
compared in terms of objective function value, CPU time and the number of opened depots.

It can be seen that for all the small-size instances, all three GA, HGAVND, and HGALS reach the optimal
solution; however, GA has lower CPU time since no extra local search operator is employed. In addition, the
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(a) (b)

Figure 12. Small-scale instances analysis in CPLEX. (a) Total cost vs. Failure probability.
(b) CPU time vs. Instance size.

proposed HGALS leads to smoothly lower CPU time comparing to HGAVND. In addition, in the solution of
instances 7-2-3-c,d,e, 8-2-3-e and 9-2-3-e, no depot has been opened since the failure probability is high and the
model prefer not to allocate customers to unreliable depots.

Two analyses are illustrated on the result of the CPLEX algorithm in Figure 12. Figure 12a illustrates that
the total cost increases with increasing the failure probability, while there is no change in 7-2-3 (“c”, “d” and
“e”) instances because in these instances the penalty cost is paid to all customers and no location and routing
decisions are performed. Figure 12b connects the running times resulting from running the CPLEX on different
sized instances, there is no growth in “e” instances because in these instances the penalty cost is paid to all
customers and location and routing is not performed. Note that all the meta-heuristic algorithms have reached
the optimal solution. In the majority of instances (11 out of 15), metaheuristic algorithms reach the optimal
solution in significantly less CPU time comparing to CPLEX.

5.2.2. Analysis of medium instances

Four instances are solved with “a” failure probability because we mentioned in the introduction section that
the occurrence probability of disruption is small. In addition, the same observation and results were obtained for
medium and large instances comparing to small instances. Therefore, the results of medium and large instances
only contain the failure probability “a” which is low and more close to reality. Furthermore, three potential
depots are considered that leads to the total 23 number of different scenarios. Among them, we choose those
scenarios that have the largest probability of occurrence. Here, instances are solved in four (|J |+1) scenarios
that have the largest probability of occurrence. The results of the best, the worst, the average and σ values are
given in Table 5 and CPLEX time limit is 10 800 s. The column “DIFF (%)” shows the gap between the meta-
heuristic cost and CPLEX cost and is calculated as DIFF = OFVmeta-heuristic−OFVCPLEX

OFVCPLEX
. Figure 13a shows that

only in the third instance (20-3-4-a), CPLEX has obtained a better result than all meta-heuristic algorithms.
According to the Table 5 and “Open depot” column, we found out that CPLEX and solution algorithms have led
to the different location of depots because in the solution algorithms, the “Location-Allocation” stage is solved
first and this lead to a local optimum (this is a heuristic approach); but still closed-to-optimal solutions are
found. Figure 13b connects the running times resulting from running the meta-heuristic algorithms on different
instances and shows that hybrid algorithms require more time. Moreover, the results show that GA, HGAVND,
and HGALS algorithms have satisfactory performance in terms of solution quality and CPU time.
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Table 4. Computational results of the small instances.

Instance CPLEX GA
Time (s) Cost Open depot Time (s) Cost Open depot

7-2-3-a 13.54 748.98 1 2.67 748.98 1
7-2-3-b 25.89 788.82 1 2.66 788.82 1
7-2-3-c 8.35 839.00 – 2.79 839.00 –
7-2-3-d 1.01 839.00 – 2.69 839.00 –
7-2-3-e 1.02 839.00 – 3.21 839.00 –

8-2-3-a 33.38 604.87 2 3.50 604.87 2
8-2-3-b 116.09 665.74 2 6.05 665.74 2
8-2-3-c 68.03 701.02 2 5.97 701.02 2
8-2-3-d 284.10 745.83 2 6.20 745.83 2
8-2-3-e 2.00 878.00 – 7.15 878.00 –

9-2-3-a 161.10 666.25 1 10.76 666.25 1
9-2-3-b 1948.02 686.75 1 10.67 686.75 1
9-2-3-c 661.61 753.53 1 10.43 753.53 1
9-2-3-d 3469.29 799.40 1 10.59 799.40 1
9-2-3-e 0.64 992.00 – 10.69 992.00 –
Instance HGAVND HGALS

Time (s) Cost Open depot Time (s) Cost Open depot
7-2-3-a 6.19 748.98 1 5.44 748.98 1
7-2-3-b 4.21 788.82 1 4.62 788.82 1
7-2-3-c 6.01 839.00 – 5.40 839.00 –
7-2-3-d 5.23 839.00 – 5.40 839.00 –
7-2-3-e 6.10 839.00 – 5.51 839.00 –

