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THE BENEFICIAL EFFECT OF INFORMATION SHARING IN THE
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Abstract. The present paper proposes an integrated production–distribution planning approach for
a textile and apparel supply chain. Tactical and operational decisions are considered in the proposed
multi-product and multi-period planning problem. Using a rolling horizon, the approach aims at defin-
ing optimal quantities to produce, to store and to deliver. The integration consists in coordinating
informational flows between producer and retailer. Information sharing will allow the producer to
estimate more accurately the future replenishment orders that may happen at the operational level and
adjust production capacity requirements accordingly. For this purpose, a two-stage planning approach
is devised; the first stage deals with the tactical level while the second stage deals with the operational
level. The monthly decisions taken at the tactical planning level are accounted for in the operational
planning considering a variable rolling horizon. Moreover, accurate forecasts of future replenishment
orders are established based on information sharing and introduced in the operational planning to
determine the weekly decisions. Linear programming models are used to build production and distribu-
tion plans at the tactical and operational levels. Using real-life data from a textile and apparel Tunisian
firm, we show that producer-retailer coordination based on the sharing of current sales information,
yields significant cost savings reaching up to 20% of the supply chain cost. These findings can only
motivate the partnership between producer and retailer through reliable information sharing in joint
tactical-operational and production–distribution planning.
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1. Introduction

In recent years, the problem of production and distribution planning was of great interest to researchers.
Indeed, to face market competitiveness, ensure shorter lead times and achieve cost savings, supply chain actors
must manage adequately their resources and plan optimally their activities to meet customers’ needs. The main
objective is to provide the required product on time and with a competitive cost. For this purpose, a close
coordination across the supply chain actors is necessary. This coordination becomes crucial to business success
in sectors, where products have a short lifecycle, a volatile demand and face fierce competition. The textile and
apparel supply chain is no exception [1].

The major concern of the textile and apparel supply chain is stemming from the uncertainty in the demand.
This uncertainty is particularly high in the case of the apparel fashion industry due to customer preferences
and tastes that are difficult to predict before the start of the selling season. Achieving a match between demand
and supply to minimize unsold quantities and markdowns at the end of the selling season while, at the same
time, ensuring the availability of demanded products is very challenging in this case. In order to better adjust
the supply to the demand, many textile apparel companies opt for producing a certain quantity of each product
before the start of its selling season and the rest during its selling season. A pre-season order is hence placed
by the retailer based on demand forecast. After observing the sales over the first weeks of the selling season,
other replenishment orders can be placed by the retailer based on more accurate forecasts of the demand.
Some companies, such as Zara, can even decide to stop the production and the display of certain items over a
selling season to replace them by others that match better customer preferences [10]. This requires production
flexibility, reduced replenishment lead times and coordination of the textile and apparel supply chain while
maintaining its cost-effectiveness.

In this work, we address a multi-period production–distribution planning problem arising in global textile
and apparel supply chain, involving multiple actors dispersed all around the world, and offering a wide variety of
products with short lifespans and high demand variability. Both pre-season orders with medium lead time and
in-season replenishment orders with short lead time are accounted for in production and distribution planning.
Because of the difference between the lead time of pre-season and replenishment orders, the considered problem
integrates production and distribution decisions pertaining to the tactical and operational planning levels. In
addition, this multi-level planning problem is investigated while considering that the retailer shares information
on the in-season sales with the producer. Therefore, the impact of this information sharing on the overall cost
of the textile and apparel supply chain is assessed.

The literature on integrated production–distribution planning problem is abundant as shown by Mula et al.
[28], Chen [7], Fahimnia et al. [12] and Moons et al. [25]. Different variants of this problem have been investigated:
some works involve a single manufacturer and/or a single retailer [3,8,30] with multiple products, while others
take into account a single product [6, 24, 35, 36]. Some other papers study the case of multiple manufacturers
with multiple products [18, 19, 43], though the latter are limited to a single period. Other works consider the
multi-product and multi-period problem [15,23,31,34,37].

Noticeably, many integrated production–distribution planning models are sector specific and have been espe-
cially devoted to time-sensitive [36] and/or perishable products such as medicine [15], food [8, 13, 22], dairy
products [16], newspapers [33] and fashion apparel [2, 11,14,34].

Nevertheless, the works that incorporated tactical and operational planning decisions are rather scarce [17,
32,34,39]. On the other hand, only a few studies consider information sharing and demand forecasting [21,45,46]
and do not highlight the value and benefits of information sharing.

To the best of our knowledge, integrated production–distribution planning that incorporates tactical and
operational decisions with demand forecasting based on information sharing in the textile and apparel supply
chain has not been investigated. This paper is devoted to fill this gap.

In this paper, we propose a novel approach for the integrated tactical-operational production–distribution
planning of textile and apparel supply chain. We ensure production flexibility may match the supply and the
demand via subcontracting and overtime. In addition, we incorporate in-season demand forecasting based on
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information shared between producer and retailer. Information sharing increases the reliability of the forecasting
system. We use logistic diffusion model to forecast in-season replenishment orders based on observed sales. We
use more accurate forecast of in-season replenishment orders as inputs in the operational planning model. We
apply the proposed approach to a real case study involving a Tunisian textile and apparel company. We assess
the value and the benefits of information sharing and its impact on the cost-effectiveness of the considered
textile and apparel supply chain.

The remainder of the paper is organized as follows. Section 2 presents a literature review of related works and
emphasizes the contribution of this paper. Section 3 describes the proposed approach for tactical-operational
production–distribution planning with information sharing. Section 4 reports the mathematical model formu-
lation. Section 5 describes the method used to forecast future replenishment orders. Section 6 details computa-
tional results and quantifies the value of sharing information by comparing the corresponding results to their
counterparts obtained with no information sharing.

2. Literature review

The literature review is structured into 4 subsections. In the first subsection, we focus on the works that inves-
tigated the integrated production–distribution planning while incorporating tactical and operational decisions.
The second subsection presents the papers that tackled textile and apparel supply chain planning problems.
The third subsection presents the notable works on demand forecasting in textile and apparel industry. The
main contribution of this research is summarized in subsection 4.

2.1. Integrated production–distribution planning

As shown by the existing literature surveys [7, 12, 25, 28], the integrated production–distribution planning
problem has been widely explored in recent years. We focus here on the works that are most relevant to our
study.

Armentano et al. [3] investigated a capacity-constrained plant producing and distributing a number of items
using a fleet of homogenous vehicles. They approximately solved the production–distribution planning problem
using tabu search. Chen and Vairaktarakis [8] studied an integrated scheduling model of production and dis-
tribution operations that occur in the computer and food catering service industries. Pundoor and Chen [30]
studied an integrated production–distribution scheduling model in a two-stage supply chain. The problem is to
find jointly a cyclic production schedule and a cyclic delivery schedule so that the customer demand for each
product is satisfied without backlog at the least total cost. Two production and delivery scheduling policies
were considered based on whether the production cycle time is equal to the delivery cycle time or is an integer
multiple of the delivery cycle time. The general problems stemming from these two policies were heuristically
solved.

Considering single product, Boudia and Prins [6] used a memetic algorithm to solve an integrated production–
distribution problem where splitting demand and shortage are not allowed. Liao et al. [24] proposed a multi-
objective dual channel supply chain model. Their heuristic approach integrates genetic algorithms, a clustering
analysis, a non-dominated sorting genetic algorithm-II, and a technique for order preference by similarity to
ideal solution. More recently, Sarkar and Giri [35] formulated an integrated supply chain model with backorder
price discount by assuming the replenishment lead time as a linear function of order size, setup time and
transportation time. Sarkar et al. [36] investigate how replenishment lead time affects the backorder quantity
and possible way to increase the backorder rate during shortage.

Tsiakis et al. [43] devised a mixed integer linear programming model (MILP) to determine the optimal
configuration of a production and distribution network subject to operational and financial constraints. The
proposed single-period model accounts for multiple manufacturers, multiple products and considers outsourcing
of production whenever internal capacity cannot satisfy the demand. A case study for the coatings business unit
of a global specialty chemicals manufacturer was used to show the interest of the proposed model. Kim et al.
[19] formulated an integrated model of supply network and production planning among refineries. A Simulation
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and optimization approach was proposed to solve the problem. Keskin and Üster [18] presented a mixed-integer
problem formulation that facilitates the development of efficient heuristic procedures. They provided meta-
heuristic procedures, including a population-based scatter search with path relinking and trajectory-based local
and tabu search, for the solution of the problem.

