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A MULTISTAGE STOCHASTIC LOT-SIZING PROBLEM WITH
CANCELLATION AND POSTPONEMENT UNDER UNCERTAIN DEMANDS

Carlos E. Testuri1,∗, Héctor Cancela1 and V́ıctor M. Albornoz2

Abstract. A multistage stochastic capacitated discrete procurement problem with lead times, can-
cellation and postponement is addressed. The problem determines the procurement of a product under
uncertain demand at minimal expected cost during a time horizon. The supply of the product is made
through the purchase of optional distinguishable orders of fixed size with delivery time. Due to the
unveiling of uncertainty over time it is possible to make cancellation and postponement corrective de-
cisions on order procurement. These decisions involve costs and times of implementation. A model of
the problem is formulated as an extension of a discrete capacitated lot-sizing problem under uncertain
demand and lead times through a multi-stage stochastic mixed-integer linear optimization approach.
Valid inequalities are generated, based on a conventional inequalities approach, to tighten the model
formulation. Experiments are performed for several problem instances with different uncertainty infor-
mation structure. Their results allow to conclude that the incorporation of a subset of the generated
inequalities favor the model solution.
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1. Introduction

This work deals with the resolution of a capacitated discrete procurement problem with lead times, cancel-
lation and postponement. The problem determines the expected cost minimization of meeting the uncertain
demand of a product during a discrete time planning horizon. Optional distinguishable orders with an indivisible
amount of the product are available to accomplish the product demand. Each order, with an associated cost
and a delivery time, can be acquired only once on the planning horizon. After covering the product demand in
a period, the remaining acquired quantity is stored, up to a certain capacity, to satisfy demand in the following
periods. The orders have significant delivery times within the planning horizon; so that a considerable amount
of time elapses between the purchase decision and the moment when the product is received. As the product
uncertain demand is revealed over time, it may happen that an acquired order not yet received is no longer
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necessary. In such case, it is possible to take corrective decisions: to cancel the order acquisition or postpone
the order delivery. Both corrective decisions have associated costs and minimum execution times with regard to
the order delivery time.

The motivation of the present work is a real problem arising in an oil company that deals with fuel acquisition
under contractual and logistic conditions for electric power generation. The demand that the company faces is
uncertain, given that thermal electricity generation, as a complement in an electrical system, is highly dependent
on renewable sources [23, 29]. While the particular situation of the company focuses on fuel procurement for
thermal generation, this paper discusses the formulation and solution of a more general variant of the problem
core, which can represent situations in which a product procurement is carried out by selecting distinguishable
discrete supply options in the context of uncertain demand.

The uncapacitated lot-sizing problem formulated by Wagner and Whitin [27] and its variant with variable
capacity and discrete sizing of Nemhauser and Wolsey [19] is used as a baseline to formulate the problem of
this work. For the deterministic uncapacitated and continuous lot-sizing case, Wagner and Whitin [27] and
Wagelmans et al. [26] showed that the problem has efficient resolution through dynamic programming applied
to the original mixed-integer formulation. For this case, there are also formulations with known feasible regions
convex hull: the formulation on extended facility location of Krarup and Bilde [16] and the formulation on (`,S)
valid inequalities of Barany et al. [3]. Moreover Bitran and Yanasse [5] established that the lot-sizing problem
with discrete sizing is a generalization of the binary knapsack problem and that it belongs to the NP-hard class
of complexity. Several authors propose heuristics to solve the capacitated variant of the problem [1,7, 22].

In the event that data of instances are uncertain the problem may be modeled by stochastic optimization
[4]. Ahmed et al. [2] established an extended formulation of the stochastic continuous uncapacitated problem,
and they proved that for the stochastic case the Wagner–Whitin conditions are not preserved. Guan et al. [11]
showed that the (`,S) inequalities are valid for the stochastic continuous formulation, and they proposed an
extension that allows to determine the facets of the convex hull.

