
RAIRO-Oper. Res. 55 (2021) 873–897 RAIRO Operations Research
https://doi.org/10.1051/ro/2021043 www.rairo-ro.org

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM

Mahdi Jemmali1,2,3,∗

Abstract. Municipalities are service organizations that have a major role in strategic planning and
community development that consider the future changes and society developments, by implementing
set of projects with pre-allocated budgets. Projects have standards, budgets and constraints that differ
from one community to another and from one city to another. Fair distributing of different projects to
municipalities, while ensuring the provision of various capabilities to reach developmental role is NP-
Hard problem. Assuming that all municipalities have the same strategic characteristics. The problem
is as follows: given a set of projects with different budgets, how to distribute all projects to all mu-
nicipalities with a minimum budget gap between municipalities. To derive equity distribution between
municipalities, this paper developed lower bounds and eleven heuristics to be utilized in the branch-and-
bound algorithms. The performance of the developed heuristics, lower bounds and the exact solutions
are presented in the experimental study.

Mathematics Subject Classification. 90C90, 90C59, 90C27.

Received March 8, 2019. Accepted March 18, 2021.

1. Introduction

The equitable distribution of development projects that ensures societal justice is important for every munic-
ipality and for every community. The good distribution of resources on municipalities makes the country more
solidary and achieves the desired societal development. The main concern of this research is budget distribution.
The problem arises when there are different projects to be distributed to several municipalities. The main objec-
tive is to search for a suitable and fair assignment of different projects to municipalities. A random distribution
of these projects may lead to resources loss, unfair budget distribution and an undesired development results.
These results may have economic and social impacts that are not preferable. This kind of problem can also be
interesting for regional development. Given a set of projects, to be carried out in different cities or municipalities.
Each project has its appropriate budget and will be entirely carried out in a chosen municipality. For the sake
of equity, we apply some heuristics that can allocate different cities, so as to maximize the minimal total budget
[9].

Keywords. Regional development, load balancing resources, equity distribution, heuristic, budgeting.

1 Department of Computer Science and Information, College of Science at Zulfi, Majmaah University, Majmaah 11952,
Saudi Arabia.
2 MARS Laboratory, University of Sousse, Sousse, Tunisia.
3 Department of Computer Science, Higher institute of computer Science and mathematics, University of Monastir, Monastir
5000, Tunisia.
∗Corresponding author: m.jemmali@mu.edu.sa, mah jem 2004@yahoo.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2021

https://doi.org/10.1051/ro/2021043
https://www.rairo-ro.org
mailto:m.jemmali@mu.edu.sa
mailto:mah_jem_2004@yahoo.fr
https://www.edpsciences.org

874 M. JEMMALI

In this work, we assume that all municipalities are identical and have the same characteristics to allocate
investments and with the same investment opportunities. Moreover, some of the projects are not applicable
in other cities. This point of differentiation is very important for the distribution to be more realistic. For
example, some projects cannot be assigned to some municipalities, nautical base projects will not be assigned
to municipality of a non-coastal region. This kind of project has a regional characteristic. For this research,
we consider only projects which can be assigned to any municipality and haven’t any special related region
characteristics. Heuristics and exact solutions will be developed to give an appropriate distribution of all projects
to all municipalities.

Optimal allocation of resources, is developed with several activities that minimize the cost incurred by the
allocation process. One constraint concerning the total amount of resources to be allocated, is to consider the
minimization of the separable convex function. The problem can be viewed as a nonlinear programming problem
or a nonlinear integer programming problem [15]. In [4] author presented a determination of optimal resource
allocation for an invention which depends on the technological characteristics of the invention process and the
nature of the market for knowledge.

Recently, authors in [1], developed lowers bounds, approximate solutions and an exact method for the problem
investment project distribution on regions. The main objective is minimizing the maximum total number of
newly created jobs.

The proposed and developed problem is cited for the first time in [11]. In the latter work, author proposed a
probabilistic and randomized approximate solutions to the projects revenues assignment problem. Author in the
latter research gives only algorithm to solve the proposed problem. No experimental results was presented in the
latter work. However, author in [12], developed three heuristics for the same problem. Other domain to apply the
equity distribution proposed in latter works is the gas turbines aircraft engines where authors in [13] proposed
a mathematical modelling of the problem and two algorithms to solve approximately the problem. Other work
related to gas turbines is developed in [14]. Author in [2] developed heuristics for the equity distribution of used
space in storage supports.

The studied problem was solved by using or inspiring heuristics and algorithms from the main problem of
P ||Cmax and P ||Cmin. Heuristics and exact method developed in [8–10] can be largely exploited. In [8,10] authors
developed a new efficient lower bounds and heuristics for the problem of minimizing makespan on identical
parallel machines. A branch-and-bound algorithms were developed based on the lower and upper bounds yield
a very effective exact algorithm. In addition, symmetry breaking branching strategy was presented. For the
second problem, P ||Cmin, an exact branch-and-bound algorithm using enhancement lower and upper bounds
were developed in [9].

The P ||Cmin problem, also referred as machine covering was presented in [19] who proposed an exact branch-
and-bound algorithm. Its most distinctive components are a different symmetry-breaking solution representation
and enhanced lower and upper bounds.

This paper is structured as follows. In Section 2, we described the studied problem. While lower bound based
on P ||Cmin will be explained in Section 3. Several heuristics based on dispatching rules, greedy algorithms, and
complicated ones are described in Section 4. In Section 5, we develop an exact solution based on the branch and
bound method. All developed algorithms will be discussed and assessed in the experimental results section.

2. Problem description and proprieties

The studied problem is described as follows. Let DP be a set of ndp development projects that will be
distributed on mu different municipalities. Every project p can be assigned to only one municipality m with
m ∈ {1, . . . ,mu}. Each project p with p ∈ {1, . . . , ndp} is characterized by a predefined budget bp. The cumulative
budget will be denoted by Cbp for the municipality m when project p is assigned. The total number of assigned
budgets to each municipality m after finishing assignment process is denoted by Tbm. The minimum (maximum)
given budget after finishing distribution of all municipalities is denoted by Tbmin (Tbmax). The budget of each

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 875

Table 1. Example of instance related to the studied problem.

p 1 2 3 4 5 6

bp 1320 5897 2354 3654 9632 3985

Figure 1. Budget municipality dispatching for example 1.

municipality is indexed as follows Tb1 ≤ Tb2 ≤ . . . ≤ Tbmu . The following example illustrates the studied
problem.

Example 2.1. Let ndp = 6 and mu = 2. Table 1 represents the budget bp distribution for each project p.
We chose any algorithm to assign projects to municipalities. The chosen algorithm will give the schedule

illustrated in Figure 1, which shows that municipality 1 has projects 1, 4, and 5, while municipality 2 has the
projects 3, 6, and 2.

Based on Figure 1, municipality 1 has a total budget of 14 606. However, municipality 2 has a total budget of
12 236. The budget gap between municipality 1 and municipality 2 is equal to Tb1 − Tb2 = 2370. The objective
here, is to reduce this gap. So, we need to find another schedule that is more efficient with a gap of less than
2370.

To evaluate the gap between municipalities, we can fix several indicators. For this work, the indicator that
we propose for each municipality to reduce the budget gap will be Tbm − Tbmin. Therefore, considering the mu

municipalities, the total budget gap which is denoted by Bgmax is given in equation (2.1).

Bgmax =
mu∑
m=1

[Tbm − Tbmin] . (2.1)

The objective function for the studied problem is Minimize Bgmax. Consequently, the objective function will
be rewritten as

Minimize

[
mu∑
m=1

Tbm −muTbmin

]
. (2.2)

We denoted by Bg∗max the optimal solution for the studied problem. Using the standard three-field notation
of [17], this problem can be denoted as P ||Bgmax.

Remark 2.2. Bgmax can be written as: Bgmax =
∑ndp
p=1 bp −muTbmin.

Proof. For any schedule we have:
∑ndp
p=1 bp =

∑mu
m=1 Tbm. Using this equality in equation (2.2), we prove

remark 2.2. �

876 M. JEMMALI

An important proposition of the studied problem is presented as follows.

Proposition 2.3. P ||Bgmax is equivalent to P ||Cmin.