Other works considered the multi-product and multi-period problem. Liu and Papageorgiou [23] developed
a multi-objective mixed-integer linear programming approach with the objective of minimizing total cost, total
flow time and total lost sales. They also considered two strategies to expand plants’ capacities. Ghasemi Bijaghini
and SeyedHosseini [15] formulated a bi-level planning model in the medicine supply chain. The first objective
function targets the minimization of the budget while the second one aims at the minimization of the shortage
associated with lost sales. A robust approach was used to account for the uncertainty of some parameters using
Benders decomposition algorithm. Selim et al. [37] developed a multiobjective MILP model for collaborative
production–distribution planning problem using fuzzy goal programming approach. Ratna Kumar et al. [31]
proposed an integrated production–distribution planning problem that considers fixed cost, setup cost, and core
demand for multiple products in an environment with backordering and order refusals. They carried a sensitivity
analysis to investigate the behavior of the model when input conditions are varied.

Markedly, only a few works dealt with the integration of the tactical and operational planning decisions
pertaining to production and distribution [34]. Kanyalkar and Adil [17] addressed an integrated multi-product,
parallel multi-plant production and distribution problem where the supplying plant is dynamically determined
for each sales point. Rømo et al. [32] devised a single period mixed-integer program to optimize the network
configuration and routing for the main Norwegian shipper of natural gas. Sousa et al. [39] presented a two-level
planning approach for the redesign and optimisation of production and distribution of a global agrochemicals
supply chain.

At this level, it is worth noting that the above-mentioned works, and especially those that consider multi-
product production and distribution planning, can be adjusted to wider real world applications [12].

2.2. Textile and apparel supply chain planning models

In the following, we focus on the works that are specific to textile and apparel sector. Felfel et al. [14] developed
a multi-stage stochastic program for a tactical multi-product, multi-period, multi-site supply chain production
and transportation planning problem under customer demand uncertainty. Darvishi et al. [11] also investigated
the tactical aggregate planning level. They formulated the problem using a mixed integer nonlinear mathematical
program. They developed an approach based on hybrid fuzzy-robust stochastic method in production planning
with cross-docking. Ait-Alla et al. [2] proposed a stochastic model for robust production and transportation
planning in the fashion apparel industry using conditional value at risk. They incorporated demand scenarios
and their respective probabilities in a model whose objective is to maximize the expected profit.

All the papers mentioned so far do not integrate tactical and operational decision levels in textile and
apparel supply chain planning. However, this integration is primordial to ensure decision process consistency
and achieve production–distribution planning objectives. For this purpose, Safra et al. [34] proposed a two-
stage approach for production–distribution planning in the textile and apparel supply chain that considers
coordination between tactical and operational decision levels. The considered production–distribution planning
problem takes into account different finished items that could be produced either using internal production
capacity or subcontractors’ manufacturing units. The finished items are then delivered to customers, from
warehouses, using different transportation modes. Overtime and subcontracting are used as a flexibility potential
to overcome internal production capacity constraints in order to satisfy customer demands and respect lead
times. In addition, a reserve production capacity is considered at the tactical planning level, and it is shown
that this reduces notably the supply chain cost. The planning problem is studied for the case of no information
sharing between the manufacturer and the retailer. However, as revealed in the recent review dedicated to fashion
retail supply chain (FRSC) management [44], information sharing can contribute to improving the quality of
FRSC decisions.
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In recent years, research streams on information sharing are emerging given that many works advocated
that the latter can be a key factor for a firm’s success. Li et al. [21] developed a system dynamics model to
evaluate the impact of the disruption at the end-customers, and how it can be mitigated through information
sharing among different supply chain echelons. Wu et al. [45] evaluated the benefits of sharing information
on suppliers product quality with the buyer. Yang and Fan [46] used control theory modeling and simulation
showing that information sharing reduces the bullwhip effect under demand disruptions. Notably, none of these
works considers information sharing in the integrated production and distribution planning with consideration
of tactical and operational decisions.

Information sharing is aimed at improving the quality of demand forecasts and hence the effectiveness of
the resulting planning decisions. This is particularly prominent in the textile and apparel supply chain where
demand forecasting is highly challenging [44]. Thus, many researches have been devoted to developing demand
forecasting models for the textile and apparel products. The following subsection presents some of these works.

2.3. Demand forecasting in textile and apparel industry

Recall that textile and apparel products are single-period products with short lifespan that are characterised
by high demand uncertainty. As noted in Nenni et al. [29], the lack of historical demand data in this case
constitutes one of the foremost barriers of forecasting. To overcome this issue, Wen et al. [44] advocated the
recourse to updated market information, that is close to the coming season, to forecast pre-season orders. Şen
and Zhang [38] rather promoted the use of the early sales data at the beginning of the season to update the
forecast for later in-season demand.

As far as demand forecasting is concerned, it is classically conducted while using statistical methods such
as exponential smoothing and ARIMA. However, as stated by Berbain et al. [5], these forecasting methods
require a significant amount of demand history that is unavailable for textile and apparel items. Therefore,
some methods have been adjusted to account for the characteristics of textile and apparel products. Thomassey
et al. [41, 42] developed a forecasting system based on soft computing techniques such as fuzzy logic, neural
networks and evolutionary procedures. Mostard et al. [27] propose new forecasting methods based on advance
demand information and perform a case study to compare them to existing ones based on advance demand
information and also to methods based on expert judgments. Other works [4, 47, 48] used Artificial Neural
Network (ANN) to forecast the demand of fashion products. Although the ANN algorithm provided accurate
demand forecasts, it is impractical because of the high training time required to obtain the forecast.

To face the lack of sales historical data, diffusion models, such as Logistic and Gompertz models, can also
be considered to forecast the demand of new products with no or some sales history [26]. For standard life
cycle curve products, these models try to determine future sales by quantifying the long-term saturation level,
the period of sales peak over product life cycle and the intensity of the introduction phase [20]. Otherwise, for
products whose sales does not follow the standard shape of life cycle curve (one or more phases are absent),
Ching-Chin et al. [9] proposed a model based on the average sales of similar product families.

In all cases, the forecast model to consider must take into account any information deemed appropriate to
the logistic context and to the application field. That is why, in this work, we propose to use the Logistic
diffusion model to predict replenishment orders that may arrive to the manufacturer over the current selling
season. First, it is fit to textile and apparel products as it can be used even if there is no or limited historical
data on the demand. Moreover, this choice can be justified by the adequacy of textile and apparel products to
the standard life cycle curve where sales volumes follow the four phases of introduction, growth, maturity and
decline. More importantly, the Logistic model is easy to implement while repeatedly adjusting its parameters
based on in-season sales information shared between the retailer and the producer. Henceforth, based on this
forecasting scheme, the benefits and value of information sharing in integrated production and distribution
planning in the the textile and apparel supply chain will be assessed.
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2.4. Contribution

The main contribution of this work relies in the consideration of information sharing as a lever to achieve a
better match between supply and demand in the textile and apparel supply chain while meeting customer needs
on time and at the least cost. The integrated tactical-operational production–distribution planning approach
proposed in Safra et al. [34] is therefore extended in order to incorporate replenishment order forecast while
accounting for observed in-season sales that the retailer accepts to share with the manufacturer. With this
information sharing, the manufacturer will be able to establish more accurate forecasts of future replenishment
orders. We evaluate the total supply chain cost while comparing the supply chain performance for the cases
with and without information sharing. The benefits and value of information sharing is evidenced through this
comparison. The proposed approach is applied to a real life textile and apparel company.

3. Production–distribution planning approach with information sharing

3.1. Problem description

The considered textile and apparel supply chain model is based on a real life case study which is representative
of the vast majority of current worldwide textile, apparel and fashion supply chains. The case study considers
the supply chain of a textile and apparel manufacturing company that belongs to one of the largest industrial
groups in Tunisia. The group has its own women apparel and fashion brand and operates a large number of
retail stores. As illustrated in Figure 1, the supply chain network comprises:

– A set of manufacturing units denoted by K = U ∪ V , where U is the set of internal manufacturing units
located in Tunisia and V is the set of subcontractors’ manufacturing units located either in Tunisia, or
overseas (in China).

– A set of warehouses located in Tunisia, denoted by J .
– A set of retailers, denoted by I, where the majority of them are located in the European market, and a few

in the Tunisian market.

In comparison to local subcontracting, overseas subcontracting induces higher transportation costs because
of their distant locations and longer lead times. But they offer very competitive prices, especially for basic
products. Local subcontractors are however more flexible, as they are close at hand. It is worth noting at this
level that our model, detailed thereafter in Section 4, optimally determines the subcontactors to be hired over
each time period t, t ∈ [1 . . . T ] where T is the number of periods included in the planning horizon.