Delivery time of the lots is modeled by a deterministic continuous uncapacitated lot-sizing problem. Lee
et al. [17] presented a formulation with a time interval of demand fulfillment, and they proposed a dynamic
programming based efficient solution. Brahimi et al. [6] proposed formulations with delivery time where the
lots can be distinguishable or not. For the distinguishable case and the undistinguishable case when the lots’
delivery intervals are not inclusive, the authors proposed a dynamic programming efficient algorithm. Tight
extended formulations of these variants were proposed by Wolsey [28]. For the stochastic case, Huang and
Küçükyavuz [14] established that the problem with random lead times and non-overlapping delivery intervals
can be efficiently solved. Later, Jiang and Guan [15] established a quadratic polinomial time algorithm for
this variant. Liu and Küçükyavuz [18] proposed valid inequalities for the static probabilistic lot-sizing problem.
Hosseini and MirHassani [13] generated valid inequalities for tightening a refueling station location model. A
stronger formulation based on valid inequalities for simple assembly line balancing was proposed by Ritt and
Costa [20].

Testuri et al. [24] present a specific application of the proposed problem, which details the complexity of
its resolution and motivates the present work. In that work, the authors show the validity of a stochastic
optimization model of the problem based on the assessment of the classic VSS and EVPI metrics for some
problem instances. The formulation of the problem was presented in a conference paper [25], but it is detailed
again in this work to facilitate the deduction of the inequalities introduced.

In the present work the problem under study is modeled by a new extension of the stochastic capacitated
discrete lot-sizing problem with corrective actions and lead times. The model is formulated through a multi-stage
stochastic mixed-integer linear optimization approach. The formulation is tightened by novel valid inequalities
derived of the conventional (`,S) inequalities approach. Computational experiments show that the derived
inequalities are prominent to improve the resolution of the model.

This work is organized according to the following sections. An algebraic model of the problem is presented in
Section 2. In Section 3 valid inequalities for the model formulation are presented. Computational experiments
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are established to determine the utility of the generated valid inequalities in Section 4. Finally, conclusions and
future work are discussed in Section 5.

2. A multistage stochastic model

The model formulation is based on a mathematical programming approach. Basic entities represented by
index sets are described as:

T periods, {1, . . . , ~} (ordered set),
A already acquired orders,
F possible (future) orders to be acquired,
O orders, A ∪ F ,
N nodes of the scenario tree.

The planning time is represented by the set T of discrete time periods, from initial period 1 up to horizon period
~. The set O of orders is partitioned in two sets: the set A of already acquired orders – orders established in
previous executions of the model – that are pending reception, and the set F of possible (future) orders to be
acquired from now on. Acquisition decisions are made on orders in set F , and cancellation or postponement
decisions are taken on orders in set A.

The uncertain demand is modeled by a discrete-time stochastic process indexed in the planning periods. A
finite probability space is used to define the stochastic process. The first period demand is deterministic, and the
demand of the remaining period is discrete random with known probability functions. The process information
structure can be modeled by an arborescence structure called tree of scenarios [21]. The structure is a directed
rooted tree, with the root node in period t = 1 and with leaf nodes in period t = ~ (identifying itself the
scenarios).

The state of the process is described by a node of the scenario tree, and it is identified by a index n in a set
of nodes N . The root node of the tree, denoted by 1, takes place on period t = 1.

Set-valued functions on the nodes of the scenario tree are described as:

t(n) period corresponding to node n ∈ N ,
p(n) immediate time predecessor node of node n ∈ N ; the predecessor of the root node is defined as the

auxiliary node 0, such that 0 /∈ N ,
p(n, k) k-th time predecessor of node n ∈ N ; defined as p(n, k) := p(p(n, k − 1)) for k = 2, . . . , t(n) − 1, such

that p(n, 1) := p(n),
P (n) sequence of nodes on the path from the root node to node n ∈ N ; defined as

(
r = p(n, t(n)−1), p(n, t(n)−

2), . . . , p(n, 1), n
)
,

S(n) set of nodes successors of node n ∈ N ; defined as S(n) := {n′ ∈ N, k = 1, . . . , ~− t(n)|n = p(n′, k)},
L set of leaf nodes of the tree; defined as L := {n ∈ N |t(n) = ~}.