Proof. Based on Remark 2.2, Bgmax =
∑ndp
p=1 bp −muTbmin , for the other side

∑ndp
p=1 bp =

∑mu
m=1 Tbm, then

Minimize Bgmax is equivalent to Maximize Tbmin. The latter problem is P ||Cmin �

Corollary 2.4. P ||Bgmax is NP-hard.

Proof. According to the latter proposition P ||Bgmax is equivalent to P ||Cmin which is shown to be NP-hard in
[9]. �

2.1. Mixed Integer linear formulation

This subsection, presents a mathematical model that describes the studied problem. This mathematical model
is based on the mixed-integer linear formulation. To derive the mixed-integer linear formulation, we introduce
the binary variable xpm as follows.

xpm :
{

1 if project p is assigned to municipality m
0 otherwise.

The mixed integer formulation related to the studied problem is given as follows.

Minimize

[
mu∑
m=1

Tbm −muTbmin

]
(2.3)

Subject to:
mu∑
m=1

xpm = 1, ∀p ∈ {1, · · · , ndp} (2.4)

ndp∑
p=1

bpxpm ≥ Tbmin, ∀m ∈ {1, · · · ,mu} (2.5)

xpm ∈ {0, 1}, ∀p ∈ {1, · · · , ndp}, ∀m ∈ {1, · · · ,mu} (2.6)
Tbmin ≥ 0. (2.7)

The minimization of Bgmax is the objective function that is given by equation (2.3). While equation (2.4),
is the constraint related to the obligation of the assignment of any project m to exactly one municipality.
The condition expressed in equation (2.5) is related to the constraint of the total assigned budget for each
municipality. Whereas, the total assigned budget Tbm for a municipality m is greater than or equal to Tbmin

for all municipalities. Equation (2.6) is the constraint that declares xpm as a binary variable. Finally, equation
(2.7) is the constraint that force the minimum total assigned budget for all municipalities to be positive.

3. Lower bounds

In this section, we present the developed lower bounds. These lower bounds are developed based on the upper
bounds of the well-known problem P ||Cmin. Indeed, from a given upper bound of P ||Cmin we develop a lower
bound for the studied problem. Denoted by UBcmin a given upper bound for P ||Cmin.

Lemma 3.1. Given an instance I of P ||Bgmax and an upper bound UBcmin on the optimal makespan of the
corresponding P ||Cmin, then a valid lower bound on the optimal solution of the P ||Bgmax instance is

∑ndp
p=1 bp−

muUBcmin.

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 877

Proof. UBcmin is an upper bound for P ||Cmin, so for any schedule we have: Tbmin ≤ UBcmin. Multiplying by
mu, we have muTbmin ≤ muUBcmin. This is can be written as −muTbmin ≥ −muUBcmin. Now, adding

∑ndp
p=1 bp

we obtain the lower bound proposed in Lemma 3.1. �

For our study, we use the upper bounds U0 and U∗3 for P ||Cmin described in [9] to develop respectively L1

and L2 as lower bounds for our studied problem.

4. Heuristics

In this section, we present eleven developed heuristics based on different resolution categories. The first
heuristic category is developed using the dispatching rules. The second one is the randomized method using
two variants. Utilizing the lower bounds for the P ||Cmin problem with two variants is the third category. For
the fourth category, we use the well-known multi-fit problem. On the other hand, the subset-sum problem is
utilized to determine category 5, and the knapsack problem is imbricated to develop category 6.

4.1. Dispatching rules based-heuristics

These heuristics are based on the order given before scheduling projects to municipalities. We have to choose
if we start with a non-decreasing order or a non-increasing order. The selection of the municipality will be the
first municipality having the least total budget.

4.1.1. Non-decreasing budget order heuristic (NDB)

For this dispatching, all projects are arranged in a non-decreasing order based on projects budget. After that,
we assign the project having the smallest budget to the municipality with the smallest total budget.

4.1.2. Non-increasing budget order heuristic (NIB)

In contrary to NDB, order all projects are arranged in a non-increasing order of its budgets. After that, we
assign the project having the greatest budget to the municipality which has the smallest total budget.

4.2. Randomized based heuristics

For this category of heuristics, this study is based on assigning the project with the largest budget to the
municipality which has the minimum budget total with some probabilistic method. The first probabilistic is
to choose between the first largest budget project or the second largest budget project. However, the second
probabilistic is to choose between the largest budget project or a set of fixed number of large budget projects.

4.2.1. α-Randomized budget heuristic (RBα)

The first step to apply this heuristic is to put all projects in non-increasing budget order. This heuristic
is described as follows. Instead of selecting the project with the greatest budget value, we select one of the
two projects with the greatest budget and with respective probability α (randomly and uniformly generated
in [0,1]) and 1 − α. Now, the question is how to select between the two largest remaining budgets. For that
aim, an experimental study is conducted. For which parameter γ is fixed. This γ represents the bound for the
selection between the two largest budgets. For example, if we fix γ = 0.1 this means if α is ≤ 0.1 then the next
selected budget is the largest one. Otherwise, if γ > 0.1 the selected budget is the second one. The choice of
γ can affect the performance of results. For this reason, we lead a study to choose the best value of γ. We fix
γ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. For each value of γ, we ran the algorithm and note the corresponding
heuristic value. A comparative study is made for 1700 instances with ndp = {10, 20, 50, 100, 300, 500}. This
heuristic consists of running the randomized-based heuristic more than once. The number of iterations used to
calculate the corresponding value is 1000. Thus, the heuristic is repeated 1000 times and we choose the best
value among these iterations. For each instance, we ran the algorithm with the given 9 values of γ and determine
the minimum value of Vmin. The number of instances that are equal to Vmin is denoted by nb, and denoted by
Per the percentage among 1700 instances. Table 2 gives all percentages for each γ value.

878 M. JEMMALI

Table 2. Behavior of heuristic values according to γ.

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

nb 1045 1074 1126 1155 1102 1097 1051 988 884
Per 61.47 63.18 66.24 67.94 64.82 64.53 61.82 58.12 52.00

Table 3. Behavior of lonely participation in the minimum heuristic values according to γ.

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

nblo 216 33 32 27 15 18 11 9 0
Per 12.71 1.94 1.88 1.59 0.88 1.06 0.65 0.53 0.00

Table 4. Selecting appropriate number of iterations.

Iteration 50 100 250 500 1000

Best 300 365 425 475 516
Time – – – – 0.01

Referred to Table 2, the first greatest percentage and the second one are obtained for γ = 0.4 and for γ = 0.3
respectively.

Another type of study is based on the lonely participation in Vmin. Which means to determine the number of
instances (nblo) for each γ. The number nblo is the number of instances when the heuristic value equals lonely
to Vmin (all others values number of elated to other values of γ are not equal to Vmin). Table 3 presents the
results given by each γ values.

Based on Table 3, it is clearly that the maximum percentage is 12.71% and obtained for γ = 0.1. From
Tables 2 and 3, we choose finally three γ values as follows γ = 0.1, γ = 0.3 and γ = 0.4. For each value of γ we
calculate the heuristic value and after finishing all values, we pick the minimum one.

The 1000 iteration is selected based on the following experimental study. For this experimental study ndp =
{10, 20, 50}. We experimented the number of iteration equivalent to {50, 100, 250, 500, 1000}. We ran the heuristic
RBα for all iteration values and we calculate the minimum value Minα for each instance. We denoted by Best
the number of instances when RBα is equal to Minα. Table 4 show the choice of the number of iteration. Based
on the Table 4, 1000 iteration provides maximum number of best solutions. We stopped at 1000 because of the
needed extra time.

4.2.2. β-Randomized budget heuristic (RBβ)

The first step in applying this heuristic is to put all projects in non-increasing budget order. For this heuristic,
an adaptation of the NIB and RBα heuristics are performed. This adaptation is based on extending the selection
interval of the candidate projects. In RBα, the selection of the candidate project to be scheduled is between the
two first unscheduled projects. Now, we extend the interval of selection from only two projects to reach ndp.
The obtained heuristic is denoted by RBβ . The performed experiment was carried out over a data set of 1700
instances. Let RBInt

β be the obtained upper bound, if the random selection for NIB is applied to the Int first
unscheduled projects (2 ≤ Int ≤ ndp). Let Perc to be the percentage of instances where RBInt

β is equal to the
minimum of RBtβ , with 1 ≤ t ≤ Int. The set of selected projects will be chosen among Int first projects that
have the largest budgets with a probability β (uniformly). This probability is chosen as follows.

