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ON k-ORTHOGONAL FACTORIZATIONS IN NETWORKS

Sufang Wang1,∗ and Wei Zhang2

Abstract. Let m, n, k, r and ki (1 ≤ i ≤ m) are positive integers such that 1 ≤ n ≤ m and
k1 ≥ k2 ≥ · · · ≥ km ≥ (r + 1)k. Let G be a graph with vertex set V (G) and edge set E(G), and
H1, H2, · · · , Hr be r vertex-disjoint nk-subgraphs of G. In this article, we demonstrate that a graph G
with maximum degree at most

∑m
i=1 ki−(n−1)k has a set F = {F1, · · · , Fn} of n pairwise edge-disjoint

factors of G such that Fi has maximum degree at most ki for 1 ≤ i ≤ n and F is k-orthogonal to every
Hj for 1 ≤ j ≤ r.
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1. Introduction

Many real-world networks can be modelled by graphs or networks. The vertices of the graph stand for the
nodes of the network, and the edges of the graph act for the links between the nodes in the network. Next, we
show an example: an online social network with nodes representing persons and links corresponding to personal
contacts of each user. Other examples include an aviation network with nodes modelling aviation stations and
links representing air lines between two stations, or the World Wide Web with nodes corresponding to web pages
and links modelling hyperlinks between web pages, or a communication network with nodes acting for cities
and links standing for communication channels. Henceforth, we employ the term “graph” instead of “network”.
Network Science (a.k.a. Complex Network Analysis) is an emerging area of interest in the big data paradigm
and corresponds to analyzing complex real-world networks and theoretical model-based networks from a graph
theory point of view. Many real-life problems on network design, combinatorial design, circuit layout, and so on
are related to the factors, factorizations and orthogonal factorizations in networks [1], and attract a great deal
of attention [2, 4–6,8, 14–17,19–29,31–35].

We deal with finite undirected simple graphs. Let G be a graph. We denote by V (G) the vertex set of G, and
by E(G) the edge set of G. For x ∈ V (G), we denote by dG(x) the degree of x in G. A vertex of G is called
an isolated vertex if its degree in G is 0. Let g, f : V (G)→ Z be two functions with 0 ≤ g(x) ≤ f(x) for every
x ∈ V (G). A spanning subgraph F of G is called a (g, f)-factor of G if g(x) ≤ dF (x) ≤ f(x) holds for every
x ∈ V (G). We call G a (g, f)-graph if G itself is a (g, f)-factor. Especially, a (g, f)-factor is called an [a, b]-factor
and a (g, f)-graph is called an [a, b]-graph if g(x) = a and f(x) = b for every x ∈ V (G). Let k1, k2, · · · , km be
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positive integers. If the edges of G can be decomposed into edge-disjoint [0, k1]-factor F1, [0, k2]-factor F2, · · · ,
[0, km]-factor Fm, then we call F = {F1, F2, · · · , Fm} is a [0, ki]mi=1-factorization of G.

A subgraph with m edges is said to be an m-subgraph. Let H be an mk-subgraph of G and F =
{F1, F2, · · · , Fm} be a [0, ki]mi=1-factorization of G. If |E(H) ∩ E(Fi)| = k for any i ∈ [1,m], then we say
that F is k-orthogonal to H, namely, F is a k-orthogonal [0, ki]mi=1-factorization of G. Note that 1-orthogonal
is also called orthogonal.

Alspach et al. [1] presented the following problem: Given a subgraph H of G, does there exist a factorization F
ofG with a given property orthogonal toH? Liu [11] proved that every (mg+m−1,mf−m+1)-graph has a (g, f)-
factorization orthogonal to any given m-matching. Li and Liu [9] verified that every (mg+m− 1,mf −m+ 1)-
graph admits a (g, f)-factorization orthogonal to any given m-subgraph, which is an improvement of Liu’s
previous result [11]. Lam et al. [7] justified that every (mg + m − 1,mf − m + 1)-graph admits a (g, f)-
factorization orthogonal to k vertex-disjoint m-subgraphs if k ≤ g(x) ≤ f(x) for any x ∈ V (G), which is a
generalization of Li and Liu’s previous result [9]. Li et al. [10] investigated the existence of a subgraph with
orthogonal factorization in an (mg + k,mf − k)-graph. Feng and Liu [3] showed the existence of orthogonal
factorizations of [0, k1 + k2 + · · · + km −m + 1]-graphs. Wang [18] discussed the existence of a subgraph with
orthogonal factorization in a [0, k1 +k2 + · · ·+km−n+1]-graph. The k-orthogonal factorizations of some graphs
were studied in [12,13,30].