8-2-3-a 6.16 604.87 2 5.45 604.87 2
8-2-3-b 8.48 665.74 2 6.02 665.74 2
8-2-3-c 8.82 701.02 2 7.96 701.02 2
8-2-3-d 7.88 745.83 2 11.69 745.83 2
8-2-3-e 7.51 878.00 – 8.44 878.00 –

9-2-3-a 6.57 666.25 1 7.21 666.25 1
9-2-3-b 9.23 686.75 1 8.97 686.75 1
9-2-3-c 9.91 753.53 1 9.86 753.53 1
9-2-3-d 10.81 799.40 1 10.66 799.40 1
9-2-3-e 10.60 992.00 – 11.87 992.00 –

5.2.3. Analysis of large instances and benchmark

Twelve instances with |J |+1 scenarios that have the largest probability of occurrence are solved in “a” failure
probability and results are given in Table 6, in which the number and probability of scenarios are written below
the instances as well. Figure 14 shows that HGAVND and HGALS algorithms significantly outperform GA in
terms of solution quality. In the sixth instance (40-5-6-a), HGALS has obtained a disappointing result, but
according to Table 6 and “Open depot” columns, we found out that they have a different location, because
in the meta-heuristic algorithms, first the “Location-Allocation” is solved and this is a heuristic approach.
Figure 14 shows that HGAVND is between the GA and HGALS in term of CPU time for small and medium
instances. But this algorithm performs faster when dealing with large instances. Finally, the performance of the
proposed algorithms is compared against the instances derived from Barreto’s test set by Angelelli and Mansini’s
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Table 5. Computational results of the medium instances.

Instance Solution
approach

Time (s) BestCost WorstCost AvgCost Open
depot of
BestCost

DIFF (%) σ

10-3-3-a CPLEX 10 752.31 663.85 – – 1 – –
GA 14.00 663.85 663.85 663.85 1 0.00 0
HGAVND 32.54 663.85 663.85 663.85 1 0.00 0
HGALS 24.93 663.85 663.85 663.85 1 0.00 0

15-3-3-a CPLEX 10 800.00 528.85 – – 1 – –
GA 132.73 530.98 536.25 533.84 1 0.40 1.874
HGAVND 145.09 525.59 532.86 529.78 1 –0.61 3.430
HGALS 146.26 525.59 534.92 528.91 1 –0.61 4.125

20-3-4-a CPLEX 10 800.00 947.85 – – 1 – –
GA 177.82 1022.58 1035.19 1028.65 1, 2 7.88 4.560
HGAVND 193.23 1021.96 1035.72 1028.30 1, 2 7.81 5.800
HGALS 189.03 1024.63 1033.58 1027.85 1, 2 8.10 3.986

25-3-4-a CPLEX 10 800.00 975.68 – – 1, 3 – –
GA 187.84 901.24 914.10 907.97 1, 3 –7.62 4.078
HGAVND 202.79 900.86 915.27 907.84 1, 3 –7.48 5.966
HGALS 212.43 897.93 910.22 904.68 1, 3 –7.96 5.587

(a) (b)

Figure 13. Medium-scale instances analysis. (a) Total best cost vs. Instance size. (b) CPU
time vs. Instance size.
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Figure 14. Best cost vs. Instance size.

Figure 15. CPU time vs. Instance size.

separation approach (i.e., BAM) benchmark in the literature [22] as reported in Table 7. This comparison shows
the superiority of the proposed algorithms compared to those of in the literature.

5.2.4. Analysis in the different number of scenarios

According to the previous section, we choose HGALS and all results are obtained from HGALS. The reason
for selecting HGALS is that the HGALS obtains better solutions in terms of the objective function value and
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Table 8. Computational results instances with the different number of scenarios.