The parameters of the model are:

dn demand at node n ∈ N ,
πn probability of event node n ∈ N ,
s0 initial inventory level,
s, s minimum and maximum storage capacities by period,
τ i period in which already acquired order i ∈ A is received,
qi size of order i ∈ O,
γi delivery time of order i ∈ F , such that 0 ≤ γi ≤ ~− 1,
δi cancellation minimum time of already acquired order i ∈ A, such that 0 ≤ δi ≤ τ i − 1,
εi postponement minimum time of already acquired order i ∈ A, such that 0 ≤ εi ≤ ~− τ i,
cai unit acquisition cost of order i ∈ O,
cci unit cancellation cost of order i ∈ O,
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cpi unit postponement cost of order i ∈ O,
ht unit storage cost in period t ∈ T ,
at amount of already acquired orders received in period t ∈ T .

In the stochastic setting the product demand at each node n is defined as dn. The probability of the state
on each node n is denoted as πn, such that πn ≥ 0 and

∑
n∈N |t(n)=t πn = 1, for each t ∈ T . The demand

distribution for each period t ∈ T is represented by (dn, πn) such that n ∈ N and t(n) = t. Due to storage
constraints, the inventory of the product at the end of each period is restricted between a minimum size, s, and
a maximum size, s, and there is an initial inventory size, s0, at the beginning of the planning horizon.

The reception period τ i of an already acquired order i is established in previous acquisitions. Each order i has
a given size, qi. Decisions on each order have a delay time of achievement of its results measured in periods. The
delivery time of order i, γi, establishes the elapsed time in periods between the period of the acquisition decision
and the period of arrival of the order. The cancellation minimum time of order i, δi, determines the minimum
number of periods before the delivery period in which the order may be cancelled. The postponement minimum
time of order i, εi, determines the minimum number of periods after the delivery period in which the posponed
order may be received. The fulfilment period of decisions on acquisition, cancellation and postponement must
take place within the planning horizon.

The decisions to acquire, cancel and postpone order i incur in unit costs cai, cci and cpi, respectively.
Associated to each period t there is a unit storage cost ht. The sum of the units of the orders that are received
in each period determine the already acquired amount as

at :=
∑

{i∈A|τ i=t}

qi, t ∈ T, (2.1)

this is an auxiliary summary parameter.
In order to facilitate the formulation, derived subsets of the sets of nodes and periods that are indexed in

orders are established as

N i
γ nodes where order i can be acquired, {n ∈ N |t(n) ≤ ~− γi},

N i
δ nodes where order i can be cancelled and postponed, {n ∈ N |t(n) ≤ τ i − δi},
T iε periods during which the order i ∈ A can be postponed, {t ∈ T |t ≥ τ i + εi}.

These subsets abbreviate the denomination of nodes where, for each order i, it is possible to acquire it, N i
γ ,

and where it is possible to cancel and postpone it, N i
δ. In addition, subsets of periods to where it is possible to

postpone each order i are established, T iε . The subscripts of this subsets are part of their denomination.
In the stochastic model all decisions depend on the nodes of the tree according to the following definitions of

the variables. There are binary variables associated with decisions on order i taken at node n for acquisition,
vin, cancellation, xin, and postponement zint towards period t. The postponement of an already acquired order
involves two sequential decisions: one on the period when the decision is made and the other of the period where
it is postponed. In order to reduce the number of variables by not establishing a specific variable to determine
the time of the postponement, the period when the decision is made is modeled as a cancellation decision.
There are three continuous auxiliary variables that consolidate the units, at each node n, by type of decision:
sn integrates the inventory level at the end of the period of the node, un unifies the acquired units incoming at
the node, wn unites the cancelled units outgoing of the node, and yn combines the postponed units incoming
at the node.

The indexes of periods for already acquired units and storage unit cost parameters are stated on the temporal
fulfillment of their associated node n by t(n).

Based on preceding definitions of index sets, parameters and variables (and assuming a risk-neutral setting),
a multi-stage stochastic mixed-integer linear optimization formulation of the multi-stage stochastic lot-sizing



A MULTISTAGE STOCHASTIC LOT-SIZING PROBLEM 865

problem (MSLP) is

min
∑
n∈N

πn

 ∑
{i∈F |n∈Niγ}

caiqivin (2.2)

+
∑

{i∈A|n∈Niδ}

(
cci − cai

)
qixin (2.3)

+
∑

{i∈A,t∈T iε |n∈Niδ}

(
cpi + cai − cci

)
qizint (2.4)