In the present article, we deal with the following problem: Given r vertex-disjoint subgraphs H1, H2, · · · , Hr

of G, does there exist a subgraph R of G such that R possesses a factorization k-orthogonal to every Hi for
1 ≤ i ≤ r?

We now present the main result of this article, which answers the above question.

Theorem 1.1. Let G be a graph with maximum degree at most
∑m

i=1 ki− (n−1)k, and let H1, H2, · · · , Hr be r
pairwise vertex-disjoint nk-subgraphs of G, where m, n, k, r and ki (1 ≤ i ≤ m) are positive integers such that
1 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ (r + 1)k. Then G has a set F = {F1, · · · , Fn} of n pairwise edge-disjoint
factors of G such that Fi has maximum degree at most ki for 1 ≤ i ≤ n and F is k-orthogonal to every Hj for
1 ≤ j ≤ r.

2. Lemmas

Let G be a graph. For S ⊆ V (G) and A ⊆ E(G), we denote by G − S the subgraph induced by V (G) − S,
and by G−A the subgraph induced by E(G)−A. For any function ϕ defined on V (G) and S ⊆ V (G), we write
ϕ(S) =

∑
x∈S ϕ(x) and ϕ(∅) = 0. Let S and T be two subsets of V (G), and S ∩ T = ∅. We denote by EG(S, T )

the set of edges in G with one end in S and the other in T , and write eG(S, T ) = |EG(S, T )|. Set

U = V (G)− (S ∪ T ), E(S) = {xy : xy ∈ E(G), x, y ∈ S}

and
E(T ) = {xy : xy ∈ E(G), x, y ∈ T}.

Let E1 and E2 be two subsets of E(G), and E1 ∩ E2 = ∅. Put

E′1 = E1 ∩ E(S), E′′1 = E1 ∩ EG(S,U),

E′2 = E2 ∩ E(T ), E′′2 = E2 ∩ EG(T,U),

αG(S, T ;E1) = 2|E′1|+ |E′′1 |
and

βG(S, T ;E2) = 2|E′2|+ |E′′2 |.
If it causes no ambiguity, we write α for αG(S, T ;E1), and β for βG(S, T ;E2). We easily see that α ≤ dG−T (S)

and β ≤ dG−S(T ).
The following lemma, whose proof can be shown by Lam et al. [7], Li et al. [10] and Liu et al. [9], is useful

for verifying our main theorem.
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Lemma 2.1 ([7,9,10]). Let G be a graph, and let g, f : V (G)→ Z be two functions such that 0 ≤ g(x) < f(x) ≤
dG(x) for all x ∈ V (G). Let E1 and E2 be two subsets of E(G), and E1 ∩ E2 = ∅. Then G has a (g, f)-factor
F such that E1 ⊆ E(F ) and E2 ∩ E(F ) = ∅ if and only if

δG(S, T ; g, f) = dG−S(T )− g(T ) + f(S) ≥ αG(S, T ;E1) + βG(S, T ;E2)

for any two disjoint subsets S and T of V (G).

The following lemma, which was obtained by Wang [18], will be used in the proof of our main theorem.

Lemma 2.2 (Wang [18]). Let G be a graph with maximum degree
∑m

i=1 ki−n+1, where m,n and ki (1 ≤ i ≤ m)
are positive integers with n ≤ m and k1 ≥ k2 ≥ · · · ≥ km. Let H be an arbitrary n-subgraph of G. Then G has
a set F = {F1, · · · , Fn} of n pairwise edge-disjoint factors of G such that Fi has maximum degree at most ki

for 1 ≤ i ≤ n and F is orthogonal to H.

Now, we shall prove the following lemma, which will be used in the proof of our main theorem.