The considered textile and apparel company is adopting a commit-to-delivery business mode. When receiving
retailer orders, it validates a delivery due date and is responsible for the shipping cost. Finished products are

K

U

V

J

I

Figure 1. Supply Chain network.
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shipped immediately towards the warehouses where they are gathered and stored till their delivery time. More
than four million pieces per year are sold to the most well-known clothing brands and retailers (Lacoste,
Kookäı, Promod, Camäıeu, Jaqueline Riu, Cache Cache, Bonprix, Morgan, Go Sport, Orsay, Dixit . . .). A set
of transportation modes, noted by L, may be used for delivery operations, namely trucks, ships or aircraft.
Manufacturers receive two kinds of orders: pre-season orders and replenishment orders. Pre-season orders are
due within months because the ordered products have to be sold during the next season. Replenishment orders
have shorter lead times than pre-season orders. They prevent stockouts of products sold over the current selling
season.

Each retailer i expresses a firm demand for product p to be delivered at period t (DFpit). Forecasted demand
for product p to meet future needs of retailer i in period t is denoted by DPpit. Orders are assigned to manufac-
turing units k characterized by a production capacity (Pkt) over time period t. The production of each item p
in site k over period t incurs either a variable and a fixed cost (CVpkt, CFpkt) or a subcontracting cost (CSpkt).
For more production flexibility, an overtime production capacity in internal manufacturing unit k at period t
(POkt) is considered. Consequently, an overtime production cost of product p in internal manufacturing unit k
at period t (COpkt) is taken into account. Underutilization cost of internal production capacity at the manufac-
turing unit k over period t (CUkt) is also considered to penalize the unused available resources. Each product
p is characterized by a production lead time (Tp) and a unit volume (Vp). Inventory holding cost of product p
over period t at warehouse j is (CIpjt). Each warehouse j has a limited storage capacity (Wj). Transportation
mode l is characterized by a limited capacity (Cl) and a transportation lead time (dl). For each each product p,
a variable and a fixed distribution cost from manufacturing unit k to warehouse j (CV1kjpl, CF1kjl), and from
warehouse j to retailer i (CV2jipl, CF2jil), over period t, are also considered.

3.2. The rolling horizon planning approach

The considered production–distribution planning problem integrates tactical and operational decisions. The
objective is to ensure the consistency of these two planning decisions while incorporating both pre-season and
replenishment orders. It is important to note here that the lead time of pre-season orders are of several months
(6 months at most) while the lead time of replenishment orders are of several weeks (8 weeks at most). As
portrayed in Figure 2, the proposed sequential multi-level planning approach uses two models: (1) a tactical
model and (2) an operational model. This decomposition is justified by problem complexity [12,34].

Replenishment 

forecasts

Costs

Lead times

Capacity limitation

Weekly planning decisions

Detailed monthly planning 

decisions

Overtime

Replenishment orders

Reserve production capacity

Preseason 

orders

Overseas subcontracting 

decisions

Tactical model

Horizon= 6 months

Period= 1 month

Operational model

Variable rolling 

horizon
Forecast 

model

Current sales 

information sharing 

Local 

subcontracting 

option 

Figure 2. Planning approach.
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The tactical model (Fig. 2) includes six 4-week periods planning horizon in order to contain the lead time
of pre-season orders. For the sake of simplication, hereafter, each 4-week period is referred to as a month. The
tactical model determines monthly quantities to produce, store and deliver to retailers. Overseas subcontractors’
assignments determined at the tactical level are firm. To face unforeseen and urgent demand that may happen
over weeks, a reserve production capacity is considered at the tactical level. The latter provides a lever for
incorporating replenishment orders at operational level. The objective is to lower supply chain costs and increase
customer satisfaction by delivering the quantities of products they ordered in full and on time. A monthly rolling
horizon is considered to integrate newly received preseason orders.

At the operational level, a variable planning horizon including eight to eleven 1-week periods is considered
(Fig. 3). The operational model incorporates the output of the tactical model, the received replenishment
orders and replenishment order forecasts based on shared information on current sales as inputs to determine
the quantities to produce, store and deliver to retailers over each week of the planning horizon. A weekly rolling
horizon is considered to integrate newly received replenishment orders. At this level, we recall that 8 weeks is
the maximum lead time for a replenishment order. As shown in Figure 3, the length of the operational planning
horizon is adjusted in order to guarantee the integration of all received replenishment orders. In this operational
model overseas subcontractors are not considered.

Figure 3. Planning horizons description.

Pre-season orders are for products belonging to the new collection of the next selling season. Commitments
are thus pronounced on these orders and the tied production assignment have to be respected at the operational
level. When a new pre-season order, with a delivery lead time exceeding the length of the operational planning
horizon, arrives; it is introduced to the tactical planning model of the following month to decide on production
assignment, taking into account overseas subcontractors. Moreover, at the operational level, it is not excluded
to opt for local subcontracting or to produce during overtime in order to meet unforeseen demand (Fig. 2).

In this work, the proposed planning approach considers information sharing on current sales between the
retailer and the producer. Hence, it levels up the approach presented in Safra et al. [34] to shed the light on the
interest of information sharing and its impact on the total supply chain cost.

4. Mathematical formulation

The proposed tactical-operational production–distribution planning approach deals with two linear program-
ming models. The tactical planning model is similar the one proposed in Safra et al. [34] and will be presented
in Appendix A for the sake of completeness.
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Otherwise, to support the aim of this paper, the operational model which considers replenishment order
forecasts based on shared sales data between the retailer and the producer, deals with planning replenishment
order forecasts.

In addition to the notation introducted in Section 3.1 (with consideration of a 1-week period), the operational
model considers the tactical planned quantities of product p to be produced at manufacturing unit k over the
first month, the second month and the third month, denoted hereafter by X1pk, X2pk and X3pk, respectively.
Obviously, these inputs of the operational model are derived from the solution of the tactical planning model.
Furthermore, in the operational model, we consider the following decision variables:

Integer decision variables

XPpkt: quantity of product p ∈ P to produce at manufacturing unit k ∈ K over period t ∈ T tied to forecasted
replenishment orders.

XFpkt: quantity of product p ∈ P to produce at manufacturing unit k ∈ K over period t ∈ T tied to received
pre-season and replenishment orders

XP′pkt: quantity of product p ∈ P to produce during overtime at manufacturing unit k ∈ U over period t ∈ T
tied to forecasted replenishment order.

XF′pkt: quantity of product p ∈ P to produce during overtime at plant k ∈ U over period t ∈ T tied to received
pre-season and replenishment orders.

UPkt: unused production capacity at manufacturing unit k ∈ U over period t ∈ T .
JPpjt: inventory level of product p ∈ P at warehouse j ∈ J at the end of period t ∈ T to tied to forecasted

replenishment orders.
JFpjt: inventory level of product p ∈ P at warehouse j ∈ J at the end of period t ∈ T tied to received pre-season

and replenishment orders
ZP1kjplt: quantity of product p to be delivered from plant k ∈ K to warehouse j ∈ J by transportation mode

l ∈ L over period t ∈ T tied to forecasted replenishment orders.
ZF1kjplt: quantity of product p delivered from plant k ∈ K to warehouse j ∈ J by transportation mode l ∈ L

over period t ∈ T t ied to received pre-season and replenishment orders.
ZP2jiplt: quantity of product p ∈ P to be delivered from warehouse j ∈ J to retailer I ∈ I by transportation

mode l ∈ L over period t ∈ T tied to forecasted replenishment orders.
ZF2jiplt: quantity of product p ∈ P delivered from warehouse j ∈ J to retailer I ∈ I by transportation mode

l ∈ L over period t ∈ T tied to received pre-season and replenishment orders.
NP1kjlt: number of times transportation mode l ∈ L is used to transport products from plant k ∈ K to

warehouse j ∈ J over period t ∈ T .
NP2jilt: number of times transportation mode l ∈ L is used to transport products from warehouse j ∈ J to

retailer i ∈ I over period t ∈ T .

Binary decision variables

YPpkt = 1 if demand for product p ∈ P tied to forecasted replenishment order is processed at manufacturing
unit k ∈ K over period t ∈ T, 0 otherwise.

YFpkt = 1 if demand for product p ∈ P tied to received pre-season and replenishment orders is processed at
plant k ∈ K over period t ∈ T, 0 otherwise.

YP′pkt = 1 if demand for product p ∈ P tied to forecasted replenishment order is processed during overtime at
plant k ∈ Uover period t ∈ T, 0 otherwise.

