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SECOND-ORDER EFFICIENT OPTIMALITY CONDITIONS FOR SET-VALUED
VECTOR OPTIMIZATION IN TERMS OF ASYMPTOTIC CONTINGENT

EPIDERIVATIVES ∗

Nguyen Minh Tung∗∗

Abstract. We propose a generalized second-order asymptotic contingent epiderivative of a set-valued
mapping, study its properties, as well as relations to some second-order contingent epiderivatives,
and sufficient conditions for its existence. Then, using these epiderivatives, we investigate set-valued
optimization problems with generalized inequality constraints. Both second-order necessary conditions
and sufficient conditions for optimality of the Karush–Kuhn–Tucker type are established under the
second-order constraint qualification. An application to Mond–Weir and Wolfe duality schemes is also
presented. Some remarks and examples are provided to illustrate our results.
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1. Introduction

Optimality conditions play an important role in both theory and numerical methods in optimization.
First-order conditions have been developed for many decades and now the research outcomes are very rich.
Second-order optimality conditions have also attracted strong attention since they refine the first-order ones by
second-order information and are much helpful to recognize optimal solutions as well as to design numerical
algorithms for computing them. For second-order conditions for (scalar and vector) single-valued problems, see,
e.g. [8, 13,20,21,24,26,27,35] and the references therein.

In the last several decades, set-valued optimization problems have become more attractive because they can
be applicable for a wide range of practical situations and many advanced mathematical tools can be invoked
for the study. Many generalized derivatives have been proposed and applied to investigate optimality conditions
for nonsmooth problems. There are two main types of optimality conditions. Conditions of the primal form
are expressed as the disjointedness of sets approximating the data of the optimization problem and sets of
“better” directions of the objective and feasible directions of the constraints. Conditions of the dual form
are represented by multiplier rules of the Fritz John or Karush–Kuhn–Tucker (KKT) type. For first-order
considerations, Aubin [2] proposed a concept of a contingent derivative for set-valued maps, which was used to
establish Fritz John multiplier rules in Corley [9] and followed by many papers. Jahn and Rauh [18] introduced
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a notion of a contingent epiderivative, which is an extension of the directional derivative, but it is a single
map and its existence still remains a difficult problem. To overcome this difficulty, Chen and Jahn [6] proposed
a generalized contingent epiderivative of a set-valued map and applied it to obtain primal-form optimality
conditions in [6, 18] and KKT multiplier rules in [17]. Since minimization is more closely related to epigraphs
than to graphs, these types of epiderivatives have advantages over the corresponding types of derivatives based
on graphs. By using contingent epiderivatives, Götz and Jahn in [12] obtained a first-order Karush–Kuhn–
Tucker (KKT) necessary optimality condition. With the well-known Dubovitski–Milutin approach, Issac and
Khan in [15] established a multiplier rule for set-valued optimization with generalized inequality constraints.
For the first-order optimality conditions, another fruitful approach in set-valued optimization is the dual space
approach initiated by Mordukhovich (see [34,45]).

The second-order optimality conditions for set-valued optimization take in the literature a place much smaller
than that of the first-order ones. Let us mention the results related to the present paper. In [11], Durea employed
second-order contingent derivatives to establish primal-form conditions. In [19], Jahn et al. proposed a notion of
generalized second-order contingent epiderivative and applied it to obtain primal-form optimality conditions for
problems subject to geometric constraints (set constraints). It is worth noting that a second-order contingent
set is in general not a cone and nonconvex. Therefore the corresponding second-order contingent derivative
and epiderivative are not convenient tools in some cases. To improve the situation, by using a second-order
composed set, Li et al. proposed a second-order composed contingent epiderivative in [32] and a generalized
second-order composed contingent derivative in [46] and applied them to problems with set constraints in
[32] to get primal-form conditions and to problems with generalized inequality constraints in [46] to obtain
KKT rules. By using the second-order contingent derivative, Khanh et al. [28] established some second-order
KKK conditions for a set-valued optimization problem subject to generalized inequality constraints. In terms of
second-order asymptotic contingent derivatives, in [25] Khan and Tammer proved second-order multiplier rules,
following the Dubovitskii-Milutin approach. As far as we know, very few papers apply asymptotic derivatives
in set-valued optimization.

Motivated by the above observations, in this paper by using second-order asymptotic contingent cones, we
propose a concept of a generalized second-order asymptotic contingent epiderivative for a set-valued mapping.
We discuss its properties as well as its relations to known generalized second-order contingent epiderivatives.
Under standard assumptions, sufficient conditions are established for the existence of generalized second-order
asymptotic contingent epiderivatives. Furthermore, by employing the free disposal condition, another exis-
tence theorem is also obtained. Using generalized second-order asymptotic contingent epiderivatives, we acquire
second-order KKT multiplier rules under qualification conditions of the Kurcyusz–Robinson–Zowe (KRZ) type
for a set-valued optimization problem subjected to a generalized inequality constraints, and compare these
qualification conditions with some other existing ones. Note that dual-form optimality conditions expressed by
multiplier rules are more useful than primal-form conditions, specially in applications and numerical methods.
Moreover, KKT multiplier rules are more significant than Fritz John ones because they contain explicitely
nonzero multipliers of the objectives and hence express optimality properties, not only extremal properties of
the constraints as Fritz John rules do when the objective multiplier is zero. Note also that our KKT multiplier
rules contain the envelope-like effect because the feasible set includes critical directions. This phenomenon was
discovered by Kawasaki in [24], and developed in [8, 21, 35] for C2 scalar programming, in [13, 26] for nons-
mooth multiobjective programming, in [27] for infinite dimensional nonsmooth optimization, and in [28–30] for
set-valued optimization.

Beside optimality condition theory, duality theory also occupies an important place in the center of optimiza-
tion theory. In [44], Weir and Mond proved duality results for weak minimizer of multiple objective optimization
problems under pseudo-convexity and quasi-convexity assumptions. Sach et al. [37] used the codifferential of
set-valued mappings to discuss Mond–Weir type and Wolfe type weak duality and strong duality results of
set-valued optimization problems under generalized invexity. By using the higher-order contingent derivatives,
Li et al. [31] proposed a higher-order Mond–Weir dual for a set-valued optimization problem and obtained their
weak, strong, and converse duality properties. By virtue of higher order weak adjacent contingent epiderivatives
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and Henig efficiency, Chen et al. [7] studied a higher order Mond–Weir type dual problem and a higher order
Wolfe type dual problem for a constrained set-valued optimization problem and obtained the corresponding
duality properties. Sun et al. [42] proposed a robust-type subdifferential constraint qualification for a uncertain
convex optimization problem. Then they applied them to investigate Wolfe type robust duality between the
uncertain convex optimization problem and its uncertain dual problem. Recently, in [39,42], the authors studied
some new characterizations of robust optimal solution sets for an uncertain optimization problems with a new
Lagrangian dual approach. Inspired by the work of [1,7,31,39,42,44], we apply these preceding results to study
a Mond–Weir type dual problem and a Wolfe type dual problem for the set-valued optimization problem, and
discuss the corresponding weak duality, strong duality and converse duality properties.

The organization of the paper is as follows. In Section 2, we collect definitions and preliminary facts for
our use in the sequel. Section 3 contains some properties of generalized second-order asymptotic contingent
epiderivatives. Section 4 is devoted to second-order necessary conditions and sufficient conditions in terms of
KKT multipliers. Section 5 is an application of the results obtained in Sections 3 and 4 to duality.

2. Preliminaries

Let X, Y and Z be real Banach spaces, N, Rn and Rn
+ be the set of the natural numbers, a n-dimensional

Banach space and its nonnegative orthant, respectively (resp). BX denotes the open unit ball of X and BX(x, r)
the open ball of center x and radius r > 0. For M ⊆ X, intM , clM , and bdM stand for its interior, closure
and boundary, resp, of M . The cone generated by M is coneM := {λx | λ ≥ 0, x ∈ M}. For a set-valued map
Φ : X ⇒ Y , the domain, graph, and epigraph of Φ are defined as

dom Φ := {x ∈ X | Φ(x) 6= ∅}, gph Φ := {(x, y) ∈ X × Y | y ∈ Φ(x)},

epi Φ := {(x, y) ∈ X × Y | y ∈ Φ(x) + C}.

For a subset S ⊆ X, Φ(S) :=
⋃

x∈S Φ(x) and the profile (or epigraphical) map Φ+ : X ⇒ Y is defined by
Φ+(x) := Φ(x) + C. Φ is said to be C-convex if, for all x1, x2 ∈ X and λ ∈ [0, 1],

λΦ(x1) + (1− λ)Φ(x2) ⊆ Φ(λx1 + (1− λ)x2) + C.

It is easy to verify that Φ is C-convex if and only if epi Φ is a convex set in X×Y . Φ is said to be C-subadditive
if, for all x1, x2 ∈ X, Φ(x1) + Φ(x2) ⊆ Φ(x1 + x2) + C.

Definition 2.1 (see [16]). Let Y be partially ordered by a pointed, closed and convex cone C ⊆ Y , ∆ be a
nonempty subset of Y , and a point ȳ ∈ ∆.

(i) ȳ is called a minimal element of ∆ if ({ȳ} − C \ {0}) ∩∆ = ∅.
(ii) Supposing intC 6= ∅, ȳ is called a weak minimal element of ∆ if ({y} − intC) ∩∆ = ∅.

The set of all the minimal elements (resp, weak minimal elements) of ∆ is denoted by MinC ∆ (resp, WMinC

∆). It is obvious that MinC ∆ ⊆ WMinC ∆.

Definition 2.2 (see [16, 33]). Let Y be partially ordered by a pointed, closed and convex cone C ⊆ Y , and ∆
be a nonempty subset of Y .

(i) A sequence {yn} ⊆ Y is said to be C-decreasing if yj ≤C yi for all i, j ∈ N with i ≤ j.
(ii) ∆ is said to be C-lower bounded if there exists a y ∈ Y , such that ∆ ⊆ {y}+ C.