Lemma 2.3. Let G be a [0, k1 + k2 + · · ·+ km]-graph, and let H1, H2, · · · , Hr be r vertex-disjoint k-subgraphs
of G, where m, r, k and ki (1 ≤ i ≤ m) are positive integers such that k1 ≥ k2 ≥ · · · ≥ km ≥ (r + 1)k. Then G
has a [0, k1]-factor F1 satisfying E(Hi) ⊆ E(F1) for 1 ≤ i ≤ r.

Proof. Let E1 =
r⋃

i=1

E(Hi) and E2 = ∅. We write E(Hi) = {ei1, · · · , eik}, where eij = xijyij for 1 ≤ j ≤ k, and

write E(Hi) ∩ E(S) = {xi1yi1, · · · , xidi
yidi
} and E(Hi) ∩ EG(S,U) = {xidi+1yidi+1 , · · · , xiti

yiti
}, where ti ≤ k

is a nonnegative integer. Thus, we admit

2|E1 ∩ E(S)|+ |E1 ∩ EG(S,U)| = 2

∣∣∣∣∣
(

r⋃
i=1

E(Hi)

)
∩ E(S)

∣∣∣∣∣+

∣∣∣∣∣
(

r⋃
i=1

E(Hi)

)
∩ EG(S,U)

∣∣∣∣∣
= 2

∣∣∣∣∣
r⋃

i=1

(E(Hi) ∩ E(S))

∣∣∣∣∣+

∣∣∣∣∣
r⋃

i=1

(E(Hi) ∩ EG(S,U))

∣∣∣∣∣
= 2

r∑
i=1

|E(Hi) ∩ E(S)|+
r∑

i=1

|E(Hi) ∩ EG(S,U)|

= 2
r∑

i=1

di +
r∑

i=1

(ti − di)

=
r∑

i=1

(di + ti)

and

k|S| ≥ k
r∑

i=1

(
2di + (ti − di)

k

)
=

r∑
i=1

(di + ti).

Hence, we derive
2|E1 ∩ E(S)|+ |E1 ∩ EG(S,U)| ≤ k|S|.

We define α and β as before for two disjoint vertex subsets S and T of G. By the definitions of α and β, we
obtain

α = 2|E1 ∩ E(S)|+ |E1 ∩ EG(S,U)| ≤ min{2kr, k|S|}

and
β = 2|E2 ∩ E(T )|+ |E2 ∩ EG(T,U)| = 0.
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Then it follows from k1 ≥ (r + 1)k that

δG(S, T ; 0, k1) = dG−S(T )− 0 · |T |+ k1|S| ≥ k1|S| ≥ (r + 1)k|S| ≥ k|S| ≥ α = α+ β.

In terms of Lemma 2.1, G has a [0, k1]-factor F1 such that E(Hi) ⊆ E(F1) for 1 ≤ i ≤ r. Lemma 2.3 is
demonstrated. �

3. Proof of Theorem 1.1

Let m,n, k, r and ki (1 ≤ i ≤ m) are positive integers such that 1 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ (r+1)k.
In the following, we assume that G is a [0, k1 + k2 + · · ·+ km − (n− 1)k]-graph. For every [0, ki]-factor Fi and
every isolated vertex x ∈ V (G), x is also isolated in Fi, which automatically satisfies the required condition.
Therefore, we may assume that G does not admit isolated vertices. Define

p(x) = max{0, dG(x)− (k1 + k2 + · · ·+ km−1 − (n− 2)k)}

and
q(x) = min{km, dG(x)}.

By the definitions of p(x) and q(x), we obtain 0 ≤ p(x) < q(x) = min{km, dG(x)}.

Proof of Theorem 1.1. If kr = 1, namely, k = 1 and r = 1, then the theorem holds by Lemma 2.2. Next, we
may assume kr ≥ 2.