+ ht(n)sn

 , (2.5)

s.t.
sp(n) + at(n) + un + yn = dn + wn + sn, n ∈ N, (2.6)
s ≤ sn ≤ s, n ∈ N, (2.7)

un =
∑

{i∈F |t(n)≥γi+1}

qivip(n,γi), n ∈ N, (2.8)

∑
n′∈P (n)

vin′ ≤ 1, i ∈ F, n ∈ N, t(n) = ~− γi, (2.9)

wn =
∑

{i∈A|t(n)=τ i}

qi

 ∑
{n′∈P (n)|t(n′)≤τ i−δi}

xin′

 , n ∈ N, (2.10)

∑
n′∈P (n)

xin′ ≤ 1, i ∈ A,n ∈ N, t(n) = τ i − δi, (2.11)

xin ≥ zint, i ∈ A,n ∈ N i
δ, t ∈ T iε , (2.12)

yn =
∑

{i∈A|t(n)≥τ i+εi}

qi

 ∑
{n′∈P (n)∩Niδ}

zin′,t(n)

 , n ∈ N, (2.13)

∑
{n′∈P (n),t∈T iε}

zin′t ≤ 1, i ∈ A,n ∈ N i
δ, (2.14)

sn, un, wn, yn ≥ 0, n ∈ N, (2.15)
vin ∈ {0, 1}, i ∈ F, n ∈ N i

γ , (2.16)

xin, z
i
nt ∈ {0, 1}, i ∈ A,n ∈ N i

δ, t ∈ T iε . (2.17)

The (MSLP) formulation minimizes the expectation of the acquisition costs (2.2), the cancellation costs less
the acquisition costs in case of cancellation (2.3), the postponement costs plus the acquisition costs minus the
cancellation costs (2.4) – since a postponement is modeled in conjunction with a cancellation – and the storage
costs (2.5).

The main requirement stated by constraints (2.6) is to satisfy demand while maintaining the inventory
balance with contributions of the product previously stored, what was already acquired, what is acquired, and
what is cancelled, postponed and remains available in storage for each node. Constraints (2.7) determine the
lower and upper storage bounds at each node. The units of acquired product that are received at a node are
established by the units of previously acquired orders that deliver at the period of the node according to (2.8).
Constraints (2.9) state that for each order and each node where it is possible to acquire it, the order is acquired
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at most once on a single node on the path from the root to the node. Constraints (2.10) establish for each node
under consideration the cancelled units of already acquired orders that outgo from the node. This is obtained by
the sum of the cancellations of already acquired orders that arrive on the period of the node under consideration.
The cancellation of an already acquired order can take place on the nodes – where it is possible to cancel it –
in the path from the root node to the node in consideration. Constraints (2.11) establish that for each order
and each node where it is possible to cancel it, the order is cancelled at most once on a single node on the
path from the root to the node. Constraints (2.12) state that only cancelled orders may be postponed, since the
postponement of an order is modeled along with its cancellation. Constraints (2.13) state for each node under
consideration the postponed units of already acquired orders that enter the node. This is obtained by the sum of
the postponement of already acquired orders that are postponed to the period of the node under consideration.
Constraints (2.14) establish that for each order and each node where is possible take a postponement decision
of it, the order is postponed at most once on a single node on the path from the root to the node, for periods
to where it is possible to postpone the order. Constraints (2.15)–(2.17) state the domain of the variables. The
set of feasible solutions of (MSLP) is denoted by XMSLP.

3. MSLP valid inequalities

The problem belongs to the time complexity class NP-hard, since it is an extension of the discrete lot-sizing
problem. Therefore, no description of the convex hull of XMSLP is known. One option used to strengthen the
formulation is to incorporate specific valid inequalities derived from it. These inequalities may improve the
solvers’ capabilities to determine solutions.

From the classic (`,S) valid inequalities formulation of the deterministic uncapacitated lot-sizing problem
of Barany et al. [3], valid inequalities for XMSLP are derived considering its stochastic case extension of Guan
et al. [11]. Two sets of valid inequalities are established for sequence of nodes on the path from the root node
to nodes in the scenario tree.

Proposition 3.1. Let ` ∈ N and ` ∈ S(n) the inequalities

un ≤ dn`β(n) + s`, (3.1)
un ≤ dn`β(n) + wn` + s`, (3.2)

where β(n) :=
∑
{i∈F |t(n)≥γi+1} v

i
p(n,γi), are valid for XMSLP.