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 879

Figure 2. Experimental determination of the best interval.

Table 5. Percentage Perc(Int) for each interval Int and each ndp of RBβ heuristic.

ndp
Int

1 2 3 4 5 6 7 8 9 10

10 34.7% 72.0% 86.7% 88.7% 95.3% 94.0% 96.7% 92.7% 92.0% 94.7%
20 25.5% 70.0% 64.0% 54.0% 47.5% 41.5% 39.5% 38.0% 36.5% 38.0%
50 27.6% 65.2% 57.6% 44.8% 36.8% 33.6% 30.8% 30.8% 31.2% 28.0%
100 22.3% 52.0% 47.4% 39.7% 29.4% 29.4% 27.7% 25.1% 24.9% 21.7%
300 27.0% 56.8% 57.0% 50.5% 43.5% 38.0% 34.3% 31.3% 27.5% 26.0%
500 46.6% 64.6% 63.4% 60.3% 55.1% 50.9% 48.6% 43.7% 42.3% 41.1%

– We chose randomly a number r between [1, Int]. The selected number will be the rth largest unscheduled
project index which will be assigned to the municipality having the lower total budget.

– In case when the number of unscheduled projects UNp is less than Int, the randomly r will be between
[1,UNp].

An experimental study is carried out and a summary of the obtained results is displayed in Figure 2. According
to the results shown in Figure 2, it is observed that a maximum is reached at Int = 2 or at Int = 3, while there
still some residual percent for Int = {3, 4, 5, . . . , 10}. For this reason, stopping at 5 intervals is worthy.

The details of percentage values according to Int and ndp is shown in Table 5. For each fixed Int, we repeat
the heuristic 1000 times. The minimum value will be selected over 1000 iterations for the 5 intervals.

4.3. Cmin based heuristics

These heuristics are developed based on the lowers bounds of the well-known problem P ||Cmin. Indeed, from
a given lower bound of P ||Cmin, we develop an upper bound for the studied problem. Denoted by LBcmin a
given lower bound for P ||Cmin.

Lemma 4.1. Given an instance I of P ||Bgmax and a valid lower bound LBcmin on the optimal makespan
of the corresponding P ||Cmin, then a valid upper bound on the optimal solution of the P ||Bgmax instance is∑ndp
p=1 bp −muLBcmin

Proof. LBcmin is a lower bound for P ||Cmin. So for any schedule, we have: Tbmin ≥ LBcmin. Multiplying by
mu, we have muTbmin ≥ mLBcmin. This is can be written as −muTbmin ≤ −muLBcmin. Now, adding

∑ndp
p=1 bp

we obtain the upper bound proposed in Lemma 4.1. �

880 M. JEMMALI

Table 6. Instance of budgets for heuristic BMF.

p 1 2 3 4 5 6 7 8 9 10

bp 55 59 94 30 51 95 43 44 100 70

For our study, we use the lower bounds described for P ||Cmin in [9] to develop upper bounds for our studied
problem. We denoted by U1

cmin and U2
cmin upper bounds derived from the subset-sum lower bound and the

heuristic algorithm based lower bound, respectively.

4.4. Budgeting multi-fit based heuristic (BMF)

This heuristic is based essentially on searching for the minimum capacity (minimum total budget) such that
all ndp projects will be assigned to all mu municipalities. This search is based on the utilization of the bin-packing
algorithm (BPA) [3,7]. The municipality will be presented as a bin, while projects will be presented as items in the
(BPA). For each fixed bin capacity, the First Fit Decreasing (FFD) method is used to fit projects to the bin [5,21].
Before running the algorithm we must order projects according to their budget such that b1 ≥ b2 ≥ . . . bndp .
The FFD method assigns the projects in succession to the lowest indexed municipality which can contain the

project (regarding budgeting capacity) within the capacity. Let LBmax = max
(
b1, bmu + bmu+1,

⌈∑ndp
p=1 bp
mu

⌉)
and UBmax is the value given by applying the LPT heuristic for P ||Cmax. We fix an iterative number ite which
is the number of iteration of FFD. We set ite = 135 and denote by nbin the number of bins used by applying
FFD. Algorithm 1 describes all steps to calculate BMF.

Algorithm 1. Budgeting multi-fit algorithm BMF.
1: Set I = 0, up = UBmax and lo = LBmax.

2: Set mid = bup+lo
2
c, set I = I + 1.

3: Apply FFD with capacity C.
4: if we can assign all projects ndp into mu municipalities, then set up = C and goto 5, otherwise set lo = C and goto 5.
5: if (I = ite) then
6: STOP.
7: else
8: Goto 2.
9: end if

10: if (nbin > mu) then
11: The schedule given by NIB is taken.
12: else
13: The schedule given by FFD is taken. The taken schedule noted by σ.
14: end if
15: Determine the Cmin of schedule σ.
16: BMF =

∑ndp
p=1 bp −muCmin.

17: Return BMF.

Example 4.2. Let ndp = 10 and mu = 2. Table 6 represents the budget of each project.
Considering the P ||Cmax problem, LPT heuristic give the upper bound value UBmax = 323 and the lower

bound is LBmax = 318. Then, mid = b 323+318
2 c = 322. Applying FFD function with capacity 322 and the 10

items which is represented by projects in Table 6. The first municipality has projected {4, 3, 6, 9} and the second
municipality will have the projects {1, 2, 5, 7, 8, 10}. The first municipality) has a total budget of 319 however,
the second one has a total budget of 322. Thus, Bgmax = 641 − 2 × 319 = 3. On the other hand, the Cmin

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 881

obtained by LPT is 318 which is meaning the NIB heuristic gives Bgmax = 5. So, the result obtained by BMF
is better than NIB.

4.5. Subset-sum based heuristics

This category of heuristic is based essentially on solving iteratively of a set of subset-sum problems.

4.5.1. Repeating of solving subset-sum problems heuristic (RSS)

A greedy algorithm is used to develop this heuristic. This heuristic is based on solving iteratively several
subset-sum problems (SSP) [20]. We denoted these problems by (Ps)k for k = {1, 2, . . . ,mu − 1} as follows:

(Ps)k :
{

min
∑
p∈Sk bpyp

subject to
∑

DPp∈Sk bpyp ≥ LB(Sk,mu − k + 1)

with yp ∈ {0, 1} for all DPp ∈ Sk. Where S1 = DP and Sk+1 = Sk \DPk where DPk is an optimal subset sum
for Psk and k = 1, 2, · · · ,mu − 1. LB(S,K) denote a valid lower bound on the makespan of a reduced instance
defined on k ≤ mu machines and a subset of jobs S ⊂ DP.

Therefore, for the first municipality, we assign projects until reaching LB on Ps1. The remaining projects
with remaining municipalities will constitute the second problem Ps2 to solve the new SSP until reaching LB
and so on [10]. A pseudo-polynomial is used to solve a subset sum problem using the dynamic programming
algorithm developed by [20].

After ending assignment of all projects, a Cmin value will be calculated and we conclude the Bgmax value.

4.5.2. Most-least-repeating of solving subset-sum problems heuristic (MLRS)

For the sake of clarity, we briefly recall the basic ideas derived from this heuristic. As shown in [10] the
P2‖Cmax could be reformulated as a subset-sum problem. Based in this proposition a repeating local search
method will be implemented, that requires repetitively solving a problem of two-municipalities. Given a feasible
schedule σ and assume that the municipalities are indexed such that Tb1 ≤ Tb2 ≤ · · · ≤ Tbmu . The most-least-
repeating subset-sum (MLRS) heuristic requires the selection of two municipalities mmu and mk and solving
P2‖Cmax defined on DP = DP1 ∪DPk. The number of iteration is fixed to iter = 500.

We define a binary variable yp that takes value 1 if project DPp is assigned to m1, and 0 otherwise. Then,
P2‖Cmax applying the problem SSP will be solved interactively. The most-least-repeating subset-sum heuristic
(MLRS) is described below:

After the termination assignment of all projects, a Cmin value will be calculated and we conclude the Bgmax

value.