We proceed by induction on m and n. The theorem obviously holds for n = 1 by Lemma 2.3. So we may
assume n ≥ 2 in the following. For the inductive step, we assume that Theorem 1.1 holds for any graph G′

with maximum degree at most
∑m′

i=1 ki − (n′ − 1)k (m′ < m, n′ < n and 1 ≤ n′ ≤ m′), and any r pairwise
vertex-disjoint n′k-subgraphs H ′1, H

′
2, · · · , H ′r of G′. We now discuss a graph G with maximum degree at most∑m

i=1 ki − (n− 1)k and any r pairwise vertex-disjoint nk-subgraphs H1, H2, · · · , Hr of G.
We define p(x) and q(x) the same as before, and choose any Aj ⊆ E(Hj) with |Aj | = k, 1 ≤ j ≤ r. Let

E1 =
⋃r

j=1Aj and E2 =
(⋃r

j=1E(Hj)
)
\ E1. Then |E1| = kr and |E2| = (n− 1)kr. For two disjoint subsets S

and T of V (G), we define E′1, E′′1 , E′2, E′′2 , α and β as before. According to the definitions of α and β, we obtain

α ≤ min{2kr, k|S|}

and
β ≤ min{2(n− 1)kr, (n− 1)k|T |}.

In what follows, we choose two disjoint subsets S and T of V (G) such that

(a) δG(S, T ; p, q)− αG(S, T ;E1)− βG(S, T ;E2) is as small as possible;
(b) |S| is minimum subject to (a).

Claim 1. If S 6= ∅, then q(x) ≤ dG(x)− 1 for all x ∈ S. Thus, q(x) = km for all x ∈ S.

Proof. Suppose that S1 = {x : x ∈ S, q(x) ≥ dG(x)} 6= ∅. Write S0 = S \ S1. Thus,

δG(S, T ; p, q) = dG−S(T )− p(T ) + q(S)
= dG(T )− eG(S0, T )− eG(S1, T )− p(T ) + q(S0) + q(S1)
= dG−S0(T )− p(T ) + q(S0) + q(S1)− eG(S1, T )
= δG(S0, T ; p, q) + q(S1)− eG(S1, T )
≥ δG(S0, T ; p, q) + dG(S1)− eG(S1, T )
= δG(S0, T ; p, q) + dG−T (S1).
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Note that
αG(S, T ;E1) + βG(S, T ;E2) ≤ αG(S0, T ;E1) + βG(S0, T ;E2) + αG(S1, T ;E1)

and
dG−T (S1) ≥ αG(S1, T ;E1).

Thus,

δG(S, T ; p, q)− αG(S, T ;E1)− βG(S, T ;E2) ≥ δG(S0, T ; p, q) + dG−T (S1)− αG(S0, T ;E1)
−βG(S0, T ;E2)− αG(S1, T ;E1) ≥ δG(S0, T ; p, q)− αG(S0, T ;E1)− βG(S0, T ;E2),

which conflicts the choice of S. Therefore, S1 = ∅. And so, if S 6= ∅, then q(x) ≤ dG(x) − 1 for all x ∈ S.
Combining this with the definition of q(x), we have q(x) = km for all x ∈ S. Claim 1 is proved. �

The remaining of the proof is dedicated to demonstrating that G has a (p, q)-factor Fn (which is also a
[0, kn]-factor) such that E1 ⊆ E(Fn) and E2 ∩E(Fn) = ∅. In light of Lemma 2.1, and the choice of S and T , it
suffices to verify that δG(S, T ; p, q) ≥ α+ β.

In what follows, we let T1 = {x : dG(x) − (k1 + k2 + · · · + km−1 − (n − 2)k) ≥ 1, x ∈ T}, and T0 = T \ T1.
We easily see that p(x) = 0 for all x ∈ T0, and p(x) = dG(x)− (k1 + k2 + · · ·+ km−1 − (n− 2)k) for all x ∈ T1.
Thus,

p(T0) = 0 (3.1)

and
p(T1) = dG(T1)− (k1 + k2 + · · ·+ km−1 − (n− 2)k)|T1|. (3.2)

By the definition of βG(S, T ;E2), we easily see that

βG(S, T0;E2) + βG(S, T1;E2) = βG(S, T ;E2). (3.3)

Note that α ≤ min{2kr, k|S|} ≤ k|S|, and β ≤ dG−S(T ). If T1 = ∅, then it follows from (3.1), Claim 1 and
km ≥ (r + 1)k that

δG(S, T ; p, q) = dG−S(T )− p(T ) + q(S)
= dG−S(T )− p(T0)− p(T1) + q(S)
= dG−S(T ) + q(S)
= dG−S(T ) + km|S|
≥ dG−S(T ) + (r + 1)k|S|
≥ dG−S(T ) + k|S|
≥ α+ β.