(iii) ∆ is said to be have the domination property if ∆ ⊆ MinC∆ + C.
(iv) The convex cone C is said to be Daniel if every C-decreasing and C-lower bounded sequence in Y converges

to its infimum.

The following tangent cones and second-order tangent sets will be used in this paper.
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Definition 2.3 (see [8, 20,35]). Let M ⊆ X and x0, u ∈ X.

(i) The contingent cone (resp, adjacent cone and interior cone) of M at x0 is

T (M,x0) := {u ∈ X | ∃tn ↓ 0,∃un → u,∀n ∈ N, x0 + tnun ∈M}(
T [(M,x0) := {u ∈ X | ∀tn ↓ 0,∃un → u,∀n large, x0 + tnun ∈M},
IT (M,x0) := {u ∈ X | ∀tn ↓ 0,∀un → u,∀n large, x0 + tnun ∈M}

)
.

(ii) The second-order contingent set (resp, adjacent set and interior set) of M at x0 in direction u is

T 2(M,x0, u) :=
{
w ∈ X | ∃tn ↓ 0,∃wn → w,∀n ∈ N, x0 + tnu+

1
2
t2nwn ∈M

}
(
A2(M,x0, u) :=

{
w ∈ X | ∀tn ↓ 0,∃wn → w,∀n large, x0 + tnu+

1
2
t2nwn ∈M

}
,

IT 2(M,x0, u) :=
{
w ∈ X | ∀tn ↓ 0,∀wn → w,∀n large, x0 + tnu+

1
2
t2nwn ∈M

})
.

(iii) The asymptotic second-order tangent cone (resp, adjacent cone and interior cone) of M at x0 in direction
u is

T ′′(M,x0, u) :=
{
w ∈ X | ∃(tn, rn) ↓ (0, 0) : tnr−1

n ↓ 0,∃wn → w,∀n ∈ N, x0 + tnu+
1
2
tnrnwn ∈M

}
(
A′′(M,x0, u) :=

{
w ∈ X | ∀(tn, rn) ↓ (0, 0) : tnr−1

n ↓ 0,∃wn → w,∀n large, x0 + tnu+
1
2
tnrnwn ∈M

}
,

IT ′′(M,x0, u) :=
{
w ∈ X | ∀(tn, rn) ↓ (0, 0) : tnr−1

n ↓ 0,∀wn → w,∀n large, x0 + tnu+
1
2
tnrnwn ∈M

})
.

M ⊆ X is called second-order derivable (resp, asymptotic derivable) at (x0, u) if

T 2(M,x0, u) = A2(M,x0, u)(resp, T ′′(M,x0, u) = A′′(M,x0, u)).

Note that, if x0 /∈ clM , then all the above tangent sets are empty; and if u /∈ T (M,x0), then all the second-
order tangent sets are empty. Hence, the conditions such as x0 ∈ clM and u ∈ T (M,x0) are always assumed.
T 2(M,x0, u), T ′′(M,x0, u) and T (T (M,x0), u) are closed sets contained in clcone[cone(M −x0)−u)]. T (S, x0),
T (T (M,x0), u), T ′′(M,x0, u), A′′(M,x0, u) and IT ′′(M,x0, u) are closed cones, and are convex if M is convex.
The cones T ′′(M,x0, u), A′′(M,x0, u) were proposed by Penot [35]. T 2(M,x0, u), A2(M,x0, u) and IT 2(M,x0, u)
are closed sets, but not necessarily cones. If M is convex, then A2(M,x0, u) is convex, while T 2(M,x0, u) may
not be convex.

In next proposition some known properties of second-order tangent sets are collected (see more details in
[8, 13,21,24,25,35]).

Proposition 2.4. Let M ⊆ X and x0, u ∈ X.

(i) T 2(M,x0, 0) = T ′′(M,x0, 0) = T (T (M,x0), 0) = T (M,x0).
Let, in addition, M be convex and u ∈ T (M,x0). Then, the following assertions hold

(ii) T (T (M,x0), u) = clcone(cone(M − x0) − u) and T 2(M,x0, u) ⊆ T (T (M,x0), u). Additionally, if 0 ∈
T 2(M,x0, u), then T 2(M,x0, u) = T (T (M,x0), u).

(iii) If T ′′(M,x0, u) 6= ∅, then T ′′(M,x0, u) = T (T (M,x0), u) and T 2(M,x0, u) ⊆ T ′′(M,x0, u)
(iv) If A2(M,x0, u) 6= ∅, then cl IT 2(M,x0, u) = A2(M,x0, u) and

A2(M,x0, u) + T (T (M,x0), u) ⊆ A2(M,x0, u).
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(v) If A′′(M,x0, u) 6= ∅, then cl IT ′′(M,x0, u) = A′′(M,x0, u) and

A′′(M,x0, u) + T (T (M,x0), u) ⊆ A′′(M,x0, u).

According to Proposition 2.4, T 2(M,x0, u) may be properly contained in T ′′(M,x0, u) and T (T (M,x0), u).
Whenever T ′′(M,x0, u) is nonempty and M is convex, T ′′(M,x0, u) = T (T (M,x0), u). In general, these sets are
different as shown by the following example.

Example 2.5. Let M = {(x1, x2) ∈ R2 | x2 = |x1|
5
4 } and x0 = (0, 0). By directed calculations, one has

T (M,x0) = {(u1, u2) ∈ R2 | u2 = 0}. Take u = (1, 0), T 2(M,x0, u) = ∅, T (T (M,x0), u) = R × {0}, and
T ′′(M,x0, u) = R× R+. Thus, we have T 2(M,x0, u) ( T (T (M,x0), u) ( T ′′(M,x0, u).

3. Generalized second-order asymptotic contingent epiderivative

Definition 3.1. Let Φ : X ⇒ Y , (x0, y0) ∈ gph Φ, and (u, v) ∈ X × Y .

(i) ([18]). The contingent epiderivative of Φ at (x0, y0) is a single-valued map DΦ(x0, y0) : X → Y defined by
epiDΦ(x0, y0) := T (epi Φ, (x0, y0)).

(ii) ([6]). The generalized contingent epiderivative of Φ at (x0, y0) is a set-valued map DgΦ(x0, y0) : X ⇒ Y
defined by DgΦ(x0, y0)(x) := MinC

{
y ∈ Y | (x, y) ∈ T (epi Φ, (x0, y0))

}
.

(iii) ([19]). The generalized second-order contingent epiderivative of Φ at (x0, y0) in direction (u, v) is a set-
valued map D2

gΦ(x0, y0, u, v) : X ⇒ Y defined by

D2
gΦ(x0, y0, u, v)(x) := MinC

{
y ∈ Y | (x, y) ∈ T 2(epi Φ, (x0, y0), (u, v))

}
.

(iv) ([32]). The generalized composed second-order contingent epiderivative of Φ at (x0, y0) in direction (u, v)
is a set-valued map D

c(2)
g Φ(x0, y0, u, v) : X ⇒ Y defined by

Dc(2)
g Φ(x0, y0, u, v)(x) := MinC

{
y ∈ Y | (x, y) ∈ T (T (epi Φ, (x0, y0)), (u, v))

}
.

In general, the second-order contingent set, composed second-order contingent set and asymptotic second-
order tangent cone are different (see Example 2.5). Since the composed second-order contingent set
T (T (M,x0), u) is the tangent cone of the tangent cone of the set M at x0 at direction u, then it does not
contain some information concerning the directions of M . We propose a generalized asymptotic second-order
contingent epiderivative of a set-valued map as follows.

Definition 3.2. Let Φ : X ⇒ Y , (x0, y0) ∈ gph Φ, and (u, v) ∈ X×Y . The generalized asymptotic second-order
contingent epiderivative of Φ at (x0, y0) in direction (u, v) is a set-valued map D′′g Φ(x0, y0, u, v) : X ⇒ Y defined
by

D′′g Φ(x0, y0, u, v)(x) := MinC

{
y ∈ Y | (x, y) ∈ T ′′(epi Φ, (x0, y0), (u, v))

}
.

In the next example, the generalized second-order epiderivatives mentioned in Definitions 3.1 and 3.2 are
different, and the second-order contingent epiderivative defined in Definition 3.1 does not exist.

Example 3.3. Let C = R+ × {0}, Φ : R ⇒ R2 be defined by Φ(x) := {(y1, y2) ∈ R2 | y1 ≥ x2, y2 = |x| 32 },
x0 = 0, and y0 = (0, 0). Thus, one gets T (epi Φ, (x0, y0)) = {(u, v) ∈ R×R2 | u ∈ R, v1 ≥ 0, v2 = 0}. Take (u, v) =
(1, (0, 0)), T 2(epi Φ, (x0, y0), (u, v)) = ∅, T (T (epi Φ, (x0, y0)), (u, v)) = {(x, y) ∈ R× R2 | x ∈ R, y1 ≥ 0, y2 = 0},
and T ′′(epi Φ, (x0, y0), (u, v)) = {(x, y) ∈ R × R2 | x ∈ R, y1 ≥ 0, y2 ≥ 0}. From the Definitions 3.1 and 3.2,
we have D2

gΦ(x0, y0, u, v)(x) = ∅, Dc(2)
g Φ(x0, y0, u, v)(x) = {(0, 0)}, and D′′g Φ(x0, y0, u, v)(x) = {(y1, y2) ∈ R2 |

y1 = 0, y2 ≥ 0}. Therefore,

D2
gΦ(x0, y0, u, v)(x) ( Dc(2)

g Φ(x0, y0, u, v)(x) ( D′′g Φ(x0, y0, u, v)(x).
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For (x0, y0) ∈ epi Φ and (u, v) ∈ X × Y , we will use the following notations

E2(x) := {y ∈ Y | (x, y) ∈ T 2(epi Φ, (x0, y0), (u, v))},

E′′(x) := {y ∈ Y | (x, y) ∈ T ′′(epi Φ, (x0, y0), (u, v))}.