YF′pkt = 1 if demand for product p ∈ P tied to received pre-season and replenishment orders is processed during
overtime at plant k ∈ U over period t ∈ T, 0 otherwise.
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Model formulation

Thee problem is formulated as a MILP which aims to minimize the overall cin the considered logistics network.

Min

(∑
t∈T

∑
p∈P

∑
k∈U

CVpkt ∗ (XPpkt + XFpkt) +
∑
t∈T

∑
p∈P

∑
k∈U

CFpkt ∗ (YPpkt + YFpkt)

×
∑
t∈T

∑
p∈P

∑
k∈U

CFpkt ∗
(
YP′pkt + YF′pkt

)
+
∑
t∈T

∑
p∈P

∑
k∈V

CSpkt ∗ (XPpkt + XFpkt)∑
t∈T

∑
p∈P

∑
k∈U

COpkt ∗
(
XP′pkt + XF′pkt

)
+
∑
t∈T

∑
k∈U

CUkt ∗UPkt

+
∑
t∈T

∑
p∈P

∑
j∈J

CIpjt ∗
(

JPpjt + JPpjt+1

2
+

JFpjt + JFpjt+1

2

)
+
∑
l∈L

∑
t∈T

∑
p∈P

∑
k∈K

∑
j∈J

CV1kjpl

∗ Vp ∗ (ZP1kjplt + ZF1kjplt) +
∑
p∈P

∑
l∈L

∑
t∈T

∑
k∈K

∑
j∈J

CF1kjl ∗NP1kjlt

+
∑
t∈T

∑
p∈P

∑
i∈I

∑
j∈J

∑
l∈L

CV2jipl ∗ Vp ∗ (ZP2jiplt + ZF2jiplt) +
∑
p∈P

∑
t∈T

∑
i∈I

∑
j∈J

∑
l∈L

CF2jil ∗NP2jilt

)

Subject to

JPpjt = JPpjt−1 +
∑
l∈L

∑
k∈K

ZP1kjplt −
∑
i∈I

∑
l∈L

ZP2jiplt p ∈ P ; j ∈ J ; t ∈ T (4.1)

JFpjt = JFpjt−1 +
∑
l∈L

∑
k∈K

ZF1kjplt −
∑
i∈I

∑
l∈L

ZF2jiplt p ∈ P ; j ∈ J ; t ∈ T (4.2)∑
p∈P

(JPpjt + JFpjt) ≤Wj j ∈ J ; t ∈ T (4.3)

XPpkt ≤M ∗
(
YPpkt + YP′pk′t

)
p ∈ P ; k ∈ K; k′ ∈ U ; t ∈ T (4.4)

XFpkt ≤M ∗
(
YFpkt + YF′pk′t

)
p ∈ P ; k ∈ K; k′ ∈ U ; t ∈ T (4.5)

YPpkt ≤ XPpkt p ∈ P ; k ∈ K; t ∈ T (4.6)
YFpkt ≤ XFpkt p ∈ P ; k ∈ K; t ∈ T (4.7)
XP′pk′t ≤M ∗

(
YP′pk′t + YPpkt

)
p ∈ P ; k ∈ K; k′ ∈ U ; t ∈ T (4.8)

XF′pk′t ≤M ∗
(
YF′pk′t + YFpkt

)
p ∈ P ; k ∈ K; k′ ∈ U ; t ∈ T (4.9)

YP′pk′t ≤ XP′pk′t p ∈ P ; k′ ∈ U ; t ∈ T (4.10)
YF′pk′t ≤ XF′pk′t p ∈ P ; k′ ∈ U ; t ∈ T (4.11)
YP′pk′t + YPpkt ≤ 1 p ∈ P ; k ∈ K; k′ ∈ U ; t ∈ T (4.12)
YF′pk′t + YFpkt ≤ 1 p ∈ P ; k ∈ K; k′ ∈ U ; t ∈ T (4.13)∑
p∈P

Tp ∗ (XPpkt + XFpkt) ≤ Pkt k ∈ K; t ∈ T (4.14)

∑
p∈P

Tp ∗
(
XP′pk′t + XF′pk′t

)
≤ POk′t k′ ∈ U ; t ∈ T (4.15)

XPpk1 = 0 p ∈ P ; k ∈ K (4.16)
XP′pk′1 = 0 p ∈ P ; k′ ∈ U (4.17)∑
t∈S1

(XFpkt + XF′pk′t) ≥ X1pk p ∈ P ; k ∈ K; k′ ∈ U ;S1 = {1, . . . , 4} (4.18)
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t∈S2

(XFpkt + XF′pk′t) ≥ X1pk p ∈ P ; k ∈ K; k′ ∈ U ;

S2 = {1, . . . , h− 8}; 8 < h ≤ 11 (4.19)∑
t∈S3

(XFpkt + XF′pk′t) ≥ X2pk p ∈ P ; k ∈ K; k′ ∈ U ;

S3 = {1, . . . , 8} (4.20)∑
t∈S4

(XFpkt + XF′pk′t) ≥ X2pk p ∈ P ; k ∈ K; k′ ∈ U ;

S4 = {h− 7, . . . , h− 4}; 8 < h ≤ 11 (4.21)∑
t∈S5

(XFpkt + XF′pk′t) ≥ X3pk p ∈ P ; k ∈ K; k′ ∈ U ;

S5 = {h− 3, . . . , h}; 8 < h ≤ 11 (4.22)

UPk′t ≥ Pk′t −
∑
p∈P

Tp ∗ (XPpk′t + XFpk′t) k′ ∈ U ; t ∈ T (4.23)

XP′pk′t + XPpkt =
∑
l∈L

∑
j∈J

ZP1kjplt p ∈ P ; k ∈ K; k′ ∈ U ; t ∈ T (4.24)

XF′pk′t + XFpkt =
∑
l∈L

∑
j∈J

ZF1kjplt p ∈ P ; k ∈ K; k′ ∈ U ; t ∈ T (4.25)

DFpit =
∑
j∈J

∑
l∈L

ZF2jiplt−dl
p ∈ P ; i ∈ I; t ∈ T (t ≥ dl) (4.26)

DPpit =
∑
j∈J

∑
l∈L

ZP2jiplt−dl
p ∈ P ; i ∈ I; t ∈ T (t ≥ dl) (4.27)

∑
p∈P

Vp ∗ (ZF1kjplt + ZP1kjplt) ≤ NP1kjlt ∗ Cl k ∈ K; j ∈ J ; l ∈ L; t ∈ T (4.28)

∑
p∈P

Vp ∗ (ZF2jiplt + ZP2jiplt) ≤ NP2jilt ∗ Cl j ∈ J ; i ∈ I; l ∈ L; t ∈ T (4.29)

YPpkt ∈ {0, 1} ; YFpkt ∈ {0, 1} ; p ∈ P ; k ∈ K; t ∈ T (4.30)
YF′pk′t ∈ {0, 1} ; YP′pk′t ∈ {0, 1} ; p ∈ P ; k′ ∈ U ; t ∈ T
ZP1kjplt ∈ N; ZF1kjplt ∈ N; k ∈ K; j ∈ J ; p ∈ P ; l ∈ L; t ∈ T
ZP2jiplt ∈ N; ZF2jiplt ∈ N j ∈ J ; i ∈ I; p ∈ P ; l ∈ L; t ∈ T
XPpkt ∈ N; XFpkt ∈ N p ∈ P ; k ∈ K; t ∈ T
XF′pk′t ∈ N; XP′pk′t ∈ N p ∈ P ; k′ ∈ U ; t ∈ T
JPpjt ∈ N; JFpjt ∈ N p ∈ P ; j ∈ J ; t ∈ T
NP1kjlt ∈ N k ∈ K; j ∈ J ; l ∈ L; t ∈ T
NP2jilt ∈ N j ∈ J ; i ∈ I; l ∈ L; t ∈ T
UPkt ∈ N k ∈ K; t ∈ T.