4.6. Knapsack based heuristics

This category of heuristic is based essentially on solving iteratively of a set of knapsack problems [16] and
[18].

4.6.1. Repeating of solving knapsack problems heuristic (RSK)

This heuristic is based on the division of the problem in mu problems. Each problem searches the scheduling
of the projects to municipalities. For the first municipality, we apply a knapsack problem to assign projects to
municipality 1. After that, the remaining projects will be assigned to the remaining municipalities by applying
a knapsack problem, and so on. So, for each municipality, a knapsack problem must be solved as follows.

(KN)k :

{
min

∑
p∈Qk wpyp

subject to
∑
p∈Qk bpyp ≤

⌊∑
p∈Qk

bpyp

k

⌋

882 M. JEMMALI

Algorithm 2. Most-least-repeating subset-sum heuristic MLRS.
1: Generate a starting feasible solution σ and set iter = 1.
2: Compute Tbk for k ∈ {1, 2, · · · ,mu}. Set k = 1.
3: Solve the P2‖Cmax instance that is defined by mk and mmu , denoted by Ckmax the optional makespan that is obtained

after solving the corresponding subset-sum problems.
4: if (Ckmax < Tbmu) then
5: Update σ and goto 2.
6: end if
7: if (k < mu − 1) then
8: Set k = k + 1 and goto 3.
9: end if

10: Output the best-found solution for Cmin.
11: Calculate Bgmax.
12: if (iter ≤ 500) then
13: Goto 2
14: else
15: STOP.
16: end if

where:

– k is the index of the municipality.
– F1 = DP and Fk+1 = Fk \Opk where Opk is the set containing projects after solving (KN)k.
– wp = |Fk|

k × bp − 1, where |Fk| is the number of remaining projects and k the remaining municipalities.

For the first municipality, we assign projects until reaching
⌊∑

p∈Qk
bpyp

mu

⌋
on (KN)1. The remaining projects

with remaining municipalities constitute the second knapsack problem (KN)2 to solve the new knapsack problem

until reaching
⌊∑

p∈Qk
bpyp

mu−1

⌋
and so on.

After the termination assignment of all projects, a Cmin value will be calculated and we conclude the Bgmax

value.

4.6.2. Most-least-repeating of solving knapsack problems heuristic (MLRK)

The P2‖Cmax could be reformulated as a knapsack problem. Based on this proposition, a most-least-repeating
local search method will be implemented, which requires repetitively solving a problem of two-municipalities.
The MLRK heuristic is in the same vein as MLRS. The difference is localized in the problem solved in each
iteration. Indeed, for MLRK, in each iteration, a knapsack problem (KP) is solved instead of a SSP. It is well
known that KP could be efficiently solved in pseudo-polynomial time.

5. Exact solution

We develop a branch-and-bound method, to find the optimal solution for the studied problem. Before devel-
oping the branch and bound it is important to give the relation between the optimal solution for the P ||Cmin

and the optimal solution for the P ||Bgmax. The following corollary explain this relation.

Corollary 5.1. Minimize [
∑mu
m=1 Tbm −muTbmin] is equivalent to Maximize Tbmin.

Proof. As described in Remark 2.2, the objective function of the studied problem can be written as Bgmax =∑ndp
p=1 bp −muTbmin. The number of municipalities and the summation of all budgets

∑ndp
p=1 bp are determined

in advance and fixed. This is meaning Minimize [
∑mu
m=1 Tbm −muTbmin] is equivalent to Minimize −muTbmin.

Therefore, we have to Maximize Tbmin. �

Lemma 5.2. The optimal solution of the studied problem is
∑mu
m=1 Tbm −muTb

∗
min.

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 883

Proof. The solution given to Maximize Tbmin is Tb∗min. Based on Corollary 5.1, we deduce the optimal solution
given in Lemma 5.2 �

For this paper and based on Lemma 5.2, we developed a branch and bound algorithm to solve P ||Cmin exactly.
Then we use the found solution to obtain the exact solution to our budgeting problem.

Before we present the exact solution algorithm, we must define several notations. Let I be an instance. We
denoted by U(I) and L(I) the best upper bound and the best lower bound for the studied problem, respectively.
We denoted by Um(I) and Lm(I) the best upper bound and the best lower bound for the P ||Cmin problem,
respectively. Dominance() is a function that test the dominance rules of P ||Cmin related to the instance given
as input as cited in [9]. Algorithm 3 gives instructions to calculate the optimal solution for the studied problem.

Algorithm 3. Exact solution algorithm.
1: Calculate U(I) and L(I).
2: if (U(I) = L(I)) then
3: Return U(I)
4: else
5: Calculate Um(I) and Lm(I).
6: Store Lm(I) the best solution found.
7: Initialize a queue to hold a partial solution with none of the variables of
8: the problem assigned.
9: while (The is NOT empty) do

10: Take a node N off the queue.
11: if (N is a single candidate solution φ and Cmin(φ) > Lm(I)) then
12: Cmin(φ) is the best solution so far.
13: Record the best solution and set Lm(I) = Cmin(φ).
14: else
15: Branch on N to produce new node Ni for each of these:
16: if (Lm(Ni) > Um(Ni) OR Dominance(Ni) = True) then
17: Discard node
18: else
19: Store Ni on the queue.
20: end if
21: end if
22: end while
23: Return

∑mu
m=1 Tbm −muLm(I)

24: end if

6. Experimental results

In this section, we present the experimental results found after the execution of our algorithms. In order to
assess the performance of the proposed algorithms, we coded them in Microsoft Visual C++ (Version 2013). All
our experiments were obtained on an Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00 GHz and 64 GB RAM. The
operating system used is Windows 10 with 64 bits. The proposed procedures are tested on a set of test problems
that are displayed in the following subsection.

6.1. Test problems

Several types of instances are generated in this work. We tested results on a set of instances that was inspired
as described in [6]. The project budget bp is generated according to different probability distributions. Each one

884 M. JEMMALI

Table 7. Generation of (ndp,mu).

ndp mu

10 2, 3, 5
20 2, 3, 5, 10
50 2, 3, 5, 10, 25
100 2, 3, 5, 10, 15, 25, 50
300 2, 3, 5, 10, 15, 25, 50, 100
500, 1000, 1500 2, 10, 25, 50, 100, 250, 300

of the probability distributions represents a class. The classes are:

– Class 1: bp is generated from the discrete uniform distribution U [30, 100].
– Class 2: bp is generated from the discrete uniform distribution U [50, 300].
– Class 3: bp is generated from the discrete uniform distribution U [200, 500].
– Class 4: bp is generated from the normal distribution N [50− 150].
– Class 5: bp is generated from the normal distribution N [25− 500].

The overall instances is based on the choice of ndp, mu and Class. The choice of the pair (ndp,mu) is given
in Table 7.

For each fixed triple (ndp,mu,Class), we generate 10 instances of budget project. Based on the choice of
(ndp,mu) referred to Table 7, the total number of instances is 2400.

We denoted by:

– UB the best (minimum) value obtained after the execution of all heuristics.
– U the studied heuristic.
– Min the number of instances when the studied heuristic is equal to UB.
– Gu = U−UB

U .
– AGu is the average of Gu for a fixed number of instances.
– LB the best (maximum) value obtained after the execution of all lower bounds.
– L the studied lower bound.
– Max the number of instances when the studied lower bound is equal to LB.
– Gl = L−LB

L .
– AGl is the average of Gl for a fixed number of instances.
– Gul = UB−LB

LB .
– AGu

l is the average of Gul for a fixed number of instances.
– NN is the average number of nodes created in the branch and bound algorithm.
– US is the sum of instances till unsolved by the branch and bound algorithm.
– Time the time spent to execute heuristic in corresponding instances. This time will be in seconds and we

denote by “–” if the time is less than 0.001 s.

6.2. Performance assessment

Obtained results in this paper will be analyzed based on several indicators. It is important to show the
behavior of the gap according to ndp, mu, and Class. The results found in this research is very impressive.
This can be seen through the general viewing of the results. The average total gap between Min and Max for
the whole 2400 instances is 2.62 for average Time 51.76 s. These impressive results show the performance of
heuristics and lower bounds. In line with this result, the number of times when the best lower bound value is
equal to the best upper bound value was 2045 out of 2400 instances. Which represents 85.21% of the overall
instances. In the other side the optimal solution using the branch-and-bound was successful only for 14.79%.