The following proposition gives relationships between the epigraph of the second-order contingent epiderivative
of a set-valued mapping and the second-order tangent set of the epigraph of this mapping. The proof is similar
to that of Proposition 2.4 in [6, 19,32] and therefore is omitted.

Proposition 3.4. Let Φ : X ⇒ Y , (x0, y0) ∈ gph Φ and (u, v) ∈ X × Y . If D′′g Φ(x0, y0, u, v)(x) exists and
E′′(x) has the domination property for all x ∈ X, then epiD′′g Φ(x0, y0, u, v) = T ′′(epi Φ, (x0, y0), (u, v)).

The next statement presents relationships between the generalized contingent epiderivative mentioned in
Definitions 3.1 and 3.2.

Proposition 3.5. Let Φ : X ⇒ Y , (x0, y0) ∈ gph Φ, (u, v) ∈ X × Y , and x ∈ X.

(i) D2
gΦ(x0, y0, 0, 0)(x) = D

c(2)
g Φ(x0, y0, 0, 0)(x) = D′′g Φ(x0, y0, 0, 0)(x) = DgΦ(x0, y0)(x).

Let, in addition, Φ be C-convex and T ′′(epi Φ, (x0, y0), (u, v)) 6= ∅, then
(ii) D

c(2)
g Φ(x0, y0, u, v)(x) = D′′g Φ(x0, y0, u, v)(x). Additionally, if (0, 0) ∈ T 2(epi Φ, (x0, y0), (u, v)), then

D2
gΦ(x0, y0, u, v)(x) = D

c(2)
g Φ(x0, y0, u, v)(x) = D′′g Φ(x0, y0, u, v)(x).

(iii) If the sets E2(x) and E′′(x) enjoy the domination property, then

D2
gΦ(x0, y0, u, v)(x) ⊆ D′′g Φ(x0, y0, u, v)(x) + C.

Proof. (i) This follows from Proposition 2.4(i) and Definitions 3.1 and 3.2.
Next let Φ be C-convex. Then, epi Φ is a convex set.

(ii) By Proposition 2.4(iii), one has T ′′(epi Φ, (x0, y0), (u, v)) = T (T (epi Φ, (x0, y0)), (u, v)). From Definition 3.1,
one has D′′g Φ(x0, y0, u, v)(x) = D

c(2)
g Φ(x0, y0, u, v)(x). Furthermore, if (0, 0) ∈ T 2(epi Φ, (x0, y0), (u, v)), by

Proposition 2.4, T 2(epi Φ, (x0, y0), (u, v)) = T (T (epi Φ, (x0, y0)), (u, v)) = T ′′(epi Φ, (x0, y0), (u, v)). Thus,
we have D2

gΦ(x0, y0, u, v)(x) = D
c(2)
g Φ(x0, y0, u, v)(x) = D′′g Φ(x0, y0, u, v)(x).

(iii) By Proposition 2.4(iii), T 2(epi Φ, (x0, y0), (u, v)) ⊆ T ′′(epi Φ, (x0, y0), (u, v)). Since E2(x) and E′′(x) possess
the domination property, by Proposition 2.4, epiD2

gΦ(x0, y0, u, v) ⊆ epiD′′g Φ(x0, y0, u, v). This implies that
D2

gΦ(x0, y0, u, v)(x) ⊆ D′′g Φ(x0, y0, u, v)(x) + C.
�

The following proposition indicates some existence criteria for generalized second-order asymptotic contingent
epiderivatives, similar to those in Theorem 2 in [6] and Theorem 3.1 in [32].

Proposition 3.6. Let Φ : X ⇒ Y , (x0, y0) ∈ gph Φ, (u, v) ∈ X × Y , and Y be partially ordered by a Daniel
pointed, closed and convex cone C. For every x ∈ X, the C-lower boundedness of E′′(x) implies the existence
of D′′g Φ(x0, y0, u, v)(x).

Proof. Since the asymptotic second-order tangent cone is always a closed cone and E′′(x) is C-lower bounded
for every x ∈ X, by the existence theorem for minimal elements in Luc [33], Min E′′(x) is nonempty, i.e.,
D′′g Φ(x0, y0, u, v)(x) exists. �

Next, we give another existence results for generalized second-order asymptotic contingent epiderivatives by
using a free disposal hypothesis. We recall (see [5, 22, 23]) that a closed set M ⊆ Y satisfies the free disposal
hypothesis with respect to a closed set Z containing 0, if M − Z ⊆M.
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Lemma 3.7. Suppose that M ⊆ Y satisfies the free disposal hypothesis with respect to a closed cone Z. Then,
Z ⊆ −IT (M,y) for all y ∈M .

Proof. Let z, zn ∈ Z and tn > 0 such that zn → z and tn → 0+. As Z is a cone, tnzn ∈ Z. By the free disposal
hypothesis, one gets y + tn(−zn) ∈M for y ∈M . This implies that −z ∈ IT (M,y). �

Proposition 3.8. Let Φ : X ⇒ Y , (x0, y0) ∈ gph Φ, (u, v) ∈ X ×Y , and Y be partially ordered by a closed and
convex cone C. Suppose that E′′(x) satisfies the free disposal hypothesis with respect to −C and either of the
following tangential relations holds at y ∈ E′′(x): T [(E′′(x), y) ∩ (−C) = {0} or IT (E′′(x), y) does not contain
any line. Then, y ∈ D′′g Φ(x0, y0, u, v)(x).

Proof. We need to prove that y ∈ MinC E
′′(x), meaning that (E′′(x) − y) ∩ (−C) = {0}. Suppose there is

a nonzero z ∈ (E′′(x) − y) ∩ (−C). As E′′(x) satisfies the free disposal hypothesis with respect to −C, for
all t ∈ [0, 1], y + z − tz ∈ E′′(x) − (−C) ⊆ E′′(x). So, one has y + tz ∈ E′′(x) for all t ∈ [0, 1]. Thus,
z ∈ IT (E′′(x), y) ⊆ T [(E′′(x), y) and then z ∈ T [(E′′(x), y) ∩ (−C). If T [(E′′(x), y) ∩ (−C) = {0}, then
z = 0, a contradiction. If this intersection properly contains 0, by Lemma 3.7, one has C ⊆ IT (E′′(x), y) and
hence −z ∈ IT (E′′(x), y). Because IT (E′′(x), y) is a cone and does not contain any line, we obtain again the
contradiction z = 0. �

Next is an example to illustrate Proposition 3.8.

Example 3.9. Consider the set-valued map Φ : R⇒ R2 defined by

Φ(x) =
{

(y1, y2) ∈ R2 | y1 = x sin
(√
|x|
)
, y1 + y2 ≥ x

}
,

C = R2
+, and x0 = 0, y0 = (0, 0). Direct computations give T (epi Φ, (x0, y0)) = {(u, (v1, v2)) ∈ R × R2 | v1 ≥

0, v1 + v2 ≥ u}. Take (u, (v1, v2)) = (1, (0, 1)) ∈ T (epi Φ, (x0, y0)), one gets

T ′′(epi Φ, (x0, y0), (u, v)) = {(x, (y1, y2)) ∈ R× R2 | y1 ≥ 0, y1 + y2 ≥ x}.

Then for every x ∈ R, E′′(x) = {(y1, y2) ∈ R2 | y1 ≥ 0, y1 + y2 ≥ x}. It follows from Definition 3.2 that

D′′g Φ(x0, y0, u, v)(x) = {(y1, y2) ∈ R2 | y1 ≥ 0, y1 + y2 = x}.

Now we apply Proposition 3.8 to check the above argument. Firstly, we see that, for every x ∈ R, E′′(x) satisfies
the free disposal hypothesis with respect to −C.

Next, we consider two cases for the choice of (ȳ1, ȳ2) ∈ {(y1, y2) ∈ R2 | y1 ≥ 0, y1 + y2 = x}.

– First case: ȳ1 > 0, by directly calculating, one has T [(E′′(x), (ȳ1, ȳ2)) = {(w1, w2) ∈ R2 | w1 + w2 ≥ 0},
hence T [(E′′(x), (ȳ1, ȳ2)) ∩ (−C) = {0}. By Proposition 3.8,

{(y1, y2) ∈ R2 | y1 > 0, y1 + y2 = x} ⊆ D′′g Φ(x0, y0, u, v)(x).

– Second case: ȳ1 = 0, by Definition 2.3(i), IT (E′′(x), (ȳ1, ȳ2)) = {(w1, w2) ∈ R2 | w1 > 0, w1 + w2 > 0}, and
it does not contain any line. According to Proposition 3.8,

{(y1, y2) ∈ R2 | y1 = 0, y2 = x} ⊆ D′′g Φ(x0, y0, u, v)(x).

Some properties of generalized second-order asymptotic contingent epiderivatives are collected in the
following.

Proposition 3.10. Let Φ : X ⇒ Y , (x0, y0) ∈ gph Φ, (u, v) ∈ X × Y , and x ∈ X. Then,



848 N.M. TUNG

(i) D′′g Φ(x0, y0, u, v)(·) is strictly positively homogeneous.
Moreover, if Φ is C-convex, and E′′(x) has the domination property, then

(ii) D′′g Φ(x0, y0, u, v) is subadditive;
(iii) for v ∈ Φ(u) + C, Φ(x)− y0 ⊆ D′′g Φ(x0, y0, u− x0, v − y0)(x− x0) + C.

Proof. The proof of (i) and (ii) are similar to that of Theorem 3.2 in [32].
(iii) For any y ∈ Φ(x) and sequence (tn, rn) ↓ (0, 0) such that tnr−1

n ↓ 0, since F is C-convex, one has

y0 + 2tn(v − y0) = 2tnv + (1− 2tn)y0 ∈ 2tnΦ(u) + (1− 2tn)Φ(x0) + C ⊆ Φ(2tnu+ (1− 2tn)x0) + C,

y0 + tnrn(y − y0) = tnrny + (1− tnrn)y0 ∈ tnrnΦ(x) + (1− tnrn)Φ(x0) + C ⊆ Φ(tnrnx+ (1− tnrn)x0) + C.