Proof. Proof of (3.1).
From equations (2.10) and inequalities (2.11) it is satisfied that

wn ≤
∑

{i∈A|t(n)=τ i}

qi, n ∈ N.

From these inequalities and definition of at (cf. (2.1)) it holds that

wn ≤ at(n), n ∈ N. (3.3)

Consider the material balance equation (2.6) of model (MSLP), for all n ∈ N

sp(n) + at(n) + un + yn = dn + wn + sn,

given that sp(n), at(n), yn ≥ 0 and inequalities (3.3) it follows that

un ≤ dn + sn. (3.4)
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From inequalities (3.4) the following valid inequalities can be established

un ≤ dnβ(n) + sn, for all n ∈ N, (3.5)

since for all n ∈ N , if β(n) = 0, then from (2.8) un =
∑
{i∈F |t(n)≥γi+1} q

ivip(n,γi) = 0. Otherwise, if β(n) ≥ 1,
then (3.5) holds.

In general, from the sum of material balance equation (2.6) between n ∈ N and ` ∈ S(n), the following
condition holds

un ≤ dn` + s`, (3.6)

where dn` :=
∑
n′∈P (`)\P (p(n)) dn′ is the accumulated demand in the nodes in the path from n to `.

From (3.6) the valid inequalities (3.1) can be established, similar to the provision for (3.5).
The aggregated valid inequalities (3.8) are obtained by adding the inequalities (3.1) for each subset of the

set of nodes of the path from the root node to the ` node.
Proof of (3.2).

Given the material balance equation (2.6) of model (MSLP), for all n ∈ N

sp(n) + at(n) + un + yn = dn + wn + sn,

given that sp(n), at(n), yn ≥ 0 it follows that

un ≤ dn + wn + sn. (3.7)

From inequalities (3.7) and following similar provisions than the previous case the valid inequalities (3.2) can
be established.

The aggregated valid inequalities (3.9) are obtained by adding the inequalities (3.2) for each subset of the
set of nodes of the path from the root node to the ` node. �

Theorem 3.2. Let ` ∈ N and S ⊆ P (`) then the MSLP-(`,S) inequalities

(i)
∑
n∈S

un ≤
∑
n∈S

dn`β(n) + s`, (3.8)

(ii)
∑
n∈S

un ≤
∑
n∈S

dn`β(n) +
∑
n∈S

wn` + s`, (3.9)

are valid for XMSLP.

Proof. The proof of (3.8) is based on the deterministic case presented by Barany et al. [3]. Given a point
(s, v, x, z) ∈ XMSLP there are two cases.

(1) If β(n) =
∑
{i∈F |t(n)≥γi+1} v

i
p(n,γi) = 0 for all n ∈ S, then

un =
∑
{i∈F |t(n)≥γi+1} q

ivip(n,γi) = 0 for all n ∈ S and s` ≥ 0, therefore the inequality holds.
(2) Otherwise, there exists n ∈ S such that β(n) = 1. Let n′ = argmin{t(n)|n ∈ N, β(n) = 1}. Then β(n) = 0

and un = 0 for all n ∈ S ∩P (p(n′)). Thus
∑
n∈S un ≤

∑
n∈P (`)\P (p(n′)) un ≤ dn′` + s` ≤

∑
n∈S dn`β(n) + s`.

The proof of (3.9) is similar considering that
∑
n∈S wn` ≥ 0. �

Lemma 3.3. The MSLP-(`,S) inequalities can be written alternatively as

(i)
∑

n∈P (`)\S

un +
∑
n∈S

dn`β(n) +
∑

n∈P (`)

(yn − wn)
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Table 1. Size of scenario tree structures.