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 885

Table 8. Behavior of AGl and Time according to ndp.

ndp
L1 L2 Total

AGl Time AGl Time AGl Time

10 18.47 – 0.00 – 9.24 –
20 17.53 – 0.00 – 8.77 –
50 0.42 – 0.00 – 0.21 –
100 22.22 – 0.00 0.016 11.11 0.008
300 0.00 – 0.00 0.127 0.00 0.064
500 57.43 – 0.00 3.977 28.72 1.989
1000 16.76 – 0.00 4.054 8.38 2.027
1500 0.00 – 0.00 3.887 0.00 1.944

Table 9. Behavior of AGl and Time according to mu.

mu
L1 L2 Total

AGl Time AGl Time AGl Time

2 0.06 – 0.00 0.002 0.03 0.001
3 20.59 – 0.00 0.001 10.30 0.001
5 2.88 – 0.00 0.002 1.44 0.001
10 1.10 – 0.00 0.019 0.55 0.010
15 76.13 – 0.00 0.021 38.07 0.011
25 0.35 – 0.00 0.068 0.18 0.034
50 0.66 – 0.00 0.248 0.33 0.124
100 0.25 – 0.00 1.038 0.13 0.519
250 0.89 – 0.00 11.528 0.44 5.764
300 171.90 – 0.00 14.660 85.95 7.330

A comparison study between lower bounds is represented in Tables 8–11 and A.1. Table 8 presents the variation
of AGl and Time according to ndp. This table shows that, in 100% of cases L2 is the better lower bound since
AGl = 0 for all values of ndp. The maximum AGl value is obtained for ndp = 500 with value 57.43 for L1.

Table 9 presents the behavior of AGl and Time according to mu. From this table we can’t deduce any order
of AGl according to mu values. Indeed, for L1, when mu = 3 the average gap is equal to 20.59, for mu = 10 is
equal to 1.10 and for mu = 15 the average gap once again goes up to 76.13. The maximum AGl value is reached
171.90 for L1 when mu = 300.

Table 10 represents the difference levels of the problem-hardness according to classes. The given results shows
that for the Class 5, the AGl has the largest value reaching 57.99 for L1. This class is harder for L1 comparing
with Class 4 which the corresponding AGl is equal to 1.66. On the other hand the Time is increasing when the
Class index increases.

We observe from Table 11 that the best lower bound is L2 which has the maximum percentage of 100%
with average gap zero and execution average time of 1.76s. However, the minimum percentage is 91.1% for L1

with an average gap of 16.72 and Time less than 0.001s. The lower bound L1 is faster than L2. More details is
presented in appendix in Table A.1. From this table we observe that the maximum average gap for the lower
bound L1 is 398.37 reached when ndp = 500 and mu = 300.

The performance of the studied heuristics can be shown by the behavior of AGu according to ndp, mu, and
Class. An overview of heuristics comparison is given in Table 12. This table shows that the best perc value which
represents the percentage of Min among all 2400 instances is obtained for U2

cmin with 99.8% in an average time
of 5.847 s. However, the minimum percentage is 14.4% and obtained for NDB heuristic in an average time less

886 M. JEMMALI

Table 10. Behavior of AGl and Time according to Class.

Class
L1 L2 Total

AGl Time AGl Time AGl Time

1 2.16 – 0.00 1.004 1.08 0.502
2 3.27 – 0.00 1.071 1.64 0.536
3 18.52 – 0.00 1.724 9.26 0.862
4 1.66 – 0.00 2.274 0.83 1.137
5 57.99 – 0.00 2.736 28.99 1.368

Table 11. Recapitulating comparison between lower bounds.

L1 L2

Max 2187 2400
Perc 91.1% 100.0%
AGl 16.72 0.00
Time – 1.76

Table 12. Heuristics comparison.

NIB U1
cmin U2

cmin NDB BMF RSS RSK MLRS MLRK RBα RBβ

Min 910 1866 2395 345 859 1755 1866 2112 2114 1159 1241
perc 37.9% 77.8% 99.8% 14.4% 35.8% 73.1% 77.8% 88.0% 88.1% 48.3% 51.7%
AGu 51.05 12.41 0.05 255.39 247.73 8.43 12.41 0.82 0.86 38.87 38.18
Time 0.000 0.025 5.847 0.000 0.078 0.023 0.031 53.406 330.302 0.219 0.300

than 0.001s and an average gap of 255.39 s. It is worthy to note that, the most time-consuming heuristic is
MLRK which has an average time of 330.302 s.

The average gap of overall heuristics for each ndp is shown in Figure 3.
Based on Table 13, it is easy to observe that the heuristic U2

cmin has almost a zero-gap for all values of
mu. However, heuristics BMF and NDB have for most of the cases the largest gap comparing with the rest of
heuristics. The heuristic MLRK consumes more time than others reaching to 2603.30 s for mu = 300. Table 13
shows that there is no dominance between heuristics. For more details of AGu and Time for all studied heuristics,
Table A.2 is given in the appendix.

Now our experimental study is focused on the gap between Min and Max. The noted time is the average
time between lower bounds and heuristics. In Table 14, the maximum gap is 6.18 and obtained for ndp = 500
in 19.428 s. It is important to note that for ndp = 1500 the gap is 0 and the corresponding time is less than the
corresponding time related to ndp = 500.

The behavior of AGu
l according to ndp is depicted in Figure 4.

The behavior of AGu
l according to mu is shown in Table 15. It is clear to observe that zero-gap is obtained

for mu = 2 in 0.236 s. However, the maximum gap of 14.21 is obtained for mu = 250 in 50.960 s.
From Table 16, we conclude that classes 2, 3 and 4 are slightly difficult than others with a gap around 3. On

the other hand, the Class 5 is more time-consuming with an average time of 42.842 s for the all instances. For
more details of AGu

l , Table A.3 is given in the appendix.
Now, we show the results of the optimal solution produced by the developed branch-and-bound method.

The results show that there are only 282 instances among 2400 still unsolved. Table 17, presents the NS, NN

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 887

Figure 3. The average gap of overall heuristics for each ndp.

Table 13. Behavior of AGu and Time according to mu.

mu
NIB U1

cmin U2
cmin NDB BMF RSS

AGu Time AGu Time AGu Time AGu Time AGu Time AGu Time

2 2.94 – 0.00 – 0.00 0.05 46.38 – 1.74 0.02 1.01 –

3 67.52 – 0.17 – 0.00 0.11 149.12 – 54.10 0.01 0.55 –

5 19.28 – 0.91 – 0.00 0.13 126.56 – 19.17 0.01 0.63 –

10 53.84 – 0.64 0.01 0.00 0.33 281.37 – 64.71 0.06 1.33 –

15 112.35 – 0.13 – 0.00 0.88 412.40 – 192.32 0.03 2.33 –

25 40.93 – 4.48 0.01 0.00 0.97 304.44 – 97.30 0.07 1.72 –

50 65.20 – 4.42 0.02 0.00 1.80 356.21 – 339.81 0.09 1.88 0.01

100 86.79 – 25.10 0.05 0.61 7.48 381.33 – 522.53 0.13 6.49 0.01

250 63.95 – 93.23 0.12 0.00 11.56 397.26 – 188.63 0.30 13.80 0.06

300 93.76 – 54.46 0.14 0.00 56.16 465.14 – 1888.26 0.24 20.39 0.12

mu
RSK MLRS MLRK RBα RBβ Total

AGu Time AGu Time AGu Time AGu Time AGu Time AGu Time

2 0.81 – 0.13 0.18 0.13 8.34 1.58 0.05 0.46 0.07 5.02 0.79

3 0.39 – 0.05 0.05 0.05 6.59 1.92 – 0.17 – 24.91 0.61

5 0.45 – 0.08 0.06 0.08 6.92 1.91 – 0.30 – 15.40 0.65

10 0.99 – 0.24 0.61 0.22 13.40 15.66 0.07 14.73 0.09 39.43 1.32

15 0.62 – 0.23 0.08 0.20 7.54 2.10 – 1.19 – 65.81 0.78

25 1.09 0.01 0.32 1.53 0.30 19.77 4.42 0.09 4.21 0.12 41.75 2.05

50 1.46 0.02 0.39 7.21 0.37 54.34 30.13 0.20 30.00 0.26 75.44 5.81

100 6.22 0.05 0.88 17.59 0.85 121.41 34.17 0.31 34.67 0.41 99.97 13.40

250 89.86 0.12 1.13 77.20 1.62 512.10 62.30 0.66 62.53 0.89 88.57 54.82

300 54.65 0.14 3.53 448.19 3.33 2603.30 90.19 0.65 90.47 1.00 251.29 282.72

and Time according to ndp. The maximum number of unsolved instances is 101 for ndp = 500. The maximum
average explored node of 2 679 348 is obtained for ndp = 15.