Therefore,

y0 + tn(v − y0) +
1
2
tnrn(y − y0) ∈ 1

2
Φ(2tnu+ (1− 2tn)x0) +

1
2

Φ(tnrnx+ (1− tnrn)x0) + C

⊆ Φ(x0 + tn(u− x0) +
1
2
tnrn(x− x0)) + C.

This implies that (x−x0, y−y0) ∈ T ′′(epi Φ, (x0, y0), (u−x0, v−y0)). Moreover, as E′′(x−x0) has the domination
property, by Proposition 3.4(iii), one has epiD′′g Φ(x0, y0, u − x0, v − y0) = T ′′(epi Φ, (x0, y0), (u − x0, v − y0)),
and hence (x− x0, y − y0) ∈ epiD′′g Φ(x0, y0, u− x0, v − y0). Therefore,

y − y0 ∈ D′′g Φ(x0, y0, u− x0, v − y0)(x− x0) + C.

The proof is complete. �

4. Second-order KKT multipliers

In this section, let C ⊆ Y be a pointed, closed and convex cone with nonempty interior, which defines a partial
order on Y . Let D be a closed convex cone with nonempty interior in Z. Our set-valued vector optimization
problem is

(P ) MinC F (x) s.t. G(x) ∩ (−D) 6= ∅,

where F : X ⇒ Y , G : X ⇒ Z are nonempty-valued. Let Ω := {x ∈ X | G(x) ∩ (−D) 6= ∅} denote the feasible
set. We denote D(z0) := cone(D + z0) and (F,G)(x) = F (x)×G(x).

For a cone C ⊆ Y (resp, D ⊆ Z), the dual cone and its quasi-interior are, resp,

C∗ = {y∗ ∈ Y ∗ | 〈y∗, c〉 ≥ 0, ∀c ∈ C} (resp, D∗),
C∗i = {y∗ ∈ Y ∗ | 〈y∗, c〉 > 0, ∀c ∈ C \ {0}} .

Then, it is not hard to check that, for z0 ∈ −D, [D(z0)]∗ = N(−D, z0), the normal cone of −D at z0. Note
that, if D is a convex cone, then N(−D, z0) = {d∗ ∈ D∗ | 〈d∗, z0〉 = 0}.

The following optimality notions of set-valued vector optimization are discussed in our works.

Definition 4.1. Let x0 ∈ Ω and a pair (x0, y0) ∈ gphF .

(i) (x0, y0) is said to be a local minimizer of (P) if there exists a neighborhood U of x0 such that

(F (Ω ∩ U)− y0) ∩ (−C \ {0}) = ∅.

(ii) Supposing intC 6= ∅, (x0, y0) is said to be a local weak minimizer of (P) if there exists a neighborhood U
of x0 such that

(F (Ω ∩ U)− y0) ∩ (−intC) = ∅.
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(iii) ([4]). (x0, y0) is said to be a local Benson-proper minimizer of (P) if there exist a neighborhood U of x0

such that
clcone(F (Ω ∩ U) + C − y0) ∩ (−C) = {0}.

(iv) ([14]). (x0, y0) ∈ Ω is said to be a local Henig-proper minimizer of (P) if there exist a neighborhood U of
x0 and a convex cone K such that C \ {0} ⊆ intK and

(F (Ω ∩ U)− y0) ∩ (−intK) = ∅.

If U = X, then we have the corresponding global solutions. For (x0, y0) ∈ gphF and z0 ∈ G(x0) ∩ (−D), a
triple (u, v, w) ∈ X × Y × Z is termed a critical direction, denoted by (u, v, w) ∈ C(x0, y0, z0)), if

(u, (v, w)) ∈ T (epi (F,G), (x0, (y0, z0)) with v ∈ −bdC and w ∈ −clD(z0).

Now, we establish a KKT second-order necessary condition for a local weak minimizer.

Theorem 4.2. Let (x0, y0) ∈ gphF be a local weak minimizer of (P) and z0 ∈ G(x0) ∩ (−D). For (u, v, w) ∈
C(x0, y0, z0) such that D′′g (F,G)(x0, (y0, z0), u, (v, w))(X) is a convex set, there exist multipliers (c∗, d∗) ∈ C∗×
N(−D, z0) \ {(0, 0)} such that 〈c∗, v〉 = 〈d∗, w〉 = 0 and

〈c∗, y〉+ 〈d∗, z〉 ≥ 0

for all (y, z) ∈ D′′g (F,G)(x0, (y0, z0), u, (v, w))(X). Moreover, if the KRZ qualification condition{
z ∈ Z | (y, z) ∈ D′′g (F,G)(x0, (y0, z0), u, (v, w))(X)

}
+D(z0) = Z

is satisfied, then c∗ 6= 0.

Proof. We claim that

D′′g (F,G)(x0, (y0, z0), u, (v, w))(X)
⋂

(IT (−C, v)× IT ′′(−D, z0, w)) = ∅. (4.1)

Suppose to the contrary the existence of x ∈ X and (y, z) ∈ Y × Z such that

(y, z) ∈ D′′g (F,G)(x0, (y0, z0), u, (v, w))(x)
⋂(

IT (−C, v)× IT ′′(−D, z0, w)
)
.

As (y, z) ∈ D′′g (F,G)(x0, (y0, z0), u, (v, w))(x), according to Definition 3.2, one gets (x, (y, z)) ∈ T ′′(epi(F,G)
(x0, (y0, z0), u, (v, w)). It follows from the definition of asymptotic second-order tangent cone that there exist
sequences (tn, rn) ↓ (0, 0) : tnr−1

n ↓ 0, xn → x, and zn → z such that

y0 + tnv +
1
2
tnrnyn ∈ F

(
x0 + tnu+

1
2
tnrnxn

)
+ C,

z0 + tnw +
1
2
tnrnzn ∈ G

(
x0 + tnu+

1
2
tnrnxn

)
+D.

Since z ∈ IT ′′(−D, z0, w), z0 + tnw + 1
2 tnrnzn ∈ −D, for sufficiently large n. Thus, one has(

G

(
x0 + tnu+

1
2
tnrnxn

)
+D

)
∩ (−D) 6= ∅.

Moreover D is a convex cone, G
(
x0 + tnu+ 1

2 tnrnxn

)
∩ (−D) 6= ∅, i.e., x0 + tnu+ 1

2 tnrnxn ∈ Ω.
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On the other hand, because y ∈ IT (−C, v) = IT (−intC, v) (see [20], Prop. 2.3), for sufficiently large n,

tnv +
1
2
tnrnyn ∈ −intC. Therefore,(

F

(
x0 + tnu+

1
2
tnrnxn

)
− y0

)
∩ (−intC) 6= ∅,

which contradicts the weak efficiency of (x0, y0).
From the equality (4.1) and the convexity assumption, the standard separation theorem is employed to obtain

(c∗, d∗) ∈ Y ∗ × Z∗ \ {(0, 0)} such that

〈c∗, y〉+ 〈d∗, z〉 ≥ 〈c∗, c〉+ 〈d∗, d〉 (4.2)

for all (y, z) ∈ D′′g (F,G)(x0, (y0, z0), u, (v, w))(X) and c ∈ IT (−C, v), d ∈ IT ′′(−D, z0, w). Because C is a
convex cone, IT (−C, v) = int(cone(−C − v)) (see [20], Prop. 2.3). It follows from (4.2) that 〈c∗, c〉 ≤ 0 for
all c ∈ cone(−C − v), and so c∗ ∈ [cone(C + v)]∗. As v ∈ −bdC, one has c∗ ∈ C∗ and 〈c∗, v〉 = 0. As
clIT ′′(−D, z0, w) = A′′(−D, z0, w), (4.2) becomes, for all d ∈ A′′(−D, z0, w),

〈c∗, y〉+ 〈d∗, z〉 ≥ 〈d∗, d〉.

Since D is convex, A′′(−D, z0, w) = T (T (−D, z0), w), which is a cone. Hence, d∗ ∈ [T (T (−D, z0), w)]∗, i.e.,
d∗ ∈ N(−D, z0) and 〈d∗, w〉 = 0. Because A′′(−D, z0, w) is a cone, we have 〈c∗, y〉+ 〈d∗, z〉 ≥ 0.

The next step is to prove that c∗ 6= 0 under the qualification condition. Supposing c∗ = 0, one gets 〈d∗, z〉 ≥ 0
for every (y, z) ∈ D′′g (F,G)(x0, (y0, z0), u, (v, w))(X). Take arbitrarily z̄ ∈ Z. By the qualification condition, there
exist t ≥ 0, z ∈ {z′ ∈ Z | (y′, z′) ∈ D′′(F,G)(x0, (y0, z0), u, (v, w))(X)}, and d ∈ D such that z̄ = z + t(d+ z0).
Since d∗ ∈ D∗ and 〈d∗, z0〉 = 0, one has

〈d∗, z̄〉 = 〈d∗, z〉+ t〈d∗, d+ z0〉 ≥ 0.

Thus, d∗ = 0, a contradiction because (c∗, d∗) 6= (0, 0). Hence, this completes the proof. �

In most known necessary conditions, (F,G) and its derivatives are used, for example in [11, 13, 26, 27, 46].
Inspired by the idea in [28, 30], the Aubin property is employed to obtain a sharper second-order necessary
conditions involving separately derivatives of F and G. From there, constraint qualifications of the Kurcyusz–
Robinson–Zowe type, not qualification condition in terms of (F,G), can be invoked to get Karush–Kuhn–Tucker
multiplier rules for problem (P).

Recall that F is said to be C-Aubin at (x0, y0) ∈ gphF if there exist the neighborhoods U of x0, V of y0,
and L > 0 such that

F (x) ∩ V ⊆ F (x′) + L‖x− x′‖clBY + C, ∀x, x′ ∈ U.