The objective function minimizes the total supply chain network cost composed of fixed and variable pro-
duction costs, total inventory holding cost, fixed and variable transportation cost from the manufacturer to the
warehouse and fixed and variable transportation cost from the warehouse to the retailer, underutilization as well
as overtime cost associated to the internal production capacity. Constraints (4.1) and (4.2) calculate the inven-
tory level of products planned to meet respectively predicted orders and firm orders in warehouse j at the end of
period t. Constraints (4.3) guarantee that the total stored quantity does not exceed storage capacity. Constraints
(4.4)–(4.7) ensure the relationship between binary and integer variables while ensuring the manufacturing of
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products on already launched lines. Constraints (4.8)–(4.13) ensure that overtime production cost is considered
only in the case that there is no production of the same products previously. Constraints (4.14) and (4.15)
ensure the consideration of production capacity during both regular working time and overtime with respect to
the production capacity of the manufacturing units. Constraints (4.16) and (4.17) ensure that during the first
period of the planning horizon only confirmed orders are planned and processed. Subsequently, planned product
quantities to meet demand forecast over the first period are equal to zero. Constraints (4.18)–(4.22) guarantee
that monthly assignment tactical decisions are detailed over weeks at the operational level respecting all made
decisions until the end of the month. Constraints (4.23) with the objective function define the underutilized
internal production capacity. The distribution of all produced quantities to warehouses is enforced by constraints
(4.24) and (4.25). Constraints (4.26) and (4.27) guarantee that the planned product quantities for delivery sat-
isfy the demand of each retailer. The transportation of total quantities from manufacturing plants to warehouses
and from warehouses to retailers with respect to transportation capacities is guaranteed by constraints (4.28)
and (4.29).

5. Demand estimation

In this section, we describe the method considered to forecast demand with information sharing.

5.1. Replenishment order forecast

To forecast replenishment orders, we will follow the following four steps:

– The first step consists in developing the logistic diffusion forecasting model by defining its parameters: (1)
the long-term saturation level, (2) the period of inflection, and (3) the intensity of the introduction phase.

– The second step involves the construction of the cumulative sales curve. This step also includes forecasting
sales of the next periods using the logistic diffusion model.

– The third step consists in defining order points and the quantities to deliver to retailers. To do this, we
predict retailer replenishment policy based on historical data.

– Finally, forecasts of replenishment orders are used as inputs in the operational planning model.

Once confirmed information regarding cumulative sales is received, this four-step forecasting scheme is used
to update the forecasts over the weekly rolling horizon.

5.2. Logistic diffusion model

For the purpose of illustration, we detail the different steps of the adopted logistic diffusion model [26] for
one apparel product.

We assume that the lifespan of an apparel product is about 24 weeks which is the length of the corresponding
selling season. For example, the products that are placed onto retail points in March are part of summer
collection and will be sold until the end of august. Hence, in order to forecast the sales of a given product, we
construct its life cycle curve on the 24 weeks of its selling season. To do this, we use the logistic diffusion forecast
model where cumulative sales Yt are defined as a function of time t as indicated below in equation (5.1):

Yt =
S

1 +Be−At
(5.1)

S is the long run saturation level;
A is a delay factor which indicates the intensity of the introductory stage of a given product life cycle;
B = eI∗A where I is the inflection point. In this model, cumulative sales at the inflection point I are 50% of
cumulative sales at the long run, when saturation is reached.

In this study, the saturation level of each product is deduced from sales historical data of the previous year.
S is set to the maximum sales achieved for the products of the same family sold during the same season of the
previous year. For all products, we assume that half of their total sales is reached in the middle of their selling
season (at week 12 of the selling season). Hence, I is set to 12.
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Let us consider the example of product TM680 which is a classic knitting tee-shirt of the summer collection.
We assume that S is equal to 2200 for TM680, and verify that half of the threshold S is reached in June, at the
middle of its selling season.

At this level we need to determine A in order to establish the cumulative sales curve. For that, we consider
sales data shared by the retailer and the orders received from and/or delivered to the retailer during the weeks
of the selling season.

For instance, the pre-season order quantity for TM680 is 570 units. This quantity has been delivered to the
retailer during the first week of the season. Furthermore, according to the retailer, 198 units of TM680 have
been sold over the first week of the selling season.

Based on this information, we can conclude that the point (1, 198) belongs to the logistic curve and hence
verifies equation (5.1).

198 =
2200

1 + eA∗(12−1)
· (5.2)

From equation (5.2), we can then deduce that A is equal to 0.21 and the cumulative sales can be forecasted
using equation (5.3):

Yt =
2200

1 + e0.21∗(12−t)
· (5.3)

After that, using (5.3), we can construct the forecasted curve of product TM680 life cycle (see Fig. 4).
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Figure 4. TM680 cumulative sales.

From product life cycle curve or directly using (5.3), we forecast the weekly sales as mentioned in Table 1.

Table 1. Forecast TM680 sales.

Week Sales/Week Week Sales/Week

2 40 14 116
3 48 15 110
4 56 16 103
5 66 17 95
6 75 18 85
7 85 19 75
8 95 20 66
9 103 21 56
10 110 22 48
11 116 23 40
12 118 24 34
13 118
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Suppose that usually three replenishment orders are expected to arrive from the considered retailer over the
selling season. The first order arrives in general one month after the start of the season, the second order arrives
in general two months after the start of the season, while the third one arrives in general after 3 months after
the start of the season. The delivery lead time is of 3 weeks.

These three replenishment orders have to be forecasted and introduced in the operational planning. Based on
sales forecasts presented in Table 1, we can note that at week 7 the cumulative sales are close to 570 units and
a delivery is needed to avoid stock-out. Hence we can anticipate that the first replenishment order will arrive at
the end of week 4 and delivered at end of week 7. Moreover, the ordered quantity should cover the sales until
week 11, as this is supposed to be the delivery date of the second replenishment order. The cumulative sales at
week 11 amount to 992 units and hence the forecast of the ordered quantity is 422 units.

At the end of week 7, according to the retailer, 345 units have been sold. This sales information is henceforth
used to update the logistic curve using the point (7, 345). Cumulative sales can be determined using equation
(5.4).

Yt =
2200

1 + e0.34∗(12−t)
· (5.4)

The product cycle life curve is updated accordingly as shown in Figure 5 below:
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Figure 5. TM680 updated cumulative sales.

As the forecast for cumulative sales at week 11 is 914 units and in week 12 is 1100 units, the manufacturer
anticipates the receipt of a second replenishment order in week 8 for a delivery in week 11. The ordered
quantity should cover the sales until week 15. At week 15, the forecast for cumulative sales is 1619 units.
Hence the anticipated order quantity will be 649 units. The same scheme will be repeated to forecast the third
replenishment order.

The first replenishment order can be accounted for while constructing the operational plan of the second week
of the selling season. Any update of the forecast can be thereafter introduced over the weekly rolling horizon.
When a firm replenishment order arrives, it of course replaces the forecasted one.

6. Computational experiments

In this section, we first present the considered case study. Then, we present the conducted experimentation
and the obtained results. Finally, we present the results of the sensitivity analysis that has been carried out to
investigate the effect of some parameters on supply chain performance.
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6.1. Case study

In this paper, our experimentation focuses on knitting products. This business, with almost 200 different
references produced and delivered per year, is amongst the most important activities of the company. Produc-
tion is performed in three knitting company-owned manufacturing plants with limited production capacities.
Production flexibility is reinforced through subcontracting. Eleven subcontractors are involved in the company’s
network: Ten local and one overseas, located China. Local subcontractors offer prices generally 20% higher than
the unit costs of internal production. The Chinese subcontractor, however, offers relatively lower prices (the
price offered for some basic products may be half of their unit production cost in internal manufacturing units).
However, in this case, subcontracting needs to be planned sufficiently in advance because it involves a 6-week
shipping lead time. Produced items are transported to two local warehouses and then to retailers using a com-
bination of the transportation modes mentioned above for those located overseas. The inventory holding cost
per unit is about 5% of its production cost. Pre-season orders are received well in advance, often six to four
months before the start of the selling season, whereas for the replenishment orders, the delivery lead time is in
general of three weeks. An underutilization cost corresponding to fixed expenses incurred by idle production, is
supposed to be the third of the internal production cost. Overtime production costs 40% higher than production
during regular hours. The considered company considers only overtime and subcontracting to handle demand
variability and satisfy the demand.

In this work, we propose to simulate our tactical-operational production–distribution planning approach over
six months. Since we have three-year historical data, we propose to test our approach using available two-year
historical data and then compare what our method proposes for the third year with regard to what was really
realised.

We begin by presenting the results of the experimentation based on information sharing between the retailer
and the producer. Replenishment order forecasts obtained by the logistic diffusion model are thus taken into
account in the operational planning. We compare the results of this work to those obtained in the absence of
information sharing. Finally, we test our approach with perfect forecasts, where all predicted replenishment
orders are confirmed and arrive actually through the rolling horizon.

All MILP models are solved using the package ILOG OPL Studio V6.3/Cplex 12, on a PC Intel Core i5 with
a 2.3 GHz processor and 512 MB memory.

6.2. Experimentation and results

First, we evaluate the impact of considering information sharing on the supply chain performance. Second,
we present a comparative study considering different planning approaches. The objective is to highlight the
benefits and value of information sharing.