Some algorithms are performing better for large instances than for small ones as the branch-and-bound.
This is explained by the fact that the developed lower bound and upper bound are too far small instances
which makes the convergence of branch-and-bound algorithm more difficult. In Table 18, we can notice that the
minimum NU is obtained for mu = 100 and the maximum running time is 544.593 s for mu = 500.

Referred to Table 19, we can observe that all classes probably have the same difficulty of resolution.

888 M. JEMMALI

Table 14. AGu
l according to ndp.

ndp AGu
l Time

10 2.09 0.308
20 4.89 0.629
50 3.47 1.608
100 3.69 3.337
300 0.90 8.715
500 6.18 19.428
1000 0.89 76.474
1500 0.00 13.811

Figure 4. Behavior of AGu
l according to ndp.

Table 15. AGu
l according to mu.

mu AGu
l Time

2 0.00 0.236
3 0.52 0.453
5 0.88 0.611
10 2.69 1.390
15 2.89 2.683
25 5.16 4.657
50 6.45 7.388
100 3.06 23.908
250 14.21 50.960
300 0.59 182.090

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 889

Table 16. AGu
l according to Class.

Class AGu
l Time

1 1.09 8.806
2 3.24 10.875
3 3.56 16.126
4 3.30 12.270
5 1.89 42.842

Table 17. Exact solution according to ndp.

ndp
Bg∗max

NU NN Time

10 0 502 0.011
15 58 2 679 348 355.113
50 50 156 547 200.002
100 50 975 761 200.081
200 0 1 0.004
300 19 71 074 76.377
500 101 53 603 404.016
1000 4 706 61.939
1500 0 1 0.118

Table 18. Exact solution according to mu.

mu
Bg∗max

NU NN Time

2 0 1 0.001
3 0 43 0.005
5 9 569 080 48.893
10 49 1 124 756 168.004
15 0 1 0.209
25 50 156 547 200.017
50 50 1 170 913 240.014
100 5 112 498 120.570
250 50 57 925 400.196
300 54 43 079 544.593

Table 19. Exact solution according to Class.

Class
Bg∗max

NU NN Time

1 50 13 542 701 6004.299
2 55 19 451 110 6727.588
3 64 23 545 731 7687.297
4 56 18 348 314 6723.951
5 57 16 440 958 8545.672

890 M. JEMMALI

Table 20. Exact solution according to ndp
mu

.

Index ndp/mu NU NN Time

1 1.6 50 127 639 1200.000
2 2 199 2 967 769 955.206
3 3 19 426 440 458.174
4 3.33 4 904 216.602
5 4 9 949 149 81.622
6 5 1 5888 6.170
7 6 0 1 0.123
8 6.6 0 1 0.209
9 10 0 1 0.010
10 12 0 1 0.011
11 15 0 1 0.010
12 16.6 0 1 0.003
13 20 0 1 0.008
14 25 0 1 0.001
15 30 0 1 0.005
16 33.33 181 20 20.926
17 40 0 1 0.002
18 50 0 1 0.004
19 60 0 1 0.002
20 100 0 1 0.001
21 150 0 1 0.001
22 250 0 1 0.002
23 500 0 1 0.001
24 750 0 1 0.000

Figure 5. NU according to index.

We denote by Index the number of the obtained ndp/mu from all combination of pairs ndp and mu. We have
in total 24 values. We calculate the corresponding sum of NU and average of NN and Time. The results is given
in Table 20.

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 891

Excluding when ndp
mu

= 33.33, the unsolved instances is concentrated for ndp
mu

= {1.6, 2, 3, 3.33, 4, 5}. The
maximum average node of 2 967 769 is found for ndp

mu
= 2. Figure 5 presents the NU according to the index.

For more details of the optimal results, Table A.4 is given in the appendix.

7. Conclusions

The application of the studied problem is very interesting in finance and regional development cases. The
application of operational research and computer science, simulates the results to derive an experimental result
that can be analyzed to present the required advantages of the found solutions. This paper shows the performance
of the heuristics that were utilized to solve optimally the proposed problem. Experimental results showed that,
among 2400 instances only 14.79% needed to apply the branch and bound. The developed heuristics were
capable to yield the optimal solution of 88.25% out of the 2400 used instances. The remaining 11.75% instances
were given a time limit of 1100 s to reach the optimal solution, after that the system is configured to choose
near optimal solutions. Unsolved difficult instances such as the instances of ndp

mu
= {1.6, 2, 3, 3.33, 4, 5} will be

studied in future work. This problem may serve as a solid background to study more complex problems. For
example, the cases when we assign to each allocated budget a penalty if a deadline is exceeded without properly
spending it. In addition, each budget might be subject to a release time after which this budget will be assigned
to another municipality. This problem covers a range of simplified assumptions to real-life scenarios. In this
research, the studied problem is intended to address a subset of municipalities with close requirements. In a
future research works, the heterogeneous requirements municipalities will be considered. Such problems, will be
modeled as parallel uniform machines which is an NP-hard problem.

Appendix A.

Table A.1. Lower bounds detailed results.

ndp mu
L1 L2

AGl Time AGl Time

10
2 0.48 – 0.00 –
3 40.56 – 0.00 –
5 14.38 – 0.00 –

20

2 0.00 – 0.00 –
3 62.40 – 0.00 –
5 0.00 – 0.00 0.001
10 7.72 – 0.00 –

50

2 0.00 – 0.00 –
3 0.00 – 0.00 0.001
5 0.00 – 0.00 0.001
10 0.00 – 0.00 0.002
25 2.11 – 0.00 0.007

100

2 0.00 – 0.00 –
3 0.00 – 0.00 0.001
5 0.00 – 0.00 0.003
10 0.00 – 0.00 0.006

892 M. JEMMALI

Table A.1. continued.

ndp mu
L1 L2

AGl Time AGl Time

15 152.26 – 0.00 0.012
25 0.00 – 0.00 0.022
50 3.28 – 0.00 0.071

300

2 0.00 – 0.00 0.001
3 0.00 – 0.00 0.004
5 0.00 – 0.00 0.007
10 0.00 – 0.00 0.016
15 0.00 – 0.00 0.030
25 0.00 – 0.00 0.069
50 0.00 – 0.00 0.206
100 0.00 – 0.00 0.684

500

2 0.00 – 0.00 0.003
10 0.00 – 0.00 0.023
25 0.00 – 0.00 0.080
50 0.00 – 0.00 0.273
100 1.00 – 0.00 0.872
250 2.66 – 0.00 15.285
300 398.37 – 0.00 11.304

1000

2 0.00 – 0.00 0.004
10 0.00 – 0.00 0.044
25 0.00 – 0.00 0.099
50 0.00 – 0.00 0.363
100 0.00 – 0.00 1.410
250 0.00 – 0.00 9.550
300 117.34 – 0.00 16.906

1500

2 0.00 – 0.00 0.006
10 0.00 – 0.00 0.042
25 0.00 – 0.00 0.134
50 0.00 – 0.00 0.325
100 0.00 – 0.00 1.187
250 0.00 – 0.00 9.748
300 0.00 – 0.00 15.770

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 893

Table A.2. Heuristics detailed results.