Arity (g) Horizon (~) Scenarios (|L|) Nodes (|N |)

2 5 16 31
2 6 32 63
2 7 64 127
3 5 81 121
3 6 243 364
3 7 729 1093

≥ d1` −
∑

n∈P (`)

at(n) − s0, for all ` ∈ N,S ⊆ P (`). (3.10)

(ii)
∑

n∈P (`)\S

un +
∑
n∈S

dn`β(n) +
∑

n∈P (`)

(yn − wn) +
∑
n∈S

wn`

≥ d1` −
∑

n∈P (`)

at(n) − s0, for all ` ∈ N,S ⊆ P (`). (3.11)

Proof. The sum of equations (2.6), for all n ∈ P (`) of a given ` ∈ N , results in

s0 +
∑

n∈P (`)

at(n) +
∑

n∈P (`)

yn +
∑

n∈P (`)

un = d1` + w1` + s`,

from where it is possible to solve for s` and substitute it in (3.8) and (3.9), obtaining an alternative repre-
sentation of the valid inequalities without inventory variables, denoted as MSLP-(`,S)-i and MSLP-(`,S)-ii,
respectively. �

The formulation variants in which the inequalities (3.10) and (3.11) are added to (MSLP) are called (MSLP-
(`,S)-i) and (MSLP-(`,S)-ii), respectively.

4. Numerical results

A series of computational experiments and their results for the solution of the (MSLP) stochastic formulation
and its variants are presented. The section describes experiments to determine the value of information and
solution of the stochastic formulation. It outlines the experimentation performed to determine the performance
of formulations derived from valid inequalities.

The computational effect of selecting a subset of the MSLP-(`,S) inequalities of the formulation variants is
explored. Specially, the (MSLP) formulation and its two variants, where the set S is fixed with the root node,
are tested over a collection of instances, checking the quality of the obtained solutions and the computational
effort invested in obtaining them.

The collection of instances is based on six scenario tree structures founded on rooted perfect directed trees.
Each tree structure is determined by the number of periods of the planning horizon and the number of immediate
time successors of each node (tree arity) as depicted in Table 1. Each tree structure with arity g and time horizon
~ contains g~−1 scenarios and (g~ − 1)/(g − 1) nodes.

A distribution of orders by quantity is associated to each tree structure. Each distribution of orders by
quantity (|O|) is identified by the sum of numbers of already acquired orders (|A|) and possible orders to be
acquired (|F |), as shown in column labelled “Orders” in Table 2. The 3-tuple 〈arity, horizon, distribution of
orders〉 identifies table rows, denominated as categories of data instances. The table depicts, for each category,
the number of constraints (`,S) inequalities, variables and binary variables.
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Table 2. Size of instance categories defined by scenario tree structure and order distribution.

Arity Horizon Orders [|O| (|A| + |F |)] Variables (Binary) Constraints (`,S)-inequalities

2 5 10 (2 + 8) 249 (124) 225 31
2 6 12 (3 + 9) 549 (296) 480 63
2 7 14 (3 + 11) 1223 (714) 1012 127
3 5 10 (3 + 7) 809 (324) 827 121
3 6 12 (4 + 8) 2485 (1028) 2542 364
3 7 14 (4 + 10) 8091 (3718) 7987 1093

Table 3. Average results of 30 instances of formulation (MSLP) by instance category.

g ~ |O| Time-mean (s) Time-median (s) MIP-gap (%) Nodes Cuts LP-gap (%)

2 5 10 1.60 0.87 0 15 261 159 10.31
2 6 12 27.61 19.53 0 111 228 473 11.25
2 7 14a 868.58 900.80 0.73 2 752 608 855 9.89
3 5 10 21.99 12.61 0 42 727 444 12.40
3 6 12b 821.46 900.39 2.86 868 850 1797 19.69
3 7 14c 900.20 900.14 5.81 46 457 2031 24.43

Notes. a28 of 30 instances reach the 900 s time limit. b27 of 30 instances reach the 900 s time limit. cAll instances reach
the 900 s time limit.

A distribution of orders by quantity is associated to each tree structure. Each distribution of orders by
quantity (|O|) is identified by the sum of numbers of already acquired orders (|A|) and possible orders to be
acquired (|F |), as shown in column labelled “Orders” in Table 2. The 3-uple 〈arity, horizon, distribution of
orders〉 identifies table rows, denominated as categories of data instances. The table depicts, for each category,
the numbers of variables, binary variables, constraints, and (`,S) inequalities.