6.2.1. Planning approach considering information sharing

We first calculate the supply chain cost over six months in the presence of information sharing. In order to
stress the importance of introducing a reserve production capacity at the tactical planning level, the supply chain
cost is calculated for three types of production–distribution plans: (1) plans constructed without considering
a reserve production capacity, (2) plans constructed while considering a fixed reserve production capacity of
20%, and (3) plans constructed while considering a monthly variable reserve production capacity. These three
scenarios will be referred to as WIRP, WFRP-20% and WMVRP, respectively. For more details on how a
monthly variable reserve production capacity is estimated and incorporated in the tactical model, we refer the
reader to Safra et al. [34]. Table 2 reports the obtained costs.

The results of Table 2 point out the interest of considering a monthly-varying reserve production capacity
at the tactical planning level as it allows to reduce the supply chain cost by 4%. In particular, one can notice
the substantial reduction in overtime production, underutilization and subcontracting costs against production
costs (over regular hours) which are higher than those of the other scenarios (WIRP and WFRP-20%). This
increase highlights a better utilization of the internal production capacities. In fact, the reduction in total cost is
explained on the one hand, by the reduction in overtime and subcontracting costs, which are always higher than



1186 I. SAFRA ET AL.

Table 2. Supply chain costs (Ke) obtained by the approach considering information sharing.

Production
cost

Overtime
production
cost

Subcontracting
cost

Transportation
cost

Inventory
holding
cost

Underutilization
cost

Overall
cost

WIRP 2019 20 144 199 21 25 2429
WFRP-20% 2045 15 115 198 13 20 2411
WMVRP 2057 1 56 196 16 3 2332

the cost generated by the increase of production in regular hours. Indeed, the monthly-varying reserve capacity
considered at the tactical level allows to accommodate orders that arrive at the operational level without having
to recourse to overtime or subcontracting activities. On the other hand, the underutilization cost of the internal
capacity is considerably low when a monthly-varying reserve capacity is adopted, given that the latter is well
estimated according to reliable order forecasts at an operational level.

Concerning the inventory holding cost, considering a monthly-varying reserve capacity entails lower costs than
those of the first scenario (WIRP); but higher costs than those of the second scenario (WFRP-20%). Indeed,
when considering a monthly-varying reserve capacity, some productions are anticipated and advanced over
months when internal production capacity is available, knowing replenishment order forecasts, which generates
a moderately high inventory holding cost. The transportation cost remains stable for the three considered
scenarios since almost the same quantities are delivered given the ordered quantities. Cost savings are achieved
mainly due to the improvement of internal production capacity utilization, while considering an adequate reserve
production capacity at the tactical planning level.

Figure 6 portrays production assignment for the three considered scenarios and hence comes to support
the previous analysis. As it can be noticed, the best production assignment is obtained for the third scenario
(WMVRP) where 94.7% of the total demand is produced internally over regular hours, while the rest is produced
using overtime (0.1%) or subcontracting (5.2%). These results confirm, once again, that a better use of internal
resources can be achieved if the manufacturer opts for introducing a monthly-varying reserve capacity at the
tactical planning.

90,2%
90,7%

94,7%

0,6%
0,4%

0,1%
9,2% 8,8%
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96,0%

98,0%

100,0%

internal produc!on Over!me produc!on subcontrac!ng produc!on

WIRP WFRP-20% WMVRP

Figure 6. Production assignment.



THE BENEFICIAL EFFECT OF INFORMATION SHARING 1187

6.2.2. Comparison of planning approaches

In order to shed the light on the benefits and the value of information sharing, first we compare the results
obtained by the planning approach considering information sharing (hereafter referred to as A2) to the ones
obtained by a planning approach without information sharing (hereafter referred to as A1). The latter are
extracted from Safra et al. [34] which explores a planning approach without information sharing using the same
case study.

Table 3 compares production assignments obtained by A1 and A2 for the three scenarios WIRP, WFRP-20%
and WMVRP.

Table 3. Comparison of production assignments.

WIRP WFRP-20% WMVRP
A1 A2 A1 A2 A1 A2

Regular hour production 259 359 259 832 259 654 261 641 259 727 268 690
Overtime production 1833 1746 1401 1281 2303 154
Subcontracted production 25 507 26 590 35 373 25 482 16 793 14 785
Total quantities 286 699 288 168 296 428 288 404 278 823 283 629

Notes. A1: Approach without information sharing. A2: Approach considering information sharing.

We notice that when retailer shares sales information with producer, a better use of the internal produc-
tion capacity is accomplished whether considering or not a reserve production capacity at the tactical level.
This sharing of information enables the company to anticipate the arrival of replenishment orders and hence
to produce the ordered quantities internally at a lower cost. However, the best internal production capacity
utilization is observed when a monthly-varying reserve production capacity is used at the tactical level given
that this reserve, which is better estimated with reliable forecasts, allows to adjust internal capacity to accom-
modate orders. It is also worth noting that the increase in produced quantities at internal production sites is
accompanied by a decrease in overtime and a decrease in subcontracted quantities except for the case where the
full production capacity is used at the tactical level since no flexibility is provided to accommodate orders at
the operational level. In this case, subcontractors’ production has increased in A2 with comparison to A1. This
increase is explained by advanced production of some quantities using internal capacities or subcontractoring.
Such a planning decision is made due to: (1) the high cost of overtime production in comparison to competitive
prices offered by subcontractors, (2) the use of full internal production capacity available at the tactical planning
level and (3) the unavailability of internal capacity when planning newly arrived orders at the operational level.

As it can be noted, the total quantities manufactured over the 6 months are not similar for the three scenarios
(WIRP, WFRP-20% and WMVRP) given that some orders placed over the six months have to be delivered to
customers at a due date beyond the six month planning period. These orders can be processed in advance when
the available production capacity is able to accommodate them and then transported by ships to customers.
Otherwise, the related production will be delayed for the next months, beyond the six month planning period,
as the due date is not yet reached. In the second scenario (WFRP-20%), the reserve production capacity at the
tactical level allows the production of advanced quantities with lower costs, when internal capacities are available
at the operational planning level. This leads to higher produced quantities over the six months comparing to the
other two scenarios (WIRP and WMVRP). Nevertheless, when a monthly-varying reserve production capacity
is considered, these advanced productions are lower since the adjusted available capacity accommodates only
the necessary quantities.

Furthermore, our approach is tested while assuming perfect forecasts. In this case all replenishment order
forecasts are confirmed by firm orders received from the retailer, i.e., we assume that the forecast error is equal
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to zero. A planning approach with information sharing and in which we assume perfect forecasts is hereafter
referred to as A3.

Table 4 provides supply chain costs obtained by A1, A2 and A3 for the three scenarios WIRP, WFRP-20%
and WMVRP. Expectedly, the highest cost is the one tied to A1 without consideration of a reserve production
capacity at the tactical planning. This reflects the current practice in the considered company. Moreover, Table 4
gives the cost saving that can be achieved for each approach over the current practice.

Table 4. Cost comparison.

WIRP WFRP-20% WMVRP
C CS C CS C CS

A1 2864 0% 2746 4% 2575 10%
A2 2429 15% 2411 16% 2332 18%
A3 2396 16% 2364 17% 2285 20%

Notes. A1: Approach without information sharing. A2: Approach considering sharing information. A3: Approach con-
sidering information sharing tested while assuming perfect forecasts. C: Total cost (Ke). CS: Cost saving (%).

The results in Table 4 demonstrate that the adoption of a planning approach with information sharing and
a monthly-varying reserve production capacity allows the company to achieve a cost saving of 18% over the
current practice. The cost saving can reach 20% in the case of perfect forecasts. This obviously highlights the
interest to develop a reliable and efficient forecast system. Indeed, such a system will accurately estimate the
monthly-varying reserve production capacity and predict the replenishment orders. The latter can be therefore
integrated in the operational planning at a lower cost.

6.3. Sensitivity analysis

A sensitivity analysis is carried out in order to study the impact of some parameters on planning decisions
and the performance of the considered supply chain. Three parameters are considered in this analysis: demand,
transportation cost and subcontracting cost. Indeed, these parameters may be subject to fluctuations because
of different factors such as competition, economic conditions, or disruptions due to natural disasters such as the
COVID-19 pandemic.

In our experimentation, we constructed production–distribution plans while varying the value of the (1)
demand, (2) transportation cost and (3) subcontracting cost from −50 to +50%, around their current values.
Moreover, we compared the supply chain cost obtained by a planning approach considering information sharing
and a monthly-varying reserve production capacity (A2-WMVRP) to the supply chain cost obtained by the
current practice (A1-WIRP).