If C = {0}, this is the well-known Aubin property (known also as the pseudo-Lipschitz property or Lipschitzlike
property) in [3].

Theorem 4.3. Let (x0, y0) ∈ gphF be a local weak minimizer of (P), z0 ∈ G(x0)∩(−D), and F+ be C-Aubin at
(x0, y0). For (u, v, w) ∈ C(x0, y0, z0)) such that epiF is second-order asymptotic derivable at ((x0, y0), (u, v)) and
(D′′gF (x0, y0, u, v), D′′gG(x0, z0, u, w))(X) is convex, there exist multipliers (c∗, d∗) ∈ C∗ ×N(−D, z0) \ {(0, 0)}
such that 〈c∗, v〉 = 〈d∗, w〉 = 0 and

〈c∗, y〉+ 〈d∗, z〉 ≥ 0 (4.3)

for all (y, z) ∈ (D′′gF (x0, y0, u, v), D′′gG(x0, z0, u, w))(X). Moreover, if the KRZ constraint qualification
(KRZCQ)

D′′gG(x0, z0, u, w)(X) +D(z0) = Z (4.4)

is fulfilled, then c∗ 6= 0.
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Proof. We prove that, for all x ∈ X,

D′′gF (x0, y0, u, v)(x)×D′′gG(x0, z0, u, w)(x)
⋂(

IT (−C, v)× IT ′′(−D, z0, w)
)

= ∅. (4.5)

Suppose to the contrary the existence of x ∈ X and (y, z) ∈ Y × Z such that (y, z) lies on the left-hand side of
(4.5). As z ∈ D′′gG(x0, z0, u, w)(x), (x, z) ∈ T ′′(epiG, (x0, z0), (u,w)). Then, there exist (tn, rn) ↓ (0, 0) : tnr−1

n ↓
0, xn → x, and zn → z such that z0 + tnw + 1

2 tnrnzn ∈ G(x0 + tnu + 1
2 tnrnxn) + D. As z ∈ IT ′′(−D, z0, w),

z0 + tnw + 1
2 tnrnzn ∈ −D for sufficiently large n. This implies that(

G

(
x0 + tnu+

1
2
tnrnxn

)
+D

)
∩ (−D) 6= ∅.

Since D is a convex cone, G(x0 + tnu+ 1
2 tnrnxn) ∩ (−D) 6= ∅, i.e., x0 + tnu+ 1

2 tnrnxn ∈ Ω.
On the other hand, as y ∈ D′′gF (x0, y0, u, v)(x), (x, y) ∈ T ′′(epiF, (x0, y0), (u, v)). As epiF is second-order

asymptotic derivable at ((x0, y0), (u, v)), one has (x, y) ∈ A′′(epiF, (x0, y0), (u, v)). Hence, there exist x′n → x
and yn → y such that y0 + tnv + 1

2 tnrnyn ∈ F (x0 + tnu+ 1
2 tnrnx

′
n) + C. By employing the Aubin property of

F+ at (x0, y0), there exist a neighborhood V of y0 and LF > 0 such that, for sufficiently large n,

F+

(
x0 + tnu+

1
2
tnrnx

′
n

)
∩ V ⊆ F

(
x0 + tnu+

1
2
tnrnxn

)
+

1
2
LF tnrn‖x′n − xn‖BY + C.

Thus, for some bn ∈ BY ,

y0 + tnv +
1
2
tnrn(yn − LF ‖xn − x′n‖bn) ∈ F

(
x0 + tnu+

1
2
tnrnxn

)
+ C.

As yn − LF ‖xn − x′n‖bn → y ∈ IT (−C, v) and IT (−C, v) = IT (−intC, v), we have that, for large n, tnv +
1
2 tnrn(yn − LF ‖xn − x′n‖bn) ∈ −intC. Therefore, (F (x0 + tnu + 1

2 tnrnxn) − y0) ∩ (−intC) 6= ∅. This however
contradicts the weak optimality of (x0, y0).

Argue similarly as for Theorem 4.2, by (4.5) one gets multipliers (c∗, d∗) ∈ C∗ ×N(−D, z0) \{(0, 0)} such
that 〈c∗, v〉 = 〈d∗, w〉 = 0 and 〈c∗, y〉 + 〈d∗, z〉 ≥ 0 for all (y, z) ∈ (D′′gF (x0, y0, u, v), D′′gG(x0, z0, u, w))(X).
Under the (KRZCQ), similar to the proof process of Theorem 4.2, one obtains that c∗ 6= 0 and the proof is
completed. �

Remark 4.4. (i) In Theorem 4.3, the assumptions that F+ is C-Aubin at (x0, y0) and epiF is second-order
asymptotic derivable at ((x0, y0), (u, v)) can be replaced by “G+ is D-Aubin at (x0, z0) and epiG is second-
order asymptotic derivable at ((x0, z0), (u,w))”. Indeed, suppose that the relation (4.5) does not hold.
Then, there are x ∈ X and (y, z) ∈ Y × Z such that

(y, z) ∈
(
D′′gF (x0, y0, u, v)(x)×D′′gG(x0, z0, u, w)(x)

)⋂
(IT (−C, v)× IT ′′(−D, z0, w)) .

As y ∈ D′′gF (x0, y0, u, v)(x), the are (tn, rn) ↓ (0, 0) : tnr−1
n ↓ 0, xn → x and yn → y such that

y0 + tnv +
1
2
tnrnyn ∈ F

(
x0 + tnu+

1
2
tnrnxn

)
+ C.

Because z ∈ D′′gG(x0, z0, u, w)(x), (x, z) ∈ T ′′(epiG, (x0, z0), (u,w)). Moreover, as epiG is second-order
asymptotic derivable at ((x0, z0), (u, v)), one gets (x, z) ∈ A′′(epiG, (x0, z0), (u,w)). Then, there exist
x′n → x and zn → z such that z0 + tnw + 1

2 tnrnzn ∈ G(x0 + tnu+ 1
2 tnrnx

′
n) +D. Since G+ is D-Aubin at

(x0, z0), there exist a neighborhood V of z0, and LG > 0 such that, for sufficiently large n,

G+

(
x0 + tnu+

1
2
tnrnx

′
n

)
∩ V ⊆ G

(
x0 + tnu+

1
2
tnrnxn

)
+

1
2
LGtnrn‖x′n − xn‖BZ +D.
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Consequently, z0 + tnw+ 1
2 tnrnzn ∈ G(x0 + tnu+ 1

2 tnrnxn)+ 1
2LGtnrn‖xn−x′n‖BZ +D. Thus, there exists

b̄n ∈ BZ such that G(x0 + tnu+ 1
2 tnrnxn) ∩

(
z0 + tnw + 1

2 tnrn(zn − LG‖xn − x′n‖b̄n)−D
)
6= ∅. It follows

from z ∈ IT ′′(−D, z0, w) and zn − LG‖xn − x′n‖b̄n → z that

z0 + tnw +
1
2
tnrn(zn − LG‖xn − x′n‖b̄n) ∈ −D,

for sufficiently large n. Therefore, G(x0 + tnw + 1
2 tnrnxn) ∩ (−D) 6= ∅, i.e., x0 + tnw + 1

2 tnrnxn ∈ Ω. The
rest of the proof is similar to that of Theorem 4.3.

(ii) When F is C-convex and G is D-convex, according to Proposition 3.5, the generalized composed contingent
epiderivative coincides with the generalized asymptotic contingent epiderivative. In this case, Theorem 4.3
improves the corresponding result of Theorem 4.1 in [46], since the authors of [46] used the derivatives
of a disjunction map, composed from the objective and the constraints, and the regularity assumptions
involving these maps.

(iii) Note that, the authors in [28] use the cone-Aubin properties of both the objective and the constraint maps
to separate the derivatives of them. In our works, we only assume this property for only the objective map
or the constraint map.

(iv) For (u, (v, w)) = (0, (0, 0)), by Proposition 3.5, D′′gF (x0, y0, 0, 0)(x) = DgF (x0, y0)(x) and D′′gG(x0,
z0, 0, 0)(x) = DgG(x0, z0)(x). Obviously, as a direct consequence of Theorem 4.3 with (u, (v, w)) =
(0, (0, 0)), the first-order optimality condition is immediately acquired. This condition collapses to The-
orem 2.7 in [17].

Theorem 4.3 is illustrated by the following examples.

Example 4.5. Let X = Z = R2, Y = R, C = R+, D = R2
+, x0 = (0, 0), y0 = (0, 0), z0 = 0, and

F (x) =
{
{y ∈ R | y ≥ x2

1 + |x2|
5
4 } if x1x2 ≥ 0,

∅ if x1x2 < 0,

G(x) =
{
{(x2

1, x
2
2), (−|x1|,−|x2|)} if x1x2 ≥ 0,

∅ if x1x2 < 0.

Then, F is C-Aubin at (x0, y0). Direct calculations give get T (epiF, (x0, y0)) = {(u, v) ∈ R2 × R | v ≥ 0} and
T (epiG, (x0, z0)) = {(u,w) ∈ R2 × R2 | w1 ≥ −|u1|, w2 ≥ −|u2|}. Take (u, v) = ((1, 1), 0) ∈ T (epiF, (x0, y0))
and (u,w) = ((1, 1), (−1,−1)) ∈ T (epiG, (x0, z0)), one has v ∈ −bdC, w ∈ −clD(z0), hence (u, v, w) ∈
C(x0, y0, z0)). By Definition 2.3, we get

A′′(epiF, (x0, y0), (u, v)) = T ′′(epiF, (x0, y0), (u, v)) =
{

(x, y) ∈ R2 × R | y ≥ 0
}
,

T ′′(epiG, (x0, y0), (u,w)) =
{

(x, z) ∈ R2 × R2 | z1 ≥ −x1, z2 ≥ −x2

}
.