For each of the six instance categories, thirty data instances were randomly generated, adding up 180
instances. The product demand for each node is evenly distributed, dn ∼ U [10, 50]. For each scenario, identified
as leaf node n ∈ L, a probability of its state πn is established from a normalized Beta(α = 2, β = 2) distribution.
The probability of the remaining nodes is obtained, backwards from the leaf nodes towards the root node, as
the sum of the probabilities of their corresponding immediate successor nodes. Each instance has an initial
storage, s0 = 20, and a lower and an upper general storage bounds, s = 0 and s = 80, respectively. Each already
acquired order i ∈ A has delivery period τ i = 1 or 2 with equal probability. Each order i ∈ O has delivery time
γi = 1, cancellation minimum time δi = 1 and postponement minimum time εi = 1. Also, each order i ∈ O has
an uniformly distributed size, qi ∼ U [10, 50], and there are costs evenly distributed according to the operations
of acquisition, cai ∼ U [150, 250], cancellation, cci ∼ U [30, 50], and postponement, cpi ∼ U [5, 12]. Finally, the
unit storage cost at each period t is ht = 1.

The computational algebraic coding of the stochastic model was carried out by using AMPL [10]. The branch
and cut solver of GUROBI 6.5 [12] was used for solving the formulation instances. The calculations were
performed on an Intel Core i7 5960X 3.5 GHz computer with 20 MiB cache and 64 GiB RAM, operating with
CentOS-7 Linux system.

The instances of the original formulation and its variants were solved up to either no gap between the objective
function and its lower bound, or a time limit of 900 s. The instances average results of the original model and its
variants, grouped by instance category, are summarized in Tables 3–5, respectively for formulations (MSLP),
(MSLP-(`,S)-i) and (MSLP-(`,S)-ii).
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Table 4. Average results of 30 instances of formulation (MSLP-(`,S)-i) by instance category.

g ~ |O| Time-mean (s) Time-median (s) MIP-gap (%) Nodes Cuts LP-gap (%)

2 5 10 0.67 0.36 0 3835 108 7.48
2 6 12 17.65 6.10 0 61 852 431 9.51
2 7 14a 542.96 727.28 0.48 1 311 339 1218 7.01
3 5 10 7.94 3.17 0 18 532 318 9.74
3 6 12b 728.13 900.23 2.46 495 200 2211 17.26
3 7 14c 900.32 900.16 7.15 55 149 2048 26.08

Notes. a15 of 30 instances reach the 900 s time limit. b22 of 30 instances reach the 900 s time limit. cAll instances reach
the 900 s time limit.

Table 5. Average results of 30 instances of formulation (MSLP-(`,S)-ii) by instance category.

g ~ |O| Time-mean (s) Time-median (s) MIP-gap (%) Nodes Cuts LP-gap (%)

2 5 10 1.13 0.88 0 11 346 159 9.51
2 6 12 18.19 12.78 0 56 467 483 11.00
2 7 14a 743.11 900.68 0.56 1 766 353 1349 8.89
3 5 10 18.13 5.81 0 30 371 476 11.77
3 6 12b 819.11 900.32 2.46 593 253 2387 19.47
3 7 14c 900.27 900.17 6.52 39 807 1712 25.18

Notes. a23 of 30 instances reach the 900 s time limit. b27 of 30 instances reach the 900 s time limit. cAll instances reach
the 900 s time limit.

These summary tables show, for each instance category depicted by columns labeled g, ~ and |O|, average
results of the 30 instances of the model (MSLP) and its variants (MSLP-(`,S)-i) and (MSLP-(`,S)-ii). The
elapsed time results by instance category: mean and median solver elapsed time are provided at columns “Time-
mean” and “Time-median”, respectively. The solver mean relative mixed-integer optimization gap for instances
that reach the time limit of 900 s is depicted at column “MIP-gap (%)”. The mean number of nodes of solver
branch and cut method is provided at column “Nodes”. The mean number of cuts added by solver’s branch
and cut method is provided by column “Cuts”. The mean relative gap of the best objective with respect to
the corresponding one under linear optimization relaxation is provided at column “LP-gap (%)”. The median
elapsed time is shown as a summary statistic since most of the instance categories present outliers for the metric.
Due that most of the metrics are bounded from below, the median tends to be smaller than the mean. The
types of cuts added by the solver are by descending frequency of occurrence: mixed integer rounding, flow cover,
Gomory passes, implied bound, mod-k, zero-half, generalized upper bound cover, implied bound, and cover.
There are almost no cases of the following cut types: strong Chvátal–Gomory, infinity proof, network, and lift
and project. The distribution of cut type frequency of the original formulation and its variants are similar.