6.3.1. Sensitivity analysis of demand

The results reported in Table 5 clearly show the superiority of A2-WMVRP over A1-WIRP, which reflects
the current practice in facing demand variation. Indeed, even when the demand is reduced by half, the cost
remains lower for A2-WMVRP. However, as it can be noticed, the gap between costs gets smaller when demand
decreases. This is due to the fact that internal production sites can satisfy lower demand without considering a
reserve production capacity at the tactical level and without sharing information. However, the adoption of a
planning approach with information sharing and a monthly-varying reserve production capacity has a significant
effect on supply chain cost reduction in the case of a surge in the demand. The adoption of this approach yields
a 19% reduction in the supply chain cost when the demand increases by 20% and 50%.
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Table 5. Effect of demand variation on supply chain cost.

D − 50% D − 20% D D + 20% D + 50%

A1-WIRP (Ke) 1658 2152 2864 3285 3794
A2-WMVRP (Ke) 1601 1898 2332 2653 3055
Gap (%) 3 12 18.6 19 19

6.3.2. Sensitivity analysis of transportation cost

Once again, as shown in Table 6, a planning approach with information sharing and considering a monthly-
varying reserve production capacity (A2-WMVRP) outperforms the one currently used by the considered com-
pany (A1-WIRP) when overseas transportation cost fluctuates.

Table 6. Effect of overseas transportation cost variation on supply chain cost.

T − 50% T − 20% T T + 20% T + 50%

A1-WIRP (Ke) 2424 2678 2864 2891 2894
A2-WMVRP (Ke) 2260 2301 2332 2356 2358
Gap (%) 6 14.1 18.6 18.5 18.5

On the one hand, when the overseas transportation cost decreases, the supply chain cost also decreases. More
importantly, we notice a migration of some productions from internal production sites to the manufacturing
units of overseas subcontractors (Fig. 7). Expectedly, a reduction in overseas transport costs favors the recourse
to overseas subcontracting as the latter offers lower unit production costs compared to those of local production
mainly for basic products.

On the other hand, we note a small increase of the supply chain cost when the overseas transportation cost
increases. In this case, overseas subcontracting becomes an expensive option. As shown in Figure 7, an increase
of overseas transportation cost fosters production in local manufacturing units. Moreover, this explains the
observed cost stability in supply chain cost despite the significant increase of overseas transportation cost (50%).
In this case, A2-WMVRP allows a better deployment of internal production capacity and local subcontracting
that results in 18.5% reduction of the supply chain cost with comparison to A1-WIRP.

Figure 7. A comparison of production assignment for the two approaches.
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6.3.3. Sensitivity analysis of subcontracting cost

Table 7 reports the effect of local subcontracting cost variation on supply chain cost. When the cost of local
subcontracting is reduced by half, it becomes more cost competitive than internal production. So a large part of
the internal production is assigned to local subcontractors. Indeed, underutilization cost of internal production
capacity impedes the subcontracting of the total quantities. This obviously leads to a lower supply chain cost
explained by a decrease in production costs. As shown in Table 7, the gap between the two approaches gets
smaller when local subcontracting cost decreases. Hence the value of information sharing is lessened in this case
as local subcontracting becomes a lever to efficiently face demand variation. Oppositely, the increase of local
subcontracting cost can only encourage the producer to plan its capacity as well as possible in order to meet
urgent demand that may occur at the operational level without using costly subcontracting, and this is ensured
through information sharing with the retailer. The value of information sharing is highlighted by the significant
gap estimated at 19% between the supply chain cost of A2-WMVRP and A1-WIRP.

Table 7. Effect of subcontracting cost variation on supply chain cost.

S − 50% S − 20% S S + 20% S + 50%

A1-WIRP (Ke) 2509 2798 2864 2925 2964
A2-WMVRP (Ke) 2305 2321 2332 2382 2408
Gap (%) 8% 17% 18.6% 18.6% 19%

6.4. Managerial insights

The proposed multi-level integrated production–distribution planning approach with information sharing and
considering a monthly-varying reserve production capacity is particularly recommended for supply chains that
provide products having the same features of textile and apparel items i.e. having a volatile demand lacking
historical data, and where manufacturers need to process simultaneously orders with long delivery times and
orders with relatively short lead times. In this case, sharing of sales data allows the producer to predict the
orders with relatively short lead time and hence integrate them when received in a more cost-effective way.
On the other hand, the retailer can benefit from this information sharing as its urgent demand can be timely
satisfied. Information sharing results in a significant decrease of supply chain cost.

In the current context, it is not enough for the manufacturer to focus on developing desirable products; he
must also provide products at the right time and at reasonable prices. Adopting an integrated planning approach
with information sharing between supply chain actors, that emphasizes flexibility and responsiveness is the key
to achieving cost reduction and a competitive edge. Supply chain performance can be further improved if more
sophisticated methods for estimating monthly reserve production capacity and forecasting replenishment orders
are developed. Besides, a reinforced retailer-manufacturer partnership involving more exhaustive information
sharing and collaborative forecasting would also improve the performance of the supply chain.

The interest of adopting a planning approach with information sharing and a monthly-varying reserve pro-
duction capacity significantly increases when demand, overseas transportation cost and subcontracting cost
increase. But even if there is a decrease in the value of these parameters, the planning approach with infor-
mation sharing and a monthly-varying reserve production capacity remains superior to the current practice.
Therefore, a planning approach with information sharing outperforms the current practice in case a disruption
such as the COVID-19 pandemic occurs.

As a result of COVID-19 crisis, companies in the textile and apparel sector are caught in a double bump. On
the one hand, a supply shock arises in the sequel of the slowdown in international trade and local supply linked
to the confinement within the country. This supply chock was accompanied by a demand shock with a drop in
activity caused by the absence or fear of consumers. In our case where part of the production is subcontracted
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overseas and most of the sales are exported, these two shocks may be external or internal in origin. The external
shocks come firstly from the decline in demand for exports of textile and apparel products. They also stem from
difficulties in supplying local producers with imports. The internal shocks come from the decline in activity in
the country following the confinement and reduction of demand in the non-food sectors in general and in the
textile and apparel sector in particular. Three main changes are hence entailed by the above-mentioned schocks.
Firstly, demand is negatively impacted by the sector’s lower exports and lower consumption and the periodic
closures of stores. Secondly, overseas transport costs increase due to the control and waiting phenomena at
border areas. To avoid longer shipping lead times and higher overseas transportation costs, companies are hence
favoring local subcontractors. Hence local subcontacting cost is expected to increase in the near future. Our
results reveal that the planning approach with information sharing is more cost effective than the one without
information sharing in the sequel of these changes. Moreover, our approach can be used to evaluate in a more
precise way the effect of the company’s new operating conditions in the context of the COVID-19 crisis on the
performance of the textile supply chain under consideration.

7. Conclusion and further research

This study aims to provide the textile and apparel supply chain managers with a decision support tool
that allows them to achieve a better match between supply and demand while considering: (1) production and
distribution activity coordination, (2) temporal coordination through the integration of tactical and operational
decisions, and (3) reliable replenishment order forecasts enabled by information sharing on current in-season
sales. Linear programming models are used to optimize production and distribution plans by considering capacity
and material balance constraints. A two-stage approach is proposed for the multi-site supply chain, multi-product
and multi-period planning models at the tactical and operational decision levels. Tactical decisions, allowing
an adjusted reserve production capacity, are detailed at the operational model considering a variable rolling
horizon. The information sharing provides the producer with better visibility on the future replenishment orders
and contributes to better matching the supply to the demand.

This work relies on information sharing to better match supply and demand in the textile and apparel supply
chain. In fact, information sharing along the supply chain reduces costs by 15%. However, when information
sharing is coupled with reserve production capacity at the tactical level, the cost cutting attains 18%. Moreover,
perfect forecasts yield a cost saving of 20%, amounting to 573 Me per six months. This can be achieved when
retailer-manufacturer partnership is reinforced and shared information is exhaustive; that is, when retailers
communicate their sales data and their inventory management policy with the manufacturer.

This work developed an approach that helps textile and apparel manufacturer decision maker place production
orders while accounting for demand uncertainty and striving for cost cutting and customer satisfaction. The
cost reduction provided by the proposed sequential approach, which takes into account information sharing,
enables the company to maintain its market share and remain competitive even in difficult situations and in
crisis time. On the other hand, thanks to gains generated and when demand recovers after a potential crisis, the
manager would be encouraged to extend production, invade other markets, establish other contracts and make
an optimal choice of its partners (suppliers and subcontractors) in order to make higher profits. That is to say
that the proposed approach helps the manager to react quickly to market conditions by reconfiguring optimally
his production resources, if necessary, and making a better choice of partners’ locations.