Thus, epiF is second-order asymptotic derivable at ((x0, y0), (u, v)) and

D′′gF (x0, y0, u, v)(x) = {0}, D′′gG(x0, z0, u, w)(x) = {(−x1,−x2)}.

As D′′gG(x0, z0, u, w)(X) +D(z0) = R2, the (KRZCQ) is satisfied.
We can verify that (x0, y0) = ((0, 0), 0) is a local weak minimizer of (P) and all the assumptions of Theorem 4.3

hold. By taking c∗ = 1 and d∗ = (0, 0) ∈ D∗, one has 〈c∗, v〉 = 〈d∗, w〉 = 0 and

〈c∗, y〉+ 〈d∗, z〉 ≥ 0

for all (y, z) ∈ (D′′gF (x0, y0, u, v), D′′gG(x0, z0, u, w))(X). Therefore, the conclusions of Theorem 4.3 hold.
We can check that the second-order contingent derivative and epiderivative of F at (x0, y0) does not exist,

then Theorem 3.1 in [19] and Theorems 3.1 and 3.2 in [28] cannot be employed. Furthermore, F is not C-convex,
hence Theorem 4.1 in [46] cannot also be used.
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In the next example, Theorem 4.3 rejects a candidate for a local weak minimizer of problem (P).

Example 4.6. Let X = R, Y = R2, Z = R, C = R2
+, D = R+, and

F (x) := {(y1, y2) ∈ R2 | y1 + y2 ≥ −|x|}, G(x) := {z ∈ R | z ≥ x3 − 2x}.

Consider x0 = 0, y0 = (0, 0), and z0 = 0. Then, F is C-Aubin at (x0, y0). By direct calculations, we have

T (epiF, (x0, y0)) = {(u, v) ∈ R× R2 | v1 + v2 ≥ −|u|}, T (epiG, (x0, z0)) = {(u,w) ∈ R× R | w ≥ −2u}.

Take (u, v) = (1, (0,−1)) ∈ T (epiF, (x0, y0)) and (u,w) = (1,−2) ∈ T (epiG, (x0, z0)), one gets v ∈ −bdC,
w ∈ −clD(z0), hence (u, v, w) ∈ C(x0, y0, z0)). Direct calculations yield

A′′(epiF, (x0, y0), (u, v)) = T ′′(epiF, (x0, y0), (u, v)) =
{

(x, y) ∈ R× R2 | y1 + y2 ≥ −x
}
,

T ′′(epiG, (x0, y0), (u,w)) = {(x, z) ∈ R× R | z ≥ −2x} ,

Consequently, epiF is second-order asymptotic derivable at ((x0, y0), (u, v)) and

D′′gF (x0, y0, u, v)(x) = {(y1, y2) ∈ R2 | y1 + y2 = −x}, D′′gG(x0, z0, u, w)(x) = {z ∈ R | z = −2x}.

Then, (D′′gF (x0, y0, u, v), D′′gG(x0, z0, u, w))(X) is a convex set and (KRZCQ) is fulfilled.
Take x = 1 ∈ X, y = (−1, 0) ∈ D′′gF (x0, y0, u, v)(x), and z = −2 ∈ D′′gG(x0, z0, u, w)(x). To check the

necessary condition given in this theorem, we discuss all c∗ = (c1, c2) ∈ R2
+ \ {(0, 0)} and d∗ ∈ N(−D, z0) with

〈c∗, v〉 = 0 and 〈d∗, w〉 = 0. One has c1 > 0, c2 = 0, and d∗ = 0. Then, for any c∗ = (c1, 0) ∈ R2
+ with c1 > 0

and d∗ = 0,
〈c∗, y〉+ 〈d∗, z〉 = −c1 < 0.

Theorem 4.3 ensures that (x0, y0) is not a local weak minimizer of problem (P).

Our constraint qualifications in Theorems 4.2 and 4.3 are form of Kurcyusz–Robinson–Zowe condition, see
more details in [12, 28, 30, 46]. With the help of Robinson–Ursescu open mapping theorem, a sufficient con-
dition for the qualification (4.4) is studied. This qualification is also compared with the following constraint
qualifications.

(MFCQ)1 (Mangasarian–Fromovitz constraint qualification). There is x̄ ∈ X such that

D′′g (x0, z0, u, w)(x̄) ∩ (−intD) 6= ∅.

(MFCQ)2 (Relaxed Mangasarian–Fromovitz constraint qualification). There is x̄ ∈ X such that

D′′g (x0, z0, u, w)(x̄) ∩ IT (−D, z0) 6= ∅.

Proposition 4.7. (i) If the graph of D′′g (x0, z0, u, w) is closed and convex; 0 ∈ coreD′′g (x0, z0, u, w)(X)(core(·)
stands for the algebraic interior of a set (·)), then the (KRZCQ) is satisfied.

(ii) (MFCQ)1 ⇒ (MFCQ)2 ⇒ (KRZCQ).

Proof. (i) By assumption, the graph of the map Φ defined by Φ(x) := D′′gG(x0, z0, u, w)(x) +D(z0) is closed
and convex, 0 ∈ core Φ(X), and Φ(X) is a convex set. By the Robinson–Ursescu open mapping theorem
(see [10,36,43]), for x̄ ∈ X with 0 ∈ Φ(x̄), there exists ε > 0 such that εB(0, 1) ⊂ Φ(x̄+B(0, 1)). Therefore,
εB(0, 1) ⊂ D′′gG(x0, z0, u, w)(X)+D(z0). As D′′gG(x0, z0, u, w) is strictly positively homogeneous and D(z0)
is a cone, one gets (4.4).
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(ii) It is easy to verify that −intD ⊆ IT (−D, z0) and then (CQ)1 ⇒ (CQ)2. Next, we claim that (CQ)2 ⇒ (4.4).

By (CQ)2, for z̄ ∈ D′′gG(x0, z0, u, w)(x̄)∩IT (−D, z0), z ∈ Z, and large n ∈ N, one has −z0−
1
n

(
z̄ − 1

n
z

)
∈

D. By the strictly positively homogeneous property of D′′gG(x0, z0, u, w), nz̄ ∈ D′′gG(x0, z0, u, w)(nx̄). Thus

z = nz̄ + n2

(
−z0 −

1
n
z̄ +

1
n2
z + z0

)
∈ D′′gG(x0, z0, u, w)(X) +D(z0).

Because z ∈ Z is arbitrary, the conditions (4) is fulfilled.
�

We explain Proposition 4.7(ii) by the following examples.

Example 4.8. (a) Let C,D, G, and (x0, z0) be as in Example 4.6. By choosing x̄ = 1, one has
D′′g (x0, z0, u, w)(x̄) = {−2} ∈ −intD, hence (MFCQ)1 holds. By Proposition 4.7(ii), (KRZCQ) also holds.
Indeed, by directed calculations, we have D′′gG(x0, z0, u, w)(R) +D(z0) = R.

(b) (the converse of Prop. 4.7(ii) maybe not true). Let C = R+ × R, D = {(z1, z2) ∈ R | z2 = 0}, and
G : R⇒ R2 be defined by G(x) := {(z1, z2) ∈ R2 | z1 ≥ x2}, x0 = 0, and z0 = (0, 0). Direct computations
yield T (epiG, (x0, z0)) = {(u, v) ∈ R × R2 | u ∈ R, v1 ≥ 0}. For (u, v) = (1, (0, 0)), calculations yield
T ′′(epiG, (x0, z0), (u, v)) = {(x, z) ∈ R × R2 | x ∈ R, z1 ≥ 0}, hence D′′gG(x0, z0, u, v)(x) = {(z1, z2) ∈
R2 | z1 = 0}. One can verify that D′′gG(x0, z0, u, w)(R) + D(z0) = R2 and (KRZCQ) is fulfilled. However,
neither (MFCQ)1 nor (MFCQ)2 is satisfied because intD = IT (−D, z0) = ∅.

In [19], Jahn et al. proposed a second-order generalized contingent epiderivative and applied it to establish
second-order necessary conditions in a primal form for a set-valued optimization problem with an abstract
feasible set. In this paper, we present a KKT second-order rule for local weak minimizers using this second-
order generalized contingent epiderivative.

Theorem 4.9. Let (x0, y0) ∈ gphF be a local weak minimizer of (P), z0 ∈ G(x0)∩(−D), and F be C-
Aubin at (x0, y0). For (u, v, w) ∈ C(x0, y0, z0)) such that epiF is second-order derivable at ((x0, y0), (u, v))
and (D2

gF (x0, y0, u, v), D2
gG+(x0, z0, u, w))(X) is convex, there exist (c∗, d∗) ∈ C∗ ×N(−D, z0) \ {(0, 0)} such

that 〈c∗, v〉 = 〈d∗, w〉 = 0 and
〈c∗, y〉+ 〈d∗, z〉 ≥ supd∈A2(−D,z0,w)〈d∗, d〉

for all (y, z) ∈ (D2
gF (x0, y0, u, v), D2

gG(x0, z0, u, w))(X). Moreover, if the KRZ constraint qualification

D2
gG(x0, z0, u, w)(X)−A2(−D, z0, w) +D(z0) = Z (4.6)

is fulfilled, then c∗ 6= 0.

Proof. Similar to the first part of the proof of Theorem 4.3, we also get, for all x ∈ X,

D2
gF (x0, y0, u, v)(x)×D2

gG(x0, z0, u, w)(x)
⋂(

IT (−C, v)× IT 2(−D, z0, w)
)

= ∅.