Instance Number of scenarios
1 5 11 16 Cost

Time (s) Cost Depot Time (s) Cost Depot Time (s) Cost Depot Time (s) Cost Depot Increase
(%)

30-4-4-a 180.06 1455.20 1

3

4

290.28 1472.41 1

3

4

521.56 1484.16 1

3

4

591.17 1481.93 1

3

4

1.83

35-4-5-a 198.19 1173.52 1

2
3

313.22 1183.22 1

2
3

531.56 1180.69 1

2
3

665.09 1183.02 1

2
3

0.81

40-4-5-a 210.32 1533.97 1
2

4

335.01 1569.26 1
2

4

574.21 1559.26 1
2

4

660.52 1570.52 1
2

4

2.38

50-4-6-a 244.61 1381.66 2

3
4

400.50 1455.78 2

3
4

626.36 1469.01 2

3
4

755.35 1460.36 2

3
4

5.69

the computational time. In addition, the HGALS has had also higher convergence rate (i.e., lower standard
deviation when being executed several times). Therefore, the analyses obtained from the HGALS algorithm
would be more validated. Since the number of scenarios is different in Table 8, for a fair comparison of costs,
the objective function must be calculated as follows:

min OFV =
∑
i∈J

fdjYj +
1∑

s∈S prs
×
∑
s∈S

prs

 ∑
i∈I∪Jns

∑
k∈I∪Jns

∑
h∈H

∑
j∈Jns

tcikXikhjs

+
∑
i∈I

Ziesθi +
∑

j∈Jns

∑
i∈I

∑
h∈H

fvXjihjs

 . (5.4)

Four instances are solved in “a” failure probability. Four potential depots are considered and the number of
all scenarios is 24, so we choose the different number of scenarios that have the largest probability of occurrence.
The results are given in Table 8. Figure 16a shows that the smallest cost of each instance is in the one scenario,
which does not take into account the disruptions. With increasing the number of scenarios, costs are rising,
but there is not much difference between costs in 5, 11 and 16 scenarios. As shown in Figures 16a and 16b, we
conclude that the number of scenarios that previously considered (|J |+ 1) was correct and suitable in terms of
time.

The last column “Cost increase (%)” in Table 8 is calculated as OFV16 scenarios−OFV1 scenario
OFV1 scenario

that OFV1 scenario

represents the total cost if disruptions are not assumed and the OFV16 scenarios represent the total cost if all
disruptions are assumed. The results show that percentage of increased costs are between one to six percent
that each manager in the supply chain is willing to accept it, because not considering the disruptions, imposed
the staggering cost on the system.

Figures 17 and 18 illustrate the sensitivity of the total cost vs. the capacity of depots and vehicles, respectively.
It can be seen in both Figures 17 and 18 that increasing the capacity will decreases the total cost. Actually,
when the capacity of depots and vehicles increases, two event happen as: (1) less number of depots are opened
and consequently lower fixed cost is imposed to the solution and (2) customers are allocated to closer depots
and consequently lower transportation cost is paid in the solution.
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(a) (b)

Figure 16. Analysis in a different number of scenarios. (a) Best cost vs. Number of scenarios.
(b) CPU time vs. Number of scenarios.

Figure 17. Total cost vs. Capacity of depots.

6. Conclusion

This paper develops a new mixed-integer mathematical model for a reliable capacitated location-routing
problem with simultaneous pickup and delivery, wherein the depots are exposed to the risk of disruption. Any
disruption in the location-routing network imposes a huge cost on the company and its stockholders. Considering
disruption in the design phase of the network will alleviate this impact and let the network to resist disruption.
The objective function of the proposed model minimizes the total expected cost of the network including the
sum of location cost of depots, routing cost of vehicles and cost of unfulfilled demand of customers. The proposed
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Figure 18. Total cost vs. Capacity of vehicles.

model is solved for small-sized instances and for large-sized problems, three efficient meta-heuristics are tailored
and their performance is investigated through a comprehensive experimental research. All the meta-heuristics
algorithms reach the optimal solution in the small instances and better solution comparing to CPLEX in the
most cases in the medium instances, wherein the CPLEX is stopped after an enough huge computational time.
The computational results demonstrate that the hybrid algorithms significantly outperform the classical genetic
algorithm in terms of solution quality.

Possible future extensions include using multiple products, using time window for products, considering
the location-routing-inventory problem and accounting for the cost of carbon emissions and developing other
meta-heuristics for the problem. In addition, comparing the proposed hybrid meta-heuristic algorithms with
other existing meta-heuristic algorithms such as Tabu Search (TS), Particle Swarm Optimization (PSO) and
Differential Evolution (DE) algorithm would be an important future research direction.
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