The developed approach emphasizes the importance of information sharing among supply chain actors so
that the performance rises, especially for specific industrial fields characterized by their global supply chain and
operating in a volatile market featured by variable demand arriving at different horizons and short-life-cycle
products. It can be applied to other sectors where the demand is unstable and changing and where orders
emanate at a tactical and operational levels. It’s particularly the case of industries with two kinds of customers:
premium customers with unpredictable requirements on a tactical level but who pay more, and classic or regular
customers with longer and predictable orders. Different scenarios can also be tested, possibly acting on variables
other than those proposed for the performance study such as lead times, production or transportation capacity,
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availability of manufacturing units. Thus, the use of our models should make it possible not only to reduce costs
and improve industrial reactivity, but also to deduce other results for the improvement of the company’s overall
performance by anticipating the effect of variations in some parameters (such as demand, production, transport
or storage capacities. . . ) by establishing action plans that will be useful following unpredictable events such as
the COVID-19 crisis. Moreover, our models, applied to larger sized problems, can lead to additional complexity
and need the development of more sophisticated methods such as relaxation or decomposition based methods
or meta-heuristics to obtain near-optimal solutions. Another important perspective of this research lies in the
consideration of uncertainties tied to the demand and the supply in the integrated production and distribution
planning of the textile and apparel supply chain. Henceforth, the development of a stochastic approach for this
decision problem constitutes one of the prominent extensions of the current work.

Appendix A. Tactical planning model

In model formulation, we consider the following sets and indices, parameters, and decision variables.

Sets and indices

K: set of manufacturing units k ∈ K; K = U ∪ V .
U : set of internal manufacturing units, k ∈ U .
V : set of subcontractors’ manufacturing units, k ∈ V .
I: set of retailers, i ∈ I.
J : set of warehouses, j ∈ J .
P : set of products, p ∈ P .
L: set of transportation modes, L = {trucks, ships, aircraft}, l ∈ L.
T : set of periods included in the planning horizon, t ∈ [1, . . . , |T |].

Parameters

In this tactical model, each retailer i expresses a demand for product p to be delivered at period t(Dpit).
Orders are assigned to manufacturing units characterized by a monthly limited production capacity (Ukt) where
production takes place, incurring variable and fixed monthly production costs (Cpkt, Spkt) or monthly subcon-
tracting costs (Gpkt). A monthly underutilization cost of internal production capacity (CSUkt) is also considered
to penalize the unused available resources. Each product is characterized by a production lead time (Tpp) and a
products’ unit volume (Vp). Manufactured quantities are then transported to warehouses where monthly inven-
tory holding costs (KPpjt) are incurred. Warehouses’ storage capacity (Wj) is limited. Transportation modes are
characterized by a limited monthly transportation capacity (Capl) and a transportation lead time (el). Variable
and fixed distribution costs from manufacturing units to warehouses (CTkjplt, CFkjplt) and from warehouses to
retailers (CSjiplt, CFSjiplt) are also considered. We denote the percentage of internal production capacity that
can be used to fulfil pre-season orders by αkt(k ∈ U). As it can be noted, (100−αkt) represents the percentage
of internal capacity reserved to fulfil in-season replenishment orders. Obviously, for k ∈ V (V is the set of
subcontractors’ manufacturing units), αkt = 0.

Decision variables

Z1kjplt: transported quantity of product p from manufacturing unit k to warehouse j over period t via trans-
portation mode l.

Z2jiplt: transported quantity of product p from warehouse j to retailer i over period t via transportation mode
l.

Xpkt: quantity of product p produced in manufacturing unit k over period t.
SUkt: unused production capacity at internal manufacturing unit k over period t.
Jpjt: inventory level of product p in warehouse j at the end of period t.
Ypkt = 1: if product p is produced in manufacturing unit k over period t; 0 otherwise.
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N1kjlt: transported quantity from manufacturing unit k to warehouse j over period t by use of transportation
mode l.

N2jilt: transported quantity from warehouse j to retailer i over period t by use of transportation mode l.

Model formulation (M1)

The tactical production–distribution planning model is formulated as an ILP that aims at minimizing the
overall cost in the considered supply chain network.

Min

(∑
t∈T

∑
p∈P

∑
k∈V

CpktXpkt +
∑
t∈T

∑
p∈P

∑
k∈V

SpktYpkt +
∑
t∈T

∑
p∈p

∑
k∈v

GpktXpkt +
∑
k∈V

∑
t∈T

CSUpktSUpkt

×
∑
j∈J

∑
t∈T

∑
p∈P

KPpjt (Jpjt−1 + Jpjt) /2 + Jpjt−1 +
∑
t∈T

∑
p∈P

∑
k∈K

∑
l∈L

∑
j∈J

CTkjplt ∗ Vp ∗ Z1kjlpt

+
∑
t∈T

∑
p∈P

∑
i∈I

∑
l∈L

∑
j∈J

CSjiplt ∗ Vp ∗ Z2jipt +
∑
t∈T

∑
p∈P

∑
i∈I

∑
l∈L

∑
j∈J

CFkjplt ∗N1kjlt

+
∑
t∈T

∑
p∈P

∑
k∈K

∑
l∈L

∑
j∈J

CFSjiplt ∗N2jilt

)

Subject to

Ipjt = Ipjt−1 +
∑
l∈L

∑
k∈K

Z1kjplt−el
−
∑
l∈L

∑
i∈I

Z2jiplt j ∈ J ; p ∈ P ; t ∈ T ; t ≥ el (A.1)∑
p∈P

Ipjt ≤Wj j ∈ J ; t ∈ T (A.2)

∑
p∈P

Tpp ∗Xpkt ≤ αkt ∗ Ukt k ∈ K; t ∈ T (A.3)

Xpkt ≤M ∗Ypkt k ∈ K; p ∈ P ; t ∈ T (A.4)
Ypkt ≤ Xpkt k ∈ K; p ∈ P ; t ∈ T (A.5)

SUkt ≤ αkt ∗ Ukt −
∑
p∈P

Tpp ∗Xpkt k ∈ U ; t ∈ T (A.6)

Xpkt =
∑
j∈J

∑
l∈L

Z1kjplt k ∈ K; p ∈ P ; t ∈ T (A.7)

Dpkt =
∑
j∈J

∑
l∈L

Z2ijplt−el
i ∈ I; p ∈ P ; t ∈ T (A.8)

∑
p

Vp ∗ Z2jiplt ≤ N2jilt ∗ Capl j ∈ J ; i ∈ I; l ∈ L; t ∈ T (A.9)

∑
p

Vp ∗ Z1kjplt ≤ N1kjlt ∗ Capl j ∈ J ; k ∈ K; i ∈ I; t ∈ T (A.10)

Ypkt ∈ {0, 1} k ∈ K; p ∈ P ; t ∈ T (A.11)
Z1kjplt ∈ N;Z2jiplt ∈ N;Xpkt ∈ N; Jpjt ∈ N;N1kjplt ∈ N;N2jplt ∈ N;
SUkt ∈ N; k ∈ K; j ∈ J ; p ∈ P ; t ∈ T ; l ∈ L; i ∈ I. (A.12)

The objective function minimizes the tactical planning cost composed of variable production cost, set-up
cost, subcontracting cost, internal capacity underutilization cost, inventory holding cost, variable transporta-
tion cost from manufacturing units to warehouses, variable transportation cost from warehouses to retailers,
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fixed transportation cost from manufacturing units to warehouses, and finally, fixed transportation cost from
warehouses to retailers. The transportation cost is composed of a variable cost, depending on the transported
quantity using a transportation mode, and a fixed cost depending on the selected transportation mode; the
latter is proportional to the number of trucks, aircraft, or ships used.

Constraints (A.1) calculate the inventory level of product p in warehouse j at the end of period t. Con-
straints (A.2) guarantee that over each period, the total stored quantity does not exceed the warehousing
capacity. Constraints (A.3) state that the produced quantities consider available internal production capacities
while recognising production lead times and reserve production capacity. Constraints (A.4) and (A.5) ensure
the relationship between binary and integer variables. Constraints (A.6) with the objective function define the
underutilized internal production capacity. Constraints (A.7) guarantee that all produced quantities are trans-
ported to warehouses. Constraints (A.8) state that products transported from warehouses to retailers satisfy the
demand with respect to delivery lead times. Constraints (A.9) and (A.10) guarantee that over each period, the
transported quantities do not exceed transportation capacities. Constraints (A.11) and (A.12) are the integrality
constraints.
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