Hence, by the convexity assumption, the standard separation theorem gives (c∗, d∗) ∈ Y ∗×Z∗ \ {(0, 0, 0)} such
that

〈c∗, y〉+ 〈d∗, z〉 ≥ 〈c∗, c〉+ 〈d∗, d〉 (4.7)

for all (y, z) ∈ (D2
gF (x0, y0, u, v), D2

gG+(x0, z0, u, w))(X) and c ∈ IT (−C, v), d ∈ IT 2(−D, z0, w). Since
IT (−C, v) is a cone, (4.7) yields that c∗ ∈ C∗ and 〈c∗, v〉 = 0. According to Proposition 2.4, cl IT 2(−D, z0, w) =
A2(−D, z0, w) and A2(−D, z0, w) + T (T (−D, z0), w) ⊆ A2(−D, z0, w). Then, taking c = 0 in (4.7) one has, for
all d ∈ A2(−D, z0, w) and d′ ∈ T (T (−D, z0), w),

〈c∗, y〉+ 〈d∗, z〉 ≥ 〈d∗, d〉+ 〈d∗, d′〉.
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Because T (T (−D, z0), w) is a cone, d∗ ∈ −[T (T (−D, z0), w)]∗ = {d∗ ∈ N(−D, z0) | 〈d∗, w〉 = 0}. By letting
d′ = 0, the following inequality is acquired

〈c∗, y〉+ 〈d∗, z〉 ≥ supd∈A2(−D,z0,w)〈d∗, d〉.

Next, we verify that c∗ 6= 0 under the constraint qualification. Supposing c∗ = 0, one obtains

〈d∗, z〉 ≥ supd∈A2(−D,z0,w)〈d∗, d〉

for every z ∈ D2
gG+(x0, z0, u, w)(X). Take arbitrarily z̄ ∈ Z. By the constraint qualification, there are t ≥ 0,

z ∈ D2
gG+(x0, z0, u, w)(X), d̄ ∈ A2(−D, z0, w), and d ∈ D such that z̄ = z − d̄ + t(d + z0). AS d∗ ∈ D∗ and

〈d∗, z0〉 = 0, one has

〈d∗, z̄〉 = 〈d∗, z − d̄〉+ t2〈d∗, d+ z0〉 ≥ supd∈A2(−D,z0,w)〈d∗, d〉 − 〈d∗, d̄〉 ≥ 0.

By the arbitrariness of z̄ ∈ Z, the results is a contradiction that d∗ = 0. �

Remark 4.10. (i) Since A2(−D, z0, w) ⊆ cl[cone[cone(−D − z0)− w]] and

d∗ ∈ −[T (T (−D, z0), w)]∗ = −[cl[cone[cone(−D − z0)− w]]]∗,

we have
supd∈A2(−D,z0,w)〈d∗, d〉 6 0.

It can be strictly negative, i.e., the envelope-like effect occurs. Of course, this supremum vanishes if 0 ∈
A2(−D, z0, w). So, for direction w satisfying this, the multiplier rule in Theorem 4.9 takes the classical form.
For example, if w ∈ −D(z0), then 0 ∈ A2(−D, z0, w). However, Theorem 4.9 also considers critical directions
w ∈ −clD(z0). For w ∈ −(clD(z0) \ D(z0)), the envelope-like effect can occur. Since A′′(−D, z0, w) is a
cone, 0 ∈ A′′(−D, z0, w) and hence in Theorems 4.2 and 4.3, this phenomenon does not occur.

(ii) If w ∈ −D(z0), 0 ∈ A2(−D, z0, w) and (4.6) becomes D2
gG(x0, z0, u, w)(X) + D(z0) = Z. Hence, the

constraint qualifications (4.4) and (4.6) are of the same type, but in terms of different kinds of derivatives.

Later, we move on to sufficient conditions for some global minimizers of problem (P).

Theorem 4.11. For (P), let x0 ∈ Ω, y0 ∈ F (x0), z0 ∈ G(x0)∩ (−D), and (v, w) ∈ (F,G)(u) +C ×D. Assume
that (F,G) is C × D-convex and E′′(F,G)(x − x0) fulfills the domination property for all x ∈ Ω. If there exist
c∗ ∈ C∗ \ {0} and d∗ ∈ D∗ such that 〈d∗, z0〉 = 0 and

〈q∗, y〉+ 〈d∗, z〉 ≥ 0

for all x ∈ Ω and (y, z) ∈ D′′g (F,G)(x0, (y0, z0), u − x0, (v − y0, w − z0))(x − x0), then (x0, y0) is a global weak
minimizer of (P).

Proof. Suppose that (x0, y0) is not a global weak minimizer of (P), then there are x̄ ∈ Ω, ȳ ∈ F (x̄), and z̄ ∈ Z
such that

ȳ − y0 ∈ −intC and z̄ ∈ G(x̄) ∩ (−D).

It follows from Proposition 3.10 that, for x̄ ∈ Ω,

(F,G)(x̄)− (y0, z0) ⊆ D′′g (F,G)(x0, (y0, z0), u− x0, (v − y0, w − z0))(x̄− x0) + C ×D.

Thus, there exist (y′, z′) ∈ D′′g (F,G)(x0, (y0, z0), u− x0, (v − y0, w − z0))(x̄− x0) and (c̄, d̄) ∈ C ×D such that
ȳ − y0 = y′ + c and z̄ − z0 = z′ + d. For c∗ ∈ C∗ \ {0} and d∗ ∈ D∗ with 〈d∗, z0〉 = 0, one has

〈c∗, y′〉+ 〈d∗, z′〉 = 〈c∗, ȳ − y0 − c〉+ 〈d∗, z̄ − z0 − d〉.
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Because ȳ− y0− c ∈ −intC−C ⊆ −intC, z̄−d ∈ −D−D ⊆ −D, and 〈d∗, z0〉 = 0, we have 〈c∗, ȳ− y0− c〉 < 0
and 〈d∗, z̄ − z0 − d〉 ≤ 0. Therefore,

〈c∗, y′〉+ 〈d∗, z′〉 < 0,

which is a contradiction. Consequently, (x0, y0) is a global weak minimizer of (P). �

Theorem 4.12. For (P), let x0 ∈ Ω, y0 ∈ F (x0), z0 ∈ G(x0)∩ (−D), and (v, w) ∈ (F,G)(u) +C ×D. Assume
that (F,G) is C × D-convex and E′′(F,G)(x − x0) fulfills the domination property for all x ∈ Ω. If there exist
c∗ ∈ C∗i and d∗ ∈ D∗ such that 〈d∗, z0〉 = 0 and

〈q∗, y〉+ 〈d∗, z〉 ≥ 0

for all x ∈ Ω and (y, z) ∈ D′′g (F,G)(x0, (y0, z0), u − x0, (v − y0, w − z0))(x − x0), then (x0, y0) is both global
Henig-proper and Benson-proper minimizer of (P).

Proof. (i) Henig-proper minimizer. According to Proposition 3.10, for all x ∈ Ω,

(F,G)(x)− (y0, z0) ⊆ D′′g (F,G)(x0, (y0, z0), u− x0, (v − y0, w − z0))(x− x0) + C ×D.

For x ∈ Ω and (y, z) ∈ (F,G)(x), there exist (y′, z′) ∈ D′′g (F,G)(x0, (y0, z0), u−x0, (v−y0, w−z0))(x−x0),
and (c, d) ∈ C ×D such that y − y0 = y′ + q and z − z0 = z′ + d. Given c∗ ∈ C∗i and d∗ ∈ D∗ satisfying
the assumptions of the theorem, one gets

〈c∗, y〉+ 〈d∗, z〉 = 〈c∗, y0〉+ 〈d∗, z0〉+ 〈c∗, y′〉+ 〈d∗, z′〉+ 〈c∗, c〉+ 〈d∗, d〉,
〈c∗, y − y0〉+ 〈d∗, z〉 = 〈d∗, z0〉+ 〈c∗, y′〉+ 〈d∗, z′〉+ 〈c∗, c〉+ 〈d∗, d〉.

By assumption, one has 〈d∗, z0〉 = 0 and 〈c∗, y′〉 + 〈d∗, z′〉 + 〈c∗, c〉 + 〈d∗, d〉 ≥ 0. So, for all x ∈ Ω and
(y, z) ∈ (F,G)(x), one gets

〈c∗, y − y0〉+ 〈d∗, z〉 ≥ 0.

Assume that x0 is not a global Henig-proper solution, i.e., for any pointed convex cone H with C \ {0} ⊆
intH, one can find xH ∈ Ω such that (F (xH) − y0) ∩ (−H \ {0}) 6= ∅. Setting a set H := {y ∈ Y |
〈c∗, y − y0〉 > 0} ∪ {0}, we see that H is a convex cone with C \ {0} ⊆ intH. Thus, one has xH ∈ Ω
satisfying (F (xH)− y0) ∩ (−H \ {0}) 6= ∅. Consequently, there exist y′ − y0 ∈ (F (xH)− y0) ∩ (−H \ {0})
and z′ ∈ G(xH) ∩ (−D) such that

〈c∗, y′ − y0〉+ 〈d∗, z′〉 < 0,

a contradiction.
(ii) Benson-proper minimizer. Similar to (i), one has 〈c∗, y−y0〉+〈d∗, z〉 ≥ 0 for all x ∈ Ω and (y, z) ∈ (F,G)(x).

If x0 is not a global Benson-proper solution, then there exists

y ∈ (−C \ {0}) ∩ clcone(F (Ω)− y0 + C).

Therefore, there exist xn ∈ Ω, yn ∈ F (xn), zn ∈ G(xn)∩(−D), cn ∈ C, and tn > 0 such that limn→∞tn(yn−
y0 + cn) = y. Hence, limn→∞〈c∗, tn(yn− y0 + cn)〉 = 〈c∗, y〉. As c∗ ∈ C∗i, y ∈ −C \ {0}, one has 〈c∗, y〉 < 0.
Moreover, as 〈c∗, cn〉 ≥ 0, one has 〈c∗, yn − y0〉 < 0 for sufficiently large n. Thus,

〈c∗, yn − y0〉+ 〈d∗, zn〉 < 0.