If S = ∅, then α = 0. Using (3.1)–(3.3), 2 ≤ n ≤ m, and k1 ≥ k2 ≥ · · · ≥ km ≥ (r + 1)k, we get

δG(S, T ; p, q) = dG−S(T )− p(T ) + q(S)
= dG(T )− p(T )
= dG(T0) + dG(T1)− p(T0)− p(T1)
= dG(T0) + dG(T1)− (dG(T1)− (k1 + k2 + · · ·+ km−1 − (n− 2)k)|T1|)
= dG(T0) + (k1 + k2 + · · ·+ km−1 − (n− 2)k)|T1|
≥ dG(T0) + ((m− 1)km − (n− 2)k)|T1|
≥ dG(T0) + ((n− 1)(r + 1)k − (n− 2)k)|T1|
≥ dG(T0) + (n− 1)k|T1|
≥ βG(∅, T0;E2) + βG(∅, T1;E2)
= βG(∅, T ;E2) = β = α+ β.
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Next, we always assume that S 6= ∅ and T1 6= ∅, and consider two cases.

Case 1. |S| ≥ |T1|.
Note that G is a graph with maximum degree at most

∑m
i=1 ki − (n− 1)k. Thus, dG(T1) ≤ (k1 + k2 + · · ·+

km − (n− 1)k)|T1|. Combining this with (3.1), (3.2), Claim 1 and km ≥ (r + 1)k, we get

δG(S, T ; p, q) = dG−S(T )− p(T ) + q(S)
= dG−S(T )− p(T0)− p(T1) + q(S)
= dG−S(T )− p(T1) + km|S|
= dG−S(T )− (dG(T1)− (k1 + k2 + · · ·+ km−1 − (n− 2)k)|T1|) + km|S|
= dG−S(T ) + ((k1 + k2 + · · ·+ km−1 + km − (n− 1)k)|T1| − dG(T1))

+k|T1|+ km(|S| − |T1|)
≥ dG−S(T ) + k|T1|+ km(|S| − |T1|)
= dG−S(T ) + k|S|+ (km − k)(|S| − |T1|)
≥ dG−S(T ) + k|S|
≥ α+ β.

Case 2. |S| ≤ |T1| − 1.
It follows from (3.1), (3.2), Claim 1, 2 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ (r + 1)k that

δG(S, T ; p, q) = dG−S(T )− p(T ) + q(S)
= dG−S(T0) + dG−S(T1)− p(T0)− p(T1) + q(S)
= dG−S(T0) + dG(T1)− eG(S, T1)
−(dG(T1)− (k1 + k2 + · · ·+ km−1 − (n− 2)k)|T1|) + q(S)

= dG−S(T0)− eG(S, T1) + (k1 + k2 + · · ·+ km−1 − (n− 2)k)|T1|+ km|S|
≥ dG−S(T0)− |S||T1|+ ((m− 1)km − (n− 2)k)|T1|+ km|S|
≥ dG−S(T0)− |S||T1|+ ((n− 1)(r + 1)k − (n− 2)k)|T1|+ km|S|
≥ dG−S(T0)− |S||T1|+ (n− 1)rk|T1|+ km|S|,

that is,

δG(S, T ; p, q) ≥ dG−S(T0)− |S||T1|+ (n− 1)rk|T1|+ km|S|. (3.4)

Subcase 2.1. |T1| ≤ km − k.
By (3.3) and (3.4), we obtain

δG(S, T ; p, q) ≥ dG−S(T0)− |S||T1|+ (n− 1)rk|T1|+ km|S|
≥ dG−S(T0)− (km − k)|S|+ (n− 1)k|T1|+ km|S|
= dG−S(T0) + k|S|+ (n− 1)k|T1|
≥ α+ βG(S, T0;E2) + βG(S, T1;E2)
= α+ βG(S, T ;E2)
= α+ β.