The results of formulation (MSLP-(`,S)-i) are better than those of formulation (MSLP) except for instance
category (3, 7, 14) that is equally hard for both. Formulation (MSLP-(`,S)-i) has smaller mean values than
formulation (MSLP) for the remaining instance categories. For all instance categories where some of its instances
reach the 900 s time limit, the formulation (MSLP-(`,S)-i) obtains a lower or equal number of these instances
and a lower MIP-gap average than formulation (MSLP). Specifically in the case of instance category (2, 7, 14),
while formulation (MSLP) is solved to optimality for two instances in the allotted time, formulation (MSLP-
(`,S)-i) is solved to optimality for 15 instances. On the other hand, formulation (MSLP-(`,S)-ii) presents mixed
results with respect to formulation (MSLP) depending on instance categories, and overall worse results than
formulation (MSLP-(`,S)-i).
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Table 6. Risk neutral (expected) objective value and scenario’s objective values by percentiles
of one instance of formulation (MSLP) by instance category.

g ~ |O| Objective 0% 25% 50% 75% 100%

2 5 10 16 117 9308 13 950 17 037 19 123 20 563
2 6 12 8092 3735 7062 8262 10 886 13 288
2 7 14a 15 366 5295 12 557 16 660 18 865 22 604
3 5 10 17 109 9898 12 882 15 476 21 840 27 815
3 6 12a 6328 117 3224 6435 9453 12 811
3 7 14a 11 492 3180 7764 11 734 14 652 22 143

Notes. aThe instance reaches the 900 s time limit.

A preliminary analysis of the objective value risk is performed for an instance of formulation (MSLP) by
each instance category. Table 6 shows (MSLP)’s risk neutral objective value and its associated objective values
of scenarios for probability distribution percentiles close to values 0, 25, 50, 75 and 100.

For the different categories, it can be appreciated that there is a wide distribution of the objective value with
respect to the risk neutral (expected) objective. In many cases, it may be the case that the decision makers are
particularly interested in avoiding extremely bad results, even if they occur with low probability. The variability
in the results, and particularly the results of the worst scenarios, show that an alternative can be to employ
a risk averse objective function, which can result in less variability in the worst cases (in tradeoff, admitting
some impairment in the mean results). Future work could explore the effectiveness of those approaches for the
problem under study.

5. Conclusions

A uncertain demand procurement problem with lead times is addressed by a stochastic multi-stage capac-
itated discrete lot-sizing model. Decisions on procurement, cancellation and postponement of product orders
are modeled with delay time. The information uncertain structure is modelled by a discrete time stochastic
process with finite probability, outlined in a scenario tree. The model is formulated by stochastic mixed-integer
optimization with entities indexed by nodes of the scenario tree. The tree event when decisions on procurement,
cancellation and postponement of product orders are effective is modelled by a function of parameters. Two
classes of valid inequalities, based in the (`,S) inequalities approach, were generated to tighten the formulation.

Computational experiments were performed for several instances of six tree structures and order distributions
of different sizes. All of the experiments were solved at optimum for the structures of small and medium sized
instance categories. The (MSLP-(`,S)-i) formulation shows improved performance over the (MSLP) original
formulation for execution time, MIP-gap, number of branch and bound nodes, and number of solver cuts.
The experimental results show the interest of the (MSLP-(`,S)-i) formulation, which can be used to solve
larger instances in shorter computational time. As future work, the development of reduction and separation
algorithms, and the study of formulations that combine the derived (`,S) valid inequalities for different node
paths in the scenario tree are being considered.

The formulation presented in this work is risk neutral; the objective function is an expected cost value, which
can hide the variability of the objective function in the different scenarios. Of particular concern can be the case
of “black swan” scenarios (i.e., scenarios with a small probability of occurring and a very high total cost), which
can motivate employing risk averse measures. We consider this as an important line of research for future work;
in particular, it would be interesting to experiment with time-consistent risk measures as Expected Conditional
Value-at-Risk [8] and Expected Conditional Stochastic Dominance [9].
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