ndp mu
NIB U1

cmin U2
cmin NDB BMF RSS

AGu Time AGu Time AGu Time AGu Time AGu Time AGu Time

10

2 10.10 – 0.00 – 0.00 – 43.62 – 6.10 – 0.00 –

3 10.08 – 0.85 – 0.00 0.01 34.85 – 8.04 – 0.04 –

5 0.01 – 0.83 – 0.00 0.01 3.04 – 0.28 – 0.46 –

20

2 3.72 – 0.00 – 0.00 0.00 32.88 – 2.08 – 0.71 –

3 74.10 – 0.00 – 0.00 0.02 157.59 – 44.54 – 0.99 –

5 27.37 – 3.72 – 0.00 0.02 116.33 – 26.20 – 0.99 –

10 0.02 – 2.56 – 0.00 0.03 3.44 – 0.65 – 1.23 –

50

2 3.56 – 0.00 – 0.00 0.02 48.64 – 1.56 0.01 1.06 –

3 186.51 – 0.00 – 0.00 0.20 288.39 – 140.40 – 1.05 –

5 17.16 – 0.00 – 0.00 0.21 147.38 – 17.27 0.01 1.19 –

10 55.56 – 1.95 – 0.00 0.43 295.02 – 59.76 0.01 1.35 –

25 0.01 – 5.26 – 0.00 0.82 6.33 – 1.79 0.01 1.07 –

100

2 0.92 – 0.00 – 0.00 0.05 31.44 – 0.80 0.01 0.82 –

3 64.47 – 0.00 – 0.00 0.21 159.24 – 76.02 – 0.58 –

5 9.97 – 0.00 – 0.00 0.21 173.03 – 10.28 0.02 0.16 –

10 30.15 – 0.00 – 0.00 0.39 232.43 – 38.49 0.02 0.00 –

15 195.27 – 0.12 – 0.00 1.21 508.76 – 339.13 – 0.00 –

25 54.55 – 21.63 – 0.00 1.38 268.48 – 135.48 0.01 0.00 –

50 0.01 – 5.73 – 0.00 1.66 7.50 – 4.57 0.01 0.00 –

300

2 1.44 – 0.00 – 0.00 0.06 45.40 – 1.00 0.02 0.06 –

3 2.46 – 0.00 – 0.00 0.12 105.54 – 1.50 0.04 0.07 –

5 41.88 – 0.00 – 0.00 0.19 193.03 – 41.82 0.04 0.34 –

10 37.40 – 0.00 – 0.00 0.35 361.20 – 47.75 0.05 2.83 –

15 29.43 – 0.15 – 0.00 0.55 316.04 – 45.50 0.05 4.66 –

25 54.37 – 0.00 0.01 0.00 0.90 385.26 – 102.91 0.05 5.92 –

50 110.91 – 7.10 0.01 0.00 1.77 517.04 – 669.05 0.05 6.58 –

100 100.81 – 47.89 0.02 2.44 17.97 412.11 – 499.10 0.05 7.25 –

500

2 1.44 – 0.00 – 0.00 0.07 61.92 – 0.88 0.04 5.22 –

10 61.02 – 0.00 – 0.00 0.34 322.47 – 85.27 0.09 3.92 –

25 70.02 – 0.00 0.01 0.00 0.94 396.84 – 178.71 0.09 3.31 –

50 59.13 – 8.25 0.02 0.00 1.82 401.85 – 234.14 0.10 2.83 –

100 100.84 – 33.85 0.02 0.00 4.57 371.90 – 543.86 0.09 1.90 –

250 0.01 – 11.41 0.05 0.00 9.70 13.37 – 2.84 0.23 1.44 –

300 0.00 – 0.06 0.05 0.00 4.98 1.08 – 0.02 0.29 0.91 –

1000

2 1.64 – 0.00 0.00 0.00 0.09 59.24 – 1.12 0.04 0.19 –

10 88.00 – 0.00 0.01 0.00 0.34 379.13 – 103.34 0.09 0.00 –

25 40.02 – 0.00 0.02 0.00 0.87 395.72 – 93.21 0.10 0.00 –

50 53.88 – 0.00 0.03 0.00 1.92 404.04 – 229.07 0.11 0.00 0.01

100 55.41 – 1.72 0.07 0.00 3.59 364.57 – 285.47 0.14 16.78 0.02

250 49.33 – 91.82 0.11 0.00 16.48 365.89 – 157.39 0.27 39.58 0.06

300 73.15 – 78.45 0.16 0.00 149.69 231.20 – 423.64 0.12 38.84 0.22

1500

2 0.72 – 0.00 0.00 0.00 0.13 47.88 – 0.36 0.07 0.00 –

10 104.75 – 0.00 0.02 0.00 0.41 375.89 – 117.74 0.16 0.00 –

25 26.59 – 0.00 0.03 0.00 0.92 374.01 – 71.70 0.16 0.00 0.01

50 102.08 – 1.01 0.04 0.00 1.84 450.60 – 562.24 0.18 0.00 0.02

100 90.09 – 16.95 0.08 0.00 3.80 376.73 – 761.70 0.22 0.03 0.03

250 142.53 – 176.46 0.20 0.00 8.52 812.52 – 405.65 0.39 0.38 0.10

300 208.13 – 84.87 0.20 0.00 13.82 1163.14 – 5241.13 0.32 21.42 0.13

894 M. JEMMALI

Table A.2. continued.

ndp mu
RSK MLRS MLRK RBα RBβ

AGu Time AGu Time AGu Time AGu Time AGu Time

10
2 0.00 – 0.00 0.03 0.00 2.77 0.14 – 0.00 –
3 0.02 – 0.05 0.03 0.05 3.52 0.54 – 0.00 –
5 0.43 – 0.08 0.03 0.08 4.32 0.84 – 0.00 –

20

2 0.54 – 0.13 0.04 0.13 5.14 2.06 – 0.00 –
3 0.80 – 0.14 0.05 0.14 5.96 3.13 – 0.00 –
5 0.85 – 0.15 0.05 0.15 6.49 3.16 – 0.00 –
10 1.21 – 0.12 0.05 0.12 7.17 2.76 – 0.00 –

50

2 0.89 – 0.09 0.06 0.09 8.14 2.46 – 0.00 –
3 1.05 – 0.04 0.06 0.04 9.00 1.24 – 0.00 –
5 0.86 – 0.03 0.06 0.03 9.88 0.03 – 0.00 –
10 0.83 – 0.02 0.07 0.02 10.89 0.00 – 0.00 –
25 0.45 – 0.00 0.06 0.00 9.45 0.00 – 0.00 –

100

2 0.37 – 0.00 0.05 0.00 7.68 0.00 – 0.00 –
3 0.10 – 0.00 0.04 0.00 6.01 0.00 – 0.00 –
5 0.02 – 0.00 0.03 0.00 4.32 0.00 – 0.00 –
10 0.00 – 0.00 0.02 0.00 2.79 0.00 – 0.00 –
15 0.00 – 0.00 0.03 0.00 3.57 0.03 – 0.00 –
25 0.00 – 0.00 0.05 0.00 4.80 0.60 – 0.03 –
50 0.00 – 0.00 0.07 0.00 6.25 3.27 – 0.75 –

300

2 0.00 – 0.00 0.08 0.00 7.33 4.59 – 0.81 –
3 0.00 – 0.00 0.10 0.00 8.44 4.69 – 0.86 –
5 0.08 – 0.15 0.11 0.15 9.59 5.51 – 1.51 –
10 0.50 – 0.44 0.12 0.35 10.65 6.05 – 2.53 –
15 1.25 – 0.46 0.13 0.40 11.52 4.18 – 2.39 –
25 1.82 – 0.85 0.14 0.79 12.62 4.36 – 3.57 –
50 3.72 – 1.25 0.14 1.14 13.49 5.35 – 4.55 –
100 4.53 – 1.10 0.17 0.99 16.88 4.50 – 3.90 –

500

2 4.49 – 0.83 0.19 0.80 20.82 3.39 – 2.85 –
10 4.40 – 0.81 0.21 0.76 24.25 2.59 – 2.28 –
25 4.29 – 0.42 0.22 0.37 27.03 1.09 – 1.03 –
50 2.56 – 0.02 0.24 0.02 30.04 0.00 – 0.00 0.01
100 1.67 – 0.02 0.20 0.02 24.72 0.00 – 0.00 0.01
250 1.29 – 0.00 0.15 0.00 18.49 0.00 – 0.00 0.01
300 0.63 – 0.00 0.11 0.00 12.73 0.00 – 0.00 0.01