Subcase 2.2. |T1| ≥ km − k + 1.
Subcase 2.2.1. |S| ≤ (n− 1)rk.
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According to (3.4), km ≥ (r + 1)k and rk ≥ 2, we obtain

δG(S, T ; p, q) ≥ dG−S(T0)− |S||T1|+ (n− 1)rk|T1|+ km|S|
≥ km|S| − |S||T1|+ (n− 1)rk|T1|
= km|S|+ ((n− 1)rk − |S|)|T1|
≥ km|S|+ ((n− 1)rk − |S|)(km − k + 1)
= k|S| − |S|+ (km − k + 1)(n− 1)rk
≥ k|S| − (n− 1)rk + (km − k + 1)(n− 1)rk
= k|S|+ (km − k)(n− 1)rk
≥ k|S|+ ((r + 1)k − k)(n− 1)rk
= k|S|+ (n− 1)(rk)2

≥ k|S|+ 2(n− 1)kr
≥ α+ β.

Subcase 2.2.2. |S| ≥ (n− 1)rk + 1.
Note that G is a graph with maximum degree at most

∑m
i=1 ki− (n− 1)k. Thus, dG(S) ≤ (k1 + k2 +

· · · + km − (n − 1)k)|S|. Combining this with (3.1), (3.2), Claim 1, k1 ≥ k2 ≥ · · · ≥ km ≥ (r + 1)k
and 2 ≤ n ≤ m, we have

δG(S, T ; p, q) = dG−S(T )− p(T ) + q(S)
= dG−S(T )− p(T0)− p(T1) + q(S)
= dG(T )− eG(S, T )− p(T1) + km|S|
= dG(T )− eG(S, T )− (dG(T1)− (k1 + k2 + · · ·+ km−1 − (n− 2)k)|T1|) + km|S|
≥ km|S|+ (k1 + k2 + · · ·+ km−1 − (n− 2)k)|T1| − eG(S, T )
= (k1 + k2 + · · ·+ km−1 + km − (n− 2)k)|S|

+(k1 + k2 + · · ·+ km−1 − (n− 2)k)(|T1| − |S|)− eG(S, T )
≥ dG(S) + k|S|+ (k1 + k2 + · · ·+ km−1 − (n− 2)k)− eG(S, T )
≥ dG(S) + k|S|+ (m− 1)km − (n− 2)k − eG(S, T )
≥ dG(S) + k((n− 1)rk + 1) + (n− 1)(r + 1)k − (n− 2)k − eG(S, T )
= dG−T (S) + (n− 1)rk2 + (n− 1)rk + 2k
> dG−T (S) + 2(n− 1)kr
≥ α+ β.

Thus, we have δG(S, T ; p, q) ≥ αG(S, T ;E1) + βG(S, T ;E2). By the choice of S and T , we obtain
δG(S′, T ′; p, q) ≥ αG(S′, T ′;E1) + βG(S′, T ′;E2) for arbitrary disjoint subsets S′ and T ′ of V (G). In
light of Lemma 2.1, G has a (p, q)-factor Fn such that E1 ⊆ E(Fn) and E2 ∩ E(Fn) = ∅, and Fn is
also a [0, kn]-factor of G. It follows from p(x) and q(x) that

dG−Fn
(x) = dG(x)− dFn

(x) ≥ dG(x)− q(x) ≥ 0

and

dG−Fn
(x) = dG(x)− dFn

(x) ≤ dG(x)− p(x)
≤ dG(x)− (dG(x)− (k1 + k2 + · · ·+ km−1 − (n− 2)k))
= k1 + k2 + · · ·+ km−1 − ((n− 1)− 1)k
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for each x ∈ V (G). Therefore, G−Fn is a graph with maximum degree at most
∑m−1

i=1 ki− ((n−1)−
1)k. Write H ′j = Hj−Aj for 1 ≤ j ≤ r. It is obvious that H ′1, H

′
2, · · · , H ′r are r pairwise vertex-disjoint

(n− 1)k-subgraphs of G− Fn. By the induction hypothesis, G− Fn has a set F ′ = {F1, · · · , Fn−1}
of (n − 1) pairwise edge-disjoint factors of G − Fn such that Fi has maximum degree at most ki

for 1 ≤ i ≤ n − 1 and F ′ is k-orthogonal to every H ′j for 1 ≤ j ≤ r. Consequently, G has a set
F = {F1, · · · , Fn} of n pairwise edge-disjoint factors of G such that Fi has maximum degree at most
ki for 1 ≤ i ≤ n and F is k-orthogonal to every Hj for 1 ≤ j ≤ r. We prove Theorem 1.1.
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