This is a contradiction to the assumption. Hence, this completes the proof.
�
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5. Applications to duality

Motivated by the work reported in [1, 7, 41, 42], we employ some results obtained in Section 4 to consider
some duality schemes for global weak minimizer of the problem (P). In this section, we always consider x0 ∈ Ω,
y0 ∈ F (x0), z0 ∈ G(x0) ∩ (−D), u ∈ X, (v, w) ∈ (F,G)(u) + C ×D, and assume that (F,G) is C ×D-convex
and E′′(F,G)(x− x0) fulfills the domination property for all x ∈ Ω.

5.1. Mond–Weir duality

We consider a Mond–Weir type dual problem, denoted by (DMW ), of (P) as follows

maximize y0
s.t. 〈c∗, y′〉+ 〈d∗, z′〉 ≥ 0 for all (y′, z′) ∈ D′′g (F,G)(x0, (y0, z0), u− x0, (v − y0, w − z0))(x− x0), x ∈ Ω (5.1)
x0 ∈ Ω, y0 ∈ F (x0), z0 ∈ G(x0) ∩ (−D), (5.2)
c∗ ∈ C∗ \ {0}, d∗ ∈ D∗, and 〈d∗, z0〉 = 0. (5.3)

A point (c∗, d∗, x0, y0, z0) is called a feasible solution of (DMW ) if it satisfies (5.1)–(5.3). Let

∆ :=
{
y ∈ F (x) | there exist c∗, d∗, z such that (q∗, d∗, x, y, z) satisfies conditions (5.1)–(5.3)

}
.

A feasible solution (c∗, d∗, x0, y0, z0) is a weak maximizer of ∆ if

(∆− y0) ∩ intC = ∅.

Proposition 5.1 (Weak duality). If (x̄, ȳ) is a feasible solution of (P) and (c∗, d∗, x0, y0, z0) is a feasible solution
of (DMW ), then 〈c∗, ȳ〉 ≥ 〈c∗, y0〉.

Proof. Because (x̄, ȳ) is a feasible solution of (P), then x̄ ∈ Ω, ȳ ∈ F (x̄) and there is z̄ ∈ G(x̄)∩ (−D). It follows
from Proposition 3.10 that

(F,G)(x̄)− (y0, z0) ⊆ D′′g (F,G)(x0, (y0, z0), u− x0, (v − y0, w − z0))(x̄− x0) + C ×D.

Thus, there exit (y′, z′) ∈ D′′g (F,G)(x0, (y0, z0), u− x0, (v − y0, w − z0))(x̄− x0) and (c, d) ∈ C ×D, such that
ȳ − y0 = y′ + c and z̄ − z0 = z′ + d. Moreover, (c∗, d∗, x0, y0, z0) is a feasible solution of (DMW ) , one gets

〈c∗, ȳ − y0〉+ 〈d∗, z̄ − z0〉 = 〈c∗, y′ + c〉+ 〈d∗, z′ + d〉 = 〈c∗, y′〉+ 〈d∗, z′〉+ 〈c∗, c〉+ 〈d∗, d〉 ≥ 0. (5.4)

As z̄ ∈ −D and 〈d∗, z0〉 = 0, one has 〈d∗, z̄−z0〉 ≤ 0. It follows form this inequality and (5.3) that 〈c∗, ȳ−y0〉 ≥ 0,
and hence one obtain 〈c∗, ȳ〉 ≥ 〈c∗, y0〉. Thus, the proof is complete. �

Proposition 5.2 (Strong duality I). Assume that (x̄, ȳ) is a feasible solution of (P), (c∗, d∗, x0, y0, z0) is a feasi-
ble solution of (DMW ), and 〈c∗, ȳ〉 = 〈c∗, y0〉, then (x̄, ȳ) is a global weak minimizer of (P) and (c∗, d∗, x0, y0, z0)
is a global weak maximizer of (DMW )

Proof. – Suppose that (x̄, ȳ) is not a global weak minimizer of (P), there are x̂ ∈ Ω and ŷ ∈ F (x̂) such that
ŷ− ȳ ∈ −intC. By c∗ ∈ C∗\{0}, 〈c∗, ŷ〉 < 〈c∗, ȳ〉 = 〈c∗, y0〉, a contradiction to Proposition 5.1. Consequently,
(x̄, ȳ) is a global weak minimizer.

– Now, we assume that (c∗, d∗, x0, y0, z0) is not a global weak maximizer of (DMW ), there exist a feasible
solution (ĉ∗, d̂∗, x′, y′, z′) of the problem (DMW ) such that y′ − y0 ∈ intC. As c∗ ∈ C∗ \ {0}, we have
〈ĉ∗, y′〉 > 〈ĉ∗, y0〉. On the other hand, (x0, y0) is feasible solution of (P) and (ĉ∗, d̂∗, x′, y′, z′) is feasible solu-
tion of the problem (DMW ), according to Proposition 5.1, 〈ĉ∗, y0〉 ≥ 〈ĉ∗, y′〉, a contradiction. Consequently,
(c∗, d∗, x0, y0, z0) is a global weak maximizer of (DMW ).

�
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Proposition 5.3 (Strong duality II). If (x0, y0) is a global weak minimizer of (P) and the (KRZCQ) in Theo-
rem 4.2 holds, then there are c∗ ∈ C∗ \ {0} and d∗ ∈ D∗ such that (c∗, d∗, x0, y0, z0) is a global weak maximizer
of (DMW ).

Proof. It follows from Theorem 4.2 that there are c∗ ∈ C∗ \ {0} and d∗ ∈ D∗ such that (c∗, d∗, x0, y0, z0) is a
feasible solution of (DMW ). By the same arguments as in Proposition 5.3, we conclude that (c∗, d∗, x0, y0, z0) is
a global weak maximizer of (DMW ) and this completes the proof. �

Next we employ Theorem 4.11 to write down the following proposition.

Proposition 5.4. (Converse duality) If (c∗, d∗, x0, y0, z0) is a feasible solution of (DMW ) then (x0, y0) is a
global weak minimizer of (P).

5.2. Wolfe duality

We define the Wolfe dual problem (DW ) as follows

maximize ψ(c∗, d∗, x0, y0, z0) = 〈q∗, y0〉+ 〈d∗, z0〉
s.t. 〈c∗, y′〉+ 〈d∗, z′〉 ≥ 0 for all (y′, z′) ∈ D′′g (F,G)(x0, (y0, z0), u− x0, (v − y0, w − z0))(x− x0), x ∈ Ω (5.5)
x0 ∈ Ω, y0 ∈ F (x0), z0 ∈ G(x0) ∩ (−D), (5.6)
c∗ ∈ C∗ \ {0}, d∗ ∈ D∗. (5.7)

A point (c∗, d∗, x0, y0, z0) is a feasible solution of (D)W if it satisfies (5.5)–(5.7). (c∗, d∗, x0, y0, z0) is an optimal
solution of (D)W if for any feasible solution (c′∗, d′∗, x′, y′, z′),

ψ(c∗, d∗, x0, y0, z0) ≥ ψ(c′∗, d′∗, x′, y′, z′).

Proposition 5.5 (Weak duality). If (x̄, ȳ) is a feasible solution of (P) and (c∗, d∗, x0, y0, z0) is a feasible solution
of (DW ) , then 〈c∗, ȳ〉 ≥ ψ(c∗, d∗, x0, y0, z0).

Proof. By virtue of Proposition 3.10, one has

(F,G)(x̄)− (y0, z0) ⊆ D′′g (F,G)(x0, (y0, z0), u− x0, (v − y0, w − z0))(x̄− x0) + C ×D.

Hence, there exit (y′, z′) ∈ D′′g (F,G)(x0, (y0, z0), u− x0, (v − y0, w − z0))(x̄− x0) and (c, d) ∈ C ×D, such that
ȳ − y0 = y′ + c and z̄ − z0 = z′ + d. Since (c∗, d∗, x0, y0, z0) is a feasible solution of (DW ) , one gets

〈c∗, ȳ − y0〉+ 〈d∗, z̄ − z0〉 = 〈c∗, y′ + c〉+ 〈d∗, z′ + d〉 = 〈c∗, y′〉+ 〈d∗, z′〉+ 〈c∗, c〉+ 〈d∗, d〉 ≥ 0.

As z̄ ∈ −D, 〈c∗, ȳ〉 ≥ 〈q∗, y0〉+ 〈d∗, z0〉 − 〈d∗, d〉 ≥ 〈q∗, y0〉+ 〈d∗, z0〉. Hence, we get that

〈c∗, ȳ〉 ≥ ψ(c∗, d∗, x0, y0, z0).

�

Proposition 5.6 (Strong duality). If (x0, y0) is a global weak minimizer of (P), where y0 = 0, and the
(KRZCQ) in Theorem 4.2 holds, then there are c∗ ∈ C∗ \ {0} and d∗ ∈ D∗ such that (c∗, d∗, x0, y0, z0) is
an optimal solution of of (DW ).

Proof. By Theorem 4.2, there are c∗ ∈ C∗ \ {0} and d∗ ∈ D∗ with 〈d∗, z0〉 = 0 such that (c∗, d∗, x0, y0, z0) is a
feasible solution of (DW ). Assume that (c∗, d∗, x0, y0, z0) is not an optimal solution of (DW ). Then, there exists
a feasible solution (c′∗, d′∗, x′, y′, z′) of (DW ) such that

ψ(c∗, d∗, x0, y0, z0) < ψ(c′∗, d′∗, x′, y′, z′).

As (x0, y0) is a feasible of (P), by Proposition 5.5, one has ψ(c′∗, d′∗, x′, y′, z′) ≤ 〈c′∗, y0〉. Moreover,
ψ(c∗, d∗, x0, y0, z0) = 〈c∗, y0〉, then 〈c∗, y0〉 < 〈c′∗, y0〉, meaning that 〈c∗ − c′∗, 0〉 < 0, a contradiction to y0 = 0.
The proof is complete. �
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Finally we apply Theorem 4.11 to obtain the following result of converse duality.

Proposition 5.7 (Converse duality). If (c∗, d∗, x0, y0, z0) is a feasible solution of (DW ) then (x0, y0) is a global
weak minimizer of (P).
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