1000

2 0.17 – 0.00 0.07 0.00 7.78 0.00 0.01 0.00 0.01
10 0.00 – 0.00 0.11 0.00 3.28 0.00 0.01 0.00 0.01
25 0.00 – 0.00 0.26 0.00 4.23 0.00 0.01 0.00 0.01
50 0.00 0.04 0.39 18.13 0.39 109.95 45.35 0.37 46.89 0.49
100 1.72 0.09 2.40 34.57 2.40 226.73 50.62 0.47 52.23 0.62
250 91.82 0.13 2.87 150.51 2.90 965.36 47.10 0.78 47.64 1.04
300 78.45 0.19 2.27 1215.05 2.23 7124.98 72.24 0.87 72.24 1.16

1500

2 0.00 – 0.00 0.96 0.00 7.07 0.00 0.41 0.00 0.53
10 0.00 0.02 0.30 3.71 0.30 34.74 98.20 0.45 98.34 0.61
25 0.00 0.04 0.63 8.47 0.63 60.48 20.47 0.53 20.64 0.70
50 1.01 0.06 0.30 17.45 0.30 111.99 96.70 0.62 97.79 0.82
100 16.95 0.09 0.00 35.41 0.00 217.31 81.56 0.76 82.53 1.02
250 176.46 0.23 0.51 80.94 1.98 552.45 139.81 1.21 139.97 1.62
300 84.87 0.24 8.33 129.41 7.76 672.17 198.34 1.09 199.16 1.83

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 895

Table A.3. AGu
l detailed results.

ndp mu AGu
l

10
2 0.00
3 2.60
5 3.66

20

2 0.00
3 0.00
5 0.73
10 18.83

50

2 0.00
3 0.00
5 0.00
10 0.00
25 17.37

100

2 0.00
3 0.00
5 0.00
10 0.00
15 0.00
25 0.00
50 25.81

300

2 0.00
3 0.00
5 0.00
10 0.00
15 0.00
25 0.00
50 0.00
100 7.21

500

2 0.00
10 0.00
25 0.00
50 0.00
100 5.04
250 37.62
300 0.58

1000

2 0.00
10 0.00
25 0.00
50 0.00
100 0.00
250 5.00
300 1.20

1500

2 0.00
10 0.00
25 0.00
50 0.00
100 0.00
250 0.00
300 0.00

896 M. JEMMALI

Table A.4. Exact solution detailed results.

ndp mu
Bg∗max

NU NN Time

10
2 0 1 0.002
3 0 212 0.010
5 0 1293 0.023

20

2 0 1 0.001
3 0 1 0.008
5 9 2 844 103 244.437
10 49 7 873 288 1176.007

50

2 0 1 0.001
3 0 1 0.003
5 0 1 0.002
10 0 1 0.006
25 50 939 275 1200.000

100

2 0 1 0.001
3 0 1 0.003
5 0 1 0.002
10 0 1 0.003
15 0 1 0.411
25 0 1 0.065
50 50 5 854 560 1200.000

300

2 0 1 0.001
3 0 1 0.002
5 0 1 0.003
10 0 1 0.004
15 0 1 0.006
25 0 1 0.011
50 0 1 0.023
100 19 426 440 458.174

500

2 0 1 0.002
10 0 1 0.007
25 0 1 0.019
50 0 1 0.038
100 1 23 549 24.091
250 50 170 428 1200.000
300 50 127 639 1200.000

1000

2 0 1 0.001
10 0 1 0.001
25 0 1 0.00
50 0 1 0.00
100 0 1 0.00
250 0 3345 0.37
300 4 1596 433.20

1500

2 0 1 0.00
10 0 1 0.00
25 0 1 0.00
50 0 1 0.01
100 0 1 0.01
250 0 1 0.22
300 0 1 0.58

AN OPTIMAL SOLUTION FOR THE BUDGETS ASSIGNMENT PROBLEM 897

Acknowledgements. The authors would like to thank the Deanship of Scientific Research at Majmaah University for
supporting this work under Project no. RGP-2019-13.

References

[1] M. Alharbi and M. Jemmali, Algorithms for investment project distribution on regions. Comput. Intell. Neurosci. 2020 (2020)
3607547.

[2] H. Alquhayz, M. Jemmali and M.M. Otoom, Dispatching-rule variants algorithms for used spaces of storage supports. Discrete
Dyn. Nat. Soc. 2020 (2020).

[3] A.C. Alvim and C.C. Ribeiro, A hybrid bin–packing heuristic to multiprocessor scheduling. In: International Workshop on
Experimental and Efficient Algorithms. Springer (2004) 1–13.

[4] K.J. Arrow, Economic Welfare and the Allocation of Resources for Invention. Macmillan Education UK, London (1972) 219–
236.

[5] B.S. Baker, A new proof for the first-fit decreasing bin-packing algorithm. J. Algorithms 6 (1985) 49–70.

[6] M. Dell’Amico and S. Martello, Optimal scheduling of tasks on identical parallel processors. ORSA J. Comput. 7 (1995)
191–200.

[7] M. Haouari and A. Gharbi, Fast lifting procedures for the bin packing problem. Discrete Optim. 2 (2005) 201–218.

[8] M. Haouari and M. Jemmali, Tight bounds for the identical parallel machine-scheduling problem: Part II. Int. Trans. Oper.
Res. 15 (2008) 19–34.

[9] M. Haouari and M. Jemmali, Maximizing the minimum completion time on parallel machines. 4OR 6 (2008) 375–392.

[10] M. Haouari, A. Gharbi and M. Jemmali, Tight bounds for the identical parallel machine scheduling problem. Int. Trans. Oper.
Res. 13 (2006) 529–548.

[11] M. Jemmali, Approximate solutions for the projects revenues assignment problem. Commun. Math. App. 10 (2019) 653–658.

[12] M. Jemmali, Budgets balancing algorithms for the projects assignment. Int. J. Adv. Comput. Sci. App. 10 (2019) 574–578.

[13] M. Jemmali, L.K.B. Melhim, S.O.B. Alharbi and A.S. Bajahzar, Lower bounds for gas turbines aircraft engines. Commun.
Math. App. 10 (2019) 637–642.

[14] M. Jemmali, L.K.B. Melhim and M. Alharbi, Randomized-variants lower bounds for gas turbines aircraft engines. In: World
Congress on Global Optimization. Springer (2019) 949–956.

[15] N. Katoh and T. Ibaraki, Resource Allocation Problems. Springer US, Boston, MA (1999) 905–1006.

[16] H. Kellerer, U. Pferschy and D. Pisinger, Multidimensional knapsack problems. In: Knapsack problems. Springer (2004) 235–
283.

[17] E.L. Lawler, J.K. Lenstra, A.H.R. Kan and D.B. Shmoys, Sequencing and scheduling: algorithms and complexity. In: Vol. 4 of
Handbooks in Operations Research and Management Science (1993) 445–522.

[18] S. Martello, D. Pisinger and P. Toth, Dynamic programming and strong bounds for the 0-1 knapsack problem. Manage. Sci.
45 (1999) 414–424.

[19] R. Walter, M. Wirth and A. Lawrinenko, Improved approaches to the exact solution of the machine covering problem. J.
Scheduling 20 (2017) 147–164.

[20] D. Pisinger, Dynamic programming on the word ram. Algorithmica 35 (2003) 128–145.

[21] B. Xia and Z. Tan, Tighter bounds of the first fit algorithm for the bin-packing problem. Discrete Appl. Math. 158 (2010)
1668–1675.

	Introduction
	Problem description and proprieties
	Mixed Integer linear formulation

	Lower bounds
	Heuristics
	Dispatching rules based-heuristics
	Non-decreasing budget order heuristic (NDB)
	Non-increasing budget order heuristic (NIB)

	Randomized based heuristics
	-Randomized budget heuristic (RB)
	-Randomized budget heuristic (RB)

	Cmin based heuristics
	Budgeting multi-fit based heuristic (BMF)
	Subset-sum based heuristics
	Repeating of solving subset-sum problems heuristic (RSS)
	Most-least-repeating of solving subset-sum problems heuristic (MLRS)

	Knapsack based heuristics
	Repeating of solving knapsack problems heuristic (RSK)
	Most-least-repeating of solving knapsack problems heuristic (MLRK)

	Exact solution
	Experimental results
	Test problems
	Performance assessment

	Conclusions
	
	References

